红外光谱基本原理与谱图解析

合集下载

红外光谱(最全-最详细明了)

红外光谱(最全-最详细明了)

1. 收集谱图数据
通过红外光谱仪获取样品的光 谱数据。
3. 峰识别与标记
识别谱图中的特征峰,并对其 进行标记。
5. 结果输出
得出样品成分的红外光谱解析 结果。
谱图解析技巧
1. 峰归属参考
查阅相关资料,了解常见官能团或分子结构 的红外光谱峰归属。
3. 多谱图比对
将待测样品谱图与标准样品谱图进行比对, 提高解析准确性。
红外光谱与其他谱学的联用技术
红外光谱与拉曼光谱联用
拉曼光谱可以提供分子振动信息,与红外光 谱结合,可更全面地解析分子结构和化学组 成。
红外光谱与核磁共振谱联用
核磁共振谱可以提供分子内部结构的详细信息,与 红外光谱结合,有助于深入理解分子结构和化学键 。
红外光谱与质谱联用
质谱可以提供分子质量和结构信息,与红外 光谱结合,有助于对复杂化合物进行鉴定和 分析。
红外光谱在大数据与人工智能领域的应用
红外光谱数据的处理与分析
利用大数据技术对大量红外光谱数据进行处理、分析和挖掘,提取有用的化学和物理信息 。
人工智能在红外光谱中的应用
利用人工智能技术对红外光谱数据进行模式识别和预测,提高红外光谱的解析能力和应用 范围。
红外光谱数据库的建立与完善
建立和完善红外光谱数据库,为科研和工业界提供方便、快捷的红外光谱查询和服务。
分子振动与转动能级
1 2
分子振动
分子中的原子或分子的振动,产生振动能级间的 跃迁。
转动能级
分子整体的转动,产生转动能级间的跃迁。
3
振动与转动能级间的耦合
某些特定的振动模式会导致分子的转动能级发生 跃迁。
红外光谱的吸收峰与跃迁类型
吸收峰
由于分子振动或转动能级间的跃迁,导致光谱上出现暗线或 暗带。

红外光谱分析

红外光谱分析
当样品或溴化钾晶体含有微量水分时,会在~3300cm-1附近出现吸收峰,如含水量较大,谱图上在~1630cm-1处也有吸收峰(羟基无此峰),若要鉴别微量水与羟基,可观察指纹区内是否有羟基的吸收峰,或将干燥后的样品用石蜡油调糊作图,或将样品溶于溶剂中,以溶液样品作图,从而排除微量水的干扰。游离羟基的吸收因在较高波数(~3600cm-1),且峰形尖锐,因而不会与水的吸收混淆。
(2)空间障碍
分子中的大基团在空间的位阻作用,迫使邻近基团间的键角变小或共轭体系的共平面性被偏离或被破坏时,振动波数发生变化。
(Ⅰ)(Ⅱ)(Ⅲ)
υC=O1663cm-11686cm-11693cm-1
Ⅰ为典型的α、β不饱和酮,Ⅲ的邻位均被立体位阻大的甲基取代,羰与双键的共轭体系被破坏,羰基的振动频率升至1693cm-1,Ⅱ介于Ⅰ和Ⅲ之间。
υC=C1650cm-11660cm-11680cm-11750cm-1
环的张力对环内双键的影响:环变小,张力增大,环内双键p成分增加,键长变长,振动波数减小。而环外的=C-H键由于s成分增加,键长变短,振动波数增加。
υC=C1639cm-11623cm-11566cm-1
υ=CH3017cm-13040cm-13060cm-1
氧、氮和硫等原子有孤电子对,能与相邻的不饱和基团共轭,为了与双健的π电子云共轭相区分,称其为中介效应(M)。此种效应使不饱和基团的振动波数降低,而自身连接的化学键振动波数升高。最典型的例子是酰胺的羰基吸收。
酰胺分子由于中介效应降低了羰基的双键性,吸收频率移向低波数。一般酰胺羰基的振动频率不超过1690cm-1。N-H键变成=N-H,伸缩振动波数升高。酰胺胺基的振动频率比一般胺基的振动频率要高。
例:
υC=O1728cm-11751cm-1~1869cm-1

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

红外光谱(最全最详细明了)课件

红外光谱(最全最详细明了)课件

THANKS
感谢观看样ຫໍສະໝຸດ 制备固体样品液体样品
气体样品
注意事项
研磨成粉末,与KBr混合 压片或涂在ZnSe窗片上

稀释在适当的溶剂中, 涂在CaF2或ZnSe窗片
上。
通过干燥管进入光谱仪 。
避免样品中的水分和二 氧化碳干扰,确保样品
纯净。
实验操作
打开红外光谱仪电源,预热 稳定。
调整仪器至最佳状态,如光 路对中、调零等。
对实验操作的要求
总结词
红外光谱实验操作需要一定的技巧和经验,以确保结 果的准确性和可靠性。
详细描述
红外光谱实验涉及到样品的制备、仪器操作和谱图解析 等多个环节。每个环节都需要一定的技巧和经验,以确 保结果的准确性和可靠性。例如,在样品的制备过程中 ,需要选择合适的制样方法,以获得均匀、平整的样品 ;在仪器操作中,需要正确设置参数,以保证谱图的质 量;在谱图解析中,需要具备丰富的经验和专业知识, 以准确解析谱图特征。因此,进行红外光谱实验的人员 需要经过专业培训和实践经验的积累。
红外光谱(最全最详细 明了)课件
contents
目录
• 红外光谱基本原理 • 红外光谱与分子结构的关系 • 红外光谱的应用 • 红外光谱实验技术 • 红外光谱的局限性
01
红外光谱基本原理
红外光谱的产生
分子振动
分子中的原子或分子的振动,导致偶 极矩变化。
偶极矩变化
辐射吸收
分子吸收特定波长的红外光,导致振 动能级跃迁。
02
01 03
放入样品,记录光谱。
实验结束后,关闭仪器,清 理样品。
04
05
注意事项:保持室内温度和 湿度的稳定,避免仪器受到

红外光谱知识点

红外光谱知识点

红外光谱知识点一、红外光谱的基本原理。

1. 概念。

- 红外光谱(Infrared Spectroscopy,IR)是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。

2. 分子振动类型。

- 伸缩振动:原子沿键轴方向伸缩,键长发生变化而键角不变的振动,又分为对称伸缩振动(νs)和不对称伸缩振动(νas)。

例如,对于亚甲基(-CH₂ -),对称伸缩振动时两个C - H键同时伸长或缩短;不对称伸缩振动时一个C - H键伸长,另一个缩短。

- 弯曲振动:又称变形振动,是使键角发生周期性变化而键长不变的振动。

它包括面内弯曲振动(如剪式振动δ、面内摇摆振动ρ)和面外弯曲振动(如面外摇摆振动ω、扭曲振动τ)等。

以水分子为例,H - O - H的键角可以发生弯曲变化。

3. 红外吸收的条件。

- 分子振动必须伴随偶极矩的变化。

具有对称中心的分子,如二氧化碳(O = C = O),其对称伸缩振动不产生偶极矩变化,所以在红外光谱中没有该振动的吸收峰;而不对称伸缩振动产生偶极矩变化,有吸收峰。

- 辐射光子具有的能量与发生振动跃迁所需的能量相等。

根据E = hν(h为普朗克常量,ν为频率),只有当红外光的频率与分子振动频率相匹配时,才会发生吸收。

二、红外光谱仪及其工作原理。

1. 仪器类型。

- 色散型红外光谱仪:主要由光源、单色器、样品池、检测器和记录系统等部分组成。

光源产生的红外光经过单色器分光后,依次通过样品池和参比池,被样品吸收后的光强与参比光强比较,检测器检测光强的变化并转换为电信号,经记录系统得到红外光谱图。

- 傅里叶变换红外光谱仪(FT - IR):基于迈克尔逊干涉仪原理。

光源发出的光经过干涉仪后变成干涉光,再照射到样品上,样品对干涉光有选择地吸收,含有样品信息的干涉光被检测器检测,经计算机进行傅里叶变换处理后得到红外光谱图。

它具有分辨率高、扫描速度快、光通量高等优点。

红外光谱课件PPT

红外光谱课件PPT
傅里叶变换红外光谱仪具有高分辨率、高灵敏度、高信噪比等优点,广泛应用于 化学、物理、生物等领域。
红外光谱仪的实验操作
实验前准备
检查仪器是否正常, 确保电源连接稳定, 准备好样品和实验器 材。
光路调整
调整分束器、干涉仪 和检测器的位置,确 保光路畅通无阻。
参数设置
根据实验需求设置扫 描范围、扫描次数、 分辨率等参数。
转动模式
分子转动模式可以分为刚性转子 和弹性转子。刚性转子的转动能 级是量子化的,而弹性转子的转
动能级则是连续的。
振动与转动的耦合
在某些情况下,分子的振动和转 动模式之间会发生耦合,从而影
响红外光谱的形状和位置。
红外光谱的吸收峰
01 02
特征峰与泛峰
红外光谱中的吸收峰可以按照其特征分为特征峰和泛峰。特征峰是指与 特定振动或转动模式相关的吸收峰,而泛峰则是由于多个振动或转动模 式的相互作用而产生的吸收峰。
峰的形状分析
03
峰的形状可以反映分子中对应化学键或基团周围环境的对称性、
氢键等相互作用,有助于深入了解分子结构。
谱图解析实例
解析有机化合物结构
通过红外光谱解析,可以确定有机化合物中存在的官能团和化学 键类型,进而推断其可能的结构。
解析无机物和配合物结构
红外光谱在无机物和配合物结构解析中也有广泛应用,可以用于确 定离子和分子的振动模式。
辐射与物质的相互作用
当红外辐射与物质相互作用时,如果辐射的能量与分子振 动或转动能级差相匹配,则会引起分子振动或转动能级跃 迁,从而产生红外吸收。
分子振动与转动
振动模式
分子中的原子或分子的振动模式 可以分为伸缩振动和弯曲振动。 伸缩振动是指原子间的距离发生 变化,而弯曲振动则是指原子围

红外光谱详解课件

红外光谱详解课件

06
习题与思考题
基础概念题
题目1
简述红外光谱的基本原理
答案1
红外光谱是利用物质对红外光的吸收特性来研究物质分子结构和组成的一种方法。当红 外光与物质分子相互作用时,某些波长的光被吸收,形成特定的光谱图,通过分析这些
光谱图可以了解物质分子的振动和转动能级。
基础概念题
要点一
题目2
列举红外光谱中的主要吸收区域
要点二
答案2
红外光谱主要分为四个吸收区域,分别是近红外区( 12500-4000 cm^-1)、中红外区(4000-400 cm^-1) 、远红外区(400-10 cm^-1)和超远红外区(10-5 cm^-1)。其中中红外区是研究分子振动和转动能级的主 要区域。
光谱解析题
题目3
根据给定的红外光谱图,分析可能的物质组 成
分子转动
02
分子除了振动外,还会发生转动,转动也会产生能量变化,从
而吸收特定波长的红外光。
分子振动和转动与红外光谱的关系
03
分子振动和转动产生的能量变化与红外光的能量相匹配时,光
子会被吸收,形成红外光谱。
分子振动与转动
振动模式
分子中的原子或分子的振动模式决定 了其吸收特定波长的红外光。不同化 学键或基团具有独特的振动模式,形 成了特征的红外光谱。
镜反射后相干叠加。
检测器
检测器用于检测干涉仪产生的相干 光束,将光信号转换为电信号。
光谱采集系统
光谱采集系统负责收集检测器输出 的电信号,并将其转换为光谱数据 。
傅里叶变换红外光谱技术
傅里叶变换
傅里叶变换是一种数学方法,用于将干涉图转换为光谱图 。通过傅里叶变换,可以获得样品的红外光谱。
分辨率

第三章 红外光谱

第三章 红外光谱

不特征

类别
键和官能团
C=O R-CHO C=O

1750-1680 2720

(cm-1)


醛、酮
羧酸
1770-1750(缔合时在1710) 气相在3550,液固缔合时在 3000-2500(宽峰) 1800 1860-1800 1735 1690-1650 3520,3380(游离)缔合降低100 2260-2210 1800-1750
1670(弱-无)
ห้องสมุดไป่ตู้

共轭烯烃
与烯烃同
向低波数位移,变宽
与烯烃同
吸收峰 振

化合物
C=C,CC,C=C-C=C C-H拉伸 (或伸缩) 苯环 3310-3300 一取代 对称 2140-2100弱 无
C-H弯析
炔烃
较强
非对称二取代2260-2190弱
700-600 强
芳烃
取代芳烃
3110-3010中
一、红外光谱的八个峰区
4000-1500cm-1区域又叫官能团区. 该区域出现的吸 收峰,较为稀疏,容易辨认. 1500-400cm-1区域又叫指纹区. 这一区域主要是: C-C、C-N、C-O 等单键和各种弯曲振动的
吸收峰,其特点是谱带密集、难以辨认。
二、重要官能团的红外特征吸收
C-H拉伸(或伸缩)
1600中 1500强
1580弱 1450弱-无
670弱 倍频 2000-1650 一取代770-730, 710-690强 二取代
同芳烃
同芳烃
邻- 770-735强 间- 810-750强 710-690中 对- 833-810强
泛频 2000-1660

常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析1. 红外光谱的基本原理1)红外光谱的产生能量变化ννhch==E-E=∆E12ννh∆E=对于线性谐振子μκπνc21=2)偶极矩的变化3)分子的振动模式多原子分子振动伸缩振动对称伸缩不对称伸缩变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆AX3:对称变形、反对称变形. 不同类型分子的振动线型XY2:对称伸缩不对称伸缩弯曲弯曲型XY2:不对称伸缩对称伸缩面内弯曲(剪式)面内摇摆面外摇摆卷曲平面型XY3:对称伸缩不对称伸缩面内弯曲面外弯曲角锥型XY3:对称弯曲不对称弯曲面内摇摆4)聚合物红外光谱的特点1、组成吸收带2、构象吸收带3、立构规整性吸收带4、构象规整性吸收带5、结晶吸收带2 聚合物的红外谱图1)聚乙烯各种类型的聚乙烯红外光谱非常相似。

在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。

要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。

这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。

低压聚乙烯(热压薄膜)中压聚乙烯(热压薄膜)高压聚乙烯(热压薄膜)2.聚丙烯无规聚丙烯等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。

这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。

3.聚异丁烯CH3H2C CnCH3丁二烯聚合可以生成多种结构不同的异构体。

H2 CHCHC CH2C CHCH2HH2CC CHCH2H2CH 1,2- 顺式1,4- 反式1,4-990、910 cm-1 775、741、690 cm-1 970 cm-1 1,2-聚丁二烯顺式1,4-聚丁二烯用于橡胶的顺式1,4-丁二烯的光谱中,730 cm-1的宽强吸收很特征,但反式1,4-和1,2-结构的吸收虽弱但仍很明显。

红外光谱知识点总结

红外光谱知识点总结

红外光谱知识点总结一、红外光谱的基本原理1. 红外辐射红外光波长范围为0.78~1000微米,是可见光和微波之间的一部分光谱。

物质在光谱范围内会吸收、散射和发射红外光。

这些过程可以用来获取物质的结构信息。

2. 分子振动分子在吸收红外辐射时,分子内部的振动模式会发生变化,这些振动模式会导致物质对不同波长的红外光有不同的吸收峰。

根据分子结构、键的类型和位置不同,红外吸收峰会出现在不同的波数位置。

3. 红外吸收谱红外吸收谱是将物质对不同波数的红外光的吸收强度绘制成图谱。

在红外吸收谱中,不同的振动模式会对应不同的吸收峰,通过谱图的解析可以得到物质的结构信息。

4. 红外光谱仪红外光谱仪是用于测定物质的红外吸收光谱的仪器,它主要包括光源、分光器、样品室、检测器和数据处理系统等部分。

常见的红外光谱仪有光散射型、光路差型和干涉型等。

二、红外光谱的仪器分析技术1. 光散射型红外光谱仪光散射型红外光谱仪是通过散射光进行分析的,它适用于固态样品和粉末样品的分析。

该仪器操作简单,对样品的要求不高,但是分辨率较低。

2. 光路差型红外光谱仪光路差型红外光谱仪利用干涉光进行分析,可以获得高分辨率的红外光谱。

它适用于高精度的定量分析和结构鉴定,但是对样品的平整度和光路的稳定性要求较高。

3. 干涉型红外光谱仪干涉型红外光谱仪采用光源产生的连续光通过光栅或凸透镜分散成各个不同波数的光线,对于样品吸收光线的强度进行检测,然后通过计算机进行数据处理。

其优点是分辨率高、峰型窄、精确度高,适用于各种样品的定性、定量和成分分析。

4. 远红外光谱和近红外光谱远红外光谱仪可以用于检测液体样品和气态样品,其波数范围在4000~400 cm-1之间。

而近红外光谱则适用于固态和半固态样品的分析,波数范围在12500~4000 cm-1之间。

三、红外光谱的谱图解析1. 物质的结构信息根据红外光谱谱图的解析可以获得物质的结构信息,如键的种类、键的位置、分子的构型等。

FTIR红外光谱原理及图谱解析

FTIR红外光谱原理及图谱解析

红外光谱仪结构及工作原理
结构
红外光谱仪主要由光源、干涉仪、样品室、检测器、数据处理系统等部分组成。其中, 干涉仪是核心部件,用于将光源发出的光分为两束,分别经过反射镜反射后再汇合产生
干涉现象。
工作原理
红外光谱仪采用傅里叶变换技术,通过对干涉图进行傅里叶变换得到红外光谱图。当样 品置于干涉仪中,红外光经过样品后,携带了样品的吸收信息。这些信息经过检测器接
FTIR红外光谱原理及图谱 解析
汇报人:XX
目录
• 红外光谱基本原理 • FTIR技术与应用 • 图谱解析方法与技巧 • 常见样品类型图谱解析举例 • 实验操作注意事项与故障排除 • 总结与展望
01
红外光ቤተ መጻሕፍቲ ባይዱ基本原理
红外光谱定义与特点
定义
红外光谱(Infrared Spectroscopy ,IR)是研究物质在红外光区(波长 范围约为0.78-1000μm)的吸收和 发射特性的光谱学分支。
FTIR在各个领域应用现状
材料科学
用于研究材料的化学组成、晶体 结构、相变过程等,如无机材料 、金属材料、纳米材料等。
环境科学
用于大气、水体、土壤等环境样 品中污染物的定性和定量分析, 如有机污染物、重金属离子等。
01
化学领域
用于有机化合物、高分子材料等 的结构鉴定和定量分析,如官能 团识别、化学键类型判断等。
02
03
生物医学
用于生物大分子(如蛋白质、核 酸等)的结构分析、药物与生物 大分子的相互作用研究等。
04
FTIR技术发展趋势
高分辨率技术
进一步提高FTIR光谱的分辨率,实现对复杂 样品更精细的分析。
多模态联用技术
借助人工智能和机器学习等技术,实现FTIR 光谱的自动解析和智能识别,提高分析速度

FTIR红外光谱原理及图谱解析

FTIR红外光谱原理及图谱解析

带宽: 31,600 cm-1
FT-IR: 基本原理 ...
干涉图数据的采集
折叠
为了避免假峰,必须满足 Nyquist采样条件。
FT-IR: 基本原理 ...
干涉图数据的采集
Nyquist采样条件
任何谱图数据的采集的采样频率必须等于或大于谱图带宽的两倍。
我们是采用激光来控制采样间隔,因为激光的波长为632.8nm,最大测试 波长为31,600cm-1. 632.8nm/2=316.4nm 31,600cm-1
问题:没有干涉图
Check signal 没有干涉图,只是一根直线
检查 IR 光源参数:
Optic
Source Setting: MIR Source
OK ? 检查IR光源:
取出光源 (警告, 光源是热的): 发光吗? 不 关闭仪器,更换光源
FT-IR: 基本原理 ...
问题:没有干涉图
Check signal 没有信号
谱图解析——2,3-二甲基丁烷
2962cm-1,CH3 反对称伸缩振动(仅 显示两个简并反对称伸缩振动模式 之一)。
谱图解析——2,3-二甲基丁烷
2880cm-1,CH3基团的伸缩振动。注意:这 里没有CH2 基团的吸收峰,因为该分子中 没有CH2基团。
谱图解析——2,3-二甲基丁烷
1460cm-1,是CH3 的反对称弯曲 振动峰(仅显示两个简并模式中 的一个)。
1/

2vt
t
v
动镜移动速率(cm/sec) 时间(sec)
得到的AC组分I’():就是所谓的干涉图。
FT-IR: 基本原理 ...
动镜
HeNe激光用来控制动镜的位置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对称性分子中,对于同核双原子分子而言,其振动中没有瞬时偶极矩的变化,因此,其不 具备红外活性,如 N2、O2 等;对于其他的对称性分子而言,有些振动会带来偶极矩的变化, 是具有红外活性的,如 HCl、CO2、CH4 等。
对于不对称分子而言,其分子振动必然能够带来偶极矩的变化,因此,其具有红外活性。
分子类型 同核双原子分子 非同核双原子对称性分子
O
C CH3
Q C=O
1663
O
C CH3
CH3 1693
(3) 偶极场效应 偶极场效应是互相靠近的基团之间通过空间起作用的,一般,基团之间的空间位置越靠 近,偶极场效应也越明显。
案例一
G-
G- O G-
Cl
Cl
C
H
H
HH
1755
G-
G- O
Cl
H
C
H
Cl
HH
1742
O
H
H
Байду номын сангаас
C
Cl
Cl
HH
1728
案例二
−CH3
−CH2
−CH = C − H Ph − H ≡ C − H
2960(νas);2870(νs) 2930(νas);2850(νs) 2850 3100 ∼ 3000 3030
3300
3.1.2 三键、累积三键伸缩振动区(2500 ∼ 1900 cm−1)
1、C ≡ C (1) RC ≡ CH : 2140 ∼ 2100 cm−1 (2) R1C ≡ CR2 : 2260 ∼ 2190 cm−1 R1 = R2 时,无红外活性。
通常,分子的跃迁方式和电磁波的能量相关,图 2所示的是分子在各光波区内的主要跃迁 方式:

ॆᆖ䭞ᯝ㻲
⭥ᆀ䏳䗱
仁⦷υ 㜭䟿E
ᥟࣘ䏳䗱
վ
䖜ࣘ䏳䗱
৏ᆀṨ㠚䖜
⭥ᆀ 㠚䖜
Xሴ㓯
㍛ཆ
㓒ཆ
ᗞ⌒
ᰐ㓯 ⭥⌒
ሴ 仁 ४
UV ㍛ཆ
ਟ㿱
IR ᥟࣘ㓒ཆ
200nm ⸝
400nm 800nm 2.5μm ⌒䮯λ
15μm
NMR Ṩ⻱‫ޡ‬ᥟ
1m
5m

图 2: 光波谱区及跃迁能量的相关图
1
1 红外光谱的基本概念
2
在红外区段,分子中基团的振动和转动能级跃迁均有产生,因此红外光谱是一种振-转光 谱。
1.2 红外光谱产生的条件
对于一个分子而言,若要在红外光谱中能够产生吸收峰则必须要满足以下两个条件: (1)合适的光源,即辐射应具有能满足物质产生振动跃迁所需的能量; (2)辐射与物质间有相互偶合作用:物质能吸收光源的能量且能够产生瞬时偶极矩的变 化。
如下,图 4、图 5分别为 H2O 和 CO2 的简正振动形式。
ሩ〠ը㕙ᥟࣘ ˄3652 cm-1˅
৽ሩ〠ը㕙ᥟࣘ ˄3756 cm-1˅
图 4: H2O 分子的简正振动形式
ᕟᴢᥟࣘ ˄1596 cm-1˅
ሩ〠ը㕙ᥟࣘ 1388 cm-1
৽ሩ〠ը㕙ᥟࣘ 2368 cm-1
ᕟᴢᥟࣘ 668 cm-1
ᕟᴢᥟࣘ 668 cm-1
cm-1
碳原子的杂化态不同,其电负性也不同,即 CSP > CSP2 > CSP3。
O
O
CH3 C O CH CH2 CH3 C O CH2CH3
Q C=O
SP2: 1770
SP3: 1725
(2) 共轭效应 共轭效应会使化学键的吸收峰发生红移(低频、低波数方向)。因为共轭效应的结果使共 轭体系中的电子云密度平均化,使原来的双键略有伸长,力常数减少,所以振动频率降低。取 代基的诱导效应和共轭效应和都会影响到化学键的吸收峰,当在某一化合物中,两种效应同 时存在,化学键吸收峰的移动方向则视两者相对强弱而定。
(6)
2πc µ
式中:µ = m1m2/(m1 + m2)
1.3.2 多原子分子的振动
多原子振动要比双原子振动复杂的多,一般一个由 N 个原子构成的分子,其分子被认为 有 3N 个运动自由度,任意分子均有 3 个平动自由度,非直线分子有 3 个转动自由度,直线 形分子有 2 个转动自由度,因此非线性多原子分子有 3N − 6 个振动自由度,线性多原子分 子有 3N − 5 个振动自由度,这些基本振动被称为简正振动。
m
d2x dt2
,则
d2x m dt2 = −F x
(2)
解得
x = A cos(2πνt + ϕ)
(3)
将式 3对 t 求两次微商,再代入式 2中,化简√可得
1k ν=
(4)
2π m
1 红外光谱的基本概念
3
用波数表示即为

1k ν=
(5)
2πc m
对于双原子分子,用折合质量 µ 代替 m,则√
1k ν=
用 1380 cm−1 左右的峰来判断烷基的存在。
สഒ CH3 CH2 CH
ᥟࣘᖒᔿ
Qas,
Q
s
Gas, Gs
Qas, Qs, G
Q
O
O
O
O
‫ޡ‬䖝 H3C C CH3
C CH3
C CH3
C
Q C=O Q C=O
1715
1685
O
C CH CHR
1650
1680 O C CH3 O2N 1680
1660 O C CH3 1770
2.2 空间效应
(1) 环张力
2 红外光谱峰位变化的影响因素
6
环张力会使环内的键发生红移,向低频方向移动,而使环上(与环相连)的键发生蓝移, 向高频方向移动。这是因为随环张力的增大,环上会有更多的电子云分配给环上的键,故而环 内的键的吸收峰向低频方向移动,环上的键向高频方向移动。
1、C = C:1680 ∼ 1620 cm−1 详情见后烯烃的解析。
2、芳环:1850 ∼ 1600 cm−1 苯环在 1600、1580、1500 和 1450 cm−1 附近含有吸收峰,但该四个吸收峰不一定都出现。
3、C = O:1850 ∼ 1600 cm−1 详情见后羰基化合物的解析。
4、C − H 弯曲振动 (1) −CH3:∼ 1460 cm−1、∼ 1380 cm−1(常用于甲基的判断); (2) −CH2−:∼ 1465 cm−1。
+
_
+
图 5: CO2 分子的简正振动形式 简正振动的类型及其示意图如图 6所示。
1 红外光谱的基本概念
4
ը㕙ᥟࣘ
(a)ሩ〠ը㕙ᥟࣘ( symmetrical stretching )
(b)нሩ〠ը㕙ᥟࣘ( asymmetrical stretching )
ᕟᴢᥟࣘ 䶒޵ᕟᴢᥟࣘ
(c)࢚ᔿᥟࣘ( scissoring )
另外对环内双键而言,取代基也会对其吸收造成影响,一般,单取代产生的影响要比双取 代产生的影响更为明显。
环外键
Q C-H 3060~3030 2900~2800
O
O
O
Q C=C 1781 O
1678
1657
1651
Q
C=O
1808
环内键
1775 1745 1716
CH3 H3C
CH3
Q C=C
1646
νX−H ≈ 2
(7)
ν X−D
2.5 溶剂
极性基团的伸缩振动频率常常随溶剂的极性增大而降低。同一种化合物在不同的溶剂中, 特征频率会发生变化。因此在 IR 光谱的测量中尽量采用非极性溶剂。
3 红外谱图解析
3.1 谱带区域
红外光谱的谱图区域主要可以分为四个部分,如图 7所示。
X-Hը㕙ᥟࣘ४˄X=O, N, C, S˅ й䭞ǃ㍟〟ৼ䭞ᥟࣘ४ ৼ䭞ը㕙ᥟࣘ४ X-Yը㕙ˈX-Hਈᖒᥟࣘ४
Q C-H
3017
1611 3045
1576 3060
1541 Q
3076
C=C 1641
1685
(2) 空间位阻 空间位阻会使键的吸收峰发生蓝移,向高频方向移动。因为取代基的空间位阻效应将使 得 C=O 与双键的共轭受到限制,使 C=O 双键电子云密度增加,波数升高。如在下列结构 中,由于后者的立体障碍较大,使环上双键和 C = O 不能处于同一平面,结果共轭受到限制, C = O 吸收波数更高。
O
Br 1715
O Br
1728
3 红外谱图解析
7
2.3 氢键效应
氢键会使化学键的吸收峰向低波方向移动,而吸收峰的强度增加。无论是分子间氢键的 形成或是分子内氢键的形成,都使参与形成氢键的原化学键的键力常数降低,吸收频率移向 低波数方向;但与之同时,振动时偶极矩的变化加大,因而吸收强度增加。
分子间氢键
作用,峰形较宽。
2、-NH2、-NH-:3600 ∼ 3200 cm−1
伯胺、仲胺、酰胺
N-H 峰与 O-H 峰形成的吸收峰类似,存在缔合和非缔合状态,但 N-H 吸收峰的吸收强
度相比更弱、峰形更尖锐:
3 红外谱图解析
8
(1) 伯胺上的两个 N-H 存在对称和不对称伸缩振动,因而有两个形成马鞍形的吸收峰; (2) 叔胺的 N 上不含 H,因而在此区域没有吸收峰。 3、C-H:3300 ∼ 2800 cm−1 (1) 不饱和 C-H 3300 ∼ 3000 cm−1; (2) 饱和 C-H 3000 ∼ 2800 cm−1。
2.1 电子效应
(1) 诱导效应 吸电子基会使化学键的吸收峰发生蓝移(高频、高波数方向),给电子基会使化学键的吸 收峰发生红移(低频、低波数方向)。这是因为与吸电子基相连后,电子云会部分被吸电子基 吸走,从而导致电子云收缩,键长变短,键力常数增大,化学键的吸收峰向高频方向移动;而 与给电子基相连后,给电子基会给出部分电子云,使电子云伸长,键长增加,键力常数减小, 吸收峰向低频方向移动。
相关文档
最新文档