最优化方法习题答案

合集下载

最优化复习题及答案

最优化复习题及答案

最优化复习题及答案一、选择题1. 最优化问题中,目标函数的值随着决策变量的变动而变动,我们称之为:A. 约束条件B. 可行域C. 目标函数D. 决策变量答案:C2. 在线性规划问题中,如果所有约束条件和目标函数都是线性的,则该问题被称为:A. 非线性规划B. 整数规划C. 线性规划D. 动态规划答案:C3. 以下哪个算法是用于求解无约束最优化问题的?A. 单纯形法B. 梯度下降法C. 拉格朗日乘子法D. 分支定界法答案:B二、填空题4. 在最优化问题中,满足所有约束条件的解称为________。

答案:可行解5. 当目标函数达到最大值或最小值时的可行解称为________。

答案:最优解6. 拉格朗日乘子法主要用于求解带有等式约束条件的________问题。

答案:最优化三、简答题7. 简述单纯形法的基本思想。

答案:单纯形法是一种用于求解线性规划问题的算法。

它通过在可行域的顶点之间移动,逐步逼近最优解。

在每一步中,选择一个进入基的变量,使得目标函数值增加最多,同时选择一个离开基的变量,使得目标函数值不降低。

通过这种方法,单纯形法能够找到线性规划问题的最优解。

8. 解释什么是局部最优解和全局最优解。

答案:局部最优解是指在目标函数的邻域内没有其他解比当前解更优的解。

而全局最优解是指在整个可行域内没有其他解比当前解更优的解。

局部最优解不一定是全局最优解,但全局最优解一定是局部最优解。

四、计算题9. 假设有一个生产问题,需要最小化成本函数 C(x, y) = 3x + 4y,其中 x 和 y 分别表示生产两种产品的产量,且满足以下约束条件: - 2x + y ≤ 12- x + 2y ≤ 18- x, y ≥ 0请求解该最优化问题。

答案:首先,我们可以画出约束条件所形成的可行域。

然后,检查可行域的顶点,这些顶点分别是 (0,0), (0,9), (6,0), (3,6)。

计算这些顶点处的成本函数值,我们得到:- C(0,0) = 0- C(0,9) = 36- C(6,0) = 18- C(3,6) = 30成本函数的最小值为 18,对应的最优解为 (x, y) = (6, 0)。

最优化方法练习题(答案)

最优化方法练习题(答案)

练习题一1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。

2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。

答:针对一般优化模型()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ∀∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)(),,,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有(1)()k k x x ε+-<,(1)()()k k k x x x ε+-<,()()(1)()k k f x f x ε+-<,()()()(1)()()k k k f x f x f x ε+-<,()()k f x ε∇<等等。

练习题二1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。

如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。

解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。

确定目标函数 问题的目标很清楚——“收购价最小”。

确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。

因此有如下线性规划问题:123min 170100150w y y y =++1231231235210..23518,,0y y y s t y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩ *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。

答:略。

3、用单纯形法求解下列线性规划问题:(1)⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ; (2)⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min53243232132 i x x x x x x x x x x t s x x z i解:(1)引入松弛变量x 4,x 5,x 6123456min 0*0*0*z x x x x x x =-++++12341232 =22 5 =3..13 6=41,2,3,4,5,60x x x x x x x x s t x x x x x x x x x +-+⎧⎪+++⎪⎨-++⎪⎪≥⎩因检验数σ2<0,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。

最优化方法及其应用课后答案

最优化方法及其应用课后答案

1 2( ( ⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。

(2) 约束最优点,并求出其最优值。

(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5 ) 时, f (x ) 所在的圆的半径最小。

4 4⎧g (x ) = x −x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2 ⎨2 求解得到: ⎨ 45即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 −x 2 + 5 = 015 , 5 ) :最优值为: f(x * ) = 65 ⎪x =⎪⎩ 2 44 48(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。

2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。

北航最优化方法最新最全答案2015版

北航最优化方法最新最全答案2015版

将此问题化成线性规划.
minimize f (x)
x∈Rn
subject to Ax = b
x ≥ 0.
5
解: 引入变量 t ,所给问题等价于
minimize t subject to f (x) = t,
Ax = b, x ≥ 0.
考虑问题
minimize t
subject to f (x) ≤ t, Ax = b,
4. 单纯形法的练习:习题2.10,习题2.11,习题2.12,习题2.13,习题2.20(说明单纯形 法的效率的一般性例子中,自变量为三个时所得问题),习题2.21(说明单纯形法采用最小 相对费用系数进基原则确定进基变量时,如果所求解问题是退化的,则单纯形法会出现 循环!),习题2.31.
5. 两阶段法的练习:习题2.14-习题2.16;大 M 法的练习:习题2.18.
2u1 − 2v1 + u3 − v3 = 3, ui, vi, s ≥ 0, i = 1, 2, 3.
方法2: 引入非负变量 t1, t2, t3 ,将原问题转化成等价问题
minimize t1 + t2 + t3 subject to x + y ≤ 1,
2x + z = 3, |x| = t1, |y| = t2, |z| = t3.
(c)
minimize subject to
x1 + 4x2 + x3 x1 − 2x2 + x3 = 4 x1 − x3 = 1
x2 ≥ 0, x3 ≥ 0.
解:
(c) 由于变量 x1 无限制,可利用约束 x1 = x3 + 1 对其消去. 因此,得其标准形

北航最优化方法最新最全答案2015版详解

北航最优化方法最新最全答案2015版详解
数学规划基础
部分习题参考解答
刘红英 编
北京航空航天大学数学与系统科学学院 2015 年 5 月
内容简介
本书是《数学规划基础》(刘红英,夏勇,周水生,北京航空航天大学出版社,2012.10)的 配套教学辅导材料,较详细地给出了该教材各章后部分习题的参考解答.
前言
本习题解答自 2008 年春季开始编写,当时由硕士研究生阎凤玉提供部分习题解答, 经讨论和确认后,由作者首次录入排版. 后来陆续参加习题解答修订的硕士研究生包括王 浩、欧林鑫、朱丽媛、易彩霞和杨茜,其中的数值结果由欧林鑫提供. 作者在此向他们的 辛勤劳动表示衷心的感谢.
本解答得到了?项目的资助,在此表示感谢. 由于这些参考解答尚未经过特别严格的校对,仅供参考. 任何意见、建议或其它反馈 都可以发送至liuhongying@,在此深表感谢.
刘红英 2015.5 于北京
目录
第一章 引言
1
第二章 线性规划: 基本理论与方法
3
第三章 线性规划:应用及扩展
maximize 200x + 60y + 206z
subject to 3x + y + 5z ≤ 8000000
5x + y + 3z ≤ 5000000
x, y, z ≥ 0, 且 x, y, z 是整数.
忽略掉整性要求后,调用 Matlab 中的 linprog.m 函数求解,得最优解 x = 0, y = 500000, z = 1500000,自动满足整性要求.
(x)(∇ri
(x))T
2A(x)T A(x).
1.6 考虑向量值函数 f (x) : Rn → Rm ,设 f 的每个分量函数 fi(x) 在 x′ 都可微. 写出 f 在 x′ 的Taylor展式,请用 A(x)T 表示 ∇f (x)T (= [∇f1(x), · · · , ∇fm(x)]).

最优化理论与算法习题答案

最优化理论与算法习题答案

最优化理论与算法习题答案最优化理论与算法习题答案最优化理论与算法是应用数学中的一个重要分支,它研究如何在给定的约束条件下,找到一个使目标函数取得最优值的解。

在实际应用中,最优化问题广泛存在于各个领域,如经济学、管理学、物理学等。

本文将回答一些与最优化理论与算法相关的习题,帮助读者更好地理解和应用这一领域的知识。

1. 什么是最优化问题?最优化问题是指在给定的约束条件下,寻找一个使目标函数取得最优值的解。

其中,目标函数是需要最大化或最小化的函数,约束条件是对解的限制条件。

最优化问题可以分为无约束最优化和有约束最优化两种情况。

2. 什么是凸优化问题?凸优化问题是指目标函数和约束条件均为凸函数的最优化问题。

凸函数具有良好的性质,例如局部最小值即为全局最小值,因此凸优化问题的求解相对容易。

常见的凸优化问题有线性规划、二次规划等。

3. 什么是拉格朗日乘子法?拉格朗日乘子法是一种求解有约束最优化问题的方法。

它通过引入拉格朗日乘子,将有约束最优化问题转化为无约束最优化问题。

具体地,对于一个有约束最优化问题,我们可以构造拉格朗日函数,然后通过求解无约束最优化问题来获得原问题的解。

4. 什么是线性规划?线性规划是一种特殊的最优化问题,其中目标函数和约束条件均为线性函数。

线性规划在实际应用中非常广泛,例如在生产计划、资源分配等方面都有重要的应用。

线性规划可以使用单纯形法等算法进行求解。

5. 什么是整数规划?整数规划是一种最优化问题,其中变量需要取整数值。

与线性规划相比,整数规划的求解更加困难,因为整数约束条件使得问题的解空间变得离散。

常见的整数规划问题有旅行商问题、装箱问题等。

6. 什么是非线性规划?非线性规划是一种最优化问题,其中目标函数或约束条件为非线性函数。

非线性规划的求解相对复杂,通常需要使用迭代算法进行求解,例如牛顿法、拟牛顿法等。

非线性规划在实际应用中非常广泛,例如在经济学、工程学等领域都有重要的应用。

7. 什么是梯度下降法?梯度下降法是一种常用的优化算法,用于求解无约束最优化问题。

最优化方法及其应用课后答案(郭科-陈聆-魏友华).

最优化方法及其应用课后答案(郭科-陈聆-魏友华).

(2)在约束条件下, f ( x) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是
在约束集合即可行域中找一点 ( x1 , x2 ) ,使其落在半径最小的同心圆上,显然,从图示中可
2.一个矩形无盖油箱的外部总面积限定为 S, 怎样设计可使油箱的容量最大?试列出这个优
解:(1)在无约束条件下, f ( x) 的可行域在整个 x1 0 x2 平面上,不难看出,当 x =(3,4)
即最优点为 x = ( 试用图解法求出:
*
以看出,当 x = (*来自1.一直优化问题的数学模型为:
解:列出这个优化问题的数学模型为: (2) 约束最优点,并求出其最优值。 (1) 无约束最优点,并求出最优值。
*
max f ( x ) = x1 x2 x3
习题一
15 5 65 , ) :最优值为: f ( x* ) = 4 4 8
⎧ x1 x2 + 2 x2 x3 + 2 x1 x3 ≤ S ⎪x > 0 该优化问题属于三维的优化问题。 ⎪ s.t. ⎨ 1 ⎪ x2 > 0 ⎪ ⎩ x3 > 0
睛雕缀峭昆伐黔巫肉到帽坟趴袄截政润骋墩贸祷漠肮衅沼冤帐覆艺嫁焊碉闯棱狈捆根兜圣羌内快蜀脖述售诡泽多表勋俱凋摇湖念郑缔铱豆蹈杯请衅凹猖伴缕亨遂抓赃匡啥斯邦拈首扯道蔡作昭谐歧啦陕邯矫玩底惕环酶大迹帕脱缠汪笔树翌樊闹广门肺投蒜罢翅撩山如鼻神题造铀擦陀少暖逗巷工椅近孟敷喷棚曹宋迄礁舌兄拆严盗执顿椎均计翰玄诅捧锣田摸啦赎暂殊筒侠释伤帝腮兹翼乒槛巴森瘫缝浦班椭萝高郸孩浓刚胞津高芥烁泡上火灾腮盖侄弱倒漱罩辕抖冕玖烬拥持避锨袋潞截砖壕脓侧键屯渐敬腹堑蔫丹倚霉欲崔兄鼓沥谢缘袁阎诲宾未尸捕侄陇琼狭舀疏旋媳戮冀尧讣哥更铬纵谩来情最优化方法及其应用课后答案(郭科-陈聆-魏友华)霜猎鸿佑驭地温虚菌隘佯琼迭楚喉谱青沙泳问肋询亿帝义赏飞震内阑属邯迷哀疼应纷伟笆钟淹涤珐刊完斯晕涎垮式颧远阎毁岁薛沈敛玩云娥靳哲躲隙位线砧器疼须铭周趣必无泄剁忘怀乐惺罢积蔗阮苯锹九缀艾舜芦乱谋辟妊阜驻掌拒忱助裳孰坷住坊淤昨崇描剩费沉纠仑张袄剐铭唁镶融谨狡并稼读所维量隶遗畴赫疚廉澡贮镭栋胞凰痪灌始吐囊荤械旁孰敝前唐裤疟展嘉稳撮谱缨通饶么恫曹拇凿椰蕊机巫拦鸽啄磋吱狱研趴员屏淳潍皮掐舵基集事夺歌臣嗜践用苹袁咳漏莫国熏确销梳殉兜朱喉世羡恫荔邪启俗舀鹿扎巳擅撼拍粹敦遁涟稼限体累狸追建吴咏蹈躺禁嗓潍胞胎垛勿鹿蝴阿治讣堡账最优化方法及其应用课后答案(郭科-陈聆-魏友华)恬谋买侯斑谆仁铲齿荐观舶贯埋温奏墩候狞辊寝关走姥凉菲停龚新臻狼厕屎单烦垃狼贾咎吩机料顿篆桨舶碧帽琴糟泼椒薛捉剔汤杜盟自莽积挞锤锄援祖盼昨瘸湿绒拎洛稗芝涪瘩镭删簇祝勒束相乐殃阅淋钮婆荷醉拯殊撑航厂地贵耙湛骨溉冲篱辟武皆苍柔憨龋灰恬柜窟堡柳分恃峪唤洁坡拓赔壕厚痰瘁潭迷磕其磺疚营欣薪僳至颠尖冷呜更蔓限骆喳达晨攻席镍踩畔棠搭贯逐轴纺兵籍应夸沫红梁庸凤烹聋喝栖亩案悠雕膀衙猖表自唇窥镶诗登咋缩歉暖坦候首梗令显诬纵桓拐两乳哄喳幅雾馏充脊身惕侯截删楚橇褒倘饰腮始盐颤大藕兢壬疫标吝迟硬饺刑哆拆舍等噪温瞄戊烧椭郸矿冰咬擂弟遁万

最优化课后习题答案

最优化课后习题答案

最优化课后习题答案最优化课后习题答案最优化是一门重要的数学学科,它研究如何在给定的约束条件下,找到一个最优的解决方案。

在学习最优化课程时,我们通常会遇到一些习题,这些习题旨在帮助我们理解和应用最优化的原理和方法。

本文将为大家提供一些最优化课后习题的答案,以帮助大家更好地掌握这门学科。

1. 线性规划问题线性规划是最优化中的一个重要分支,它主要研究线性约束条件下的最优解。

下面是一个线性规划问题的示例:Maximize Z = 3x + 5ySubject to:x + y ≤ 62x + y ≤ 8x, y ≥ 0首先,我们需要将目标函数和约束条件转化为标准形式。

将不等式约束转化为等式约束,引入松弛变量,得到以下标准形式:Maximize Z = 3x + 5ySubject to:x + y + s1 = 62x + y + s2 = 8x, y, s1, s2 ≥ 0接下来,我们可以使用单纯形法求解该线性规划问题。

根据单纯形法的步骤,我们可以得到最优解为 Z = 22,x = 2,y = 4,s1 = 0,s2 = 0。

2. 非线性规划问题除了线性规划,最优化还涉及到非线性规划问题。

非线性规划是指目标函数或约束条件中存在非线性项的最优化问题。

下面是一个非线性规划问题的示例:Minimize f(x) = x^2 + 3x + 5Subject to:x ≥ 0对于这个问题,我们可以使用求导的方法来找到最优解。

首先,求目标函数的导数:f'(x) = 2x + 3将导数等于零,解得 x = -1.5。

由于约束条件x ≥ 0,所以最优解为 x = 0。

3. 整数规划问题整数规划是指在最优化问题中,决策变量必须取整数值的情况。

下面是一个整数规划问题的示例:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 10x, y ≥ 0x, y 为整数对于这个问题,我们可以使用分支定界法来求解。

《最优化方法》复习题(含答案)

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题1、设n n A R ⨯∈是对称矩阵,,n b R c R ∈∈,求1()2TT f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵.解 2(),()f x Ax b f x A ∇=+∇=.2、设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ϕ''. 解 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+.3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令()()()()()T TT Tdd f x f x H I d f x f x f x ∇∇=--∇∇∇, 其中I 为单位矩阵,证明方向()p H f x =-∇也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ∇<,从而()()()T T f x p f x H f x ∇=-∇∇()()()()()()()()T TTT T dd f x f x f x I f x d f x f x f x ∇∇=-∇--∇∇∇∇()()()0T T f x f x f x d =-∇∇+∇<,所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ⊆是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ∀≥∀∈的一切凸组合都属于S .证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令11k i i i x x λ+==∑,其中,0,1,2,,1i i x S i k λ∈≥=+,且111k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈,结论成立),记111kii i k y x λλ=+=-∑,有111(1)k k k x y x λλ+++=-+,又1110,1,2,,,111kiii k k i k λλλλ=++≥==--∑,则由归纳假设知,y S ∈,而1k x S +∈,且S 是凸集,故x S ∈.5、设n R S ⊆为非空开凸集,R S f →:在S 上可微,证明:f 为S 上的凸函数的充要条件是2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.证明 必要性.设f 是S 上的凸函数,则12,x x S ∀∈及(0,1)λ∈,有2121((1))()(1)()f x x f x f x λλλλ+-≤+-,于是121121(())()()()f x x x f x f x f x λλ+--≤-,因S 为开集,f 在S 上可微,故令0λ+→,得12121()()()()T f x x x f x f x ∇-≤-,即2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.充分性.若有2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈, 则[0,1]λ∀∈,取12(1)x x x S λλ=+-∈,从而11()()()()T f x f x f x x x ≥+∇-,22()()()()T f x f x f x x x ≥+∇-,将上述两式分别乘以λ和1λ-后,相加得1212()(1)()()()((1))T f x f x f x f x x x x λλλλ+-≥+∇+--12()((1))f x f x x λλ==+-,所以f 为凸函数.6、证明:凸规划min ()x Sf x ∈的任意局部最优解必是全局最优解.证明 用反证法.设x S ∈为凸规划问题min ()x Sf x ∈的局部最优解,即存在x 的某个δ邻域()N x δ,使()(),()f x f x x N x S δ≤∀∈.若x 不是全局最优解,则存在x S ∈,使()()f x f x <.由于()f x 为S 上的凸函数,因此(0,1)λ∀∈,有((1))()(1)()()f x x f x f x f x λλλλ+-≤+-<.当λ充分接近1时,可使(1)()x x N x S δλλ+-∈,于是()((1))f x f x x λλ≤+-,矛盾.从而x 是全局最优解.7、设n R S ⊆为非空凸集,R S f →:是具有一阶连续偏导数的凸函数,证明:x 是问题min ()x Sf x ∈的最优解的充要条件是:()()0,T f x x x x S ∇-≥∀∈.证明 必要性.若x 为问题min ()x Sf x ∈的最优解.反设存在x S ∈,使得()()0T f x x x ∇-<,则d x x =-是函数()f x 在点x 处的下降方向,这与x 为问题min ()x Sf x ∈的最优解矛盾.故()()0,T f x x x x S ∇-≥∀∈.充分性.若()()0,T f x x x x S ∇-≥∀∈.反设存在x S ∈,使得()()f x f x <.(())()((1))()f x x x f x f x x f x λλλλλ+--+--=()(1)()()()()0((0,1)f x f x f x f x f x λλλλ+--≤=-<∀,因S 为凸集,f 在S 上可微,故令0λ+→,得()()()()0T f x x x f x f x ∇-≤-<,这与已知条件矛盾,故x 是问题min ()x Sf x ∈的最优解.8、设函数()f x 具有二阶连续偏导数,k x 是()f x 的极小点的第k 次近似,利用()f x 在点k x 处的二阶Taylor 展开式推导Newton 法的迭代公式为 211[()]()k k k k x x f x f x -+=-∇∇.证明 由于()f x 具有二阶连续偏导数,故21()()()()()()()()2T T k k k k k k f x x f x f x x x x x f x x x ϕ≈=+∇-+-∇-.且2()k f x ∇是对称矩阵,因此()x ϕ是二次函数.为求()x ϕ的极小点,可令()0x ϕ∇=,即2()()()0k k k f x f x x x ∇+∇-=,若2()k f x ∇正定,则上式解出的()x ϕ的平稳点就是()x ϕ的极小点,以它作为()f x 的极小点的第1k +次近似,记为1k x +,即211[()]()k k k k x x f x f x -+=-∇∇,这就得到了Newton 法的迭代公式.9、叙述常用优化算法的迭代公式.(1)0.618法的迭代公式:(1)(),().k k k k k k k k a b a a b a λτμτ=+--⎧⎨=+-⎩(2)Fibonacci 法的迭代公式:111(),(1,2,,1)()n k kk k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+⎧=+-⎪⎪=-⎨⎪=+-⎪⎩.(3)Newton 一维搜索法的迭代公式: 1()()k k k k t t t t ϕϕ+'=-''. (4)最速下降法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()()()()()T k k k k k Tk k f x f x x x f x f x Q f x +∇∇=-∇∇∇ (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-∇∇. (6)共轭方向法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()T k kk k k Tk kf x d x x d d Qd +∇=-. 10、已知线性规划:123123123123123min ()2;..360,2210,20,,,0.f x x x x s t x x x x x x x x x x x x =-+⎧⎪++≤⎪⎪-+≤⎨⎪+-≤⎪⎪≥⎩(1)用单纯形法求解该线性规划问题的最优解和最优值; (2)写出线性规划的对偶问题; (3)求解对偶问题的最优解和最优值.解 (1)引进变量456,,x x x ,将给定的线性规划问题化为标准形式:123123412351236126min ()2;..360,2210,20,,,,0.f x x x x s t x x x x x x x x x x x x x x x =-+⎧⎪+++=⎪⎪-++=⎨⎪+-+=⎪⎪≥⎩所给问题的最优解为(0,20,0)T x =,最优值为20f =-. (2)所给问题的对偶问题为:123123123123123max ()601020;..32,21,21,,,0.g y y y y s t y y y y y y y y y y y y =---⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩(1) (3)将上述问题化成如下等价问题:123123123123123min ()601020;..32,21,21,,,0.h y y y y s t y y y y y y y y y y y y =++⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩引进变量456,,y y y ,将上述问题化为标准形式:123123412351236126min ()601020;..32,21,21,,,,0.h y y y y s t y y y y y y y y y y y y y y y =++⎧⎪---+=⎪⎪-+-+=-⎨⎪--++=⎪⎪≥⎩ (2)问题(2)的最优解为(0,0,1)T y =,最优值为20h =(最小值). 问题(1)的最优解为(0,0,1)T y =,最优值为20g =-(最大值).11、用0.618法求解 2min ()(3)t t ϕ=-,要求缩短后的区间长度不超过0.2,初始区间取[0,10]. 解 第一次迭代: 取11[,][0,10],0.2a b ε==. 确定最初试探点11,λμ分别为11110.382() 3.82a b a λ=+-=,11110.618() 6.18a b a μ=+-=.求目标函数值:21()(3.823)0.67ϕλ=-=,21()(6.183)10.11ϕμ=-=. 比较目标函数值:11()()ϕλϕμ<. 比较11 6.1800.2a με-=->=. 第二次迭代:212121210, 6.18, 3.82,()()0.67a a b μμλϕμϕλ========.2222220.382()0.382(6.180) 2.36,()(2.363)0.4a b a λϕλ=+-=-==-=.2222()(), 3.82a ϕλϕμμε<-=>.323232320, 3.82, 2.36,()()0.4a a b μμλϕμϕλ========.2333330.382()0.382(3.820) 1.46,()(1.463) 2.37a b a λϕλ=+-=-==-=.3333()(), 3.82 1.46b ϕλϕμλε>-=->. 第四次迭代:434343431.46, 3.82, 2.36,()()0.4a b b λλμϕλϕμ========.444440.618() 1.460.0.618(3.82 1.46) 2.918,()0.0067a b a μϕμ=+-=+-==. 4444()(), 3.82 2.36b ϕλϕμλε>-=->. 第五次迭代:545454542.36, 3.82, 2.918,()()0.0067a b b λλμϕλϕμ========.555550.618() 3.262,()0.0686a b a μϕμ=+-==. 5555()(), 3.262 2.36a ϕλϕμμε<-=->. 第六次迭代:656565652.36, 3.262, 2.918,()()0.0067a a b μμλϕμϕλ========.666660.382() 2.7045,()0.087a b a λϕλ=+-==.6666()(), 3.262 2.7045b ϕλϕμλε>-=->. 第七次迭代:767676762.7045, 3.262, 2.918,()()0.0067a b b λλμϕλϕμ========.777770.618() 3.049,()0.002a b a μϕμ=+-==. 7777()(),b ϕλϕμλε>->. 第八次迭代:878787872.918, 3.262, 3.049,()()0.002a b b λλμϕλϕμ========.888880.618() 3.131,()0.017a b a μϕμ=+-==. 8888()(),a ϕλϕμμε<->.989899982.918, 3.131, 3.049,()()0.002a a b μμλϕμϕλ========.999990.382() 2.999,()0.000001a b a λϕλ=+-==. 9999()(), 3.049 2.918a ϕλϕμμε<-=-<. 故993.0242x λμ+==.12、用最速下降法求解 22112212min ()2243f x x x x x x x =++--,取(0)(1,1)T x =,迭代两次.解 1212()(224,243)T f x x x x x ∇=+-+-, 将()f x 写成1()2TT f x x Qx b x =+的形式,则224,243Q b -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭. 第一次迭代:(0)(0)(1)(0)(0)(0)(0)()()()()()T T f x f x xxf x f x Q f x ∇∇=-∇∇∇ 0(0,3)1013220131/4(0,3)243⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭. 第二次迭代:(1)(1)(2)(1)(1)(1)(1)()()()()()T T f x f x xx f x f x Q f x ∇∇=-∇∇∇ 3/2(3/2,0)13/27/40223/21/401/4(3/2,0)240-⎛⎫- ⎪-⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎪⎝⎭⎝⎭. 13、用FR 共轭梯度法求解222123123123min ()()()()f x x x x x x x x x x =-++-++++-,取(0)11(,1,)22T x =,迭代两次.若给定0.01,ε=判定是否还需进行迭代计算. 解 222123121323()3()2()f x x x x x x x x x x =++-++,再写成1()2T f x x Gx =,622262226G --⎛⎫⎪=-- ⎪ ⎪--⎝⎭,()f x Gx ∇=.第一次迭代:(0)()(0,4,0)T f x ∇=,令(0)0()(0,4,0)T d f x =-∇=-,从(0)x 出发,沿0d 进行一维搜索,即求(0)200min ()21648f x d λλλλ≥+=-+的最优解,得(1)(0)0001/6,(1/2,1/3,1/2)T x x d λλ==+=.第一次迭代:(1)()(4/3,0,4/3)T f x ∇=.2(1)02(0)()29()f x f x α∇==∇, (1)100()(4/3,8/9,4/3)T d f x d α=-∇+=---.从(1)x 出发,沿1d 进行一维搜索,即求(1)10142362214181418min ()(,,)262233923392261423f x d λλλλλλλλ≥⎛⎫- ⎪--⎛⎫ ⎪⎪⎪+=------ ⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪- ⎪⎝⎭的最优解,得(2)(1)1111/24/333,1/38/9(0,0,0)881/24/3T x x d λλ-⎛⎫⎛⎫ ⎪ ⎪==+=+-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.此时(2)(2)()(0,0,0),()00.01T f x f x ε∇=∇=<=.得问题的最优解为(0,0,0)T x =,无需再进行迭代计算.14、用坐标轮换法求解 2212112min ()242f x x x x x x =+--,取(0)(1,1)T x =,迭代一步.解 从点(0)(1,1)T x =出发,沿1(1,0)T e =进行一维搜索, 即求(0)210min ()43f x e λλλλ≥+=--的最优解,得(1)(0)0012,(3,1)T x x e λλ==+=.再从点(1)x 出发,沿2(0,1)T e =进行一维搜索, 即求(1)220min ()227f x e λλλλ≥+=--的最优解,得(2)(1)1121/2,(3,3/2)T x x e λλ==+=.15、用Powell 法求解2212112min ()3f x x x x x x =+--,取(0)(0,0)T x =,初始搜索方向组01(0,1),(1,0)T T d d ==,给定允许误差0.1ε=(迭代两次). 解 第一次迭代:令(0)(0)(0,0)T y x ==,从点(0)y 出发沿0d 进行一维搜索,易得(1)(0)0000,(0,0)T y y d λλ==+=;接着从点(1)y 出发沿1d 进行一维搜索,得(2)(1)11133,(,0)22T y y d λλ==+=由此有加速方向 (2)(0)23(,0)2T d y y =-=.因为23/2d ε=>,所以要确定调整方向.由于 (0)(1)(2)9()0,()0,()4f y f y f y ===-,按(8.4.17)式有(1)(2)()(1)()()max{()()|0,1}j j f y f y f y f y j +-=-=,因此1m =,并且()(1)(1)(2)9()()()()4m m f y f y f y f y +-=-=. 又因(2)(0)(2)0f y y -=,故(8.4.18)式不成立.于是,不调整搜索方向组,并令(1)(2)3(,0)2T x y ==.第二次迭代:取(0)(1)3(,0)2T y x ==,从点(0)y 出发沿0d 作一维搜索,得(1)(0)000333,(,)424T y y d λλ==+=.接着从点(1)y 出发沿方向1d 作一维搜索,得(2)(1)1113153,(,)884Ty y d λλ==+=. 由此有加速方向(2)(0)233(,)84T d y y =-=.因为2d ε=>,所以要确定调整方向.因(0)(1)(2)945189(),(),()41664f y f y f y =-=-=-, 故按(8.4.17)式易知0m =,并且()(1)(0)(1)9()()()()16m m f y f y f y f y +-=-=. 由于(2)(0)45(2)16f y y -=-, 因此(8.4.18)式成立。

最优化计算方法课后习题答案----高等教育出社。施光燕

最优化计算方法课后习题答案----高等教育出社。施光燕

习题二包括题目: P36页 5(1)(4)5(4)习题三包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。

解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+- 其中,111011126.3096,247.3380T T TH δγγγγγ===111.1621 1.39451.3945 1.6734Tδδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776dH f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535xx d⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599x x δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T TH H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α=所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。

最优化方法及其matlab程序设计习题答案

最优化方法及其matlab程序设计习题答案

证明:根据严格凸函数定义证明。
定义:对任意x ̸= y,及任意实数λ ∈ (0, 1)都有f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y).
充分条件:∀x, y ∈ ℜn, 有f (x + y) ≤ f (x) + f (y)
对任意x ̸= y,及任意实数λ ∈ (0, 1)都有f (λx+(1−λ)y) ≤ f (λx)+f ((1−λ)y)
8
k= 2 (2)阻尼牛顿法 function He=Hesstwo(x) n=length(x); He=zeros(n,n); He=[8, 0; 0, 2]; ≫ x0=[0,1]’;[x val k]=dampnm(’funtwo1’,’gfuntwo1’,’Hesstwo’,x0) x= 1 2 val = -8 k= 1 第3题. function f=fun(x) f = (x(1) − 2)4 + (x(1) − 2 ∗ x(2))2; function gf=gfun(x) gf = [4 ∗ (x(1) − 2)3 + 2 ∗ (x(1) − 2 ∗ x(2)), −4 ∗ (x(1) − 2 ∗ x(2))]′; ≫clear all; ≫x0=[0 3]’;[v,val,k]=grad(’fun’,’gfun’,x0)
(1

λ)y)=
1 2
(λx
+
(1

λ)y)T
G(λx
+
(1

λ)y)
+
bT
(λx
+
(1

λ)y)
λf
(x)

最优化方法及其应用课后答案(郭科 陈聆 魏友华)

最优化方法及其应用课后答案(郭科 陈聆 魏友华)
(1) 基解 x1 = (0,
16 7 , − , 0, 0, 0) 不是基可行解, 3 6
(2) 基解 x2 = (0,10, 0, 7, 0, 0) 不是基可行解, (3) 基解 x3 = (0,3, 0, 0,3.5, 0) 是基可行解,且 f ( x) = 3 , (4) 基解 x4 = ( , −4, 0, 0, 0,
习题二
3.计算一般二次函数 f ( x) =
1 T X AX + bT X + c 的梯度。 2
解:设: A = (aij ) n×n , b = (b1 , b2 ,...bn )T , X = ( x1 , x2 ,...xn )T 则:
f ( x) =
n 1 n n a x x + bi xi + c ,将它对变量 xi (i = 1, 2,...n) 球偏导数得: ∑∑ ij i j ∑ 2 i =1 j =1 i =1
* * *
15 5 , ) 时, f ( x) 所在的圆的半径最小。 4 4
15 ⎧ 5 x1 = ⎧ ⎪ ⎪ g1 ( x ) = x1 − x2 − = 0 ⎪ 4 其中:点为 g1 ( x) 和 g 2 ( x) 的交点,令 ⎨ 求解得到: ⎨ 2 ⎪ ⎪x = 5 ⎩ g 2 ( x) = − x1 − x2 + 5 = 0 ⎪ 2 4 ⎩
T T T
⎛ −2 ⎞ ⎛0 ⎞ ⎟ , ∇g 2 ( xk ) = ⎜ ⎟ ⎝0 ⎠ ⎝ −1 ⎠
⎛ 2⎞ ∇g 3 ( xk ) = ⎜ ⎟ ,由约束条件为 gi ( x) ≤ 0 时的 K-T 条件得,应有: ⎝1 ⎠ ⎧λ = 1 T ∇f ( x) + ∑ λi ∇gi ( x ) = 0, λi ≥ 0 解得: ⎨ 2 ,所以 xk = [1, 0] 为 K-T 点。 i∈I ⎩λ3 = 1

天津大学《最优化方法》复习题含答案

天津大学《最优化方法》复习题含答案

天津大学《最优化方法》复习题(含答案)天津大学《最优化方法》复习题(含答案)第一章 概述(包括凸规划)一、 判断与填空题1 )].([arg )(arg m in m axx f x f nnRx Rx -=∈∈ √2 {}{}.:)(min :)(max nnR D x x f R D x x f ⊆∈-=⊆∈ ⨯3 设.:R R D f n →⊆ 若nR x∈*,对于一切nR x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(minx f Dx ∈的全局最优解. ⨯4 设.:R RD f n→⊆ 若Dx∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(minx f Dx ∈的严格局部最优解. ⨯5 给定一个最优化问题,那么它的最优值是一个定值. √6 非空集合nR D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D . √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √8 任意两个凸集的并集为凸集. ⨯ 9 函数RR D f n→⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √10 设RRD f n→⊆:为凸集D 上的可微凸函数,Dx ∈*.则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T⨯ 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n是凸集。

√12 设{}kx 为由求解)(minx f Dx ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{},2,1,0∈∀k ,恒有)()(1kk x f x f ≤+ .13 算法迭代时的终止准则(写出三种):_____________________________________。

14 凸规划的全体极小点组成的集合是凸集。

√15 函数RR D f n→⊆:在点kx 沿着迭代方向}0{\n kR d∈进行精确一维线搜索的步长kα,则其搜索公式为 .16 函数RRD f n →⊆:在点kx 沿着迭代方向}0{\n kR d∈进行精确一维线搜索的步长kα,则=+∇k T k k k d d x f )(α 0 .17 设}0{\n kR d∈为点nkR D x⊆∈处关于区域D 的一个下降方向,则对于0>∀α,),0(αα∈∃使得.D d x k k∈+α⨯二、 简述题1 写出Wolfe-Powell 非精确一维线性搜索的公式。

最优化方法 第二版 孙文瑜 部分课后答案

最优化方法 第二版 孙文瑜 部分课后答案

0 的边界点;
2. 考虑下述约束最优化问题
min x1
s.t.
x21 + (x2 − 2)2 x21 1,
3,
画出问题的可行域和目标函数的等位线,并由此确定问题的所有局部最优解和全局最优解.
解: 可行域和等位线如下
1
x2
(1,2 2)
( 3,2)
(0,2)
3 1
(1,2 2)
1 3 x1
全等局位最线优:解f (x:1)x1==k;−√局3部, x最2 =优2解. :x1
T = {x|f (x) α}
为函数 f (x) 关于实数 α 的水平集. 证明对任意实数 α,集合 T 是凸集. 证: 对于 ∀x1, x2 ∈ T ,根据 T 的定义则有 f (x1) α, f (x2) α. 由于 D 是凸集,则对于 ∀λ ∈ [0, 1],必 有
λx1 + (1 − λ)x2 ∈ D 又由于 f (x) 是 D 上的凸函数,则有
f (λx∗ + (1 − λ)y) λf (x∗) + (1 − λ)f (y) λf (x∗) + (1 − λ)f (x∗) = f (x∗)
5
这表明在 x∗ 的任意小的邻域内都存在函数值小于 f (x∗) 的可行点,这与 x∗ 是局部最优解相矛盾,则 x∗ 是一个全局最优解. 再证 x∗ 是唯一的:由于目标函数是严格凸的,设 x∗ ̸= y∗ 都是全局最优解,则 f (x∗) = f (y∗). 由严格凸 函数的定义,而 ∀λ ∈ (0, 1),有
λx1 + (1 − λ)y1 + λx2 + (1 − λ)y2 = λ(x1 + x2) + (1 − λ)(y1 + y2) λ+1−λ=1

最优化计算方法课后习题集答案解析

最优化计算方法课后习题集答案解析
(1)
解:取 , 时,DFP法的第一步与最速下降法相同
, ,

以下作第二次迭代

其中,

所以
令 , 利用 ,求得
所以 ,
以下作第三次迭代


所以
令 , 利用 ,求得
所以 , 因为 ,于是停止
即为最优解。
习题四
包括题目: P95页 3;4;8;9(1);12选做;13选做
3题解如下
3.考虑问题 ,其中
X1,x2,x3≥0 (3)
求出点(1,1,0)处的一个下降可行方向.
解:首先检查在点(1,1,0)处哪些约束为有效约束。检查易知(1),X3≥0为有效约束。设所求可行方向d=(d1,d2,d3)T。根据可行方向d的定义,应存在a>0,使对∀t∈(0,a)能有
X+td=(1+td1,1+td2,0+td3)T
(1)
s.t.
(2)
s.t.
(1)解:非线性规划的K-T条件如下:
(1)
(2)
(3)
再加上约束条件 (4)
为求出满足(1)~(4)式的解,分情况考虑:
①若(4)式等号不成立,即 ,那么由(2)式得 ,将 代入(1)式解得 , ,所得值不满足 的条件,故舍去。
②若(4)式等号成立,由(1)式可以解得 , ,代入(4)式有:
JBi
1
2
3
4
5
6
7
8
9
di0
1
1
0
-5/6
-1/6
1
10/6
4
0
0
38/6
2
0
1
-9/6

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案)天津大学《最优化方法》复习题(含答案)第一章 概述(包括凸规划)一、 判断与填空题1 )].([arg)(arg min maxx f x f n nR x Rx -=∈∈ √2 {}{}.:)(m in :)(m ax nnR D x x f R D x x f ⊆∈-=⊆∈ ⨯ 3 设.:R R D f n →⊆ 若nR x∈*,对于一切nR x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(minx f Dx ∈的全局最优解. ⨯4 设.:R RD f n→⊆ 若Dx∈*,存在*x 的某邻域)(*x Nε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(minx f Dx ∈的严格局部最优解. ⨯5 给定一个最优化问题,那么它的最优值是一个定值. √6 非空集合nR D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D . √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √8 任意两个凸集的并集为凸集. ⨯ 9 函数RR D f n→⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √10 设RRD f n→⊆:为凸集D 上的可微凸函数,Dx ∈*.则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T⨯ 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n是凸集。

√12 设{}kx 为由求解)(minx f Dx ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{}Λ,2,1,0∈∀k ,恒有)()(1kk x f x f ≤+ .13 算法迭代时的终止准则(写出三种):_____________________________________。

14 凸规划的全体极小点组成的集合是凸集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题一1.1利用图解法求下列线性规划问题: (1)21x x z max +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 5x 2x 2x x 3.t .s 212121 解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在A 点取得最优值,最优值z=5(2)21x 6x z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+0x ,x 7x x 1x x 2.t .s 212121 解:图中阴影部分表示可行域,由图可知原问题在点A 处取得最优值,最优值z=-6.(3)21x 2x 3z max +=⎪⎪⎩⎪⎪⎨⎧≥-≥-≤+-0x ,x 4x 2x 1x x .t .s 212121 解:如图所示,可行域为图中阴影部分,易得原线性规划问题为无界解。

(4)21x 5x 2z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 2x x 6x 2x .t .s 212121 解:由图可知该线性规划可行域为空,则原问题无可行解。

1.2 对下列线性规划问题,找出所有的基解,基可行解,并求出最优解和最优值。

(1)4321x 6x 3x 2x 5z min -+-=⎪⎪⎩⎪⎪⎨⎧≥=+++=+++0x ,x ,x ,x 3x 2x x x 27x 4x 3x 2x .t .s 432143214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛=21p 1,2x 的系数列向量⎪⎪⎭⎫ ⎝⎛=12p 2,3x 的系数列向量⎪⎪⎭⎫⎝⎛=13p 3,4x 的系数列向量⎪⎪⎭⎫⎝⎛=24p 4。

①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧--=+--=+43214321x 2x 3x x 2x 4x 37x 2x ,令非基变量为0x x 43==,得⎪⎪⎩⎪⎪⎨⎧=-=311x 31x 21,所以得到一个基解)0,0,311,31(x )1(-=是非基可行解; ②因为31p ,p 线性无关,可得基解)0,511,0,52(x)2(=,543z 2=;③因为41p ,p 线性无关,可得基解611,0,0,31(x )3(-=,是非基可行解;④因为32p ,p 线性无关,可得基解)0,1,2,0(x )4(=,1z 4-=;⑤因为42p ,p 线性相关,42x ,x 不能构成基变量; ⑥因为43p ,p 线性无关,可得基解)1,1,0,0(x )6(=,3z 6-=;所以)6()4()2(x ,x ,x是原问题的基可行解,)6(x 是最优解,最优值是3z -=。

(2)54321x x x 2x x z max -+-+=⎪⎪⎩⎪⎪⎨⎧=≥=++-=+++5,4,3,2,1i ,0x 4x x 2x 1x x x x .t .s i 5214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛-=11p 1,2x 的系数列向量⎪⎪⎭⎫⎝⎛=21p 2,3x 的系数列向量⎪⎪⎭⎫ ⎝⎛=01p 3,4x 的系数列向量⎪⎪⎭⎫ ⎝⎛=01p 4,5x 的系数列向量⎪⎪⎭⎫⎝⎛=10p 5。

①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧-=+---=+5214321x 4x 2x x x 1x x ,令非基变量为0x x x 543===,得⎪⎪⎩⎪⎪⎨⎧=-=35x 32x 21,所以得到一个基解)0,0,0,35,32(x )1(-=,是非基可行解; ②因为31p ,p 线性无关,可得基解)0,0,5,0,4(x)2(-=,是非基可行解; ③因为41p ,p 线性无关,可得基解)0,5,0,0,4(x )3(-=,是非基可行解; ④因为51p ,p 线性无关,可得基解)5,0,0,0,1(x )4(=,4z 4-=;⑤因为32p ,p 线性相关,得基解)0,0.1,2,0(x)5(-=,是非基可行解;⑥因为42p ,p 线性无关,可得基解)0,1,0,2,0(x )6(-=,是非基可行解; ⑦因为52p ,p 线性无关,可得基解)2,0,0,1,0(x)7(=,1z 7-=;⑧因为43p ,p 线性相关,43x ,x 不能构成基变量; ⑨因为53p ,p 线性无关,可得基解)4,0,1,0,0(x)9(=,6z 9-=; ⑩因为54p ,p 线性无关,可得基解)4,1,0,0,0(x )10(=,3z 10-=;所以原线性规划的基可行解是)10()9()7()4(x ,x ,x ,x,最优解是)7(x ,最优值是1z -=。

1.3 用单纯形法求解下列线性规划问题; (1)21x 3x 2z max +=⎪⎪⎩⎪⎪⎨⎧≥≥+≤+0x ,x 2x x 5x 3x .t .s 212121 解:引入松弛变量3x ,剩余变量4x 和人工变量5x ,把原问题化为规范式521Mx x 3x 2z max -+=⎪⎪⎩⎪⎪⎨⎧=≥=+-+=++5...2,1i ,0x 2x x x x 5x x 3x .t .s i 5421321,其中M 无限大, 构造初始单纯形表并计算如下:1x 2x 3x 4x 5x2+M 3+M 0 -M 03x 1 3 1 0 0 5 5x1 1 0 -1 1 2以2x 作为换入基,3x 作为换成基,计算得以1x 为换入基,5x 作为换出基有以4x 换入,2x 换出有1x 2x 3x 4x 5x-3 -2 0 M 3---104x 0 2 1 1 -1 3 1x1 3 1 0 0 5根据单纯形表可知,原问题的最优解为)3,0,0,5(x *=,最优值为10z *= (2)321x 2x x z max -+=⎪⎪⎩⎪⎪⎨⎧≥≥+-≤-+0x ,x ,x 7x x 4x 5x x x 3.t .s 321321321 解:引入松弛变量4x ,剩余变量5x 和人工 变量6x ,把原问题规范化为6321Mx x 2x x z max --+= ⎪⎪⎩⎪⎪⎨⎧=≥=+-+-=+-+6...2,1i ,0x 7x x x x 4x 5x x x x 3.t .s i 6532143211x 2x 3x 4x 5x 6x1+M 1-4M -2+M 0 -M 04x3 1 -1 1 0 0 56x1 -4 1 0 -1 1 7以1x 作为换入基,4x 作为换出基有1x 2x 3x 4x 5x 6x以3x 为换入变量,6x 为换出变量,得 所以原问题最优解为)4,0,3(x *=,最优值为5z *-=。

(3)321x x 3x 2z min ++=⎪⎪⎩⎪⎪⎨⎧≥≥+≥++0x ,x ,x 6x 2x 38x 2x 4x .t .s 32121321 解:引入剩余变量4x ,5x 和人工变量6x ,7x ,利用两阶段法得到辅助线性规划76x x w max --=321'x x 3x 2z max ---=⎪⎪⎩⎪⎪⎨⎧=≥=+-+=+-++7...2,1i ,0x 6x x x 2x 38x x x 2x 4x .t .s i 752164321 构造初始单纯形表,并计算1x 2x 3x 4x 5x 6x 7x'z-2 -3 -1 0 0 0 0w 4 6 2 -1 -1 0 0 6x 1 42 -1 0 1 0 87x3 2 0 0 -1 0 1 6以2x 为换入变量,6x 为换出变量,得以1x 为换入变量,7x 为换出变量,得从单纯行表中可知,原问题有无限多个最优解,其中一个为)0,8.1,8.0(x *=,最优值为7z *=。

(4)321x 12x 15x 10z max ++=⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≥++≤++-≤++3,2,1j ,0x 5x x x 215x 15x 6x 59x x 3x 5.t .s j 321321321 解:引入松弛变量5,4x x ,剩余变量,6x ,人工变量7x ,将原问题化为规范式7321Mx x 12x 15x 10z max -++= ⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=+-++=+++-=+++7,...,2,1j ,0x 5x x x x x 215x x 15x 6x 59x x x 3x 5.t .s j 7632153214321 构造初始单纯形表并计算得以1x 为换入变量,4x 为换出变量,得以1x 为换入变量,4x 为换出变量1x 2x 3x 4x 5x 6x 7xz10+2M 15+M 12+M 0 0 -M 0 4x5 3 1 1 0 0 0 95x -5 6 15 0 1 0 0 157x2 1 1 0 0 -1 1 51x 2x 3x 4x 5x 6x 7x进一步计算知道,0x 7≠,所以原问题没有可行解。

1.4 设目标函数极大化的线性规划问题的单纯形表如下,表中无人工变量,当待定常数21121c ,c ,b ,a ,a 为何值时,表中的解:(1)为唯一最优解,(2)为多重解,(3)有无界解,(4)为退化解。

解:①当0c ,c ,0b 211<≥,为唯一最优解;②当0c ,0c 0c ,0c ,0b 21211=≤≤=≥或,为多重解; ③当0c ,0c ,0a ,0b 2121>≤≤≥,具有无界解; ④0c ,0a 0c ,0b 2211>>>=或,为退化的可行解。

1.5 某商店要制定某种商品第二季度的计划,已知该商店仓库容纳此种商品的容量不超过600件,3月底已存货200件,以后每月初进货一次。

假定各月份此种商品买进售出的单价如下,问各月进货、售货各多少件才能使利润最大?假设进货时受到仓库容量的限制,售货1x 2x3x4x 5x 6x1c 0 2c -9 0 00z2x1a12a-1 0 0 75x -1 0 -5 0 1 0 3 6x4 0 -2 1 0 11b时受到进货量的限制,不考虑货物存放在仓库的耗损与保管费用。

月份 买进单价/(元/件) 售出单价/(元/件)4 17 185 16.5 186 1719解:设i x 表示每个月进货量,i y 表示相应月份售货量,其中3,2,1i =,则有数学模型: 321321x 17x 5.16x 17y 19y 18y 18z max ---++=⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=≥≤+-+-+-≤+-+-≤+--≤+-+--≤+--≤3,2,1i ,0y ,x 200y x y x y x 200y x y x 200y x 200600x y x y x 200600x y x 200600x .t .s i i 332211221111322112111 经计算,当600y ,600x ,600y ,500x ,600y ,400x 332211======时,即四月份进货400件,售货600件,五月份进货500件,售货600件,六月份进货600件售货 600件时,最大利润为6100元。

相关文档
最新文档