勾股定理全章知识点总结

合集下载

勾股定理知识点总结

勾股定理知识点总结

第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5、利用勾股定理作长为的线段作长为、、的线段。

勾股定理知识点总结大全

勾股定理知识点总结大全

勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。

具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。

这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。

二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。

几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。

常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。

2. 代数证明另外,勾股定理也可以通过代数方法进行证明。

代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。

通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。

三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。

例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。

勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。

2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。

而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。

这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。

3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。

勾股定理知识点总结

勾股定理知识点总结

17.1勾股定理考点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

(即:a 2+b 2=c 2) 技巧归纳:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题考点二:勾股定理的证明一般是通过剪拼,借助面积进行证明。

其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不变。

图1是由4个全等三角形拼成的,得到一个以a+b 为边长的大正方形和以直角三角形斜边c 为边长的小正方形。

则大正方形的面积可表示为(a+b)2,又可表示为12ab ·4+c 2,所以(a+b)2=12ab ·4+c 2,整理得a 2+b 2=c 2在图2的另一种拼法中,以c 为边长的正方形的面积可表示成四个全等的直角三角形与边长为(b-a)的正方形的面积的和,所以12ab ·4+(b-a)2=c 2,整理得a 2+b 2=c 2.考点三:勾股定理的应用(1)勾股定理的应用条件勾股定理只适用于直角三角形,所以常作辅助线——高,构造直角三角形。

(2)勾股定理的实际应用勾股定理反映了直角三角形3条边之间的关系,利用勾股定理,可以解决直角三角形的有关计算和证明.例如:已知直角三角形的两条直角边可求斜边;已知直角三角形的斜边和一条直角边,可求另一条直角边。

勾股定理还可以解决生产生活中的一些实际问题。

在解决问题的过程中,往往利用勾股定理列方程(组),将实际问题转化成直角三角形的模型来解决。

(3)利用勾股定理作长为 n (n 为大于1的整数)的线段实数与数轴上的点是一一对应的,有理数在数轴上较易找到与它对应的点,而若要在数轴上直接标出无理数对应的点则较难。

勾股定理中考章节复习(知识点+经典题型分析总结)

勾股定理中考章节复习(知识点+经典题型分析总结)

勾股定理中考章节复习(知识点+经典题型分析总结)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。

2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。

3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

⑵ 命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

⑷ 定理:用推理的方法判断为正确的命题叫做定理。

⑸ 证明:判断一个命题的正确性的推理过程叫做证明。

⑹ 证明的一般步骤① 根据题意,画出图形。

② 根据题设、结论、结合图形,写出已知、求证。

③ 经过分析,找出由已知推出求证的途径,写出证明过程。

AB C a b c 弦股勾A BD 5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

八年级数学下册 第18章勾股定理知识点与常见题型总结复习 人教新课标版

八年级数学下册 第18章勾股定理知识点与常见题型总结复习 人教新课标版

八年级数学下册第18章勾股定理知识点与常见题型总结复习人教新课标版八年级数学下册第18章勾股定理知识点与常见题型总结复习人教新课标版第18章勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2b2c2勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4SS正方形EFGHS正方形ABCD,412ab(ba)2c2,化简可证.DCHEFGbaAcB方法二:baaccbbccaab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为S412abc22abc2大正方形面积为S(ab)2a22abb2所以a2b2c2方法三:S1梯形2(ab)(ab),S梯形2SADESABE21122ab2c,化简得证用心爱心专心AaDbccBbEaC3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,C90,则ca2b2,bc2a2,ac2b2②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a,b,c满足a2b2c2,那么这个三角形是直角三角形,其中c为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a2b2与较长边的平方c2作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若a2b2c2,时,以a,b,c为三边的三角形是钝角三角形;若a2b2c2,时,以a,b,c为三边的三角形是锐角三角形;②定理中a,b,c及a2b2c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2c2b2,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2b2c2中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n组勾股数:n21,2n,n21(n2,n为正整数);2n1,2n22n,2n22n1(n为正整数)mn,2mn,mn2222(mn,m,n为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体用心爱心专心推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:CCC30°ABADBBDACBDA题型一:直接考查勾股定理例1.在ABC中,C90.⑴已知AC6,BC8.求AB的长⑵已知AB17,AC15,求BC的长分析:直接应用勾股定理a2b2c2题型二:应用勾股定理建立方程例2.⑴在ABC中,ACB90,AB5cm,BC3cm,CDAB于D,CD=⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm,斜边长为13cm,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解例3.如图ABC中,C90,12,CD1.5,BD2.5,求AC的长CD12EAB分析:此题将勾股定理与全等三角形的知识结合起来用心爱心专心例4.如图RtABC,C90AC3,BC4,分别以各边为直径作半圆,求阴影部分面积CAB题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm,另一棵高2cm,两树相距8cm,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了mAEBDC分析:根据题意建立数学模型,题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例 6.已知三角形的三边长为a,b,c,判定ABC是否为Rt①a1.5,b2,c2.5②a54,b1,c23例7.三边长为a,b,c满足ab10,ab18,c8的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC中,AB13cm,BC10cm,BC边上的中线AD12cm,求证:ABAC用心爱心专心扩展阅读:新人教版八年级数学下册勾股定理知识点和典型例习题新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2b2c22.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:DHEFbAcGaC1方法一:4SS正方形EFGHS正方形ABCD,4ab(ba)2c2,化简可证.2方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角1三角形的面积与小正方形面积的和为S4abc22abc2大正方形面积为2BbacabS(ab)a2abb所以abcbc222222c111方法三:S梯形(ab)(ab),S梯形2SADESABE2abc2,化简得证2223.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

第18章勾股定理复习一.知识归纳1・勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为「方,斜边为C,那么/+庆=疋勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2・勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的而积不同的表示方法,列出等式,推导岀勾股定理常见方法如下:方法—:+ S正方形MG" = SjE方矽A BO F 4 x —cib + (b- a)~ = c~)化11U 可证•方法二四个直角三角形的面积及小正方形面积的和等于大正方形的面积. 四个直角三角形的面积及小正方形面积的和为S=4x1" +宀加十?2大正方形面积为S = (a + b)2=a 2+2ab + b 2所以 a 2 +b 2 =c 2方法二:S^ = ^(a+b)-(a+h), S 梯形=2S®+5沁=2•如+ 扫‘3 •勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三 角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾 股定理时,必须明了所考察的对象是直角三角形4 .勾股定理的应用化简得证b a①己知直角三角形的任意两边长,求第三边在A4BC 中,ZC = 90°,贝lJc = x/7+F, b = Jd? , a = ^c2-b2②知道直角三角形一边,可得另外两边之间的数量关系勾股定理知识点与常见题型总结③可运用勾股定理解决一些实际问题5 .勾股定理的逆定理如果三角形三边长°, b, C满足那么这个三角形是直角三角形,其中c为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和/+戻及较长边的平方』作比较,若它们相等时,以—为三边的三角形是直角三角形;若/+戸<云,时,以£为三边的三角形是钝角三角形;若,r+/r>c2,时,以/,, c为三边的三角形是锐角三角形;②定理中a, b, c及/+戸=疋只是一种表现形式,不可认为是唯一的,如若三角形三边长—满足/+—那么以…,c为三边的三角形是直角三角形,但是方为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6 •勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,°, 方,c为正整数时,称°, b, c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5; 6,8,10; 5,12,13; 7,24,25等③用含字母的代数式表示“组勾股数:n2 -\.2njr +1 (n>2, n为正整数);2n + l,2n2+2n,2n2+2n+l(“为正整数)m2 - n~, 2/nnjir + n2(m > n t m , n为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8 ..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和及最长边的平方进行比较,切不可不加思考的用两边的平方和及第三边的平方比较而得到错误的结论.9 .勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:题型一:直接考查勾股定理例 1 .在SABC中,ZC = 90° .⑴已知AC = 6, BC=8.求AB的长⑵己知AB = 17, AC = 15,求BC的长分析:直接应用勾股定理^+/?=c2解:(1)/仏=(力+砧=10(2) BC =J AB^A F=8题型二:应用勾股定理建立方程例2 .(1)在AABC 中,ZACB = 90°, AB=5 cm , BC = 3 cm , CD 丄AB「D , CD =⑵己知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶己知直角三角形的周长为30⑷,斜边长为13®,则这个三角形的而积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边及斜边上高的乘积.有时可根据勾股定理列方程求解解:(l)AC = y/AB2-BC2 =4 , CD=AC -iC =2.4ABA(2)设两直角边的长分别为弘,4R・・・(3b + (4幻—52,•上=3, 5 = 54⑶设两直角边分别为a , b ,则a+b = l7 , a2+b2=2S9 ,可得ab = 60 :.S = —ab = 30 cm22例3•女口图WC 中,ZC = 90°, Z1 = Z2, CD = 1.5, BD = 2.5 ,求AC 的长分析:此题将勾股定理及全等三角形的知识结合起来解:作DE1AB于E,•・・ Z1 = Z2, ZC = 90°・•・ DE = CD = L5在中・・・ ABED = 90。

勾股定理知识点总结(经典、实用)

勾股定理知识点总结(经典、实用)

勾股定理知识点总结(经典、实用) Chapter 3: Pythagorean Theorem1.Key Points:1.1 Pythagorean TheoremThe Pythagorean Theorem states that in a right triangle。

the square of the hypotenuse (the longest side) is equal to the sum of the squares of the other two sides。

In other words。

if the two legs of a right triangle are a and b。

and the hypotenuse is c。

then a^2 + b^2 = c^2.The formula can also be rearranged to solve for a or b: a^2 = c^2 - b^2 or b^2 = c^2 - a^2.Note: This theorem only applies to right triangles。

where one angle is 90 degrees.1.2 Proof of Pythagorean TheoremThere are many ways to prove the Pythagorean Theorem。

but one common method is to use the concept of area。

By showing that two different shapes have the same area。

we can derive the formula for the theorem。

Another method is to use a puzzle-like diagram to rearrange the squares of the sides.Two common methods are shown below:Method 1: 4 SquaresIn the diagram。

勾股定理知识点总结

勾股定理知识点总结
小河

牧童 A 东 B 小屋
• 、如图,一个三级台阶,它的每一级的长、
宽和高分别为20、3、2,A 和B是这个台 阶两个相对的端点,A点有一只蚂蚁,想到 B点去吃可口的食物,则蚂蚁沿着台阶面爬 到B点最短路程是 。
如图所示,测得长方体的木块长4 cm, 宽3 cm,高5 cm.一只蜘蛛潜伏在木块的一个顶 点 A 处,一只苍蝇在这个长方体上和蜘蛛相对的 顶点B处,蜘蛛究竟应该沿着怎样的路线爬上去, 所走的路程会最短,并求最短路径.
类型八:综合
• 1.已知直角三角形的周长为30,斜边长为 13,则这个三角形的面积为 • 2. 如下左图,在高2米,坡角为30°的楼
梯表面铺地毯,地毯的长至少需 ________米.
• 一种盛饮料的圆柱形杯(如上右图),测得 内径为5㎝,高为12㎝,吸管放进杯里,杯 口外面至少要露出4.6㎝,问吸管要做 ㎝。
• 如图,△ABC中,∠C=90°,AB垂直平 分线交BC于D若BC=8,AD=5,求AC的长 。
类型六:证明问题
如图,△ACB和△ECD都是等腰直角三角形, ∠ACB =∠ECD =90°,D为AB边上一 点.求证:AD2 +DB2 =DE2.
A
D E
C B
• 如图正方形ABCD,E为BC中点,F为AB 上一点,且BF= AB。请问FE与DE是否垂 直?请说明。
例2 H G F B B
A
C
类型四:构造直角三角形.
已知:如图,在△ABC中,∠B=45°,∠C=60°, AB=2.求(1)BC 的长;(2)S△ABC .
• 等边三角形的边长为2,求它的面积。
• 四边形ABCD中,∠B=90°,AB=3 ,BC=4,CD=12,AD=13,求四边 形ABCD的面积。

勾股定理全章知识点总结

勾股定理全章知识点总结

勾股定理【知识脉络】【基础知识】Ⅰ. 勾股定理(1)内容:直角三角形两直角边的平方和等于斜边的平方; 表示方式:若是直角三角形的两直角边别离为a ,b ,斜边为c ,那么222a b c +=.(2)勾股定理的证明勾股定理的证明方式很多,常见的是拼图的方式用拼图的方式验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有间隙,面积可不能改变;②依照同一种图形的面积不同的表示方式,列出等式,推导出勾股定理.常见方式如下:方式一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. 方式二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 因此222a b c +=方式三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证(3)勾股定理的适用范围勾股定理揭露了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,关于锐角三角形和钝角三角形的三边就不具有这一特点。

(4)勾股定理的应用:①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,那么22c a b =+, c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A 方法一 方法二方法三 方法二b =,a ;②明白直角三角形一边,可得另外两边之间的数量关系③可运用勾股定明白得决一些实际问题Ⅱ. 勾股定理的逆定理(1)内容:若是三角形三边长a ,b ,c 知足222a b c +=,那么那个三角形是直角三角形,其中c 为斜边。

① 勾股定理的逆定理是判定一个三角形是不是是直角三角形的一种重要方式,它通过“数转化为形”来确信三角形的可能形状,在运用这必然理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;② 若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;③ 定理中a ,b ,c 及222a b c +=只是一种表现形式,不能够为是唯一的,如假设三角形三边长a ,b ,c 知足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,可是b 为斜边(2)勾股数①能够组成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数能够提高解题速度,如3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,12,15;9,40,41;等Ⅲ. 勾股定理及其逆定理的实际应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:A B C 30° D C B A A D B CⅣ. 互逆命题的概念 若是一个命题的题设和结论别离是另一个命题的结论和题设,如此的两个命题叫做互逆命题.若是把其中一个叫做原命题,那么另一个叫做它的逆命题.。

新人教版八年级数学下册勾股定理知识点和典型例习题1

新人教版八年级数学下册勾股定理知识点和典型例习题1

新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2。

勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5。

勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,c b a H G FE DC B A b ac b a c c a b c a b a b c c b aE D C B A时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6。

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDCB A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a b ccb a E DCB A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC =题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC , 2.4AC BC CD AB⋅== DB A C⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm 例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21E DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中90,2BED BE ∠=︒Rt ACD Rt AED ∆≅∆AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mAB CD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒ ②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形 理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CB AAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=, 90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=。

勾股定理知识点总结

勾股定理知识点总结

第18章勾股定理复习一。

知识归纳1。

勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为,,斜边为,那么勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理。

我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2。

勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:,,化简可证。

方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为所以方法三:,,化简得证3。

勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在中,,则,,②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5、利用勾股定理作长为的线段作长为、、的线段。

思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作.作法:如图所示ﻫ(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边;ﻫ(2)以AB为一条直角边,作另一直角边为1的直角。

斜边为;(3)顺次这样做下去,最后做到直角三角形,这样斜边、、、的长度就是ﻫ、、、。

ﻫ举一反三【变式】在数轴上表示的点。

解析:可以把看作是直角三角形的斜边,,为了有利于画图让其他两边的长为整数,ﻫ而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理全章知识点

勾股定理全章知识点

勾股定理知识总结一.基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC∆中,90C∠=︒,则c,b=,a)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

(定理中a,b,c及222a b c+=只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c 满足222a c b+=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGHS S S∆+=正方形正方形ABCD,2214()2ab b a c⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c=⨯+=+大正方形面积为222()2S a b a ab b=+=++所以222a b c+=方法三:1()()2S a b a b=+⋅+梯形,2112S222ADE ABES S ab c∆∆=+=⋅+梯形,化简得证b aHGFEDCBAabccbaEDCBAbacbaccabcab6:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)二、规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

勾股定理知识点总结

勾股定理知识点总结

勾股定理知识点总结一、勾股定理的定义在直角三角形中,两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长分别为 a 和 b,斜边长为 c,那么 a²+ b²= c²。

这一定理是数学中非常重要的一个定理,它揭示了直角三角形三条边之间的数量关系。

二、勾股定理的证明勾股定理的证明方法有很多种,以下为大家介绍几种常见的证明方法。

1、赵爽弦图法赵爽弦图是由四个全等的直角三角形拼成一个大正方形,中间是一个小正方形。

大正方形的面积等于四个直角三角形的面积加上小正方形的面积。

设直角三角形的两条直角边分别为 a 和 b,斜边为 c。

大正方形的边长为 c,面积为 c²。

四个直角三角形的面积为 4×(1/2)ab = 2ab,小正方形的边长为(b a),面积为(b a)²= a² 2ab + b²。

所以 c²= 2ab + a² 2ab + b²,即 c²= a²+ b²,证明完毕。

2、毕达哥拉斯证明法以直角三角形的斜边为边长作一个正方形,再以两条直角边为边长分别作两个正方形。

通过计算三个正方形的面积,可以证明勾股定理。

设直角三角形的两条直角边分别为 a 和 b,斜边为 c。

斜边为边长的正方形面积为 c²,两条直角边为边长的正方形面积分别为 a²和 b²。

通过将直角边为边长的两个正方形进行分割和拼接,可以发现它们能够恰好填满斜边为边长的正方形,从而证明 a²+ b²= c²。

三、勾股定理的应用1、已知直角三角形的两条边,求第三条边例如,已知一个直角三角形的两条直角边分别为 3 和 4,求斜边的长度。

根据勾股定理,斜边的长度 c =√(3²+ 4²) = 5 。

2、实际生活中的应用(1)建筑工程中,计算建筑物的高度、跨度等。

八上数学勾股定理必背知识点总结

八上数学勾股定理必背知识点总结

第一章 勾股定理1、1-25的平方:12=1 22=4 32=9 42=16 52=25 62=36 72=49 82=64 92=81 102=100 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400 212=441222=484232=529242=576252=6252、勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果 a ,b 和 c分别表示直角三角形的两直角边和斜边,那么 a 2 + b 2 = c 2.几何语言:在 Rt△ABC 中,由勾股定理得 c 2=a 2 + b 2 或a 2=c 2-b 2 或b 2=c 2-a 23、A 、B 、C 三个正方形的面积之间的关系:以直角三角形两直角边为边长的两个小正方形的面积的和,等于以斜边为边长的正方形的面积.即A 的面积+B 的面积=C 的面积4、用面积求高:直角三角形两直角边的积等于斜边与斜边上高的积.即AC×BC=AB×CD5、 直角三角形:a 2+b 2=c 2锐角三角形:a 2+b 2˃c 2 钝角三角形:a 2+b 2˂c 26、勾股定理的逆定理:如果三角形的三边长a,b,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.其中a,b 是较小两边,c 是最长边.几何语言:在 △ABC 中, ∵a 2+b 2=c 2∴△ABC 是直角三角形 ∴∠C=90°ABCC B A7、勾股数:满足a...,称为勾股数..2.+b..2.=c..2.的三个正整数判断勾股数的方法:(1)必须是三个正整数.(2)必须满足较小两个数的平方和等于最大数的平方.常见的勾股数有:(选择填空可以用,大题不能用)3 4 5 5 12 13 7 24 258 15 17 9 40 41 及其倍数。

勾股定理知识点归纳

勾股定理知识点归纳

勾股定理知识点归纳一、勾股定理的定义如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a²+b²= c²。

这就是勾股定理。

勾股定理揭示了直角三角形三条边之间的数量关系,是解决直角三角形相关问题的重要工具。

二、勾股定理的证明勾股定理的证明方法有很多种,常见的有以下几种:1、赵爽弦图法通过四个全等的直角三角形拼成一个大正方形,中间形成一个小正方形。

大正方形的面积等于小正方形的面积加上四个直角三角形的面积,从而证明勾股定理。

2、毕达哥拉斯证明法以直角三角形的斜边为边长作正方形,再分别以两条直角边为边长作正方形。

通过计算三个正方形的面积关系来证明勾股定理。

3、总统证法通过将直角三角形拼成梯形,利用梯形面积等于三个三角形面积之和来证明勾股定理。

三、勾股定理的应用1、已知直角三角形的两条直角边,求斜边例如,一个直角三角形的两条直角边分别为3 和4,根据勾股定理,斜边 c =√(3²+ 4²) = 5 。

2、已知直角三角形的一条直角边和斜边,求另一条直角边比如,直角三角形的斜边为 5,一条直角边为 3,则另一条直角边 b =√(5² 3²) = 4 。

3、实际生活中的应用(1)测量问题在无法直接测量某些长度时,可以构建直角三角形,利用勾股定理来计算。

比如测量旗杆的高度,可以在旗杆底部向外量出一段距离,然后测量这段距离以及在这个点观测旗杆顶部的仰角,通过勾股定理计算旗杆高度。

(2)航海问题在航海中,确定船只的位置和航向时,经常会用到勾股定理。

(3)建筑问题在建筑施工中,计算建筑物的高度、角度等也会用到勾股定理。

四、勾股定理的逆定理如果三角形的三边长 a,b,c 满足 a²+ b²= c²,那么这个三角形是直角三角形。

勾股定理的逆定理是判断一个三角形是否为直角三角形的重要依据。

五、勾股数满足 a²+ b²= c²的三个正整数,称为勾股数。

2023年勾股定理知识点与常见题型总结

2023年勾股定理知识点与常见题型总结

勾股定理复习一.知识归纳1.勾股定理:直角三角形两直角边旳平方和等于斜边旳平方;表达措施:假如直角三角形旳两直角边分别为,,斜边为,那么a b c 222a b c +=2.勾股定理旳证明,常见旳是拼图旳措施 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会变化②根据同一种图形旳面积不一样旳表达措施,列出等式,推导出勾股定理常见措施如下:措施一:,4EFGH S S S ∆+=正方形正方形A B C D 2214()2ab b a c ⨯+-=,化简可证.措施二:四个直角三角形旳面积与小正方形面积旳和等于大正方形旳面积.四个直角三角形旳面积与小正方形面积旳和为 221422S ab c ab c =⨯+=+大正方形面积为因此222()2S a b a ab b =+=++222a b c +=措施三:,,化简得证1()()2S a b a b =+⋅+梯形2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形3.勾股定理旳合用范围:勾股定理揭示了直角三角形三条边之间所存在旳数量关系,它只合用于直角三角形,因而在应用勾股定理时,必须明了所考察旳对象是直角三角形4.勾股定理旳应用:勾股定理可以协助我们处理直角三角形中旳边长旳计算或直角三角形中线段之间旳关系旳证明问题.在使用勾股定理时,必须把握直角三角形旳前提条件,理解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(一般作垂线),构造直角三角形,以便对旳使用勾股定理进行求解.①已知直角三角形旳任意两边长,求第三边。

在中,,则,ABC ∆90C ∠=︒c =b =,a =②懂得直角三角形一边,可得此外两边之间旳数量关系cba HG FEDCBAbacbac cabcab a bccb aE D CBA③可运用勾股定理处理某些实际问题5.勾股定理旳逆定理 假如三角形三边长,,满足,那么这个三角形是直角三角形,其中为斜边。

八年级数学勾股定理知识点

八年级数学勾股定理知识点

八年级数学勾股定理知识点(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.c ba HG FEDCB A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a b ccb a E DCB A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:A B C 30°D CB A AD B CCB D A题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC =题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC , 2.4AC BC CD AB⋅==DB AC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S = ⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21E DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mAB C D E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD =答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒ ②22139b c +=,22516a =,222b c a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CB AAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=, 90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=。

勾股定理知识点

勾股定理知识点

第二章 勾股定理、平方根专题第一节 勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方A BCa b c弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。

2. 勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c ); 勾股定理和平方根 勾股定理平方根 立方根 实数 近似数、有效数字判定直角三角形勾股定理的验证定义、性质 开平方运算开立方运算定义、性质(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边);若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理
【知识脉络】
【基础知识】
Ⅰ. 勾股定理
(1)内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=.
(2)勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是:
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理.
常见方法如下:
方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2
ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.
四个直角三角形的面积与小正方形面积的和为221422
S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=
方法三:1()()2S a b a b =+⋅+梯形,2112S 222
ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证
c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A 方法一 方法三 方法二
(3)勾股定理的适用范围
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

(4)勾股定理的应用:
①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c =,
b =,a =;
②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题
Ⅱ. 勾股定理的逆定理
(1)内容:如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形, 其中c 为斜边。

① 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转
化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;
② 若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,
b ,
c 为三边的三角形是锐角三角形;
③ 定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长
a ,
b ,
c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边
(2)勾股数
①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为 正整数时,称a ,b ,c 为一组勾股数
②记住常见的勾股数可以提高解题速度,如3,4,5;5,12,13;6,8,10;7,24,25;8,15,17; 9,12,15;9,40,41;等
Ⅲ. 勾股定理及其逆定理的实际应用
勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体. 通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者
相辅相成,完成对问题的解决.常见图形:
A B C 30°
D C B A A D C
Ⅳ. 互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.。

相关文档
最新文档