四年级奥数第12讲-图形面积(教)

合集下载

四年级奥数专题 格点与面积(学生版)

四年级奥数专题 格点与面积(学生版)

学科培优数学“格点与面积”学生姓名授课日期教师姓名授课时长知识定位本讲知识点比较简单,首次引入面积这个概念,主要是培养学生对图形面积的感觉与认识。

【授课批注】在开始讲解面积这个概念之前可适当复习有关图形周长的概念,帮助学生区分周长和面积。

知识梳理格点图形的概念在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形。

a)正方形格点正方形格点问题就是它的格点都是由两组互相垂直相交的平行线的交点构成的.每一个小方格都是一个小正方形b)三角形格点所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.【授课批注】讲解格点图形概念的时候最好能借助诸如钉子板之类的道具,提高教学的形象性,更容易让学生理解,加深印象。

【重点难点解析】1.方形格点与三角形格点面积的特点2.格点图形的分割与拼补【竞赛考点挖掘】1.两种格点图形的基本面积计算2.格点图形面积的等量变形例题精讲【试题来源】【题目】判断下列图形哪些是格点多边形?【试题来源】【题目】如右图,计算各个格点多边形的面积.【试题来源】【题目】如右图(a),计算这个格点多边形的面积.【试题来源】【题目】右图是一个方格网,计算阴影部分的面积.【试题来源】【题目】分别计算右图中两个格点多边形的面积。

【试题来源】【题目】如图“乡村小屋”的面积是多少?【试题来源】【题目】第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?习题演练【试题来源】【题目】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【试题来源】【题目】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少? 面积等于2平方厘米的三角形有多少个?【试题来源】【题目】在4×7的方格纸板上面有如阴影所示的“6”字,阴影边缘是线段或圆弧.问阴影面积占纸板面积的几分之几?【试题来源】【题目】右图是5×5的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用直线连接后所围成的面积尽可能大.那么,所围图形的面积是______平方厘米.【试题来源】【题目】如图,每一个小方格的面积都是l平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【试题来源】【题目】如图(a),有21个点,每相邻三个点成“∵”或“∴”,所形成的三角形都是等边三角形.计算三角形ABC的面积.【试题来源】【题目】如右图,每相邻三个点所形成的三角形都是面积为1的等边三角形,计算△ABC的面积.【试题来源】【题目】如右图,每相邻三个点所形成的三角形都是面积为1的正三角形,计算四边形ABCD 的面积.【试题来源】【题目】把大正三角形每边八等份,组成如右图所示的三角形网.如果大三角形的面积是128,求图中粗线所围成的三角形的面积.【试题来源】【题目】如图涂阴影部分的小正六角星形面积是16平方厘米,问:大正六角星形面积是多少平方厘米?【试题来源】【题目】如果下图中任意相邻的三个点构成的三角形面积都是2平方厘米.那么,三角形ABC 的面积是_____平方厘米【试题来源】【题目】把同一个三角形的三条边分别5等分、7等分(如图l图2),然后适当连接这些等分点,便得到了若干个面积相等的小三角形.已知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积是______平方分米.【试题来源】【题目】如图,如果每一个小三角形的面积是1平方厘米,那么四边形ABCD的面积是多少平方厘米?【试题来源】【题目】求下列各个格点多边形的面积【试题来源】【题目】右图是一个8 12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.【试题来源】【题目】求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).【试题来源】【题目】右图有12个点,相邻两个点之间的距离是1厘米,这些点可以连成多少个面积为2平方厘米的三角形?【试题来源】【题目】将图中的图形分割成面积相等的三块.。

巧奥数巧算面积(课堂PPT)

巧奥数巧算面积(课堂PPT)

12÷4=3(平方米)。
因为水泥路宽1米,所以小长方形的长是:
3÷1=3(米)。
中间花坛的面积是:(3+1)×(3+1) -4×3=4(平方米)
12
做一做 5
问题 如下图,有一个正方形水池(图中阴影部分), 在它的周围修一个宽是8米的草地,草地的面 积为480平方米。 求水池的边长。
答案
13
如下图①,正方形的边长为12厘米。




巧算面积
1
四年级奥数- 基础点睛 巧算面积
解答比较复杂的关于长方形、正方形的周长和面积的计算问题时,不能生搬硬 套公式,需要运用移位、合并、分解、转化等解题技巧。因此,敏锐的观察力 和灵活的思维在解题中至关重要。
2
例题1
下图①是一块长方形草地,长方形长255米,宽的,一条是平行四边形的。
问有草部分的面积是多少?
答案
将上图①中的四块阴影部分平移,拼在一起,组成 一个长、宽各少5米的长方形(如上图②阴影部 分)。 (255-5)×(105-5)=25000(平方米)
3
如下图所示,一块长方形草地,长100米,宽80米,中间 有条宽4米的道路,求草地(阴影部分)的面积。
做一做 1
问题
4
求下图的面积。(单位:厘米)
10
做一做 4
问题 有9个小长方形,它们的长和宽分别相等,用这9个小长形拼成的 大长方形(如下图)的周长是29厘米,求这个大长方形的面积。
答案
11
例题5
一个正方形的花坛,四周有1米宽的水泥路 (如右图①), 问题 如果水泥路的总面积是12平方米, 问中间花坛的面积是多少平方米?
答案
把水泥路的部分分成四个同样大小的长 方形(如右图②)。每个长方形的面积是:

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

【例题1】数一数下图中有多少个锐角。
【思路导航】 数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点, 因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得: 1+2+3+4=10(个).
【例题2】 数一数下图中有多少个长方形?
【思路导航】 图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边பைடு நூலகம்的
第12讲 数数图形
小学奥数 四年级
同学们对于图形肯定不陌生,但数学中经常会出现这样的题目: (1)下图中共有几条线段? (2)下图中共有几个长方形?
要正确解答这类问题,就要做到数图形时不重复、不遗漏。这就需要 我们按照一定的顺序去数,并找出它的规律,巧妙地数出图形的个数。数 图形的方法一般有两种:按顺序数和分类数。今天就让我们用数学的方法 巧妙地数图形吧!
实践与应用
【练习5】 P94 数一数,下图中共有多少个长方形?
同学们,图形世界是不是非赏精彩呢?数学的魅力就在于千变万化的图形和数字。通过 这一进,我们对图形有了更深的认识,遇到数图形的问题也能有序、严密地思索,关于数 图形,我们来总结一些最基本的方法吧。
(1)数线段。假设端点有n个(n是整数),那么线段的总条数就是从比n小1的数开始, 一直加到1。
每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有 6×3=18个长方形。 数长方形可以用下面的公式:长边上的线段×短边上的线段=长方形的个数
【例题3】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个 长度单位的正方形)
【思路导航】 边长是1个长度单位的正方形有3×2=6个,边长是2个长度单位的正方形有 2×1=2个。所以,图中正方形的总数为:6+2=8个。 经进一步分析可以发现,一般情况下,如果一个长方形的长被分成m等份, 宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为: mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.

(完整word版)小学奥数模块教程四年级杯赛备战讲义——巧求面积

(完整word版)小学奥数模块教程四年级杯赛备战讲义——巧求面积

上课日期: 上课时间: 教师姓名:知识点一:格点面积 一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.二、 三角形格点问题1、定义:所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.2、公式:关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.知识点二:图形剪拼巧求面积知识框架毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点,则它的面积为12LS N =+-.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.(1)把一个几何图形按某种要求分成几个图形,就叫做图形的分割.(2)反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.(3)将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.(1)如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.(2)图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.(3)如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.(4)如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.一、解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。

高斯小学奥数四年级上册含答案第12讲_乘法原理进阶

高斯小学奥数四年级上册含答案第12讲_乘法原理进阶

第十二讲乘法原理进阶在之前我们学习了“加法原理与乘法原理”一讲,即分类相加与分步相乘的思想.如果完成一件事分为几个步骤,在每一个步骤中又有不同的方法,那么把每步的方法数相乘就得到所有的方法数——这就是乘法原理.要想把过程分成几个步骤从而应用乘法原理,必须保证各步骤之间满足下面两个要求:1.2.那么是不是只要分步骤完成整件事情就可以直接用乘法原理呢?如下图,把A、B、C三部分用三种不同的颜色染色,要求相邻两部分不能同色,那么一共有多少种不同的染法呢?A B C其实,整个染色过程是需要分为三步的,即分别给其中一块染色:当染色顺序为A→B→C时,那么A有3种染法,B不能和A一样,有2种染法,同样C有2种,那么一共就有“322⨯⨯”种染法;(C→B→A同理)当染色顺序为B→A→C时,那么B有3种染法,A不能和B一样,有2种染法,同样C有2种,那么一共就有“322⨯⨯”种染法;(B→C→A同理)当染色顺序为A→C→B时,那么A有3种染法,第二步C没有限制,也有3种染法,但是最后的B就出问题了,我们没法确定它有2种还是1种染法——如果C和A同色,则B有2种染法;如果C和A不同色,则B只有1种染法——此时,根据分步相乘的思想计算整个过程的染色方法“33?⨯⨯”就不再适用了.(C→A→B同理)因此,并不是只要分步完成整件事情就一定可以应用乘法原理,要想应用乘法原理,还必须满足第三个要求:3.——简称“前不影响后.....原则”染色问题,是应用乘法原理最常见的一类题型,其实,从上面对A、B、C 三部分的染色分析我们应该可以发现,染色的时候,要尽量避免“隔”着染,一定不要“跳”着染,而且,第一步要尽量去染“接触最多”的那一部分,这样,才能够使得后面的染色过程尽量避开“前影响后”.例题1如图,把A 、B 、C 、D 、E 这五部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色.请问:这幅图共有多少种不同的染色方法?「分析」分五步染色,先染哪一块呢?能否按照A 、B 、C 、D 、E 的顺序染呢? 练习1如图,把A 、B 、C 、D 这四部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色.请问:这幅图共有多少种不同的染色方法?例题2某市实行垃圾分类处理.每个地方放置五个垃圾桶,从左向右依次标明:电池、塑料、废纸、易拉罐、其它.现在准备把五个垃圾桶染成红、绿、蓝这3种颜色之一.(1)要求相邻两个垃圾桶颜色不同,一共有多少种染色方法? (2)要求相邻两个垃圾桶颜色不同且回收易拉罐的垃圾桶不能染成红色,一共有多少种染色方法?「分析」如果我们先染废纸垃圾桶:当它染红色时,回收易拉罐的垃圾桶可以染绿、蓝两种颜色;而当它染绿色(蓝色)时,回收废纸的垃圾桶只能染蓝色(绿色).因此先染废纸垃圾桶时,会影响易拉罐垃圾桶的染色方法数,就不能直接用乘法原理计算了.那么我们应该先给哪个垃圾桶染色呢?练习2麦兜很挑食,只吃带有鱼丸或粗面的搭配.一天它和3位同学来餐厅吃东西,一开口就要鱼丸粗面,结果老板说没有.这个时候,由于时间太晚,餐厅快打烊了,只能做牛肚河粉,鱼丸油面,猪肉米线和牛肉拉面各一份,请问它们四只猪各点一份,有几种点法?在例题2中,有一个垃圾桶是有特殊要求的——易拉罐垃圾桶不能染成红色,我们通过尝试可知:如果一开始先染其他的垃圾桶,那么前面垃圾桶的染色方法就会影响到易拉罐垃圾桶的染色方法数,即不能满足“前不影响后”原则,而如果首先染易拉罐垃圾桶,则不会出现该问题,所以一般而言,如果题目中有些对象是有特殊要求的,那么我们分步..分析计算的时候,首先要考虑这些特殊的对象.例题3卡莉娅、墨莫、小高和大头4名同学竞选班委.有班长、学习委员、生活委员三个职位,每个人只能担任一个职位,并且每个职位只能由一个人担任.(1)有多少种可能的选举结果?(2)如果班长必须由卡莉娅来担任,有多少种可能的选举结果?(3)如果生活委员只能在墨莫和大头之中选,有多少种可能的选举结果?(4)如果学习委员不能由小高担任,有多少种可能的选举结果?「分析」可以按照职位一一确定,第(2)问中,班长只能由卡莉娅来担任,那么先确定哪一个职位的人选呢?其他小问呢?练习3甲、乙、丙、丁、戊5个人竞选班委.有班长、副班长、纪律委员、卫生委员四个职位,每个人只能担任一个职位,并且每个职位只能由一个人担任:请问:(1)一共有多少种可能的选举结果?(2)如果副班长只能在甲、丁和戊中选,有多少种可能的选举结果?(3)如果卫生委员不能由乙、丙担任,有多少种可能的选举结果?例题4甲、乙、丙、丁四个人要住进A、B、C、D四间房间,每个房间住一个人.其中甲不住A房间,丙只住D房间.请问:这四个人住进四个房间有多少种住法?「分析」本题中甲和丙有特殊要求,我们应该先考虑甲还是丙呢?练习4甲、乙、丙、丁四个人要住进A 、B 、C 、D 四间房间,每个房间住一个人.其中甲只住A 或B 房间,丙只住A 、B 或C 房间.请问:这四个人住进四个房间有多少种住法?例题5甲、乙、丙、丁、戊五人要驾驶A 、B 、C 、D 、E 这五辆不同型号的汽车,请计算在下列情况下,分别共有多少种不同的安排方案: (1)只有甲能开汽车A ,乙不会开汽车B ;(2)会开A 的只有甲和乙,会开E 的只有甲、乙、丙.「分析」第(1)问中,甲和丙两人有特殊要求,我们应该先考虑哪一个人呢?第(2)问中,A 和E 两车有特殊要求,我们应该先考虑哪辆车呢?接下来我们分析一下“放相同棋子”的问题.如右图,将2枚相同的棋子放入2×2的方格内,每个格子只能放1枚,且要求每行每列最多只能放1枚,那么一共会有几种方法呢?其实,要把两枚相同的棋子放进格子内,只需要选出两个格子即可,然后每个格子里放一枚棋子.一共有两行,所以必定会是每行一枚,所以我们完全可以分行选格子,第一行有两种选法,第一行选好后,第二行就只有一种选法了,所以一共有2×1=2种.例题6右图是一个阶梯形方格表,在方格中放入五枚相同的棋子,使得每行、每列中都只有一枚棋子,这样的放法共有多少种?「分析」容易看出,每行只能有1枚棋子,每列也只能由一枚棋子,我们可以把放五枚棋子的过程分成五步:一行一行或一列一列的放.课堂内外四色定理四色定理与费马大定理、哥德巴赫猜想并称为近代数学三大难题.四色定理的内容是:对于任何一张地图,只用四种颜色,就可以把有相邻边界的国家染上不同的颜色.四色问题的提出来自英国.1852年,在大学读书的格斯里向他的老师——著名数学家摩根提出了这个问题,摩根没有能找到解决这个问题的途径.“四色问题”提出以后,最初并没有引起广泛的重视,许多数学家低估了它的难度.就连素以谦虚著称的德国数论专家闵可夫斯基在大学上拓扑课时也说:四色问题之所以一直没有获得解决,那仅仅是由于没有一流的数学家来解决它.说罢,他拿起粉笔,竟要当堂给学生推导出来,结果没有成功.下一节课他又去试,还是没有成功.过了几个星期,仍无进展.有一天,他刚跨进教室,适逢天上雷声大作,震耳欲聋.他马上对学生说:“上天在责备我自大,我也无法解决四色问题.”这样,四色问题就成了世界最著名的问题之一.l00多年中,“四色问题”使数学家们深为困扰.没有人能证明它,也没有人推翻它.电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了四色猜想的证明进程.就在1976年6月,哈肯与阿佩尔在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿次判断,终于完成了四色定理的证明,轰动了世界.作业1. 五个座位排成一排,小高、墨莫、萱萱、阿呆、阿瓜每人选一个座位坐下,其中每个座位只能坐一个人,且萱萱不坐在中间的位置.这五个人有多少种坐法?2. 如图,把A 、B 、C 这三部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色.请问,这幅图共有多少种不同的染色方法?3. 把A 、B 、C 、D 、E 这五部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色.这幅图共有多少种不同的染色方法?4. 甲、乙、丙、丁四个人排成一队,甲不当排头,乙不当排头也不当排尾,共有多少种不同的排法?5. 在的方格中放入两枚相同的棋子,要求两枚棋子既不在同一行也不在同一列,共有多少种放法?24 ABCD E第十二讲乘法原理进阶1.例题1答案:96详解:分步,分别给E、B、C、A、D染色,分别有4、3、2、2、2种染法,所以一共有4322296⨯⨯⨯⨯=种染色方法.2.例题2答案:48;32方法;(2)分步,先染易拉罐垃圾桶,再分别给废纸、塑料、电池、其他这四个垃圾桶染色,五个垃圾桶分别有2、2、2、2、2种染法,所以一共有2222232⨯⨯⨯⨯=种染色方法.3.例题3答案:24;6;12;18种;(2)分别确定班长、学委、生活委员的人选,分别有1、3、2种选法,所以共有1326⨯⨯=种;(3)分别确定生活委员、学委、班长的人选,分别有2、3、2种选法,所以共有23212⨯⨯=种;(4)分别确定学委、班长、生活委员的人选,分别有3、3、2种选法,所以共有33218⨯⨯=种.4.例题4答案:4种选法.5.例题5答案:18;24详解:(1)先考虑甲,后考虑乙,再考虑其他三个人,分别有1、3、3、2、1种可能,共有⨯⨯⨯⨯=种;1332118(2)先考虑A,后考虑E,再考虑其他三辆车,分别有2、2、3、2、1种可能,所以共有⨯⨯⨯⨯=种.22321246.例题6答案:16详解:一共要选5个格子放棋子,一行一行选,每行1个,而且不能在同一列,从上往下,5行分别有2、2、2、2、1种选法,所以一共有2222116⨯⨯⨯⨯=种选法.7.练习1答案:48详解:分步,分别给B、C、A、D染色,分别有4、3、2、2种染法,所以一共有⨯⨯⨯=种染色方法.4322488.练习2答案:6详解:先让麦兜点,只有鱼丸油面1种可选,然后让其他3位同学依次点,分别有3、2、1种选法,共分四步,乘法原理,所以共有13216⨯⨯⨯=中不同的选法.9.练习3答案:120;72;72⨯⨯⨯=5432120(2)先确定副班长,再依次确定其他,共有343272⨯⨯⨯=种;(3)先确定卫生委员,再依次确定其他,共有343272⨯⨯⨯=种.10.练习4答案:8种选法.11.作业1答案:96.简答:可以按照萱萱、小高、墨莫、阿呆、阿瓜的顺序安排座位,有4432196⨯⨯⨯⨯=种.安排座位的顺序不唯一.12.作业2答案:24简答:可以按照A、B、C的顺序染色,43224⨯⨯=种.染色顺序不唯一.13.作业3答案:96简答:可以按照A、B、C、D、E的顺序染色,有4322296⨯⨯⨯⨯=种.染色顺序不唯一.14.作业4答案:8简答:按照乙、甲、丙、丁的顺序安排,有22218⨯⨯⨯=种排法.15.作业5答案:12简答:一行一行选位置,第一行有4个格子可选,即4种选法;第二行还有3个格子可选,即有3种选法.因此有4312⨯=种不同的放法.。

小学四年级奥数思维问题之图形面积

小学四年级奥数思维问题之图形面积

图形面积问题教学目标:①知识与技能目标:借助所学知识计算组合图形的面积②过程与方法目标:通过对数量关系地分析,让学生在解决问题过程中掌握一些解决问题的基本策略③情感态度与价值观目标:感受所学知识与现实生活的紧密联系教学重点:图形面积公式的运用教学难点:组合图形的面积计算[知识引领与方法]1.细心观察,把握图形特点,合理的进行切拼,从而使问题得以顺利解答2.从整体上观察图形的特征,掌握图形本质,结合必要的分析,推理和计算,使隐蔽的数量关系明朗化[例题精选及训练]【例1】一块长方形铁板,长18分米,宽15分米。

若长和宽分别减少3分米,面积比原来的减少多少平方分米?练习:1.人民路小学操场长90米,宽45米,改造后,长和宽分别增加10米。

现在操场面积比原来增加了多少平方米?2.有一块长方形的木板,长22分米,宽8分米。

如果长和宽分别减少10分米和3分米,木板的面积比原来减少多少平方分米?3.一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?【例2】一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。

问这个长方形原来的面积是多少平方米?练习:1.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。

这个长方形原来的面积是多少平方米?2.一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

问这个长方形原来的面积是多少平方米?3.一个长方形花圃,如果它的长减少5米,或它的宽减少6米,那么它的面积都减少60平方米。

求这个长方形花圃原来的面积。

【例3】下图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?练习:1.右图是某个养鸡专业户用一段长13米的篱笆围成一个长形的养鸡场,则养鸡场的占地面积有多大?2.用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?【例4】街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?练习:1.有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长。

四年级下奥数第12讲 基本直线形面积公式

四年级下奥数第12讲 基本直线形面积公式

四春第12讲基本直线形面积公式一、知识要点
平行四边形面积:S=a×h 推导式:底×高
三角形面积公式:S=1
2
a h 推导式:底×高÷2
梯形面积:S= 1
2
(a+b)×h 推导式:(上底+下底)×高÷2
二、例题精选
【例1】下图平行四边形的面积是多少?CD多长?
【巩固1】下图平行四边形ABCD的周长78cm,以CD为底时,它的高是18cm, BC=20cm,求它的面积。

【例2】下图已知阴影部分的面积27cm2,求平行四边形的面积?
【巩固2】下图平行四边形的面积是120cm2,求阴影部分图形中CD的长度。

【例3】下图由两个正方形组成,其边为6cm和4cm,求阴影面积是多少?
【巩固3】求下图中阴影部分的面积?
【例4】下图是由大、小两个正方形组成的,小正方形的边长是4厘米,大正方形边长为5厘米,求三角形ABC 的面积。

【巩固4】已知:ABCD是长方形,AB=4,BC=6,AE=3,CF=1。

(单位:厘米)求阴影部分的面积。

【例5】下图是一个梯形,面积为52 cm2,里面是一个空白长方形,求阴影部分的面积?
【例6】求下图阴影部分面积(cm2)。

四、回家作业
作业1、下图平行四边底边10cm,高5cm,求两个阴影面积之和是多少?
作业2、如图平行四边形的面积是24平方厘米,求阴影三角形的面积。

作业3利用一面墙围成一块菜地(如图),已知篱笆全长45米,则这块菜地的面积是多少平方米?
作业4如下图,左边梯形和右边三角形的面积相等,三角形的底是多少厘米?
作业5求下图中阴影部分面积(cm2)。

2023-2024学年四年级下学期数学五、解决问题的策略《画示意图解决有关面积问题》(教案)

2023-2024学年四年级下学期数学五、解决问题的策略《画示意图解决有关面积问题》(教案)

教案标题:2023-2024学年四年级下学期数学五、解决问题的策略《画示意图解决有关面积问题》一、教学目标1. 知识与技能:学生能够理解面积的概念,掌握用画示意图的方法解决面积问题。

2. 过程与方法:通过自主探究、合作交流,培养学生运用示意图解决问题的能力。

3. 情感态度价值观:激发学生对数学的兴趣,培养学生积极思考、合作学习的良好习惯。

二、教学重点、难点1. 教学重点:掌握用画示意图的方法解决面积问题。

2. 教学难点:灵活运用示意图解决实际问题。

三、教学过程1. 导入新课利用多媒体展示生活中的面积问题,引导学生关注面积,激发学生兴趣。

2. 自主探究学生自主尝试用画示意图的方法解决面积问题,教师巡回指导,关注学生的思维过程。

3. 合作交流学生分组讨论,分享自己的解题方法,互相学习,共同提高。

4. 总结提升教师引导学生总结画示意图解决面积问题的步骤和技巧,提升学生的解题能力。

5. 巩固练习设计有层次的练习题,让学生独立完成,巩固所学知识。

6. 课堂小结教师引导学生回顾本节课所学内容,总结收获。

四、作业布置1. 完成课后练习题。

2. 观察生活中的面积问题,尝试用画示意图的方法解决。

五、板书设计略六、教学反思1. 教师应及时反思教学效果,针对学生的掌握情况调整教学策略。

2. 注重培养学生的自主探究能力和合作精神。

3. 关注学生的个体差异,因材施教,提高教学质量。

本教案依据《义务教育数学课程标准》编写,注重培养学生解决问题的能力,突出学生的主体地位,符合学生的认知规律。

在实际教学中,教师可根据学生的实际情况灵活调整教学过程,以达到最佳教学效果。

重点关注的细节是“教学过程”中的“自主探究”环节。

这个环节是学生在教师的引导下,独立尝试解决问题的阶段,对于培养学生的解决问题的能力至关重要。

在“自主探究”环节,学生需要运用刚刚学到的面积知识,结合示意图的画法,来解决实际问题。

这个过程不仅是知识的应用,更是学生思维能力的锻炼。

小学四年级必会图形求面积的10个方法!

小学四年级必会图形求面积的10个方法!

我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形,我们的面积及周长都有相应的公式直接计算。

如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。

一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例1:如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2:如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。

一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD 面积的三分之一,也就是12厘米.解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形。

总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。

常用的基本方法有1相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。

例如:求下图整个图形的面积。

一句话:半圆的面积+正方形的面积=总面积2相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。

学生版四年级奥数面积求解

学生版四年级奥数面积求解

关于图形面积求解主讲:姬老师⏹我们要学会观察、分析,通过添加辅助线或者割补的方法,运用一些平移、分解、合并等方法,将不规则的图形转化为我们已学过的基本图形来求解。

在直接运用面积公式求解受阻时,我们往往会采用移位、合并、分解、转化等解题技巧。

所以,同学们拥有敏锐的观察力和灵活的思维在解题过程中就显得相当的重要。

●例1.一张长方形纸片,在长边上剪下10cm,宽边上剪下5cm,余下的部分正好是一个正方形。

已知正方形的面积比原长方形纸片面积少140C㎡,求原长方形纸片的面积。

●例2,在一个正方形的小花园的周围,环绕着宽为5m的水池,水池的面积是300㎡,问小花园的面积是多少㎡?●例3,一块菜地长16m,宽8m,菜地中间留了宽2m的路,把菜地平均分成4块,问每一块地的面积是多少?●例4,正方形的内部套着一个长方形,正方形的边长是15cm,长方形的4个角的顶点,恰好分别把正方形的4条边分成2段,其中长的一段是短的2倍。

那么,这个长方形的面积是多少?⏹课堂练习1.四边形面积:下图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE的面积是?2.如图所示,四边形ABCD与AEGF都是平行四边形,请你说明它们的面积相等。

3.如图,四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积为6平方厘米,求三角形CDH的面积.4.如下图,有21个点,每相邻三个点成"∵"或"∴",所形成的三角形都是面积为1的等边三角形.计算三角形ABC的面积.5.如图,平行四边形ABCD的面积是40平方厘米,图中阴影部分的面积是多少?6.下图中每个小平行四边形的面积是1个面积单位,求阴影部分的面积.7.下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?(单位:厘米)8.如图,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?9.两个煤厂,甲厂有煤252吨,乙厂有煤180吨,两厂每天都运出26吨煤.问几天后甲厂比较图3中的两个阴影部分I和Ⅱ的面积,它们的大小关系_____。

四年级奥数专题 直线型面积计算(学生版)

四年级奥数专题 直线型面积计算(学生版)

学科培优 数学“直线型面积计算”学生姓名 授课日期 教师姓名授课时长知识定位本讲讲解已经学过的几种基本平面几何图形:正方形、长方形、三角形、平行四边形、梯形等的相关面积计算方法,是几何问题中的常见常考内容。

知识梳理一、 基本平面图形的计算公式【授课批注】在复习学校所学基本面积公式的同时也顺带复习周长的公式,这些知识点在具体题目中都可能用到。

二、 重要模型模型一:同一三角形中,相应面积与底的正比关系:bs 2s 1即:两个三角形高相等,面积之比等于对应底边之比。

S 1︰S 2 =a ︰b ;模型一的拓展: 等分点结论(“鸟头定理”)如图,三角形AED 占三角形ABC 面积的23×14=16模型二:任意四边形中的比例关系 (“蝴蝶定理”) ①S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4②AO ︰OC=(S 1+S 2)︰(S 4+S 3)模型三:梯形中比例关系(“梯形蝴蝶定理”)①S 1︰S 3=a 2︰b 2 ②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2【授课批注】因为四年级还没学过比例,所以在讲用比所表示的模型时可使用份数这个概念,学生更容易理解。

对于部分学有余力的学生可以先讲比例再直接引入上面的关系式。

【重点难点解析】1.等底或等高的三角形的面积关系2.长方形或平行四边形与同底等高三角形的面积关系 3. 三角形内不规则图形部分的面积计算【竞赛考点挖掘】1. 基本几何图形的面积计算2. 三角形中底和高与面积的关系3. 四边形对角线所分成的四个三角形的面积关系S 4S 3s 2s 1ba S 4S 3s 2s 1O DCB A例题精讲【试题来源】【题目】图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍, EF 的长是BF长的3倍.那么三角形AEF的面积是多少平方厘米?【试题来源】【题目】如图,把四边形ABCD的各边都延长2倍,得到一个新四边形EFGH如果ABCD的面积是5平方厘米,则EFGH的面积是多少平方厘米?【试题来源】【题目】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷.那么最大的一个三角形的面积是多少公顷?【试题来源】【题目】如图16-4,已知.AE=15AC,CD=14BC,BF=16AB,那么DEFABC三角形的面积三角形的面积等于多少?【试题来源】【题目】如图,长方形ABCD的面积是2平方厘米,EC=2DE,F是DG的中点.阴影部分的面积是多少平方厘米?【试题来源】【题目】如图,已知D是BC中点,E是CD的中点,F是AC的中点.三角形ABC由①~⑥这6部分组成,其中②比⑤多6平方厘米.那么三角形ABC的面积是多少平方厘米?【试题来源】【题目】左下图是一个各条边分别为5厘米、12厘米、13厘米的直角三角形.如右下图,将它的短直角边对折到斜边上去与斜边相重合,那么右下图中的阴影部分(即未被盖住的部分)的面积是多少平方厘米?习题演练【试题来源】【题目】如图,在一个梯形内有两个三角形的面积分别为10与12,已知梯形的上底长是下底长的23.那么余下阴影部分的面积是多少?【试题来源】【题目】图中ABCD是梯形,三角形ADE面积是1.8,三角形ABF的面积是9,三角形BCF的面积是27.那么阴影部分面积是多少?【试题来源】【题目】如图,梯形ABCD的上底AD长为3厘米,下底BC长为9厘米,而三角形ABO的面积为12平方厘米.则梯形ABCD的面积为多少平方厘米?【试题来源】【题目】如图,BD,CF将长方形ABCD分成4块,红色三角形面积是4平方厘米,黄色三角形面积是6平方厘米.问:绿色四边形面积是多少平方厘米?【试题来源】【题目】如图,平行四边形ABCD周长为75厘米.以BC为底时高是14厘米;以CD为底时高是16厘米.求平行四边形ABCD的面积.【试题来源】【题目】如图,一个正方形被分成4个小长方形,它们的面积分别是110平方米、15平方米、3 10平方米和25平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?【试题来源】【题目】图中外侧的四边形是一边长为10厘米的正方形,求阴影部分的面积.【试题来源】【题目】如图,长方形被其内的一些直线划分成了若干块,已知边上有3块面积分别是13,35,49.那么图中阴影部分的面积是多少?【试题来源】【题目】在右图的△ABC中,CE=2AE,BD=3DC,已知△DEC的面积是4cm2,求△ABC的面积。

(完整word版)四年级奥数图形面积专题

(完整word版)四年级奥数图形面积专题

(完整word版)四年级奥数图形⾯积专题第四讲:图形(⼀)爱学教育⽼师奥数2015·四年级·竞赛·秋三⾓形种类:⾯积公式:三⾓形的⾼:1、如图,?ABC⾯积是30平⽅分⽶,D是BC的中点,AE的长是ED的2倍。

那么?BED的⾯积是多少平⽅分⽶?2、如图,三⾓形ABC的⾯积是240平⽅厘⽶,D是BC的中点,AD的长是AE的3倍,EF的长BF的3倍,那么三⾓形AEF的⾯积是多少平⽅厘⽶?3、如图,三⾓形ABC中,D、E为两个三等分点,F是AB的中点,若三⾓形DEF的⾯积是12平⽅厘⽶,那么四边形AFEC的⾯积为多少平⽅厘⽶?4、如图,BD=3AD, CE=4AE,三⾓形ADE的⾯积是2平⽅厘⽶,求三⾓形ABC的⾯积?5、如图,在△ABC中,BD=2DC,AE=BE,已知△BDE的⾯积为6平⽅厘⽶,求四边形ACDE 的⾯积。

6、将三⾓形ABC的BA延长1倍到D,CB边延长2倍到E,AC边延长3倍到F。

若三⾓形ABC的⾯积是1平⽅厘⽶,求三⾓形DEF的⾯积?7、如图,三⾓形ABC是正三⾓形,D、E分别是AB、BC的中点,已知三⾓形BDE的⾯积是6平⽅厘⽶,求三⾓形ABC的⾯积。

8、已知三⾓形ABC的⾯积为180平⽅厘⽶,D、E把三⾓形分成两部分,BD=3AD,CE=2AE,求三⾓形ADE的⾯积。

9、如图,在平⾏四边形BCEF中,有⼀个直⾓△ABC,BC=8厘⽶,AC=7厘⽶,阴影部分⾯积⽐△ADH⼤12平⽅厘⽶,求AH的长度。

10、如图所⽰,已知⼀个四边形的两条边的长度和三个⾓,求这个四边形的⾯积是多少?11、如图,边长为20厘⽶和30厘⽶的两个正⽅形拼在⼀起,求阴影△ABC的⾯积。

●家庭作业●1、如图,在三⾓形ABC中,CD=2BD,CE=3AE,阴影部分的⾯积是20平⽅厘⽶,求三⾓形ABD与三⾓形EDC⾯积之和是多少平⽅厘⽶?2、如图,在三⾓形ABC中,D是BC的中点,E、F是AC的三等分点。

小学四年级奥数(40讲)

小学四年级奥数(40讲)

小学四年级奥数1—40讲第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。

1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。

根据这一规律,括号里应填的数为:10+3=13或16-3=13。

像上面按照一定的顺序排列的一串数叫做数列。

练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。

(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。

四年级奥数第12讲四边形中的基本图形(二)例题

四年级奥数第12讲四边形中的基本图形(二)例题

四边形中的基本图形(二)【例1】(★★)一个长方形被分成 4 个不同颜色的三角形,红色三角形的面积是9,黄色三角形的面积是21,绿色三角形的面积是10,那么蓝色三角形的面积是多少??【例2】 (★★★)如图,阴影部分的面积是多少?【例3】(★★★★)如图,已知红色三角形的面积是5,绿色三角形的面积是13,问:三角形OBD的面积是多少?【例4】(★★★★) 如图,正方形ABCD的面积是12 平方厘米,矩形DEFG的长DG=16 厘米,求它的长DE=?【例5】(★★★★★) (第五届走美试题改编)如图,正方形ABCD的边长为8,AE=2,CF=3。

长方形EFGH的面积为_______。

【例 6】(★★★★) 如图,ABCD 是梯形,ABFD 是平行四边形,CDEF 是正方形,AGHF 是长方形。

又知AD =14 厘米,BC =22 厘米,那么阴影部分的面积是多少平方厘米?对角模型求证,将任意一个矩形ABCD 其分割成四个小矩形(如下图),用a 、b 、c 、d 分别表示这四个矩形的面积,则必有a ×d =b ×c 。

【例 7】(★★★)如图,正方形被分成 9 个小长方形,其中 5 个小长方形的面积如图所示,求其它 4 个小长方形的面积。

1【例8】(★★★★)如图,在矩形ABCD 中,连结对角线BD,过BD 线上的任一点P,作EF 平行AB,GH平行BC,S△BPF=3,S△PHD=12,矩形ABCD的面积是多少?2⑶重要模型一半模型一、本讲重点知识回顾:⑴基本图形面积公式正方形:边长×边长长方形:长×宽平行四边形:底×高对角模型三角形:底×高÷2梯形:(上底+下底)×高÷2⑵特殊图形等腰直角三角形——两边相等,两角45° 正方形——四边相等平行四边形长方形对边相等一、本讲经典例题:四边形中的基本图形(上):例2,例3,例 5四边形中的基本图形(下):例2,例3,例4,例8。

最新四年级奥数教程(完美修复版本)

最新四年级奥数教程(完美修复版本)

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

四年级奥数教案第12讲:简单推理

四年级奥数教案第12讲:简单推理

白色√答:第一个盒子里放着白色的卡纸,第二个盒子里放着紫色的卡纸,第三个盒子里放着蓝色的卡纸,第四个盒子里放着黑色的卡纸。

”例题5:(选讲)下图是三个完全相同的积木,每块积木的六个面分别写着数字1、2、3、4、5、6,相对两个面上的数字和最大是多少?讲解重点:根据已知条件,推理解决问题。

师:阿派最近做了三个积木,他给积木刷上了颜色,并标上了数字,变的很漂亮了,他想用这几个积木考考大家,我们一起去看看吧。

师:问题是什么?生:相对两个面上的数字和最大是多少?师:要想知道相对两个面上的数字和最大是多少?必须要知道什么?生:知道所有的积木相对面是多少。

师:没错,我们一起来观察下这三个积木,你们有什么发现吗?生:前面两块积木上都有数字1。

师:没错,与写有数字1的面相邻的面上数字是2,3,4,6,所以1相对面的数字是几?生:数字1面对数字为5。

师:你还有什么发现吗?生:第二块和第三块积木上都有数字3,我们可以知道什么?生:与数字3的面相邻的面上数字是1,2,4,5,所以数字3面对数字为6。

师:还剩下2和4,两个数字,所以数字2对4。

对吗?生:对。

师:现在我们知道了它们相对两个面上的数字,要求的是相对两个面上的数字和最大是多少?试一试吧。

生:(学生尝试) 1+5=6,2+4=6,3+6=9。

板书:相对的数字为:1对5、2对4、3对6。

1+5=6,2+4=6,3+6=9答:相对两个面上的数字和最大是9。

练习5:(选做)有一个正方体,在它的各个面上分别涂着红、黄、蓝、绿、紫、黑六种颜色,欧拉、米德和阿派三位同学从三个不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的颜色对面各是什么颜色?分析:由图1和图2可以看出,与红相邻的颜色是黑、绿、黄、蓝,由此可知红色的面对是紫色;由图2和图3可以看出,与蓝色相邻的是黄、红、紫、绿,因此,蓝色的对面是黑色;由图1和图3可以看出,与绿相邻的是红、黑、蓝、紫,因此,绿色的对面是黄色。

四年级奥数专题--图形周长与面积

四年级奥数专题--图形周长与面积

第一讲图形周长和面积知识导航亲爱的同学们,我们已经学会长方形、正方形的周长与面积的计算,利用公式很容易算出它们的面积与周长。

但在遇到一些较复杂的有关长方形和正方形的周长和面积计算时,一些同学就会感到棘手。

这一讲我们将学习用平移、转化、分解、合并等技巧解决难题,使大家在解题中能顺利地找到突破口,化难为易,化繁为简。

精典例题例1:下图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是多少厘米?思路点拨每个正方形的面积为:400÷16=25(平方厘米),所以每个正方形的边长是5厘米。

从上下方向来看有14条边是周长的一部分,从左右方向来看有20条边是周长的一部分,所以……模仿练习计算右面图形的周长(单位:厘米)。

例2:有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长。

思路点拨从图上可以知道,小长方形的长的4倍等于宽的5倍,所以长是宽的5÷4=1.25倍。

每个小长方形的面积为45÷9=5平方厘米,所以1.25×宽×宽=5,所以宽为2厘米,长为2.5厘米。

模仿练习下图的长方形被分割成5个正方形,已知原长方形的面积为120平方厘米,求原长方形的长与宽。

例3:一块正方形的苗圃(如右图实线所示),若将它的边长各增加30米,则面积增加9900平方米,问原来这块正方形苗圃的面积是多少平方米?思路点拨通过画图可以算出:小正方形的面积为:30×30=900平方米。

用增加的面积减去小正方形的面积就得到增加的两个长方形的面积之和,9900-900=9000平方米。

而增加的两个长方形的面积相等,于是其中一个长方形的面积为9000÷2=4500平方米。

模仿练习喜阳阳小学的操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方分米?例4:如下图,用标号为1,2,3,4,5的五种大小不同的正方形拼成一个大长方形,大长方形的长和宽分别是18,14,则标号为5的正方形的面积是多少?(2006年“希望杯”第二试)思路点拨如果标号为5的正方形的边长是a,那么1号比2号大a,2号比3号大a,所以1号比3号大2a,又因为2号和3号的边长之和是14,1号和2号的边长之和是18,所以1号比3号大18-14=4。

四年级奥数课后分层作业-第12讲 简单列举 通用版

四年级奥数课后分层作业-第12讲 简单列举 通用版

四年级奥数重点常考第十二讲简单列举分层作

基础卷
1、从甲地到乙地有3条直达公路,还有5条直达铁路,那么从甲地到乙地共有多少种不同的走法?
3+5=8(种);
答:从甲地到乙地共有多少种不同的走法.
故答案为:8.
2、从甲地到乙地,有3条直达公路,从乙地到丙地有5条直达铁路,从甲地经过乙地到丙地有多少种不同的走法?
3×5=15种
答:甲地到丙地有15种走法。

3、用红、绿、黄三色去涂下面的方框,每个方框涂一种颜色。

共有多少种不同的涂法?
共有6种不同的涂法
4、有黄、蓝、白、红四种信号旗,把其中任意三面分上、中下挂在旗杆上表示不同的信号,一共可以组成多少种不同的信号?
4×3×2=24
一共可以组成24种不同的信号
5、小芹有3种不同颜色的上衣,2种不同颜色的裤子,2双不同款式的鞋子,她共有多少种不同的穿法?
3×2×2=12(种);
答:她共有12种不同的穿法.
故答案为:12.
6、有三张数字卡片,分别为1、8、3。

从中选出两张排成一个两位数,一共可以排成多少个不同的两位数?
3×2=6
一共可以排成6个不同的两位数
提高卷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科教师辅导讲义 学员编号: 年 级:四年级 课 时 数:3学员姓名:辅导科目:奥数 学科教师: 授课主题第12讲-图形面积 授课类型 T 同步课堂 P 实战演练 S 归纳总结教学目标① 熟悉掌握基本图形面积的求法。

② 熟悉运用分解、平移、合并等技巧成基本图形,利用长方形、正方形面积计算公式求解。

③ 能够分析图形的特点,提高几何图形的观察能力和思维转换能力。

授课日期及时段T (Textbook-Based )——同步课堂解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。

例1、人民路小学操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方米?【解析】用操场现在的面积减去操场原来的面积,就得到增加的面积。

操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。

所以,现在的面积比原来增加5000-4050=950平方米。

例2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米?【解析】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。

知识梳理典例分析所以,这个长方形原来的面积是12×9=108平方米。

例3、下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。

【解析】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米。

而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。

例4、街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?【解析】把水泥路分成四个同样大小的长方形(如下图)。

因此,一个长方形的面积是12÷4=3平方米。

因为水泥路宽1米,所以小长方形的长是3÷1=3米。

从图中可以看出正方形花坛的边长是小长方形长与宽的差,所以小正方形的边长是3-1=2米。

中间花坛的面积是2×2=4平方米。

例5、一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如图),面积比原来的正方形减少181平方分米。

原正方形的边长是多少?【解析】把阴影部分剪下来,并把剪下的两个小长方形拼起来,再被上长、宽分别是8分米、5分米的小长方形,这个拼合成的长方形的面积是181+8×5=221平方分米,长是原来正方形的边长,宽是8+5=13分米。

所以,原来正方形的边长是221÷13=17分米。

例6、已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。

求大、小正方形的面积各是多少平方厘米?【解析】从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B的面积相等。

因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。

求到了小正方形的边长,计算大、小正方形的面积就非常简单了。

例7、求下面图形的面积。

(单位:厘米)【解析】这是一个不规则图形,不能直接求出面积,因此需要转换一下,画一条辅助线,将其分解成两个长方形如图。

从右图可以看出左边长方形的长为4厘米,宽为2厘米,面积为4×2=8平方厘米。

右边长方形长为3厘米,宽为1厘米,面积为3×1=3平方厘米。

故整个图形面积为8+3=11平方厘米例8、下图中大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形多96平方厘米。

大正方形和小正方形的面积各是多少?【解析】如图,把大正方形比小正方形多出的96平方厘米的图形分成一个蓝色的正方形和两个同样的灰色长方形。

可以求出蓝色正方形的面积为:4×4=16(平方厘米);则每个小长方形的面积为:(96-16)÷2=40(平方厘米);每个小长方形的长即所求小正方形图形的边长为:40÷4=10(厘米)。

所以,所求小正方形的面积为:10×10=100(平方厘米);所求大正方形的面积为:(10+4)×(10+4)=196(平方厘米)P(Practice-Oriented)——实战演练➢课堂狙击1、有一块菜地长16米,宽8米。

菜地中间留了2条宽2米的路,把菜地平均分成了4块,每一块地的面积是多少?【解析】解法一:因为两条小路把把菜地平均分成了4快,所以每一小块长方形菜地:长为:(16-2)÷2=7(米);宽为:(8-2)÷2=3(米);面积为:7×3=21(平方米)解法二:如图,假设把两条小路平移到菜地的上方和左方,路的面积和剩下菜地的面积都不会发生改变。

去掉小路,剩下菜地面积为:(16-2)×(8-2)=84(平方米),每一小块菜地面积为:84÷4=21(平方米)2、将一块长3米,宽2米的长方形布剪成一块面积最大的正方形布,剩下部分的面积是多少平方米?【解析】要使剪成的正方形布面积最大,就要使它的边长最长,那么只能用原来长方形的宽为边长,即正方形的边长为2米,正方形的面积为2×2=4平方米,剩下布的面积就是长方形面积减去正方形面积=2×3-4=2平方米实战演练3、计算下图的面积。

【解析】这是一个不规则图形,不能直接求出面积,因此需要转换一下,画一条辅助线,将其分解成两个长方形如图。

从图可以看出左边长方形的长为4厘米,宽为2厘米,面积为4×2=8平方厘米。

右边长方形长为3厘米,宽为1厘米,面积为3×1=3平方厘米。

故整个图形面积为8+3=11平方厘米4、长方形ABCD周长为16米,在它的每条边上各画一个以该边为边长的正方形,已知这四个正方形的面积的和是68平方米,求长方形ABCD的面积【解析】如图,EF将向右延长,HG向上延长,交于G点,那么正方形EBIG 的边长等于长方形ABCD周长一半,即8厘米,面积为64平方厘米。

长方形ABCD与长方形FDHG的长和宽是相等的,故面积相等。

而正方形ADFE与CDHI 的面积之和,等于题中已给的四个正方形面积和的一半,即68÷2=34平方厘米。

64-34=30平方厘米应等于长方形ABCD面积的2倍。

所以ABCD的面积是30÷2=15平方厘米。

5、一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。

【解析】因为AE×CE=6,DE×EB=35,把两个式子相乘AE×CE×DE×EB=35×6,而CE×EB=14,所以AE×DE=35×6÷14=15。

30-20=10➢课后反击1、把一张长4米、宽3米的长方形木板,锯成一个面积最大的正方形木板,这个正方形木板的面积是多少平方米?【解析】要使锯成的正方形木板面积最大,就要使它的边长最长,那么只能用原来长方形的宽为边长,即正方形的边长为3米,正方形的面积为3×3=9平方米。

2、下图是一个养鸡专业户用一段长24米的篱笆围成一个长方形的养鸡场,其中一面利用墙,求占地面积有多大?【解析】根据题意,两条长加上一条宽等于24米,宽是6米,所以长是(24-6)÷2=9米。

因此占地面积=6×9=54平方米3、如下图,一块正方形玉米田,边长是9米。

中间有两条1 米宽的小路。

求种着玉米的土地的面积(图中阴影部分的面积)【解析】平移下就可以清楚地看到,玉米种植地就是阴影部分的面积,阴影部分边长均为8,故阴影部分面积为8×8=64平方米4、长方形草地ABCD被分为面积相等的甲、乙、丙和丁四份(如右图),其中图形甲的长和宽的比是a:b=2:1,其中图形乙的长和宽的比是多少?【解析】假设甲的长为2,宽为1,则甲的面积就是:2×1=2,长方形ABCD的面积:4×2=8,则DC=8÷2=4,乙的长:4-1=3,乙的宽=2÷3=2/3,则乙的长和宽的比是3:2/3 = 9:25、把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?【解析】我们可以把小正方形移至大正方形里面进行分析。

两个正方形的面积差40平方分米就是图中的A和B两部分,如图。

如果把B移到原来小正方形的上面,不难看出,A和B正好组成一个长方形,此长方形的面积是40平方分米,长20分米,宽是40÷20=2(分米),即大、小两个正方形的边长相差2分米。

因此,大正方形的边长就是(20+2)÷2=11(分米),面积是11×11=121(平方分米)(Summary-Embedded)——归纳总结长方形的面积=长×宽正方形的面积=边长×边长掌握并能运用这两个面积公式,就能计算它们的面积。

但是,在平时的学习过程中,我们常常会遇到一直击赛场名师点拨些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。

这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。

学霸经验➢本节课我学到了➢我需要努力的地方是。

相关文档
最新文档