一道绝对值函数最值问题的研究
攻克一类含参绝对值函数最值问题中分类讨论的难关
a 2 , c o ( 设a 1 ≤ ≤ ) , 将 其 插入 于参
数a 的允 许 范 围 ( 设a ∈R) 之内 , 即 可
破解策 略
我们知道 , 函数y - f ( x ) ( ∈D ) 的
获得参 数a 的不 同分段 区间 : ( 一 o o , a 1 ] , ( a l , a 2 ] , ( a 2 , a 3 ] , ( 啦, + ∞) , 它们即 为参数a 的分类讨论段.
定义域D 内的图象 ( 当然是在这~排 序下的图象 ) .至于如何截取函数在 定义域 内的图象 , 如前所述 , 只要将
域 内. 笔 者探 究 发 现 , 判 断极 值 点是
( 3 ) 确定讨论点——设 函数厂 ( ) 的定义域D = [ m, n ] ( m< n ) ,接下来 ,
我们 将考 虑极值 点 a 是否 在D
的每一排 序 ,在直角坐标系下依次 作三条虚线 : = x = x 2 , x = a ,然后分
论 、作 图观察是解决含参 函数最值 问题的有效途径 ,但对于这类函数 而言 。我们该如何理清 函数作 图的
头绪、 破解 分类 讨 论 的迷 局 ? 本 文 就 此 问题 进行 探 究 .
数: 厂 ( ) : f ? , ≥ 。 ’ ( 其 中 。 为 参 l h 2 ( x , x < a
兴起 .由于这 类 函数 带有 绝 对 值 , 且
相对较大 ;而间接法采用分层讨论
思想 . 虽分两步 , 但每步讨论都相对
简单( 因为 难 度 已被 分 解 ) .当然 , 由
( 1 ) 去除绝对值——以} x 一 8 I 的
零 点a 为界 ( 称a 为“ 界点” ) , 将 函数
微专题19 与分段函数、绝对值函数有关的最值(范围)问题
微专题19 与分段函数、绝对值函数有关的最值(范围)问题真 题 感 悟(2019·江苏卷)设f (x ),g (x )是定义在R 上的两个周期函数,f (x )的周期为4,g (x )的周期为2,且f (x )是奇函数.当x ∈(0,2]时,f (x )=1-(x -1)2,g (x )=⎩⎪⎨⎪⎧k (x +2),0<x ≤1,-12,1<x ≤2,其中k >0.若在区间(0,9]上,关于x 的方程f (x )=g (x )有8个不同的实数根,则k 的取值范围是________.解析 当x ∈(0,2]时,y =f (x )=1-(x -1)2,即(x -1)2+y 2=1(y ≥0),故f (x )的图象是以(1,0)为圆心,1为半径的半圆.结合f (x )是周期为4的奇函数,可作出f (x )在(0,9]上的图象如图所示.∵当x ∈(1,2]时,g (x )=-12,又g (x )的周期为2,∴当x ∈(3,4]∪(5,6]∪(7,8]时,g (x )=-12.由图可知,当x ∈(1,2]∪(3,4]∪(5,6]∪(7,8]时,f (x )与g (x )的图象有2个交点.故当x ∈(0,1]∪(2,3]∪(4,5]∪(6,7]∪(8,9]时,f (x )与g (x )的图象有6个交点.又当x ∈(0,1]时,y =g (x )=k (x +2)(k >0)恒过定点A (-2,0),由图可知,当x ∈(2,3]∪(6,7]时,f (x )与g (x )的图象无交点,∴当x ∈(0,1]∪(4,5]∪(8,9]时,f (x )与g (x )的图象有6个交点.由f (x )与g (x )的周期性可知,当x ∈(0,1]时,f (x )与g (x )的图象有2个交点. 当y =k (x +2)与圆弧(x -1)2+y 2=1(0<x ≤1)相切时,d =|3k |k 2+1=1⇒k 2=18(k >0)⇒k =24. 当y =k (x +2)过点A (-2,0)与B (1,1)时,k =13.∴13≤k <24.答案 ⎣⎢⎡⎭⎪⎫13,24 考 点 整 合1.分段函数主要考查由基本初等函数所构成的分段函数的图象与性质,主要题型有以下几种:(1)解有关分段函数的不等式,只要找准分类的标准,转化为不等式组即可求解;(2)求分段函数在给定区间上的值域或根据值域求参数的范围,要根据函数的图象,对极值点或最值点与区间的位置关系分类讨论;(3)求分段函数的单调区间、最值,要通过基本函数法、图象法、导数法判断相应区间的单调性,特别注意不等式解集端点和区间端点的大小的比较,以及函数的定义域.2.含绝对值函数主要考查由基本初等函数构成的绝对值函数的单调性、极值、最值等问题.题型有以下几种:(1)探究绝对值函数的单调性、极值、最值;(2)已知绝对值函数在给定区间上的最值或单调性,求参数的范围;以上题型的处理有两种常见的方法:①转化为分段函数来讨论;②考虑绝对值内函数的图象与性质,然后根据函数的图象关系来处理.热点一 分段函数、含绝对值函数与不等式结合的范围问题【例1】 已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=|x -a |-a (a ∈R ).若∀x ∈R ,f (x +2 016)>f (x ),则实数a 的取值范围是________.解析 当a =0时,f (x )=x ,x ∈R ,满足条件;当a <0时,f (x )=⎩⎪⎨⎪⎧x -2a ,x >0,0,x =0,x +2a ,x <0为R 上的单调递增函数,也满足条件;当a >0时,f (x )=⎩⎪⎨⎪⎧x -2a ,x >a ,-x ,-a ≤x ≤a ,x +2a ,x <-a ,要满足条件,需4a <2 016,即0<a <504,综上,实数a 的取值范围是a <504.答案 (-∞,504)探究提高 (1)可以根据函数的奇偶性,将所给函数转化为分段函数的形式.(2)利用函数的单调性解决不等式问题的关键是化成f (x 1)<f (x 2)的形式.【训练1】 (2019·天津卷改编)已知a ∈R ,设函数f (x )=⎩⎨⎧x 2-2ax +2a ,x ≤1,x -a ln x ,x >1.若关于x 的不等式f (x )≥0在R 上恒成立,则a 的取值范围为________.解析 当x ≤1时,由f (x )=x 2-2ax +2a ≥0恒成立,而二次函数f (x )图象的对称轴为直线x =a ,所以当a ≥1时,f (x )min =f (1)=1>0恒成立,当a <1时,f (x )min =f (a )=2a -a 2≥0,∴0≤a <1.综上,a ≥0.当x >1时,由f (x )=x -a ln x ≥0恒成立,即a ≤x ln x 恒成立.设g (x )=x ln x (x >1),则g ′(x )=ln x -1(ln x )2.令g ′(x )=0,得x =e ,且当1<x <e 时,g ′(x )<0,当x >e 时,g ′(x )>0,∴g (x )min =g (e)=e ,∴a ≤e.综上,a 的取值范围是0≤a ≤e ,即[0,e].答案 [0,e]热点二 分段函数、含绝对值函数与零点相关的最值(范围)问题【例2】 (1)(2019·南京、盐城一模)设函数f (x )是偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧x (3-x ),0≤x ≤3,-3x+1,x >3,若函数y =f (x )-m 有四个不同的零点,则实数m 的取值范围是________.(2)已知函数f (x )=⎩⎨⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是________.解析 (1)先画出x ≥0时的函数图象,再利用偶函数的对称性得到x <0时的图象.令y =f (x ),y =m ,由图象可得要有四个不同的零点,则m∈⎣⎢⎡⎭⎪⎫1,94.(2)函数y =f (x )-g (x )恰有4个零点,即方程f (x )-g (x )=0,即b =f (x )+f (2-x )有4个不同实数根,即直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点,又y =f (x )+f (2-x )=⎩⎪⎨⎪⎧x 2+x +2,x <0,2,0≤x ≤2,x 2-5x +8,x >2,作出该函数的图象如图所示,由图可知,当74<b <2时,直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点,故函数y =f (x )-g (x )恰有4个零点时,b 的取值范围是⎝ ⎛⎭⎪⎫74,2. 答案 (1)⎣⎢⎡⎭⎪⎫1,94 (2)⎝ ⎛⎭⎪⎫74,2 探究提高 利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.【训练2】 (2019·南京模拟)已知a >0,若函数f (x )=⎩⎨⎧2e 2ln x ,x >0,|x 3+x |,x ≤0且g (x )=f (x )-ax 2有且只有5个零点,则a 的取值范围是________.解析 由题意可知,x =0是g (x )的1个零点,当x ≠0时,由f (x )=ax 2可得a =⎩⎪⎨⎪⎧2e 2ln x x 2,x >0,⎪⎪⎪⎪⎪⎪x +1x ,x <0, 令h (x )=2e 2ln x x 2(x >0),则h ′(x )=2e 2(1-2ln x )x 3. 当0<x <e 时,h ′(x )>0,当x >e 时,h ′(x )<0,∴h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴h (x )≤h (e)=e ,且当x →+∞时,h (x )→0,当x →0时,h (x )<0.在同一平面直角坐标系中作出h (x )和y =⎪⎪⎪⎪⎪⎪x +1x 的图象, 由图可知,g (x )=f (x )-ax 2有且只有5个零点需满足2<a <e ,则a 的取值范围是(2,e).答案 (2,e)热点三 分段函数、含绝对值函数图象与性质的综合应用【例3】 (2019·连云港二模)已知函数f (x )=e x -ax -1,其中e 为自然对数的底数,a ∈R .(1)若a =e ,函数g (x )=(2-e)x .①求函数h (x )=f (x )-g (x )的单调区间;②若函数F (x )=⎩⎨⎧f (x ),x ≤m ,g (x ),x >m的值域为R ,求实数m 的取值范围. (2)若存在实数x 1,x 2∈[0,2],使得f (x 1)=f (x 2),且|x 1-x 2|≥1,求证:e -1≤a ≤e 2-e.(1)解 若a =e ,则f (x )=e x -e x -1.又g (x )=(2-e)x .①h (x )=e x -2x -1(x ∈R ),求导得h ′(x )=e x -2.令h ′(x )<0,得x <ln 2;令h ′(x )>0,得x >ln 2,所以h (x )的单调递减区间是(-∞,ln 2],单调递增区间是[ln 2,+∞).②首先,一次函数g (x )=(2-e)x 在(m ,+∞)上单调递减,值域为(-∞,(2-e)m ). 因为f ′(x )=e x -e ,易得f (x )在(-∞,1]上单调递减,在[1,+∞)上单调递增,且当x →-∞时,f (x )→+∞,所以在(-∞,m ]上,f (x )min =⎩⎨⎧f (m )=e m -e m -1,m <1,f (1)=-1,m ≥1,其值域为[f (x )min ,+∞). 因为F (x )的值域为R ,所以f (x )min ≤(2-e)m ,即⎩⎨⎧m <1,e m -e m -1≤(2-e )m 或⎩⎨⎧m ≥1,-1≤(2-e )m ,即⎩⎨⎧m <1,e m -2m -1≤0或1≤m ≤1e -2. 由①知,h (m )=e m -2m -1在(-∞,ln 2]上单调递减,在[ln 2,1)上单调递增,且h (0)=0,h (1)=e -3<0,所以h (m )≤0的解集为[0,1).综上所述,实数m 的取值范围是⎣⎢⎡⎦⎥⎤0,1e -2. (2)证明 由f (x )=e x -ax -1,得f ′(x )=e x -a .当a ≤0时,f (x )在[0,2]上单调递增,不合题意;当a >0时,若ln a ≤0或ln a ≥2,则f (x )在[0,2]上单调,也不合题意; 当0<ln a <2时,f (x )在[0,ln a ]上单调递减,在[ln a ,2]上单调递增. 由x 1,x 2∈[0,2],f (x 1)=f (x 2),不妨设0≤x 1<ln a <x 2≤2.又因为|x 1-x 2|≥1,所以x 1∈[0,1],且x 2∈[1,2],从而x 1≤1≤x 2.所以f (1)≤f (x 1)≤f (0),且f (1)≤f (x 2)≤f (2).由⎩⎨⎧f (1)≤f (0),f (1)≤f (2)得⎩⎨⎧e -a -1≤0,e -a -1≤e 2-2a -1,解得e -1≤a ≤e 2-e ,得证.探究提高 (1)分段函数实质还是一个函数,它的定义域、值域分别为各段的并集.(2)求函数f (x )=e x -e x -1在动区间上的最值,要按极值点与区间的位置关系来讨论.(3)解不等式组⎩⎪⎨⎪⎧m <1,e m -2m -1≤0时,常规思路无法处理时,要能通过函数的单调性和图象来处理.(4)第(2)问的处理,需要研究函数f (x )=e x -ax -1的图象和性质,要通过函数图象来分析,体现数形结合的思想方法.【训练3】 已知a 为正常数,函数f (x )=|ax -x 2|+ln x .(1)若a =2,求函数f (x )的单调递增区间;(2)设g (x )=f (x )x ,求函数g (x )在区间[1,e]上的最小值.解 (1)由a =2得f (x )=|2x -x 2|+ln x (x >0),当0<x <2时,f (x )=2x -x 2+ln x ,f ′(x )=2-2x +1x =-2x 2+2x +1x . 由f ′(x )=0得-2x 2+2x +1=0,解得x =1+32或x =1-32(舍去). 当0<x <1+32时,f ′(x )>0; 当1+32<x <2时,f ′(x )<0.所以函数f (x )的单调递增区间为⎝⎛⎭⎪⎫0,1+32; 当x >2时,f (x )=x 2-2x +ln x ,f ′(x )=2x -2+1x =2x 2-2x +1x>0. 所以f (x )在(2,+∞)上为增函数.所以函数f (x )的单调递增区间为⎝⎛⎭⎪⎫0,1+32,(2,+∞). (2)g (x )=f (x )x =|x -a |+ln x x ,x ∈[1,e].①若a ≤1,则g (x )=x -a +ln x x .故g ′(x )=1+1-ln x x 2=x 2+1-ln x x 2. 因为x ∈[1,e],所以0≤ln x ≤1,所以1-ln x ≥0,x 2+1-ln x >0,所以g ′(x )>0.所以g (x )在[1,e]上为增函数,所以g (x )的最小值为g (1)=1-a ;②若a ≥e ,则g (x )=a -x +ln x x ,则g ′(x )=-1+1-ln x x 2=-x 2+1-ln x x 2. 令h (x )=-x 2+1-ln x ,则h ′(x )=-2x -1x <0.所以h (x )在[1,e]上为减函数,则h (x )≤h (1)=0.所以g ′(x )≤0,所以g (x )在[1,e]上为减函数,所以g (x )的最小值为g (e)=a -e +1e . ③当1<a <e时,g (x )=⎩⎪⎨⎪⎧x -a +ln x x ,x ∈(a ,e],a -x +ln x x ,x ∈[1,a ],由①②知g (x )在[1,a ]上为减函数,在[a ,e]上为增函数,所以g (x )的最小值为g (a )=ln a a .综上,g (x )的最小值为g (a )=⎩⎪⎨⎪⎧1-a ,a ≤1,ln a a ,1<a <e ,a -e +1e ,a ≥e.【新题感悟】 (2019·南京、盐城高三二模)已知函数f (x )=⎩⎨⎧|x +3|,x ≤0,x 3-12x +3,x >0,设g (x )=kx +1,且函数y =f (x )-g (x )的图象经过四个象限,则实数k 的取值范围为________.解析 当x ≤0时,f (x )-g (x )=|x +3|-kx -1,须使f (x )-g (x )的图象过第三象限,所以f (-3)-g (-3)<0,解之得k <13.当x >0时,f (x )-g (x )=x 3-(12+k )x +2,因为f ′(x )-g ′(x )=3x 2-12-k ,所以须使f (x )-g (x )的图象过第四象限,必须⎩⎪⎨⎪⎧12+k >0,f ⎝ ⎛⎭⎪⎫12+k 3-g ⎝ ⎛⎭⎪⎫12+k 3<0, ∴⎩⎪⎨⎪⎧12+k >0,12+k 312+k 3>1,∴k >-9.综上得-9<k <13. 答案 ⎝ ⎛⎭⎪⎫-9,13一、填空题1.(2019·苏北四市调研)函数f (x )=⎩⎨⎧2x ,x ≤0,-x 2+1,x >0的值域为________. 解析 当x ≤0时,y =2x ∈(0,1];当x >0时,y =-x 2+1∈(-∞,1).综上, 该函数的值域为(-∞,1].答案 (-∞,1]2.已知函数f (x )=⎩⎨⎧9,x ≥3,-x 2+6x ,x <3,则不等式f (x 2-2x )<f (3x -4)的解集是________.解析 因为当x <3时,f (x )单调递增,且f (x )<9,因此不等式f (x 2-2x )<f (3x -4)等价于x 2-2x <3x -4且x 2-2x <3,解得1<x <4且-1<x <3,即所求不等式的解集为(1,3).答案 (1,3)3.(2019·南京、盐城调研)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则实数a 的取值范围是________.解析 函数y =|f (x )|的图象如图.y =ax 为过原点的一条直线,当a >0时,与y =|f (x )|的图象在y 轴右侧总有交点,不合题意;当a =0时成立;当a <0时,找与y =|-x 2+2x |(x ≤0)即y =x 2-2x 的图象相切的情况,设切点为(x 0,y 0),由y ′=2x -2,知切线方程为y =(2x 0-2)(x -x 0),由分析可知x 0=0,所以a =-2,综上,a ∈[-2,0].答案 [-2,0]4.(2019·天津卷改编)已知函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,1x,x >1.若关于x 的方程f (x )=-14x +a (a ∈R )恰有两个互异的实数解,则a 的取值范围为________.解析 如图,分别画出两函数y =f (x )和y =-14x +a 的图象. (1)先研究当0≤x ≤1时,直线y =-14x +a 与y =2x 的图象只有一个交点的情况.当直线y =-14x +a 过点B (1,2)时, 2=-14+a ,解得a =94. 所以0≤a ≤94.(2)再研究当x >1时,直线y =-14x +a 与y =1x 的图象只有一个交点的情况: ①相切时,由y ′=-1x 2=-14,得x =2,此时切点为⎝ ⎛⎭⎪⎫2,12,则a =1.②相交时,由图象可知直线y =-14x +a 从过点A 向右上方移动时与y =1x 的图象只有一个交点.过点A (1,1)时,1=-14+a ,解得a =54.所以a ≥54. 结合图象可得,所求实数a 的取值范围为⎣⎢⎡⎦⎥⎤54,94∪{1}.答案 ⎣⎢⎡⎦⎥⎤54,94∪{1}5.已知函数f (x )=⎩⎨⎧x +2,x >a ,x 2+5x +2,x ≤a ,若函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是________. 解析 g (x )=f (x )-2x =⎩⎪⎨⎪⎧-x +2,x >a ,x 2+3x +2,x ≤a ,要使函数g (x )恰有三个不同的零点,只需g (x )=0恰有三个不同的实数根, 所以⎩⎪⎨⎪⎧x >a ,-x +2=0或⎩⎪⎨⎪⎧x ≤a ,x 2+3x +2=0,所以g (x )=0的三个不同的实数根为x =2(x >a ),x =-1(x ≤a ),x =-2(x ≤a ). 再借助数轴,可得-1≤a <2, 所以实数a 的取值范围是[-1,2). 答案 [-1,2)6.(2018·苏州自主学习)设f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=2x ,若对任意的x ∈[a ,a +2],不等式f (x +a )≥f 2(x )恒成立,则实数a 的取值范围是________.解析 法一(利用解析式) 由当x ≥0时,定义在R 上的偶函数f (x )=2x ,易得f (x )=2|x |,x ∈R .由f (x +a )≥f 2(x )得,2|x +a |≥(2|x |)2,即|x +a |≥|2x |对于x ∈[a ,a +2]恒成立,即(3x +a )(x -a )≤0对于x ∈[a ,a +2]恒成立,即⎩⎪⎨⎪⎧(3a +a )(a -a )≤0,[3(a +2)+a ](a +2-a )≤0,解得a ≤-32. 法二(偶函数的性质) 由当x ≥0时,定义在R 上的偶函数f (x )=2x ,易得f (x )=2|x |,x ∈R ,易证f 2(x )=f (2x ),x ∈R ,故由f (x +a )≥f 2(x )得,|x +a |≥|2x |对于x ∈[a ,a +2]恒成立,下同法一. 答案 ⎝ ⎛⎦⎥⎤-∞,-327.(2019·浙江卷)已知a ∈R ,函数f (x )=ax 3-x .若存在t ∈R ,使得|f (t +2)-f (t )|≤23,则实数a 的最大值是________. 解析 由题意,得f (t +2)-f (t ) =a (t +2)3-(t +2)-(at 3-t ) =a [(t +2)3-t 3]-2=a (t +2-t )[(t +2)2+(t +2)t +t 2]-2 =2a (3t 2+6t +4)-2=2a [3(t +1)2+1]-2. 由|f (t +2)-f (t )|≤23, 得|2a [3(t +1)2+1]-2|≤23, 即-23≤2a [3(t +1)2+1]-2≤23, 23≤a [3(t +1)2+1]≤43,∴23·13(t +1)2+1≤a ≤43·13(t +1)2+1. 设g (t )=43·13(t +1)2+1,则当t =-1时,g (t )max =43.∴当t =-1时,a 取得最大值43.满足题意. 答案 438.(2014·江苏卷)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.解析 作出函数y =f (x )在[-3,4]上的图象,f (-3)=f (-2)=f (-1)=f (0)=f (1)=f (2)=f (3)=f (4)=12,观察图象可得0<a <12.答案 ⎝ ⎛⎭⎪⎫0,12二、解答题9.已知函数f (x )=⎩⎨⎧3x -a ,x <1,π(x -3a )(x -2a ),x ≥1,若f (x )恰有2个零点,求实数a的取值范围.解 当x <1时,函数h (x )=3x -a 有一个零点, 则a =3x ,由0<3x <3,得0<a <3;而此时函数g (x )=π(x -2a )(x -3a )只有一个零点, 所以⎩⎨⎧3a ≥1,2a <1,解得13≤a <12;当x <1时,函数h (x )=3x -a 没有零点, 则函数g (x )=π(x -2a )(x -3a )必有两个零点, 则h (1)=3-a ≤0,即a ≥3时,函数g (x )=π(x -2a )(x -3a )有两个零点2a ,3a 符合题设,故a ≥3. 综上,a 的取值范围为⎣⎢⎡⎭⎪⎫13,12∪[3,+∞).10.已知关于x 的方程⎪⎪⎪⎪⎪⎪1-1x +2-kx -2=0有三个不相等的实数根,求实数k 的取值范围.解 由题可知,⎪⎪⎪⎪⎪⎪1-1x +2=kx +2,分别作出函数y =⎪⎪⎪⎪⎪⎪1-1x +2及y =kx +2的图象如图所示,若关于x 的方程⎪⎪⎪⎪⎪⎪1-1x +2-kx -2=0有三个不相等的实数根,则两函数图象有三个公共点.又直线y =kx +2恒过点(0,2),可知当k <0,显然成立.当k >0且与曲线y =1-1x +2在(-∞,-2)上有两个交点时满足题意,此时1-1x +2=kx +2, 即kx 2+(2k +1)x +3=0在(-∞,-2)上有两个不等实根,由⎩⎪⎨⎪⎧Δ=4k 2-8k +1>0,-2k +12k <-2,k ·(-2)2+(2k +1)·(-2)+3>0,解得-12<k <1-32,所以0<k <1-32.综上,实数k 的取值范围是⎝ ⎛⎭⎪⎫0,1-32∪(-∞,0).11.(2019·北京卷)已知函数f (x )=14x 3-x 2+x . (1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x ;(3)设F (x )=|f (x )-(x +a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值.(1)解 由f (x )=14x 3-x 2+x 得f ′(x )=34x 2-2x +1.令f ′(x )=1,即34x 2-2x +1=1,得x =0或x =83. 又f (0)=0,f ⎝ ⎛⎭⎪⎫83=827,所以曲线y =f (x )的斜率为1的切线方程是y =x 与y -827=x -83, 即y =x 与y =x -6427.(2)证明 令g (x )=f (x )-x ,x ∈[-2,4]. 则g (x )=14x 3-x 2,g ′(x )=34x 2-2x ,x ∈[-2,4]. 令g ′(x )=0得x =0或x =83.当x 变化时,g ′(x ),g (x )的变化情况如下:故-6≤g(x)≤0,即x-6≤f(x)≤x.(3)解由(2)知,当a<-3时,M(a)=F(0)=|g(0)-a|=-a>3;当a>-3时,M(a)=F(-2)=|g(-2)-a|=6+a>3;当a=-3时,M(a)=3;综上,当M(a)最小时,a=-3.。
与绝对值有关的问题
解析 画出函数f(x)的图象, 易知c<0,a>0. 又f(c)>f(a),∴|3c-1|>|3a-1|, ∴1-3c>3a-1,∴3c+3a<2.
1 )x y ( 例1. 已知函数 2 作出函数图象,求定义域、 1 )| x| y ( 值域,并探讨与图象 的关系. 2
1 ) x , x ≥ 0, ( 2 解:y x 2 , x 0.
例2画出下列函数的图象:
(1)y log 1 | x |
2
(2) y | log2 x |
(2) (1)
画出y lg x 的图像
y
1
O
x
(2)函数y=log2|x+1|的单调递减区间为 间为 .
,单调递增区
【解析】作出函数y=log2x的图象,再将 其关于y轴对称,两支共同组成函数y= log2|x|的图象,再将图象向左平移1个单 位长度就能得到函数y=log2|x+1|的图 象(如图所示).由图知,函数y=log2|x+1|的单调递减区间为
值范围如何?
【解析】由本例(2)作出的函数y=|3x-1|的图象知,其在(-∞,0]
上单调递减,所以k∈(-∞,0].
11.设f(x)=|3x-1|,c<b<a,且f(c)>f(a)>f(b),则下列关系式
中一定成立的是( A.3c>3b C.3c+3a>2 D ) B.3b>3a D.3c+3a<2
(2)在同一坐标系中分别作出函数 f(x)、f(x+1)的图象,如下图 ②所示.
说出下列函数的图象与指数函数 y=2x 的 图象的关系,并画出它们的示意图.
(1) y 2
微专题24 绝对值函数问题(解析版)
微专题24 绝对值函数问题【题型归纳目录】题型一:含一个绝对值的函数与不等式问题 题型二:含两个绝对值的和的问题 题型三:含两个绝对值的差的问题 题型四:含多个绝对值的问题 【典型例题】题型一:含一个绝对值的函数与不等式问题 例1.不等式|23|5x -<的解集为( ) A .(1,4)- B .(-∞,1)(4-⋃,)+∞C .(,4)-∞D .(1,)-+∞【解析】解:|23|5x -<, 5235x ∴-<-<,解得:14x -<<, 故选:A .例2.不等式|1|3x -<的解集是( ) A .(-∞,2)(4-⋃,)+∞ B .(2,4)-C .(1,4)D .(-∞,1)(4⋃,)+∞【解析】解:|1|3x -<,313x ∴-<-<,24x ∴-<<, 故不等式的解集是(2,4)-, 故选:B .例3.若不等式|2|3a x x -+对任意[0x ∈,2]恒成立,则实数a 的取值范围是( )A .(1,3)-B .[1-,3]C .(1,3)D .[1,3]【解析】解:由不等式|2|3a x x -+对任意[0x ∈,2]上恒成立,可得()|2|f x a x =-的图象在[0x ∈,2]上恒位于直线3y x =+的下方或在直线3y x =+上, 如图所示:∴02(2)|4|5af a ⎧<⎪⎨⎪=-⎩①,或02(2)|4|5(0)||3a f a f a ⎧⎪⎪=-⎨⎪=⎪⎩②.由①可得10a -<,由②可得03a ,故实数a 的取值范围是{|10a a -<,或者03}[1a =-,3],故选:B .变式1.已知t 为常数,函数2|4|y x x t =--在区间[0,6]上的最大值为10,则t = 2或6 . 【解析】解:函数22|4||(2)4|y x x t x t =--=---在区间[0,6]上的最大值为10, 故有2(62)410t ---=,或410t +=,求得2t =,或6t =, 故答案为:2或6.变式2.已知不等式|3|1x a x ->-对任意(0,2)x ∈恒成立,则实数a 的取值范围是 (,3)[7-∞,)+∞【解析】解:|3|1x a x ->-等价于31x a x ->-或31x a x -<-,解得12a x ->或14a x +<, 当1124a a -+<,即3a <时,不等式解集为R ,显然符合题意. 当3a 时,(0,2)(⊆-∞,11)(42a a +-⋃,)+∞, 所以124a +或102a -,解得7a 或1a (舍去), 综上,实数a 的取值范围是7a 或3a <. 故答案为:(,3)[7-∞,)+∞.变式3.已知a R ∈,函数4()||f x x a a x =+-+在区间[1,4]上的最大值是5,则a 的取值范围是 (-∞,9]2. 【解析】解:由题可知4||5x a a x +-+,即4||5x a a x+--,所以5a , 又因为4||5x a a x+--, 所以455a x a a x -+--, 所以4255a x x-+,又因为14x ,445x x +, 所以254a -,解得92a, 故答案为:(-∞,9]2.变式4.若函数4||y a x a x=-+-在区间[1,4]上的最小值是4,实数a 的取值范围是 [4.5,)+∞ . 【解析】解:由4y x x=+在[1,2)递减,[2,4]递增, 可得4y x x=+的最小值为4,最大值为5, 函数4||y a x a x=-+-的最值在顶点或区间的端点处取得, 若f (1)取得最小值4,即|5|4a a --=,可得 4.5a =, 即有4() 4.5| 4.5|f x x x=-+-,且此时f (1)f =(2)f =(4)取得最小值,成立; 若f (2)取得最小值4,即|4|4a a --=,即有4a ;此时f (1)|5|a a =--,f (4)|5|a a =--,f (2)4=,由f (2)f (1),解得 4.5a ; 当f (4)取得最小值4,即|5|4a a --=,解得 4.5a =,成立. 综上可得a 的范围是[4.5,)+∞. 故答案为:[4.5,)+∞.题型二:含两个绝对值的和的问题例4.不等式|1||2|4x x -++的解集是( ) A .53(,)22-B .53[,]22-C .3[2,]2-D .5[,1)2-【解析】解:令()|1||2|f x x x =-++, 则21,2()3,2121,1x x f x x x x ---⎧⎪=-<<⎨⎪+⎩,∴当2x -时,|2||1|4214x x x ++-⇔--,522x ∴--; 当21x -<<时,有34恒成立,当1x 时,|2||1|4214x x x ++-⇔+,312x∴. 综上所述,不等式|2||1|4x x ++-的解集为5[2-,3]2.故选:B .例5.不等式2|1||2|2x x a a ++--恒成立,则a 的取值范围是( ) A .(,3)-∞B .(3,)+∞C .[1-,3]D .(-∞,1][3-,)+∞【解析】解:|1||2||(1)(2)|3x x x x ++-++-=,|1||2|x x ∴++-的最小值为3,2|1||2|2x x a a ++--恒成立,∴只需223a a -,13a ∴-,a ∴的取值范围为[1-,3].故选:C .例6.若关于x 的不等式|2||1|x x a -+-在R 上恒成立,则a 的最大值是( ) A .0B .1C .1-D .2【解析】解:由绝对值的性质得()|2||1||(2)(1)|1f x x x x x =-+----=,所以()f x 最小值为1,从而1a ,解得1a , 因此a 的最大值为1. 故选:B .变式5.若关于x 的不等式|2|||x x a a -+-在R 上恒成立,则a 的最大值是( )A .0B .1C .1-D .2【解析】解:化简得:|2||||(2)()||2|x x a x x a a a -+----=-,当20a -,即2a 时,上式化为2a a -,实数a 无解;当20a -,即2a 时,上式化为2a a -,解得22a ,解得1a , 综上,实数a 的范围为1a , 则实数a 的最大值为1. 故选:B .变式6.不等式|1||24|6x x ++->的解集为 (-∞,1)(3-⋃,)+∞ . 【解析】解:由于33,1|1||24|5,1233,2x x x x x x x x -<-⎧⎪++-=--<⎨⎪-⎩,故当1x <-时,不等式即336x ->,解得1x <-. 当12x -<时,不等式即56x ->,解得x 无解.当2x 时,不等式即336x ->,解得3x >. 综上可得,不等式的解集为(-∞,1)(3-⋃,)+∞, 故答案为(-∞,1)(3-⋃,)+∞.变式7.关于x 的不等式|2||8|x x a -+-在R 上恒成立,则a 的最大值为 6 . 【解析】解:由绝对值的性质得()|2||8||(2)(8)|6f x x x x x =-+----=,所以()f x 最小值为6,从而6a ,解得6a , 因此a 的最大值为6. 故答案为:6.变式8.已知函数()f x 是定义在R 上的奇函数,当0x 时,1()(|||2|3||)2f x x a x a a =-+--.若集合{|(1)()0x f x f x -->,}x R ∈=∅,则实数a 的取值范围为 1(,]6-∞ .【解析】解:若{|(1)()0x f x f x -->,}x R ∈=∅, 则等价为(1)()0f x f x --恒成立,即(1)()f x f x -恒成立, 当0x 时,1()(|||2|3||)2f x x a x a a =-+--.若0a ,则当0x 时,1()(23)2f x x a x a a x =-+-+=,()f x 是奇函数,∴若0x <,则0x ->,则()()f x x f x -=-=-,则()f x x =,0x <,综上()f x x =,此时函数为增函数,则(1)()f x f x -恒成立, 若0a >,若0x a 时,1()[(2)3]2f x x a x a a x =-+---=-;当2a x a <时,1()[(2)3]2f x x a x a a a =----=-;当2x a >时,1()(23)32f x x a x a a x a =-+--=-.即当0x 时,函数的最小值为a -, 由于函数()f x 是定义在R 上的奇函数, 当0x <时,()f x 的最大值为a , 作出函数的图象如图: 由于x R ∀∈,(1)()f x f x -,故函数(1)f x -的图象不能在函数()f x 的图象的上方,结合图可得133a a -,即61a ,求得106a <, 综上16a, 故答案为:(-∞,1]6题型三:含两个绝对值的差的问题例7.若存在实数x 使得不等式2|1||1|3x x a a +---成立,则实数a 的取值范围为( ) A .(-∞317317][2-+,)+∞ B .(-∞,2][1-,)+∞C .[1,2]D .(-∞,1][2,)+∞【解析】解:令2,1()|1||1|2,112,1x f x x x x x x --⎧⎪=+--=-<<⎨⎪⎩,则2()2f x -,即2|1||1|2x x -+--,若存在实数x 使得不等式2|1||1|3x x a a +---成立, 则232a a --, 解得2a 或1a . 故选:D .例8.若关于x 的不等式2|1||2|2x x a a +-->+有实数解,则实数a 的取值范围为( ) A .(3,1)-B .(1,3)-C .(-∞,3)(1-⋃,)+∞D .(-∞,1)(3-⋃,)+∞【解析】解:|1||2||(1)(2)|3x x x x +--+--=,3|1||2|3x x ∴-+--,由不等式2|1||2|2x x a a +-->+有实数解, 知232a a >+,解得31a -<<.故选:A .例9.若关于x 的不等式2|1||2|4x x a a +--<-有实数解,则实数a 的取值范围为( )A .(-∞,1)(3⋃,)+∞B .(1,3)C .(-∞,3)(1--⋃,)+∞D .(3,1)--【解析】解:|1||2|x x +--表示数轴上的x 对应点到1-的距离减去它到2的距离,它的最大值为3,最小值等于3-,243a a ->-,2430a a -+>,3a ∴>,或1a <,故实数a 的取值范围为(-∞,1)(3⋃,)+∞,故选:A .变式9.对所有的x R ∈,不等式2|20||5|2x x a a ---+恒成立,实数a 的取值范围是 (-∞,5][3-,)+∞【解析】解:|20||5|15x x ---,对所有的x R ∈,不等式2|20||5|2x x a a ---+恒成立,则2215a a +,解得5a -或3a .故答案为(-∞,5][3-,)+∞.变式10.关于x 的不等式2|3||1|5x x a a +---的解集不是∅,则实数a 的取值范围为 (-∞,1][4,)+∞ .【解析】解:|3||1||(3)(1)|4x x x x +---+--=-, (|3||1|)4min x x ∴+--=-.不等式2|3||1|5x x a a +---的解集不是∅,∴只需25(|3||1|)4min a a x x -+--=-,2540a a ∴-+,4a ∴或1a ,a ∴的取值范围为(-∞,1][4,)+∞.故答案为:(-∞,1][4,)+∞. 题型四:含多个绝对值的问题例10.设函数()|1||2||2018||1||2||2018|()f x x x x x x x x R =++++⋯+++-+-+⋯+-∈,下列四个命题中真命题的序号是( ) (1)()f x 是偶函数;(2)当且仅当0x =时,()f x 有最小值; (3)()f x 在(0,)+∞上是增函数;(4)方程2(55)(2)f a a f a -+=-有无数个实根 A .(1)(4)B .(1)(2)C .(1)(2)(3)D .(2)(3)(4)【解析】解:()|1||2||2018||1||2||2018|f x x x x x x x =++++⋯+++-+-+⋯+-,()|1||2||2018||1||2||2018|f x x x x x x x ∴-=-++-++⋯+-++--+--+⋯+-- |1||2||2018||1||2||2018|()x x x x x x f x =-+-+⋯+-+++++⋯++=, ()f x ∴为偶函数,故(1)正确.根据绝对值的几何意义可得()(|1||1|)(|2||2|)(|3||3|)(|2018||2018|)f x x x x x x x x x =++-+++-+++-+⋯+++- 2018(24036)2464036201820192++++⋯+==⨯,当且仅当11x -时,取等号.故(2)错误;由于1()2f f =(1),显然函数()f x 在(0,)+∞上不是增函数,故(3)不正确;由于2(55)(2)f a a f a -+=-,且函数()f x 为偶函数,2552a a a ∴-+=-,或255(2)a a a -+=--,或21551121a a a ⎧--+⎨--⎩. 解得1a =,或3a =,或32a =或13a ,故方程2(55)(2)f a a f a -+=-有无数个实根,故(4)正确. 故答案为:(1)(4) 故选:A .例11.若|1||2||10||11|x x x x m -+-+-+-对一切x R ∈恒成立,则实数m 的取值范围为 (-∞,18] . 【解析】解:244,(1)222,(12)|1||2||10||11|18,(210)22,(1011)424,(11)x x x x x x x x x x x x x -⎧⎪-<⎪⎪-+-+-+-=<⎨⎪-<⎪->⎪⎩,可得|1||2||10||11|18x x x x -+-+-+-,若|1||2||10||11|x x x x m -+-+-+-对一切x R ∈恒成立,则实数m 的取值范围为(-∞,18]. 故答案为:(-∞,18].例12.已知函数()|1||21||31||1001|f x x x x x =-+-+-+⋯+-,则当x = 171时,()f x 取得最小值. 【解析】解:()|1||21||31||1001|f x x x x x =-+-+-+⋯+- 111|1|2||3||100||23100x x x x =-+-+-+⋯+-111111|1|||||||||||||22333100x x x x x x x =-+-+-+-+-+-+⋯+-共有1(1100)10050502+⨯⨯=项 又||||||x a x b a b -+--(注:||x a -为x 到a 的距离⋯||||x a x b -+-即为x 到a 的距离加上x 到b 的距离,当x 在a ,b 之间时,||||x a x b -+-最小且值为a 到b 的距离) 所以()f x 的5050项 前后对应每两项相加,使用公式||||||x a x b a b -+--111()(1)()1002100f x -+-+⋯+⋯当x 在每一对a ,b 之间时,等号成立 由于170(170)24852⨯+⨯= 171(711)25562⨯+⨯= 所以()f x 最中间的两项(第2525,2526项)是1||71x - 所以11111()(1)()()10021007171f x -+-+⋯+- 当171x =时等号成立 则当171x =时()f x 取得最小值 变式11.已知函数()|1||21||31|f x x x x =-+-+-.则f (2)= 9 ,()f x 的最小值为 . 【解析】解:(1)f (2)|21||221||321|9=-+⨯-+⨯-= (2)136,3111,()32141,1263,1x x x f x x x x x ⎧-⎪⎪⎪<⎪=⎨⎪-<⎪⎪⎪->⎩, 由()f x 单调性知,最小值为1.变式12.已知函数()|1||2||3||20|f x x x x x =-+-+-+⋯+-,x N +∈且120x .(1)分别计算f (1),f (5),(20)f 的值;(2)当x 为何值时,()f x 取得最小值?最小值是多少? 【解析】解:(1)由()|1||2||3||20|f x x x x x =-+-+-+⋯+-, 得f (1)19(119)012191902⨯+=+++⋯+==;f (5)15(115)43210121510101201302⨯+=+++++++⋯+=+=+=; 19(191)(20)19181732101902f ⨯+=+++⋯++++==. (2)设x 是1~20中的某一整数,则()(1)(2)321012(20)f x x x x =-+-+⋯+++++++⋯+- (1)[1(1)](20)[1(20)]22x x x x -+--+-=+222121399(242420)21210()224x x x x x =-+=-+=-+. 因为x N +∈,所以当10x =或11时,()f x 取最小值, (10)(11)100f f ==,即最小值是100.【过关测试】 一、单选题1.(2022·安徽·芜湖一中高一阶段练习)已知集合{}21A x x =-≤,{}1,2,3,4B =,则A B =( ) A .{}4 B .{}3,4 C .{}2,3,4 D .{}1,2,3【答案】D【解析】因为{}{}{}2112113A x x x x x x =-≤=-≤-≤=≤≤,故{}1,2,3A B =. 故选:D.2.(2022·江苏·扬州市邗江区蒋王中学高一阶段练习)设a ∈R ,若不等式22112480x x ax x x x-+++-+≥恒成立,则实数a 的取值范围是( ) A .[]1,5- B .[]1,6- C .[]2,6- D .[]2,2-【答案】C【解析】由题意可得()221142+++8a x x x x x-≤-,且0x ≠. 当0x >时,可得2211842+++a x x x x x-≤-, 由绝对值三角不等式可得222211811888++++++=2+22x x x x x x x x x x x x x x-≥-≥⋅, 当且仅当=2x 时,等号成立,所以,428a -≤,可得2a ≥-;当<0x 时,可得222211811842++a x x x x x x x x x x ⎛⎫⎛⎫-≥--+---=--+- ⎪ ⎪⎝⎭⎝⎭,因为()222211811888++2228x x x x x x x x x x x x x x--≥-++-=-+≥-⋅=--, 当且仅当=2x -时,等号成立,故428a -≥-,解得6a ≤.综上所述,26a -≤≤.故选:C.3.(2022·河南·新密市第一高级中学高一阶段练习)设a ,b 是实数,集合{}1,A x x a x R =-<∈,{}|||3,B x x b x R =->∈,且A B ⊆,则a b -的取值范围为( )A . []0,2B .[]0,4C .[)2,+∞D .[)4,+∞ 【答案】D【解析】集合{}{}1,|11A x x a x R x a x a =-<∈=-<<+,{}{3,|3B x x b x R x x b =-∈=<-或}3x b >+ 又A B ⊆,所以13a b +≤-或13a b -≥+即4a b -≤-或4a b -≥,即4a b -≥所以a b -的取值范围为[)4,+∞故选:D4.(2022·浙江·温州中学高一期中)已知函数()()122021122021f x x x x x x x x R =++++⋅⋅⋅+++-+-+⋅⋅⋅+-∈,且实数a 满足()()221f a a f a --=+,则实数a 的取值范围为( )A .3a =或1a =11315a --≤≤B .3a =或1a =C .3a =或1a =-D .3a =或1a =或1a =-【答案】A【解析】因为函数()f x 的定义域为R ,而()()f x f x -=,所以函数()f x 为偶函数,又112x x ++-≥,当且仅当11x -≤≤时取等号, 224x x ++-≥,当且仅当22x -≤≤时取等号,……202120214042x x ++-≥,当且仅当20212021x -≤≤时取等号,所以()()1220211220212122021f x x x x x x x =++++⋅⋅⋅+++-+-+⋅⋅⋅+-≥+++,当且仅当11x -≤≤时取等号,当12x ≤≤时,()()122021122021=2222021f x x x x x x x x =++++⋅⋅⋅+++-+-+⋅⋅⋅+-+++,当23x ≤≤时,()()122021122021=4232021f x x x x x x x x =++++⋅⋅⋅+++-+-+⋅⋅⋅+-+++,…… 当20202021x ≤≤时,()122021122021=404022021f x x x x x x x x =++++⋅⋅⋅+++-+-+⋅⋅⋅+-+⨯, 当2021x >时,()122021122021=4042f x x x x x x x x =++++⋅⋅⋅+++-+-+⋅⋅⋅+-,故函数()f x 在[)1,+∞上递增,再根据函数()f x 为偶函数,所以()f x 在(],1-∞-上递增,因此()()221f a a f a --=+可等价于221a a a --=+或()221a a a --=-+或2121111a a a ⎧-≤--≤⎨-≤+≤⎩,解得1a =-或3a =或1a =11315a --≤≤ 故选:A .5.(2022·江苏·海安高级中学高一阶段练习)若不等式21x x a +--≤对一切x R ∈恒成立.则实数a 的取值范围为( )A .3a >B .3a <C .3a ≥D .3a ≤【答案】C 【解析】设21y x x =+--,当21x -≤≤时,()2121y x x x =++-=+;当1x >时,()()213y x x =+--=;当<2x -时,()()213y x x =-++-=-, 故21y x x =+--有最大值3. 21x x a +--≤对一切x ∈R 恒成立,则a 必大于等于21y x x =+--的最大值3.故取值范围为[)3,+∞.故选:C .6.(2022·全国·高一课时练习)已知函数()()1,f x ax b a b R x =++∈,当1,22x ⎡⎤∈⎢⎥⎣⎦时,设()f x 的最大值为(),M a b ,则(),M a b 的最小值为( )A .18B .14C .12D .1【答案】B【解析】函数()()1,f x ax b a b R x =++∈,当1[2x ∈,2]时,()f x 的最大值为(,)M a b , 可得1(,)(2)|2|2M a b f a b ≥=++,11(,)()|2|22M a b f a b ≥=++,(,)(1)|1|M a b f a b ≥=++,可得1(3M a ,2)(3b M a +,)(b M a +,211124)1336333b a b a b a b ≥++++++++ 211124113363332a b a b a b ≥+++++---=, 即()12,2M a b ≥,即有()1,4M a b ≥,则(,)M a b 的最小值为14, 故选:B 7.(2022·浙江杭州·高一期末)当[1,1]x ∈-时,不等式2||||1ax b x c ++≤恒成立,则||||||a b c ++的最大值为( )A .18B .17C .16D .15【答案】B【解析】因为[1,1]x ∈-, 所以[0,1]x ∈, 当0x =时,可得1c ≤①, 当12x =时,可得142a b c ++≤②, 当1x =时,可得1a b c ++≤③, 由①②③可得114()()84222a b a c a b c c =++-++-≤, 134()()84244a b b c a b c c =++-++-≤, 所以88117a b c ++≤++=,故选:B8.(2022·江苏省太湖高级中学高一期中)设{}|22A x x =-≥,{}|1B x x a =-<,若A B ⋂=∅,则a 的取值范围为( )A .1a <B .01a <≤C .1a ≤D .03a <≤【答案】C 【解析】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+.当0a ≤时,B =∅,A B ⋂=∅,符合题意. 当0a >时,由于A B ⋂=∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤. 综上所述,a 的取值范围是1a ≤.故选:C9.(2022·辽宁·沈阳二中高一阶段练习)已知函数()1f x mx x =--(0m >),若关于x 的不等式()0f x <的解集中的整数恰有3个,则实数m 的取值范围为( )A .01m <≤B .4332m ≤<C .312m <<D .322m ≤< 【答案】B【解析】()0f x <可化为1mx x <-,作函数y mx =与函数1y x =-的图象如下,结合图象可知,关于x 的不等式()0f x <的解集中的3个整数解为0,1-,2-; 故只需使221331m m ⎧-<--⎪⎨-≥--⎪⎩,解得4332m ≤<; 故选:B .二、多选题10.(2022·黑龙江·哈尔滨三中高一期中)定义{},min ,,a a b a b b a b≤⎧=⎨>⎩,若函数{}2()min 33,|3|3f x x x x =-+--+,且()f x 在区间[,]m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[,]m n 长度可以是( ) A .74B .72C .114D .1【答案】AD 【解析】令23333x x x -+≤--+①,当3x ≥时,不等式可整理为2230x x --≤,解得13x -≤≤,故3x =符合要求,当3x <时,不等式可整理为2430x x -+≤,解得13x ≤≤,故13x ≤<,所以不等式①的解为13x ≤≤; 由上可得,不等式23333x x x -+>--+的解为1x <或3x >,所以()233,1333,13x x x f x x x x ⎧-+≤≤⎪=⎨--+⎪⎩或, 令23334x x -+=,解得32x =,令27334x x -+=,解得52x =或12,令3334x --+=,解得34x =或214,令7334x --+=,解得74x =或174,所以区间[],m n 的最小长度为1,最大长度为74. 故选:AD.11.(2022·江苏·靖江高级中学高一阶段练习)若R x ∃∈,使得|21||32|x x m +--<成立是假命题,则实数m 可能取值是( )A .5B .4C .4-D .5-【答案】CD【解析】因为R x ∃∈,使得|21||32|x x m +--<成立是假命题,所以R x ∀∈,都有|21||32|x x m +--≥.记()|21||32|f x x x =+--,只需()min m f x ≤. ()34,213=|2+1||32|=42,<2214,<2x f x x x x x x ≥----≤--⎧⎪⎪⎪⎨⎪⎪⎪⎩, 所以()min 4f x =-,所以4m ≤-.对照四个选项,C 、D 符合题意.故选:CD12.(2022·辽宁·沈阳市第五中学高一阶段练习)下面命题中正确的为( )A .不等式|1||2|3x x ++->的解集为RB .不等式|1||2|3x x ++-≥的解集为RC .不等式|1||2|5++->x x 的解集为(2,3)x ∈-D .不等式|1||2|5++->x x 的解集为(,2)(3,)x ∈-∞-⋃+∞【答案】BD【解析】对于A ,当0x =时,|1||2|3x x ++-=,故选项A 错误;对于B ,因为|1||2||(1)(2)|3x x x x ++-≥---=,即不等式|1||2|3x x ++-≥恒成立,所以不等式|1||2|3x x ++-≥的解集为R ,故选项B 正确;对于C ,不等式|1||2|5++->x x ,当1x <-时,则125x x --+->,解得<2x -;当12x -≤≤时,则125x x ++->,解得x ∈∅;当2x >时,则125x x ++->,解得3x >.综上所述,不等式|1||2|5++->x x 的解集为(,2)(3,)x ∈-∞-⋃+∞,故选项C 错误,D 正确.. 故选:BD.三、填空题13.(2022·天津市汇文中学高一阶段练习)关于x 的不等式|x -2|+|x +1|≤10的解集为___________.【答案】911,22⎡⎤-⎢⎥⎣⎦【解析】当x >2时,原不等式可化为:(x -2)+x +1≤10,解得2<x ≤112;当-1≤x ≤2时,原不等式可化为:-(x -2)+x +1≤10,即3≤10,所以-1≤x ≤2;当x <-1时,原不等式可化为:-(x -2)-(x +1)≤10,即-2x ≤9,解得92-≤x <-1. 综上所述,原不等式的解集是911,22⎡⎤-⎢⎥⎣⎦. 故答案为:911,22⎡⎤-⎢⎥⎣⎦.14.(2022·全国·高一专题练习)不等式122x x x -+-<+的解集为_________. 【答案】153x x ⎧⎫<<⎨⎬⎩⎭ 【解析】23,2121,1223,1x x x x x x x ->⎧⎪-+-=≤≤⎨⎪-+<⎩,|1||2|2x x x ∴-+-<+化为:2232x x x >⎧⎨-<+⎩或1212x x ≤≤⎧⎨<+⎩或1232x x x <⎧⎨-+<+⎩解得:25x <<或12x ≤≤或113x <<.∴不等式|1||2|2x x x -+-<+的解集为:153x x ⎧⎫<<⎨⎬⎩⎭故答案为:153x x ⎧⎫<<⎨⎬⎩⎭15.(2022·全国·高一专题练习)设1234T x x x x =-+-+-+-,如果x 可取任意实数值,那么T 的最小值是_____.【答案】4【解析】根据绝对值的几何意义可知,可转化为在数轴上有A B C D ,,,四点,其对应的值分别为1234,,,,求一点M ,使得MA MB MC MD +++最小,当M 在线段AD 上时,MA MD +的最小值为3,当M 在线段BC 上时,MB MC +的最小值为1, 故当M 在线段BC 上时,MA MB MC MD +++的最小值是4.故答案为:4.16.(2022·全国·高一专题练习)不等式12x x m -++≥恒成立,则m 的取值范围是_________.【答案】3m ≤ 【解析】12123y x x x x =-++≥---=,即函数的最小值是3,若不等式12x x m -++≥恒成立,则3m ≤.故答案为:3m ≤四、解答题17.(2022·广东实验中学附属天河学校高一阶段练习)已知集合{}|123A x x x =-+-<,{}2|4B x x ax =+≤,A B ⋂=∅,求a 的取值范围. 【解析】123x x -+-<表示数轴上的点x 到1与2的距离之和小于3,∴03x <<,∴()0,3A =,{}2|4B x x ax =+≤,A B ⋂=∅,∴24x ax +≤在()0,3上无解,即4≥+a x x 在()0,3上无解, ∴ ()0,3x ∀∈,4a x x <+恒成立, 444x x x x+≥⋅,当且仅当2x =时,等号成立,4a <, ∴a 的取值范围为(),4-∞18.(2022·湖北武汉·高一期中)已知函数()21f x x x =-++.(1)求不等式()4f x ≥的解集;(2)当R x ∈时,若()2f x m m ≥-恒成立,求实数m 的取值范围.【解析】(1)由于()21,1213,1221,2x x f x x x x x x -+≤-⎧⎪=-++=-<<⎨⎪-≥⎩,当1x <-时,214x -+≥,解得32x ≤-,此时32x ≤-; 当12x -≤<时,34≥不成立,此时无解;当2x ≥时,214x -≥,解得52x ≥,此时52x ≥. 综上:()4f x ≥的解集为35,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. (2)∵()()()21213f x x x x x =-++≥--+=,当且仅当[]1,2x ∈-时等号成立∴23m m -≤,即230m m --≤113113m -+≤≤ ∴m 的取值范围是113113⎡-+⎢⎣⎦. 19.(2022·四川·成都铁路中学高一阶段练习)已知函数()|1|||f x x x a =-+-(1)若函数()f x 的值域为[2,)+∞,求实数a 的值(2)若(2)(2)f a f -≥,求实数a 的取值范围.【解析】(1)函数()|1||||1()||1|f x x x a x x a a =-+----=-,当()()10x x a --≤时,等号成立,|1|2a ∴-=,解得=3a 或1a =-.(2)由(2)(2)f a f -≥,可得3121a a ---≥,则13(1)(2)1a a a ≤---≥⎧⎨⎩或1<23(1)(2)1a a a ≤---≥⎧⎨⎩或>23(1)(2)1a a a ⎧⎨---≥⎩, 解得:0a ≤或322a ≤≤或2a >.综上,a 的范围是:3(,0],2⎡⎫-∞+∞⎪⎢⎣⎭. 20.(2022·浙江·高一阶段练习)已知a ,b ,c ∈R ,函数2y ax bx c =++.(1)若1a =,关于x 的不等式222430ax bx c x x ++≤--对任意x ∈R 恒成立,求b ,c 的值; (2)若a ,*b ∈N ,1c =,关于x 的方程20ax bx c ++=有两个不相等的实根,且均大于1-小于0,求a b +的最小值.【解析】(1)由224300x x --=,解得5x =或3x =-,则当5x =或3x =-时,2550930a b c a b c ⎧++≤⎪⎨-+≤⎪⎩,即2550930a b c a b c ⎧++=⎪⎨-+=⎪⎩,由1a =,解得215b c =-⎧⎨=-⎩,∴2b =-,15c =-;(2)由题意得2Δ4010200b ac b a a b c c ⎧=->⎪⎪-<-<⎪⎨⎪-+>⎪>⎪⎩,∴2241ba b a a b⎧>⎪⎪⎪<⎨⎪+>⎪⎪⎩,由244b a >≥得3b ≥,若3b =,∴329413a a a ⎧>⎪⎪⎪<⎨⎪+>⎪⎪⎩,则924<<a ,无解,若4b =,∴2414aa a >⎧⎪<⎨⎪+>⎩,则34a <<,无解,若5b =,∴5225415a a a ⎧>⎪⎪⎪<⎨⎪+>⎪⎪⎩,则2544a <<,∴5a =或6a =,显然5a =时,a b +更小,为10,若6b ≥,由1a b +>,得2111a b b +>-≥,∴a b +的最小值为10,当5a =,5b =时取得.21.(2022·江苏省阜宁中学高一阶段练习)(1)求不等式2421x x x -++≥-的解集;(2)若不等式2321x x x mx ++--≥的解集包含(]0,1,求实数m 的取值范围;(3)已知2214x a x a -+-+≥在R x ∈时恒成立,求a 的取值范围.【解析】(1)①当1x ≥时不等式为2422x x x -++≥-解得:12x ≤≤②当1x <时,不等式为2422x x x -++≥-3171x -≤≤ 综上得:不等式的解集为:3172x x ⎧⎫-⎪⎪≤≤⎨⎬⎪⎪⎩⎭∣(2)2321x x x mx ++--≥的解集包含(]0,1,故原不等式转化为:231x x mx ++≥在(]0,1恒成立,即13x m x ++≥在(]0,1恒成立,而对勾函数13y x x =++在区间(]0,1上单调递减,∴当1x =时,13y x x =++有最小值5,5m ∴≤.(3)()()222212121x a x a x a x a a a -+-+≥---+=-+, 2214x a x a ∴-+-+≥恒成立化为:2214a a -+≥,解得3a ≥或1a ≤-.。
专题:绝对值函数
专题:绝对值函数研究意义:研究绝对值函数图像有助于:①绝对值不等式求解集问题(包括解集为空或R 问题);②绝对值函数最值问题.---------------------------------------------(一)绝对值函数图像特点归纳实例1:21-+-=x x y(函数图像如右图所示)函数图像特点:①图像类似“平底锅”;②函数有最小值,但无最大值;③函数取到最小值的x 有无穷多个,即当21≤≤x 时,对应函数值均为最小值1.小结此类函数图像特点:①图像类似“平底锅”;②此类函数有最小值,但无最大值;③函数取到最小值的x 有无穷多个,即当x 介于a ,b 之间时,对应函数值均为a b y -=min .函数最值情况: ①函数有最小值,但无最大值;②函数有唯一的最小值:仅当2x x =(中间零点)时,13min x x y -=.【备注】绝对值零点:x =1x 时,01=-x x ,称1x 是零点.函数最值情况:①函数有最小值,但无最大值;②当n 为奇数时,函数有唯一的最小值:仅当x 取中间零点i x 时,min y ;当n 为偶数时,函数取到最小值的x 有无穷多个,即当x 介于中间两零点之间时,min y .举例1:43211-+-+-+-++=x x x x x y分析:零点从小到大:-1,1,2,3,4,显然2是中间零点,故仅当x =2时,=min y 74232221212=-+-+-+-++.举例2:13121-+-+-=x x x y分析:3131312*********-+-+-+-+-+-=-+-+-=x x x x x x x x x y 零点从小到大:1/3,1/3,1/3,1/2,1/2,1显然1/3,1/2是中间两零点,故当2131≤≤x 时,=≡min )(y x y 1.---------------------------------------------实例2:21---=x x y(函数图像如右图所示)函数图像特点:①图像类似“Z 字形”;②函数有最小值-1,且取到最小值的x 有无穷多个,即当1≤x 时,对应函数值均为最小值-1;③函数有最大值1,且取到最大值的x 有无穷多个,即当2≥x 时,对应函数值均为最大值1.实例3:12---=x x y(函数图像如右图所示)函数图像特点:①图像类似“Z 字形”;②函数有最小值-1,且取到最小值的x 有无穷多个,即当2≥x 时,对应函数值均为最小值-1;③函数有最大值1,且取到最大值的x 有无穷多个,即当1≤x 时,对应函数值均为最大值1.小结此类函数图像特点:①图像类似“Z 字形”; ②此类函数既有最小值b a --,也有最大值b a -;③函数取到最小、最大值的x 均有无穷多个,且这样的x 分别位于a ,b 两侧(相对a ,b 之间而言的):--------------------------------------------- (二)作形如d cx b ax y +±+=的函数图像技巧(三段论)【注意】此方法只是用于画出该类函数的大致图像以便分析问题.步骤:①描出折点,记为A ,B ;②连结A ,B 得到一条线段,即为两折点间的函数图像;③折点两侧的函数图像趋势判断是根据∞→x 来确定,即抹掉常数项d b ,,x 系数保留,再根据⎪⎩⎪⎨⎧<=>±.00,0,两侧图像向下,两侧图像呈水平;两侧图像向上;cx ax 【备注】③步骤的处理原因:如下图所示是某一此类绝对值函数,两侧x 趋势是∞±,显然此时d b ,是有限数,对x 趋势影响不大,故可抹去。
一类绝对值函数的最值问题
在上述推广中, 我们甚至不必强调{ a n } 是递增
数列. 对任意数列{ b . ) , 我们只需由小到大用a : 记录 之, 生成的数列{ a} 必满足上述要求. 现在的问题 是若l a . } 中出现了一些重复的数字该怎么办?
2函 数y =艺k : } x - a ; ! , k , E N " , a , E R 的 最
泣 今1
 ̄ ̄ 一‘ ,一 3 - -- - - -- ’ 一/ } 4 ’4
B 过椭圆中 C 心。 , 且淤 . 丈 =。 , I B C1 =2 I A C} ,
图1
( 2 ) 由于匕P C Q的平分线垂直于A O, 设P C的 斜率为k , 则Q C的斜率为一k , 因此 P C , Q C的直线 方程分别为y=k ( x 一1 ) +1 , y“一k ( x 一1 ) +1 .
数学通报Βιβλιοθήκη 2 0 0 7 年 第4 6 卷 第4 期
一类绝对值函数的最值问题
贺航飞
( 海南中学 5 7 1 1 5 8 )
对于全体实数x 引例1 , 使} x -1 1 +1 x -2 I + x 一1 0 } +} x -1 1 1 ,m > 恒成立, 则m的 最大值为 引例2 某城镇环形路有五所小学, 依次为一 小, 二小, 三小, 四小, 五小, 他们分别有电脑 1 5 , 7 , 1 1 , 3 , 1 4 台, 现在为使各校台数相等, 各调出几台给 邻校 : 一小给二小, 二小给三小, 三小给四小, 四小 给五小, 五小给一小. 若甲小给乙小一3 台, 即为乙 小给甲小3 台, 要使电脑移动的总台数最小, 应作怎
专题十一:绝对值最值问题
绝对值最值问题绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离。
数a的绝对值记作a几个绝对值和的最小值问题:奇点偶段(含端点)1、(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB.当A、B两点中有一点在原点时,不妨设点A在原点,如图甲,AB=OB=|b|=|a﹣b|;当A、B两点都不在原点时,1如图乙,点A、B都在原点的右边,AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|;②如图丙,点A、B都在原点的左边,AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图丁,点A、B在原点的两边AB=OA+OB=|a|+|b|=a+(﹣b)=|a﹣b|.综上,数轴上A、B两点之间的距离AB=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点分别是点A和B,则A、B之间的距离是,如果|AB|=2,那么x=;③当代数式|x+2|+|x﹣5|取最小值时,相应的x的取值范围是.④当代数式|x﹣1|+|x+2|+|x﹣5|取最小值时,相应的x的值是.⑤当代数式|x﹣5|﹣|x+2|取最大值时,相应的x的取值范围是.2、在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a﹣b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5﹣2|=3:回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x﹣a|+|x﹣b|的最小值为4,若a=3,求b 的值.绝对值最值问题解析1、(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB.当A、B两点中有一点在原点时,不妨设点A在原点,如图甲,AB=OB=|b|=|a﹣b|;当A、B两点都不在原点时,1如图乙,点A、B都在原点的右边,AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|;②如图丙,点A、B都在原点的左边,AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图丁,点A、B在原点的两边AB=OA+OB=|a|+|b|=a+(﹣b)=|a﹣b|.综上,数轴上A、B两点之间的距离AB=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点分别是点A和B,则A、B之间的距离是,如果|AB|=2,那么x=;③当代数式|x+2|+|x﹣5|取最小值时,相应的x的取值范围是.④当代数式|x﹣1|+|x+2|+|x﹣5|取最小值时,相应的x的值是.⑤当代数式|x﹣5|﹣|x+2|取最大值时,相应的x的取值范围是.解:①.5﹣2=3,﹣2﹣(﹣5)=3,1﹣(﹣3)=4;②、|x+1|,|x+1|=2则x=1或﹣3;③|x+2|+|x﹣5|表示数轴上一点到﹣2与5两点的距离的和,当这点在﹣2和5之间时和最小,最小距离是:5﹣(﹣2)=7;④代数式|x﹣1|+|x+2|+|x﹣5|表示数轴上一点到1、﹣2与5三点的距离的和,根据两点之间线段最短,则当x=1时和最小,最小值是5到﹣2的距离,是5﹣(﹣2)=7;⑤代数式|x﹣5|﹣|x+2|表示数轴上一点到5与﹣2两点的距离的差,当点小于等于﹣2时差最大,最大值是5与﹣2之间的距离,是7.故答案是:①3,3,4;②|x+1|,1或3;③﹣2≤x≤5;④x=1;⑤x≤﹣2.2、在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a﹣b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5﹣2|=3:回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x﹣a|+|x﹣b|的最小值为4,若a=3,求b 的值.解:(1)1和﹣3两点之间的距离为|1﹣(﹣3)|=4;故答案为:4;(2)∵|b|=3|a|∴b=±3a∵AB=8∴|a﹣b|=8当b=3a时,|a﹣b|=|﹣2a|=8∴a=4,b=12或a=﹣4,b=﹣12当b=﹣3a时,|a﹣b|=|4a|=8∴a=2,b=﹣6或a=﹣2,b=6综上所述:a=4,b=12或a=﹣4,b=﹣12或a=2,b=﹣6或a=﹣2,b=6.(3)由线段上的点到线段两端点的距离的和最小,①当点b在a的右侧时,得P在3点与b点的线段上,|x﹣3|+|x﹣b|的值最小为4,|x﹣3|+|x﹣b|最小=x﹣3+b﹣x=4,解得:b=7;②当点b在a的左侧时,得P在3点与b点的线段上,|x﹣3|+|x﹣b|的值最小为4,|x﹣3|+|x﹣b|最小=3﹣x+x﹣b=4,解得:b=﹣1,综上所述:b=7或﹣1.。
由一道题目谈求含绝对值的函数最值问题的解法
解题宝典等,可能收到意想不到的效果.例6.已知a ,b ∈()0,+∞且a +b =1,求证:æèöø1+1a ⋅æèöø1+1b ≥9.证明:æèöø1+1a æèöø1+1b =æèöø1+a +b a æèöø1+a +b b =æèöø2+b a æèöø2+a b =4+2a b +2b a +1=5+2æèöøa b +b a ≥5+9,当且仅当a =b 时等号成立.这里将不等式中“1a ”“1b ”的分子“1”用“a +b ”来代替,通过化简得到a b +ba,然后利用基本不等式求得æèöø1+1a æèöø1+1b 的最值,证明不等式成立.例7.已知正数x ,y 满足x +3y =5xy ,求证:3x +4y ≥5.证明:因为x ,y 为正数,可将x +3y =5xy 等式两边同时除以5xy 得:x +3y5xy=1,即15y +35x=1,则3x +4y =1∙()3x +4y =æèçöø÷15y +35x ()3x +4y =135+3x 5y +12y 5x ≥135+125=5,当且仅当3x 5y =12y 5x ,即x =1,y =12时等号成立,故3x +4y ≥5,命题得证.我们首先将已知关系式变形,构造出常数“1”,再将“1”进行代换,化简3x +4y ,利用基本不等式求得3x +4y 的最小值,进而证明不等式成立.总之,“1”在解高中数学题中发挥着重要的作用.同学们在日常学习中,要注意多积累解题经验,总结与“1”有关的代数式,在解题时将其进行代换,合理进行恒等变换,便能有效地提高解题的正确率和速度.(作者单位:江苏省东海县石榴高级中学)函数最值问题一直是高考数学试题中的热点题目,近几年浙江省数学高考试题中多次出现含绝对值的函数最值问题.此类问题不仅考查了函数的图象和性质、处理绝对值的方法,还考查了求最值的方法,属于综合性较强的一类问题.解答此类问题的关键去掉绝对值符号,将问题转化为常规函数最值问题来求解.下面,笔者结合一道例题来谈一谈求解含绝对值的函数最值问题的方法.例题:已知a ∈R ,函数f (x )=||||||x +4x-a +a 在区间[1,4]上的最大值是5,则a 的取值范围是______.本题中的函数含有绝对值,为了将其转化为常规函数问题,我们可以从绝对值和函数两个角度来寻找解题的思路,有以下5种方法.方法一:分段讨论法此方法是解答含绝对值问题的常用方法,首先,将定义域划分为几个区间段,然后分别求出各个区间段上函数的表达式,根据函数的图象和性质讨论函数的最值.对于本题,可先求出对勾函数y =x +4x 在[1,4]上的值域,然后对a 进行分类讨论,去掉绝对值后再求每个区间段上函数的最大值,建立关系式,便可求得a 的取值范围.解:∵x ∈[1,4],∴x +4x∈[4,5],①当a ≥5时,f (x )=a -x -4x +a =2a -x -4x,函数f (x )的最大值2a -4=5,解得a =92,不符合题意,舍去;②当a ≤4时,f (x )=x +4x -a +a =x +4x≤5,符合题意;③当4≤a ≤5时,f (x )max =max{|4-a |+a ,|5-a |+a },则{|4-a |+a ≥|5-a |+a ,|4-a |+a =5,或{|4-a |+a <|5-a |+a ,|5-a |+a =5,解得a =92或a <92.综上可得,a 的范围是(-∞,92].绝对值函数本质上是一个分段函数,可根据绝对值的定义去掉绝对值符号,将问题转化为分段函数的42解题宝典最值问题.但运用该方法解题,过程比较繁琐,容易出现重复和遗漏分类的情况.方法二:利用数轴利用数轴也是解答含绝对值问题的基本方法.在解题时,需利用绝对值的几何意义,将绝对值里面的式子看作是数轴上任意点到定点的距离,从而确定取.图1解:令x +4x=t ∈[4,5],则f (t )=||t -a +a ,t ∈[4,5],如图1所示,当a ≤0时,f (t )=||t -a +a =t ≤5成立;当0<a ≤t 时,f (t )=||t -a +a =||a -t +||a -0=t ≤5成立;当a >t 时,f (t )=||t -a +a =a -t +a ≤5恒成立,即a ≤4.5,则a 的范围是(-∞,92].这里首先确定t 的范围,将t 看作数轴上的任意一点,结合数轴找出f (t )的最值,使其小于或等于5,便可求得a 的取值范围.方法三:利用V 型函数V 型函数是一类常见的含绝对值的函数模型.在解题时,可将含绝对值函数转化为分段函数,借助函数的图象来分析函数的最值,将代数问题几何化,运用数形结合思想来解题.axyO 图2解:当f (x )取最大值时|t -a |取最大值,为5-a ,如图2,结合V 型函数图象可得:①当a ≤92时,f (x )max =|5-a |+a =5-a +a =5,符合题意;②当a >92时,f (x )max =|4-a |+a =a -4+a =5,∴a =92(矛盾),舍去;故a 的取值范围是(-∞,92].我们将含绝对值函数转换为分段函数,结合函数的图象便能快速求得a 的取值范围,这样可以获得事半功倍的效果.方法四:分离参数法运用分离参数法解题的基本思路是通过将参数进行分离,将问题转化为不等式恒成立问题来求解,在分离参数后求出函数的值域,验证取等号的条件,便可求出参数的取值范围.解:令x +4x=t ∈[4,5],则问题可转化为g (t )=|t -a |+a 在t ∈[4,5]上的最大值是5,则问题等价于ìíî∀t ∈[4,5],|t -a |+a ≤5, ①∃t 0∈[4,5],|t 0-a |+a =5. ② 由①得∀t ∈[4,5], a -5≤t -a ≤5-a ,即a ≤t +52恒成立,所以a ≤æèöøt +52 min =92;由②知,当t 0=5时,|t 0-a |+a =5;综上所述a ≤92.我们先分析对勾函数y =x +4x在x ∈[1,4]上的值域,然后将其看成一个整体,解一次绝对值不等式即可使问题快速获解,这样避免了繁琐的分类讨论,能有效地提高解题的速度和准确性.方法五:以值代参本方法是通过用函数值来代替参数,使问题获解的方法.以值代参既起到了消参作用,又构建了变量与函数值之间的关系.解:令x +4x=t ∈[4,5],则f (t )=|t -a |+a ,t ∈[4,5],则f (t )的最大值为f (t )max =max{f (4),f (5)},即ìíîf (4)=|4-a |+a =5,f ()5=|5-a |+a ≤5,或ìíîf (4)=|4-a |+a ≤5,f ()5=|5-a |+a =5,解得{a =4.5,a ≤5,或{a ≤4.5,a ≤5,则a 的取值范围是(-∞,92].我们借助函数值的范围,建立不等式,便求得参数的范围.运用以值代参方法解题,能获得出奇制胜的效果.含绝对值的函数最值问题是一类常考的题目,也是很多同学感觉困难的题目.因此,掌握一些解题的技巧是很有必要的.在解答含绝对值的最值问题时,同学们要注意从绝对值和函数两个角度,通过处理绝对值、分析函数的图象和性质来破解难题.(作者单位:浙江省诸暨市学勉中学)43。
一次函数绝对值和最值问题
含绝对值函数综合问题一、含绝对值函数的最值1、含一个绝对值的一次绝对值函数的最值、单调性、对称性(1)()||f x x =的图像是以原点为顶点的“V ”字形图像;函数在顶点处取得最小值“(0)0f =”,无最大值;在函数(,0],[0,)x ∈-∞↓+∞↑;对称轴为:0x =(2)()||(0)f x kx b k =+≠图像是以(,0)b k-为顶点的“V ”字形图像;在顶点取得最小值:“()0b f k -=”,无最大值;函数在(,],[,)b b x k k ∈-∞-↓-+∞↑;对称轴为:b x k=- (3)函数()||(0)f x k x b k =+≠: 0k >时,函数是以(,0)b -为顶点的“V ”字形图像;函数在顶点取得最小值:“()0f b -=”,无最大值;函数在(,],[,)x b b ∈-∞-↓-+∞↑;对称轴为:x b =-0k <时,是以(,0)b -为顶点的倒“V ”字形图像,函数在顶点取得最大值:“()0f b -=”,无最小值;函数在(,],[,)x b b ∈-∞-↑-+∞↓;对称轴为:x b =-2、含两个绝对值的一次绝对值函数的最值、单调性、对称性(1)函数()||||()f x x m x n m n =-+-<的图像是以点(,),(,)A m n m B n n m --为折点的“平底形”图像;在[,]x m n ∈上的每点,函数都取得最小值n m -,无最大值;函数在(,],[,)x m x n ∈-∞↓∈+∞↑ ,在[,]x m n ∈无单调性;对称轴为2m n x +=。
(2)函数()||||f x x m x n =---: 当m n >时,()f x 是以点(,),(,)A m n m B n m n --为折点的“Z 字形”函数图像;在(,]x n ∈-∞上的每点,函数都取得最大值m n -,在[,)x m ∈+∞上的每点,函数都取得最小值n m -;函数在[,]x n m ∈↓,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对称中心为(,0)2m n +; 当n m >时,()f x 是以点(,),(,)A m m n B n n m --为折点的“反Z 字形”函数图像; 在(,]x m ∈-∞上的每点,函数都取得最小值m n -,在[,)x n ∈+∞上的每点,函数都 取得最大值n m -;函数在[,]x m n ∈↑,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对称中心为(,0)2m n +; (3)()||||()f x a x m b x n m n =-+-<图像是以(,()),(,())A m f m B n f n 为折点的折线。
一堂师生合作的探究课——《对一类求含绝对值的函数最小值问题的解法研究》
数学教学 通讯( 师版 ) 教
教 学研究 > 课参考 备
■圈曩霉
一
《 一 类 求含 绝 对 值 的 函 数 最 小 值 问题 的解 法 研 究》 对
张 东 风
堂师生合作的探究课 合现 我学 ~ 最 黼 一探 淝 一
立 . 实 数。 取 值 范 围. 求 的
不等式的解集为 {Il ≤2 . — ≤ }
( ) 1 知 2 由( ) ) 4, a 4 = <.
道试题.
学 生 2 案 例 2中 , : 由于 n ≠0 所 以 ,
已知函娄 ) J l+ 2一 I 一 = — I 1+ 3 l x I
孙 东升
江 苏常州 第二 中学 2 3 0 103
江 苏前 黄 高级 中 学 2 3 6 11 1
篡 啡 现 蝴 蚪 问
姓哪
著 名 教 育 家 苏 霍 姆 林 斯 基 说 : 人 在
的 心 灵 深 处 . 都 有 一 种 根 深 蒂 固 的 需 要 。这 就 是 说 希 望 自己 是 一 个 发 现 者 、 研 究者 、 索者. 进 学生 的学 习方式 . 探 改 教 师 应 关 注 学 生 的 “ 学 ” 而 不 是 只 关 会 . 注 学 生 的 “ 会 ” 让 学 生 最 大 限 度 地 参 学 . 与 教 学 过 程 . 生 合 作 学 习 探 究 就 是 一 师
14 - l O一 I贝当 = — 时 fx l"+ l x 1 ,Ⅱ — - O ()
取得最小值.
案例2 设函 ) l 1+x l , : 一 l I +I 若不等式 l l J l a xX 任 叶6 —2 6 ≤ll ), t
分类讨论思想解绝对值问题例析
樊宏标分类讨论思想解绝对值问题例析分类讨论思想是以概念的划分、集合的分类为基础的思想方法.它是为了解决因各种因素制约着的数学问题,使原本变幻的不定的问题,分解成若干个相对确定的问题,再各个击破,从而获得完整的解答.分类讨论必须遵循三条原则:一是对全体分类对象做到既不重复,也不遗漏,二是每次分类按同一标准进行,三是连续多级分类,要按层次逐级进行,如何分类必须根据问题的具体背景而定.利用分类讨论思想解题在高考中是常见内容,现就绝对值问题作一剖析,希望对同学们有所启发.一、求绝对值函数中参数的取值范围例1若函数f(x)=a|x-b|+2在[0, +)上为增函数,则实数a,b的取值范围是.解:首先对b的值分类讨论:函数f(x)在[0,+)上为增函数,显然应有b0;其次,再对a的值进行讨论:当a=0时,显然不能满足f(x)在[0,+)上为增函数的要求;当a<0时,函数f(x)的图像是从点(b,2)引出的两条射线,且当x b时,函数在[b,+)上为减函数,也不符合要求,舍去;当a>0时,函数f(x)在[b,+)上为增函数.评注:本题是含有绝对值符号和两个参数的分段函数问题,是一个典型的二级讨论问题,它对考生分类讨论思维的缜密性有较高的要求.二、讨论绝对值函数的性质例设为常数,函数f(x)=x+|x|+,x R()讨论f(x)的奇偶性;()求f(x)的最小值.解:()首先讨论f(x)的奇偶性,由于y=x2+1是偶函数,所以f(x)的奇偶性取决于|x-a|.由于y=|x|是偶函数,所以第一次分类应分为a=0及a0讨论.(1)当a=0时,f(x)=x2+|x|+1为偶函数.(2)当a0时,f(x)=x2+|x-a|+1为非奇非偶函数.()再求f(x)的最小值,为此需去掉f(x)解析式中的绝对值符号.就要对x分x a 和x<a讨论.(1)当x a时,f(x)=x2-x+a+1=(x-12)2+a+34,为求x a时f(x)的最小值,要研究f(x)图像的对称轴x=12相对于a 的不同位置.当a12时,f(x)在(-,a]上为减函数,则f(a)最小,即f m i n(x)=f(a)=a2+1.当a>12时,f(x)在(-,12)上是减函数,在(12,a)是增函数,于是f(12)最小,即f m i n(x)=f(12)=a+34.(2)当x a时,f(x)=x2+x-a+1=(x+12)2-a+34.此时,要研究f(x)图像的对称轴x=相对于的不同位置数理化学习(高中版)2a2-a1.-12a.19当a-12,f(x)在[a,-12)是减函数,在(-12,+)上是增函数,则f(-12)最小,即f m i n(x)=f(-12)=34- a.当a>-12时,f(x)在[a,+)是增函数,则f(a)最小,即f m i n(x)=f(a)=a2+1.综合以上,f(x)的最小值是f m i n(x)=34-a,(a-12),a2+1,(-12<a12), 34=a,(a>12)评析:本题经历了三次分类讨论的过程:第一次,为讨论函数f(x)的奇偶性,对a=0,a 0分类;第二次,为去掉绝对值符号,对x a 和x<a分类;第三次,为求函数f(x)的最小值对a12,a>12和a-12,a>-12分类.三、解含绝对值的不等式例3解关于x的不等式:|x-a|x> a.解:因为x0,原不等式同解于:()x>0,|x-a|>ax,或()x<0,|x-a|<ax.(1)当a=0时,化为x>0,|x|>0,或x<0,|x|<0.解集为{x|x>0}.(2)当a>0成立,显然()无解.()化为x>0,x-a>ax或x-a<-a x,即x>,()x>或x<+当a=1时,化为x>0,x<12.解集为:{x|0<x<12}.当a>1时,化为x>0,x<a1-a或x<a1+a,即x>0,x<a1+a.解集为{x|0<x<a1+a}.当0<a<1时,化为x>0,x>a1-a或x<a1+a.因为a1-a>a1+a>0,所以解集为{x|0<x<a1+a或x>a1-a}.(3)当a<0时,由()得x>0.化为x>0或x<0,-ax<x-a<ax,即x>0或x<0,x<a1-a,(1+a)x> a.则x>0或x<a1-a,(1+a)x> a.当a=-1时,化为x>0或x<-12,解集为{x|x>0或x<-12}.当a<-1时,化为x>0或x<a1-a,x<a1+a.因为<<+所以解集为数理化学习(高中版)1-a aa1a.a1-aa1a.20{x|x>0或x<a1-a}.当-1<a<0时,化为x>0或x<a1-a,x>a1+a.因为a1+a<a1-a<0,所以解集为{x|x>0或a1+a<x<a1-a}.评注:本题看似平淡,实则平中见奇,常中见新,题目以简洁的形式出现,把一次不等式、绝对值不等式、分式不等式及含参不等式很自然地结合在一起,很好地体现了新教材对这些不等式的解法的基本要求,并对变量x及参数a 的双重标准进行分类讨论.浙江省绍兴县柯桥中学(312030)赵传义灵活新颖综合交融的数列试题近几年高考数列试题灵活新颖,综合交融,考查了学生一般数学能力.局部不难,但综合起来就有一定的深度.强调知识的交融性,在知识的交汇处命题,要求学生对试题有分解能力,有确认的能力.一、与解几结合例1设P1(x1,y1),P2(x2,y2),,P n(x n,y n)(n3,n N)是二次曲线C上的点,且a1=|OP1|2,a2=|OP2|2,,a n=|OP n|2构成了一个公差为d(d0)的等差数列,其中O是坐标原点.记S n=a1+a2++a n.(1)若C的方程为x2100+y225=1,n=3.点P1(10,0)及S3=255,求点P3的坐标;(只需写出一个)(2)若C的方程为x2a2+y2b2=1(a>b>0).点P1(a,0),对于给定的自然数n,当公差d 变化时,求S n的最小值;(3)请选定一条除椭圆外的二次曲线C及上的一点,对于给定的自然数,写出符合条件的点,,,存在的充要条件,并说明理由.分析:该题的主要条件是长度的平方成等差数列,并且点在二次曲线上,又给出前n项和的记法,在形式上或第一印象给人无法下手的感觉,也就是将条件发散开来后后续手段不多.这时不要慌,要静下心来看看接下来的各小问是将条件向哪个方向发展的.(1)明确了C的方程,给出点P1及S3,求P3.由P1为(10,0),得a1=100.(这里注意!a1=|OP1|2,在条件中给出的不是a1=|OP1|似乎给我们思考带来了一定的方便,但这里又给我们因思维定势犯错误埋下了伏笔,事实上就本题而言a n=|OP n|并不比a n=|OP n|2解决起来困难).又由S3=255=32(a1+a3),得.a3=70即|OP3|2=70.所以x23100+y2325=1,x23+y23=70,得x23=60,y23=10所以3的坐标可以为(5,)数列在这里仅仅起到了由|O|=数理化学习(高中版)C P1nP1P2P n P2110.P1210021。
追根溯源,挖掘本质——对一类含绝对值的最值问题的探究
追根溯源,挖掘本质——对一类含绝对值的最值问题的探究蒋志飞【期刊名称】《中学数学》【年(卷),期】2017(000)005【总页数】2页(P88-89)【作者】蒋志飞【作者单位】江苏省丹阳市吕叔湘中学【正文语种】中文最近,在高三的一轮复习课堂上接连出现含绝对值的函数最值问题,笔者在教学中发现很有规律可循,现整理成文,与同行探讨.求函数f(x)=|x-1|+|2x-1|+…+|2011x-1|的最小值.(2011年高校自主招生联盟之一“北约”试题)众所周知,函数f(x)=|x-a|+|x-b|(a<b)的最小值为ba,此时x∈[a,b].这不仅可以利用函数图像求得,也可以用绝对值不等式的性质很快得出结果.这类问题可以推广为n元的情况,同样可以结合这类函数的图像特征,求出相应的最小值,并且发现有规律可循.但是,“北约”将这道题继续推广:当绝对值内x的系数不全为1时,函数的最小值问题.那么这类问题该如何求出,是否具有一般性的规律呢?下面就借助首先给出函数的最小值的求法.先给出引理:函数f(x)=|x-b1|+|x-b2|+…+|x-bn|(b1<b2<…<bn,n∈N+)一定有最小值.(1)若n=2k-1(k∈N+),则当x=bk时,f(x)有最小值f(bk),f(bk)=|(b1+b2+…+bk-1)-(bk+1+bk+2+…+b2k-1)|;(2)若n=2k(k∈N+),则当x∈[bk,bk+1]时,f(x)有最小值f(bk),f(bk)=|(b1+b2+…+bk-1)-(bk+1+bk+2+…+b2k)|.引理证明:(1)当n=2k-1(k∈N+)时,f(x)=|x-b1|+|x-b2|+…+|x-bk|+…+|x-b2k-1|(b1<b2<…<bk<…<b2k-1).由绝对值不等式的性质得|x-b1|+|x-b2k-1|≥b2k-1-b1,当且仅当x∈[b1,b2k-1]时,等号成立;|x-b2|+|x-b2k-2|≥b2k-2-b2,当且仅当x∈[b2,b2k-2]时,等号成立;……|x-bk-1|+|x-bk+1|≥bk+1-bk-1,当且仅当x∈[bk-1,bk+1]时,等号成立;|x-bk|≥0,当且仅当x=bk时等号.又bk∈[bk-1,bk+1]⊆[bk-2,bk+2]…⊆…⊆[b1,b2k-1],所以当且仅当x=bk时,以上各式等号同时成立.故f(x)≥f(bk)=b2k-1-b1+b2k-2-b2+…+bk+1-bk-1=|(b1+b2+…+bk-1)-(bk+1+bk+2+…+b2k-1)|.(2)当n=2k(k∈N+)时,同理可得|x-b1|+|x-b2k|≥b2k-b1,当且仅当x∈[b1,b2k]时,等号成立;|x-b2|+|x-b2k-1|≥b2k-1-b2,当且仅当x∈[b2,b2k-1]时,等号成立;……|x-bk|+|x-bk+1|≥bk+1-bk,当且仅当x∈[bk,bk+1]时,等号成立.又[bk,bk+1]⊆[bk-1,bk+2]⊆…⊆[b1,b2k],所以当且仅当x∈[bk,bk+1]时,以上各式等号同时成立.故f(x)≥f(bk)=b2k-b1+b2k-1-b2+…+bk+1-bk=|(b1+b2+…+bk-1)-(bk+1+bk+2+…+b2k)|.从以上证明的过程可知,如果函数的常数bi(i=1,2,···,n)有相等量,只需对bi从小到大排序,同样可以按照上述方法求出其最小值及相应的x值.进而得到推论:对于函数(x1≤x2≤…≤xn,M,n∈N+)的形式.(1)若n=2k-1(k∈N+),则当x=xk时,f(x)取最小值;(2)若n=2k(k∈N+),则当x∈[xk,xk+1]时,f(x)取最小值.例1求函数y=|2x-1|+|x-1|+|x-2|的最小值,并求相应x的值.解故当x∈例2若不等式恒成立,求实数m的取值范围.解:不等式可化为|2x|+|x-2|+|2(x-1)|>2m,即|x|+|x|+ |x-1|+|x-1|+|x-2|>2m恒成立.又函数y=|x|+|x|+|x-1|+|x-1|+|x-2|最小值为f(1)=3,于是只需3>2m,得故实数m的取值范围为用此推论,易得“北约”考题解答:f(x)min通过对函数i∈N+)的最小值的探究,使我们掌握了一种简捷的求解方法,它回避了描点画图和烦琐的运算,为研究相关的绝对值不等式问题提供了有力的工具,在实际中也具有一定的应用价值.1.注重发散思维,拓展解题方法高中数学是一门重逻辑、重思维的学科,除了涉及到众多理论内容之外,针对不同类型的数学题目也有诸多求解的方法,所以为了更好地解决有关的高中数学问题,需要在明确解题思路的基础上,合理选择一些适宜的解题方法来达到快速求解数学问题的目的,这就要求高中数学教师在平时的解题教学中要注重拓展学生的发散性思维,比如通过“一题多解”或者“多题一解”的变式解题训练可以更好地锻炼学生的解题思维,从而可以为提升学生的高中数学求解能力奠定扎实基础.而高中数学求解中常用的解题法有构建函数法、数形结合法、反证法以及类比法等多种方法.但是无论采用何种解题法,都需要结合题干信息及已求解出的条件来合理选用求解的方法,从而最终达到求解的目的.2.把握解题的适度性,提升解题能力教学中注重把握解题教学训练的适度性,避免陷入题海求解训练,更重要的是要把握解题训练的精炼特性,以便学生解题训练的效果最大化.比如,针对不同类型的高中数学知识,教师可以专门为学生制定一些专项解题训练题目来进行求解训练;引导学生在平时的解题过程中要注重及时反思解题过程中的差误,归纳和总结解题的一些小技巧、小窍门等解题经验,从而逐步借助高效的解题训练和解题知识的积累来逐步提升学生的数学解题能力.总之,教无定法,贵在得法,高中数学解题教学也不例外.传统解题训练过于重视“就题论题”和“题海训练”,却忽视了学生在解题训练中的自主能动性和思维的灵活性,影响了学生的解题效果.若能注意解题中的一题多解、多题一解等解题思想,注意解题的效率,就能提高学生的解题能力,教师的教学效益.。
绝对值和型函数最值应用例析
2 z 4得 z 3 ≤ ≤ , 一 .
( , ) ( , ) ( ,) 一2 3 ,4 5 ,6 6 为报 刊零 售点 . 请确定
一
【 3 z , :
同理 , 当且 仅 当 3 y 4 44时 , ( 一 I 1+ l ) 一 』 一2 + { 一3 l I
+J 一4 + J 一5 + J I 一6 I l
4 0
数 学 教 学 研 究
第 2 卷第 8 9 期
21 0 0年 8月
绝 对值 和 型 函数最 值应 用例 析
李锦 旭 卞 文
(. 京市十一学校 1北 1 0 3 ; 2 山东 青 岛 崂 山 一 中 0 0 9 .
2 60 ) 6 1 1
20 0 9年全 国高 考 上 海 卷 理 科 第 1 3题 : 某 地街道 呈现 东一西 、 南一 北 向的 网格 状 , 相 邻 街距都 为 1 两街 道 相交 的点 称 为格 点. . 若
卷理 7 如 图 l是某 汽车 维 ) 修公 司的维 修 点环 形 分 布
图. 司在 年 初分 配 给 A, 公 B, D 四个 维 修点 某 种 C,
图1
配件各 5 . 0件 在使 用 前 发 现需 将 A, C, B, D
第 2 卷第 8 9 期
21年 8 00 月
教学教学研究
(
) .
( l O ( 1 1 ( 9 ( 4 A) 9 B) 7 C) 0 D) 5
题 2 ( 0 7年 广 东 20
序排列后 首尾 结合 使用 三角形 不 等式得
( :2 z ) { 十2 +2 一3 『 I I + } 一4 + J 一6 z l z J (z+2 + l 一6 ) J I I 十( z 『 l f +2 + +2 z z一4 ) 一3 1 l I
含有绝对值函数的取值范围问题
含有绝对值函数的取值范围问题在数学高考中,函数问题一直占有较大的分量,而绝对值函数是函数中较为困难的一例题:已知函数f(x)=x|x-4|,x∈[0,m],其中m>0.(1)当m=2时,求函数f(x)的值域;(2)若函数f(x)的值域为[0,4],求实数m的取值范围.变式1已知函数f(x)=x|x-a|在[0,2]上的值域为[0,4],求实数a的取值范围.变式2设函数f(x)=x|x-a|,若对于任意的x1,x2∈[2 ,+∞),x1≠x2,不等式f(x1)-f(x2)>0恒成立,求实数a的取值范围.x1-x2串讲1若函数f(x)=x 2|x -a|在区间[0,2]上是增函数,求实数a 的取值范围.串讲2若不等式|x -2a|≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________________.(2018·南京二模)已知函数f (x )=⎩⎨⎧ax -1, x ≤0,x 3-ax +|x -2|,x >0的图象恰好经过三个象限,则实数a 的取值范围是________________.已知函数f (x )=e x |x 2-a |(a ≥0). (1)当a =1时,求f (x )的单调减区间;(2)若方程f (x )=m 恰好有一正根和一负根,求实数m 的最大值.答案:(1)f (x )的单调减区间为[-1+2,1],[-1-2,-1];(2)4e2.解析:(1)当a =1时,f (x )=⎩⎨⎧e x (x 2-1),|x |>1,e x (1-x 2),|x |≤1.当|x |>1时,f ′(x )=e x (x 2+2x -1),由f ′(x )≤0,解得-1-2≤x ≤-1+ 2.所以f (x )的单调减区间为[-1-2,-1),3分 当|x |≤1,f ′(x )=-e x (x 2+2x -1),由f ′(x )≤0,解得x ≤-1-2或x ≥-1+2, 所以f (x )的单调减区间为[-1+2,1],4分综上:f (x )的单调减区间为[-1+2,1],[-1-2,-1].6分 (2)当a =0时,f (x )=e x ·x 2,则f ′(x )=e x ·x 2+2x ·e x =e x x (x +2), 令f ′(x )=0,得x =0或x =-2,所以f (x )有极大值f (-2)=4e 2,极小值f (0)=0,当a >0时,f (x )=⎩⎨⎧e x (x 2-a ),|x |>a ,e x (a -x 2),|x |≤a .同(1)讨论得f (x )在(-∞,-a +1-1)上单调递增,在(-a +1-1,-a )上单调递减, 在(-a ,a +1-1)上单调递增,在(a +1-1,a )上单调递减,在(a ,+∞)上单调递增.且函数y =f (x )有两个极大值点,9分f (-a +1-1)=2e -a +1-1(a +1+1)=2e -a +1(a +1+1)e.f (a +1-1)=2ea +1-1(a +1-1)=2e a +1(a +1-1)e.11分且当x =a +1时,f (a +1)=e a +1(a 2+a +1)>ea +1(a +1-1)>2ea +1(a +1-1)e.所以若方程f (x )=m 恰好有正根,则m >f (a +1-1)(否则至少有两个正根). 又方程f (x )=m 恰好有一负根,则m =f (-a +1-1).13分令g (x )=e -x (x +1),x ≥1,则g ′(x )=-x e -x <0,所以g (x )=e -x (x +1)在[1,+∞)上单调递减,即g (x )≤g (1)=2e.等号当且仅当x =1时取到.14分所以f (-a +1-1)≤⎝⎛⎭⎫2e 2,等号当且仅当a =0时取到.且此时f (a +1-1)= 2ea +1-1(a +1-1)=0,即f (-a +1-1)>f (a +1-1),所以要使方程f (x )=m 恰好有一个正根和一个负根,m 的最大值为4e2.16分例题1答案:(1)[0,4];(2)[2,2+22].解析:(1)当m =2时,f(x)=-x 2+4x =-(x -2)2+4,当x∈[0,2]时,f(x)单调递增,所以f(x)的值域为[0,4].(2)由函数f(x)=x|x -4|图象可知,当x>4时,令x|x -4|=4,即x 2-4x -4=0,解得x =2+22,若函数f(x)的值域为[0,4],所以实数m 的取值范围是[2,2+22].变式联想变式1答案:a =0或a =4.解析:(1)当a<0时,f(x)=x(x -a),f(2)=2(2-a)>4,显然不满足条件;(2)当a =0时,f(x)=x 2,在[0,2]上的值域为[0,4],满足条件;(3)当a>0时,①当0<a≤2时,f ⎝ ⎛⎭⎪⎫a 2=⎪⎪⎪⎪⎪⎪a 24-a 22=a 24≤1,f(x)=|x 2-ax|,f(0)=0,f(2)=|4-2a|=4-2a <4,不满足条件;②当2<a<4时,f(x)=-x 2+ax =-⎝ ⎛⎭⎪⎫x -a 22+a 24≤a24<4,不满足条件;③当a =4时,f(x)=-x 2+4x =-(x -2)2+4≤4,满足条件;④当a>4时,f(x)=-x 2+ax ,f(2)=-4+2a>4,不满足条件. 综上所述,a =0或a =4. 变式2答案:(-∞,2]. 解析:作出函数f(x)=⎩⎪⎨⎪⎧x 2-ax ,x ≥a ,-x 2+ax ,x <a ,的图象,当a 变化时,易得a 的取值范围为(-∞,2]. 说明:变式1和2都是抓住形如y =x|x -a|函数的图象特征,抓住图象关键,从而解决问题.串讲激活串讲1答案:(-∞,0]∪[3,+∞).解析:(1)当a≤0时,f(x)=x 3-ax 2,显然在区间[0,2]上是增函数;(2)当a >0时,记g(x)=x 3-ax 2,令g′(x)=3x 2-2ax =0,解得x =0,x =2a 3,g(x)在(-∞,0)上单调递增,在⎝⎛⎭⎪⎫0,2a 3上单调递减,在⎝ ⎛⎭⎪⎫2a 3,+∞上单调递增,又g(0)=g(a)=0,所以f(x)=|g(x)|在(-∞,0)上单调递减,在⎝⎛⎭⎪⎫0,2a 3上单调递增,在⎝ ⎛⎭⎪⎫2a 3,a 上单调递减,在(a ,+∞)上单调递增.要使f(x)在区间[0,2]上是增函数,只要2a3≥2,即a≥3.综上所述,实数a 的取值范围为(-∞,0]∪[3,+∞).串讲2答案:⎝⎛⎦⎥⎤-∞,12. 解析:作出y =|x -2a|和y =12x +a -1的简图,依题意知应有2a≤2-2a ,故a 的取值范围是⎝⎛⎦⎥⎤-∞,12.新题在线答案:(-∞,0)∪(2,+∞).解析:因为f(0)=-1,x →+∞时,f(x)→+∞,所以,函数f(x)过第一、三象限,①若a <0,显然成立;②若a≥0,只需x >0时,f(x)min <0即可,即存在x >0,使得f(x)<0分离参数,得⎝⎛⎭⎪⎫x 2+|x -2|x min <a ,易求得⎝⎛⎭⎪⎫x 2+|x -2|x min =2,所以,此时a >2,综上所述,实数a 的取值范围是(-∞,0)∪(2,+∞).。
含绝对值函数的最值问题.docx
专题三:含绝对值函数的最值问题1.已矢II函a f(x) = x2-2\x-a\ ( a>0 ),若对任意的兀w[0,+oo),不等式/(x-l)>2/(x)恒成立,求实数d的取值范围.不等式 / (兀_ 1) n 2/(兀)化为(x —1) —2 x — \ — ci n 2兀2 _ 4 x _ G即:4 x-a -2 x-(l + «)| < x2 +2%-1 (*)对任意的xw[0,+oo)恒成立因为d〉0,所以分如下情况讨论:①当0<x<a时,不等式(*) x2+4x+l-2a>0X^Vxe[O,a]恒成立•・・g(兀)=/ +牡+1 _2G n 0在[0,町上单调递增•••只需g(兀)mb = g(0) = 1 - 2a A 00 V Q W —2②当acxSa + l 时,不等式(*)即x2 -4x + l + 66t>0对\/xw(a,d + l]恒成立由①知0 < a W ,二/?(x) = x2 -4x + l + 6d在(d,a4-1]上单调递减/.只需"(x)min =力(1 +。
)= a? + 4G— 2 » 0 /. a —2 —或a n V6 — 2vV6-2<- A V6-2<tz<-2 2③当x>a + l时,不等式(*)化为即H + 2a-3巴0对V"(a+,+8)恒成立a 兰-2 - 或a 工- 22.己知函数f[x)=\x—a\y g(x)=x+2ax+\(a为正数),且函数/(x)与g(x)的图象在y轴上的截距相等.⑴求a的值;(2)求函数⑴的最值.【解析]⑴由题意/(0) = g(0),・・・圈=1.又・.・a>0, .S I.⑵由题意几¥)+ g(x) = |x - 11 + x2 3 + 2x + 1.当兀2 1时,/(x) + g(Q = / + 3兀在[1, +oo)上单调递增,当*1时,/W + g(x)=/ +兀+ 2在-* 1)上单调递增,在(-co,3 7所以,当乳=——时,函数fix) + g(x)的最小值为一;函数无最大值. 一丄]上单调递减.2因此,函数./(X)+ £(/)在(- 00,-丄]上单调递减,在-*2 L -+ 00 上单调递增.a < 0 时?Z(a)是方程 a/ + 8x+ 3=5的较小根,故Z(a)=—8 + \/64 4- 8a — 4 + \/16 + 2a②当3 - — ^5即a W-8时丿(a)是方程a/ a+ 8咒+ 3=-5的较大根,故1(a)=—8 — v^64 ~ 32fl. — 4 — J16 ~ 8a , /z 、 -------------------------------- •综上,Z(a)=•\ 当 a V — 8-4--71^2Q ,(-8 < a <0).时丿(°)= - J"-8a =.,在亠 74 - 2a - 2(-a , - 8]上单调递增,当一 8 < a < 0时,/(«)= -4 + >/16 + 2。
对一类求含绝对值的函数最小值问题一种解法的
对一类求含绝对值的函数最小值问题一种解法的一点疑惑和探究联丰中学 王培良 315000在一次偶然的机会,我去上海听了这么一节课,但听课过程中遇到了一点疑问:就是用代数法解一类含绝对值的函数问题最小值的等价性问题, 并作了一些思考,具体如下:问题1:求函数f(x)=|x-1|+|x-2|的最小值。
方法一(一般解法):数形结合 将函数f(x)=|x-1|+|x-2|化为:⎪⎩⎪⎨⎧≥-<<≤-=)2(,32)21(,1)1(,23)(x x x x x x f 然后作图,由图易知,f(x)的最小值为1。
方法二:几何法(1)在数轴上取点A(1,0)和点B(2,0); (2)在数轴上取动点P(x ,0);即|PA|+|PB|的最小值为所求。
则f(x)≥1(当且仅当1≤x ≤2时,取“=”号)。
方法三:代数法0)1(|1|2≥-=-x x最小,要使|2||1|)(-+-=x x x f 最小,只需22)2()1()(-+-=x x x g,由21)23(2562)(22+-=+-=x x x x g 。
最小,即时,当1)()(23min ==x f x g x 问题2:求函数f(x)=|x-1|+|x-2|+|x-3|的最小值。
也有类似的三种解法 其中方法三:代数法0)1(|1|2≥-=-x x最小,要使|3||2||1|)(-+-+-=x x x x f 最小,只需222)3()2()1()(-+-+-=x x x x g ,由2)2(314123)(22+-=+-=x x x x g。
最小,即时,当2)()(2min ==x f x g x类比推广问题3:求函数f(x)=|x-1|+|x-2|+…+|x-19|的最小值。
方法二:由画数轴可知:|x-10|≥0,|x-9|+|x-11|≥2,… …|x-1|+|x-19|≥18,当且仅当x=10时,它们的和最小。
即f(x)≥0+2+4+…+18=90。
”曼哈顿距离“一类双绝对值-的最值问题的快速解法
一类双绝对值函数的最小值的快速求法余姚市梦麟中学王晶摘要:在高考、竞赛、自招考试中,经常会涉及到绝对值函数的最值,很多文献对绝对值问题进行过深入的研究,方法层出不穷。
本文从其中一个独特的角度,来对双绝对值问题中的一类绝对值之和的最小值问题进行探讨,以期获得快速求解的方法。
关键字:曼哈顿距离 公式:2121(,)||||M A B x x y y =-+-绝对值最值:||||,||||(1),|||()|x a x b x a bx c b x a f x b -+--+-≥-+-1、 试题呈现:已知函数3()|||3|(,)f x x a x b a b R =-+-∈,当[0,2]x ∈时,()f x 的最大值为(,)M a b ,则(,)M a b 的最小值为 。
笔者发现,学生对此题几乎无法得分。
本题看似熟悉,又略有变化。
第一个绝对值中有3x 项,第二个绝对值中x 项前的系数为3,均令学生困惑不已。
学生的反应是无从下手。
那么对于这类题目如何下手呢?有通法吗?2、 不等式解法:解法一:333()|||3|max{|3|,|3|}f x x a x b x x a b x x a b =-+-=+----+设31()3f x x x a b =+--,则21'()330f x x =+>恒成立,函数1()f x 单调递增,故3max |3|max{||,|14|}x x a b a b a b +--=----;设32()3f x x x a b =--+,则22'()333(1)(1)f x x x x =-=-+, 函数2()f x 在[0,1]上单调递减,在(1,2]上单调递增,故3max |3|max{||,|2|,|2|}max{|2|,|2|}x x a b a b a b a b a b a b --+=-+-+--+=-+--+ 故(,)max{||,|14|,|2|,|2|}M a b a b a b a b a b =-----+--+;2(,)|||14||()(14)|14M a b a b a b a b a b ≥--+--≥++--=,故(,)7M a b ≥,,当a+b=7时等号成立;且2(,)|2||2||(2)(2)|4M a b a b a b a b a b ≥-++--+≥-+---+=,故(,)2M a b ≥,,当a=b 时等号成立;综上:(,)7M a b ≥,即(,)M a b 的最小值为7.本题考查绝对值不等式,根据绝对值不等式的性质合理放缩是解决本题的关键。