开关电源干扰
开关电源电磁干扰及其抑制技术研究
开关电源电磁干扰及其抑制技术研究开关电源电磁干扰是指在开关电源的工作过程中,由于电流的开关过程产生的电磁波辐射以及电源回路内部的高频噪声等因素,对周围电子设备和通信系统等产生的干扰。
这种干扰不仅会影响到开关电源自身的正常工作,而且还会对其它电子设备和系统产生不可忽视的影响,甚至引发严重的故障。
因此,研究开关电源电磁干扰及其抑制技术具有重要的理论和应用价值。
开关电源本身的工作原理决定了其在工作过程中会产生很高频率的开关波形,并伴随较大的电流急变。
这些急变的电流和电压波形会通过电源开关器件和电源回路上的导线辐射出去,形成电磁波辐射。
此外,开关电源内部的高速开关元件的开关过程会带来较高的开关频率噪声,也会导致系统内部的高频噪声。
这些干扰源的存在导致了开关电源电磁干扰的发生。
为了抑制开关电源电磁干扰,可以从以下几个方面着手进行研究和技术应用。
首先,可以从电源开关器件的选用和设计上入手。
对于开关电源来说,开关器件在工作过程中的开关速度需要尽量快,以减少器件转换过程中的损耗。
但是快速开关也会带来更高频率的电磁辐射。
因此,选择低辐射的开关器件以及合理的开关频率是减少电磁干扰的重要手段。
其次,可以通过合理设计电源回路和电源线路布局来减少电磁辐射。
合理布局电源线路可以减少电源回路的高频噪声对周围系统的干扰。
电源回路设计需要采用抗干扰的滤波电容和电感,减少电磁辐射。
此外,还可以利用开关电源自身的工作原理进行抗干扰设计。
比如,采用恰当的抗干扰技术对开关电源进行滤波和补偿,抑制高频噪声和电磁波辐射。
例如,采用电源输入端的滤波电容和电感,将电磁波辐射降低到最低水平。
最后可以采用外部的抑制技术对开关电源进行干扰抑制。
例如,采用EMI滤波器、磁珠、屏蔽罩等器件,将电磁干扰源隔离开来,减少对周围系统的干扰。
总之,开关电源电磁干扰及其抑制技术的研究对提高开关电源的质量和系统的稳定性具有重要意义。
通过在开关电源的设计和布局中合理应用这些干扰抑制技术,可以有效减少电磁波辐射和高频噪声对系统的干扰,提高系统的工作可靠性和稳定性。
抑制开关电源电磁干扰的措施
抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。
根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。
1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。
电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。
电源进线端通常采用如图1 所示的EMI 滤波器电路。
该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。
在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。
而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。
抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。
当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。
因此,即使在大负载电流的情况下,磁芯也不会饱和。
而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。
2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。
采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。
可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。
开关电源传导干扰分析与整改
开关电源传导干扰分析与整改开关电源是现代电子设备中广泛应用的一种电源类型。
开关电源具有效率高、体积小、重量轻等优点,已经成为现代电子设备的首选电源类型。
然而,开关电源也存在一定的问题,其中传导干扰问题是一个需要重视的问题,下面我们来谈谈开关电源传导干扰分析与整改的问题。
1、开关电源的传导干扰问题开关电源通过高频开关管使AC电源变成高频交流电源,再通过整流、滤波、稳压等电路将高频交流电源变成DC电源,这个过程中,电路中的开关管、滤波电容、稳压电路等部件会产生电磁干扰,干扰的频率范围大致在几十kHz到几百MHz之间,这些干扰信号会以电磁波的形式传播到其他电路中,从而影响电路的正常工作。
传导干扰主要是通过电源线、信号线等物理连接传播的,对同一信号线上的电路产生干扰,影响信号的传输质量,甚至影响电路的工作稳定性。
同时,也会通过制成工艺、线路布局等方式产生辐射干扰,对周围的其他电路产生干扰。
2、开关电源传导干扰的来源(1)开关管开关电源中的开关管是主要产生传导干扰的元件之一,开关管在工作时会产生大量的高频脉冲信号,这些脉冲信号会通过电源线、信号线等物理连接透传到其他电路中,引起电路的干扰。
(2)电容开关电源中的滤波电容和稳压电容也会产生较强的传导干扰信号,电容充放电时会产生电流脉冲,这些脉冲又会产生磁场和电场,从而影响周围电路的稳定性。
(3)线路布局线路布局的不合理也是开关电源产生传导干扰的原因之一,线路长度过长,线路走向交错等都会导致干扰的产生和传输。
3、开关电源传导干扰的整改措施(1)优化开关管的选择开关电源的开关管是干扰主要源之一,优化选择开关管可以减少干扰的产生。
例如采用低压降MOSFET、反平行二极管、优化的开关频率等方式可以有效减少开关管产生的干扰。
(2)采用滤波器和稳压器开关电源中采用滤波器和稳压器,可以有效地减少电容充放电产生的干扰信号。
滤波器和稳压器可以将高频脉冲信号转换为连续的直流电源,在一定程度上减小了干扰的传输。
开关电源产生干扰的四条主要原因
开关电源产生干扰的四条主要原因1.开关电源本身的电磁干扰:开关电源采用高频开关器件进行开关操作,这会引起较高频率的电流和电压波形,并产生大量的电磁噪声。
这些高频噪声会通过电源线、输入滤波器和输出滤波器等途径进入其他电路和设备,引起干扰。
2.输入电源的电磁干扰:不同的设备可能共享相同的输入电源线路,当一个设备使用开关电源时,其产生的高频电磁噪声会通过共享的电源线路传播给其他设备,从而对它们产生干扰。
3.输出线路干扰:开关电源输出端连接的电源线路和负载线路也可能成为干扰源。
由于开关电源的开关操作会引起电流和电压的突变,这可能会在输出线路中产生较大的尖峰电流和瞬时电压斜率,同时伴随着较高频率的电流波形,进而对连接的负载产生干扰。
4.开关电源引起的电磁互感干扰:由于开关电源中的高频开关操作,其导线和电感元件之间会产生一定强度的电磁场。
当这些元件和其他线路或元件之间存在电磁耦合时,会发生电磁互感干扰。
这种耦合可能发生在电源线、输出线路和周围环境中,通过干扰线路中的电感元件或导线,引起其上产生的感应电流或感应电压,从而产生干扰。
为了减少开关电源产生的干扰,可以采取以下措施:1.优化开关电源的设计:通过合理选择高频开关器件和合适的电源变压器,以减少开关操作时产生的电磁噪声。
2.加强输入滤波:在开关电源的输入端添加滤波电路,能够有效滤除输入电源中的高频噪声,减少其对其他设备的干扰。
3.加强输出滤波:在开关电源的输出端添加输出滤波器,可以滤除输出线路中的高频噪声和尖峰电流,减少对连接设备的干扰。
4.电磁屏蔽措施:对开关电源所在的外壳进行屏蔽处理,防止其产生的电磁辐射波传播到周围环境中。
总之,开关电源产生的干扰主要与其本身设计和工作原理有关,通过合理设计、滤波和屏蔽措施,可以有效减少这些干扰,并保证设备的正常运行。
开关电源中的干扰
开关电源中的干扰一.电源线噪声电网中各种用电设备产生的电磁骚扰沿着电源线传播所造成的,电源线的噪声分为两大类:共模干扰和差模干扰。
1.共模干扰(Common-mode Interference):两导线上的干扰电流振幅相等,而方向相同者称为共模干扰。
(任何载流体与地之间不希望有的电位)共模干扰的消除共模扼流圈工作原理如下:共模扼流圈当电路中的正常电流通过时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当共模电流流过线圈时,由于共模电流的同向性,会在线圈类产生同向的磁场而增大线圈的阻抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流达到滤波的目的。
共模电容的工作原理和差模电容的工作原理是一致的,都是利用电容的高频低阻性,使高频干扰电路短路,而低频时电路不受任何影响。
只是差模电容是两极之间短路,而共模电容是线对地短路。
消除共模干扰的方法包括:(1).采用双绞线并有效接地。
(2).强电场的地方还需要采用度锌管屏蔽。
(3).布线时远离高压线,更不能将高压电源线和信号线捆在一起走线。
(4).不要和电控所共用同一个电源。
(5).采用线形稳压电源或高品质的开关电源(纹波干扰小于50mV)(6).采用差分式电路2.差模干扰(Differential-mode Interference):两导线上的干扰电流,振幅相等,方向相反称为差模干扰。
(任何两个载流体之间不希望有的电位差)(电容C的容量范围大致是2200pF-0.1uF,为减小漏电流,电容量不宜超过0.1uF)差模干扰的消除当干扰信号频率越高时,Zc越小,效果越明显,而低频时电路不受任何影响。
(电容C的容量大致是0.01-0.47uF)任何电源线上传导干扰信号,均用差模和共模信号来表示,差模干扰在两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,一般指在两根信号线上产生的幅值相等,相位相同的噪声,属于非对对称性干扰。
开关电源产生电磁干扰的原因
开关电源产生电磁干扰的原因
电磁干扰(EMI,Electromagneticlnterference)是一种电子系统或分系统受非预期的电磁扰动造成的性能损害。
它由三个基本要素组成:干扰源,即产生电磁干扰能量的设备;藕合途径,即传输电磁干扰的通路或媒介;敏感设备,即受电磁干扰而被损害的器件、设备、分系统或系统。
基于此,掌握电磁干扰的基本措施就是:抑制干扰源、切断祸合途径及降低敏感设备对干扰的响应或增加电磁敏感性电平。
依据开关电源工作原理知:开关电源首先将工频沟通电整流为直流电,再逆变为高频沟通电,最终经过整流滤波输出,得到稳定的直流电压。
在电路中,功率三极管、二极管主要工作在开关管状态,且工作在微秒量级;三极管、二极管在开一闭翻转过程中,在上升、下降时间内电流变化大、易产生射频能量,形成干扰源。
同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,也会形成潜在的电磁干扰。
开关电源通常工作在高频状态,频率在02 kHz以上,因而其分布电容不行忽视。
一方面散热片与开关管的集电极间的绝缘片,由于其接触面积较大,绝缘片较薄,因此,两者间的分布电容在高频时不能忽视,高频电流会通过分布电容流到散热片上,再流到机壳地,产生共模千扰;另一方面脉冲变压器的初次级之间存在着分布电容,可将初级绕组电压直接祸合到次级绕组上,在次级绕组作直流输出的两条电源线上产生共模干扰。
因此,开关电源中的干扰源主要集中在电压、电流变化大,如开关管、二极管、高频变压器等元件,以及沟通输人、整流输出电路部分。
开关电源设计中的电磁干扰问题分析
XX,a click to unlimited possibilities
汇报人:XX
目录
01 开 关 电 源 电 磁 干 扰 的产生
03 开 关 电 源 电 磁 干 扰
的抑制措施
05 开 关 电 源 电 磁 干 扰 的未来研究方向
02 开 关 电 源 电 磁 干 扰 的危害
电磁干扰测试设备
电磁干扰测试仪:用于测量电磁干扰强度和频率 频谱分析仪:用于分析电磁干扰的频率成分 功率计:用于测量电磁干扰的功率 天线:用于接收和发射电磁干扰信号 滤波器:用于过滤掉不需要的频率成分 示波器:用于观察电磁干扰信号的波形和频率
Part Five
开关电源电磁干扰 的未
汇报人:XX
电磁干扰的抑制方法:采用屏蔽、滤波、接地等措施,提高开关电源的抗干扰能力
电磁干扰抑制措施的有效性和局限性
电磁干扰抑制 措施的有效性: 可以有效降低 电磁干扰对开 关电源设计的 影响,提高电 源性能和可靠
性。
电磁干扰抑制 措施的局限性: 可能无法完全 消除电磁干扰, 需要与其他设 计方法相结合, 才能达到最佳
降低电磁干扰
屏蔽技术
屏蔽材料的选择:根据电磁干扰的 频率和强度选择合适的屏蔽材料
屏蔽接地:确保屏蔽结构具有良好 的接地性能,避免电磁干扰通过接 地回路进入系统
添加标题
添加标题
添加标题
添加标题
屏蔽结构的设计:合理设计屏蔽结 构的形状、尺寸和布局,提高屏蔽 效果
屏蔽效能的评估:通过实验和仿真 方法评估屏蔽结构的效能,优化屏 蔽设计
Part Four
开关电源电磁干扰 的测试与评估
电磁干扰测试方法
测试标准:IEC 61000-3-2、IEC 61000-3-3等
开关电源电磁干扰的产生机理
开关电源电磁干扰的产生机理
开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。
现在按噪声干扰源来分别说明:
1、二极管的反向恢复时间引起的干扰
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消逝之前的一段时间里,电流会反向流淌,致使载流子消逝的反向恢复电流急剧削减而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰
功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波重量。
当采纳零电流、零电压开关时,这种谐波干扰将会很小。
另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
3、沟通输入回路产生的干扰
无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。
开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。
这种通过电磁辐射产生的干扰称为辐射干扰。
4、其他缘由
元器件的寄生参数,开关电源的原理图设计不够完善,印刷线路板(PCB)走线通常采纳手工布置,具有很大的随便性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。
开关电源初次级之间的干扰
开关电源初次级之间的干扰主要源于以下几个方面:1.开关管负载的感性特性:开关管负载是开关电源的核心部分,由开关管和高频变压器组成。
在开关管导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压。
在开关管断开瞬间,由于初级线圈的漏磁通,致使一部分能量没有从一次线圈传输到二次线圈,储藏在电感中的这部分能量将和集电极电路中的电容、电阻形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断电压尖峰。
这种涌流和浪涌尖峰电压具有较大的幅度和频谱较宽的特点,因此会产生较强的电磁干扰。
2.变压器的漏感和输出二极管的反向恢复电流:这些因素会导致潜在的电磁干扰。
开关电源中的干扰源主要集中在电压和电流变化较大的组件上,并且主要显示在开关管、二极管和高频变压器上。
随着电力电子技术的发展,开关电源模块由于其相对较小的尺寸、较高的效率和可靠的操作已开始取代传统的整流器电源,并已广泛应用于社会的各个领域。
3.快速变化的电压和电流:在开关电源中,由于变压器的漏感和输出二极管的反向恢复电流而产生的尖峰会形成潜在的电磁干扰。
此外,由于电力电子设备在开关操作过程中会产生快速变化的电压和电流,因此会产生强烈的谐波干扰和尖峰干扰。
这些干扰可能会通过传导、辐射和串扰等途径影响其自身电路和其他电子系统的正常运行。
为了解决这些干扰问题,可以采取以下措施:1.增加输入滤波器:输入滤波器可以有效地抑制开关电源产生的电磁干扰。
它由共模和差模滤波器组成,可以减小传导干扰并降低电磁辐射。
2.优化开关频率:通过优化开关频率,可以降低电磁干扰的强度和频率范围。
较高的开关频率会导致更强的电磁干扰,因此选择合适的开关频率非常重要。
3.使用软开关技术:软开关技术可以减小开关管和整流二极管的电压和电流变化率,从而减小电磁干扰。
它通过在开关管或整流二极管上增加额外的电路来控制电压和电流的变化过程。
4.屏蔽和接地:对开关电源进行良好的屏蔽和接地可以有效地减小电磁干扰对外界的传播。
开关电源的干扰
开关电源的干扰对于开关电源的干扰,首先要清楚干扰源的特性、干扰的通道和传播方式。
开关电源因为体积小、重量轻、效率高、可靠性好而被广泛应用。
但不同的应用场合对开关电源有着不同的要求。
例如,边远的农村常常因为用户用电量变化和发电设备工作的不稳定,造成电网波形失真严重、电压波动范围大,再加上配电系统接线的不规范,于是对开关电源构成了严重考验。
而在电气化铁路的沿线,当电力机车经过时,有着很强的电磁感应,会对附近的开关电源造成很强的电磁场干扰。
对于野外,特别是安装在较高建筑物或山顶上的开关电源设备,遭受雷击破坏的机会较多。
因此,就开关电源来说,内部的控制电路很容易受外界的电磁干扰,导致开关电源不能正常工作。
这样看来,开关电源必须具有很强的抗电磁干扰的能力(包括对雷击浪涌、电网电压波动、静电、电场、磁场及电磁场等的抗干扰能力),以确保其自身工作正常以及与之配套设备的工作稳定性。
与此同时,在开关电源内部含有开关功率管、整流及续流二极管、功率变压器,这些器件均工作在高电压、大电流和很高频率额情况下,工作时的电压和电流波形多数是方波,所以造成了很强的开关噪声。
它们会在开关电源的输入和输出端形成很强的共模和差模传导骚扰;还能进一步通过电源的输入和输出线路以及外壳向空中形成辐射,产生辐射电磁场骚扰。
这一切都能对周围的敏感设备造成干扰,引起它们工作异常。
功率开关转换电路是开关电源的核心,开关功率管和高频变压器是产生电磁干扰的主要器件。
脉冲的幅值大,工作的频带宽,而且谐波含量高,对抑制电磁干扰与提高开关电源的效率是一个很大的矛盾,因为频率高、功率大,电磁辐射强度必然大。
开关管的负载是高频变压器的一次绕组,属于电感负载。
电感负载的特点是电路在开通和关断的瞬间将产生极大的反问电流,称为通流。
这种电流将在变压器一次绕组的两端引发浪涌尖峰电压。
开关管在关断瞬间,由于一次绕组存在漏感,相当一部分电能不能传送到二次测,因此这部分电能将在开关管集电极的极间电容、电阻间形成带有尖峰电压性质的高频振荡,并叠加在关断电压上,形成能量很大的尖峰电压。
解析几种有效的开关电源电磁干扰的抑制措施
解析几种有效的开关电源电磁干扰的抑制措施
有效的开关电源电磁干扰抑制措施包括:
1. 选择合适的滤波器:在开关电源输入端、输出端以及变压器绕组的附近安装滤波器,可以有效滤除高频噪声和突变噪声,减少电磁辐射。
2. 使用磁性材料:在开关电源变压器绕组的附近使用磁性材料,如铁氧体、铁氟龙等,可以有效吸收和屏蔽电磁干扰。
3. 地线布局:合理布置地线,减少电磁干扰。
不同元器件的地线要分开布局,避免共
用一个接地点。
4. 合理选择元器件:选择低电阻、低电感、低容值的元器件,减少电路中的谐振,降
低电磁干扰。
5. 优化电路设计:合理布局和连接元器件,减少信号回路,增加信号路径的隔离,减
少电磁干扰。
6. 使用屏蔽材料:在开关电源敏感部分使用屏蔽材料,如铝箔、铁氧网、铜网等,将
电磁辐射封锁在内部。
7. 设计良好的接地系统:确保良好的接地系统,包括减少接地回路的电阻,建立良好
的接地连接。
8. 符合电磁兼容性标准:在设计和生产过程中遵循电磁兼容性标准,如EMC(电磁兼容性)标准,确保产品符合相关电磁干扰限制。
以上是一些常见的有效的开关电源电磁干扰抑制措施,根据具体的应用场景和需求,还可以采取其它的措施来减少电磁干扰的影响。
开关电源干扰(差模噪声与共模噪声)问题
开关电源干扰(差模噪声与共模噪声)问题1、干扰是如何产生的差模噪声:主要由开关变换器的脉动电流引起。
共模噪声:主要由较高的d/d与杂散参数间相互作用而产生的高频振荡引起;共模电流包括连线到接地面的位移电流,开关器件的d/d通过外壳和散热片之间的分布电容对地形成的噪声电流。
整流电路:整流电路一般采用不控整流方式,后接大容量滤波电容,电容的接入往往导致整流二极管导通角变小,而引起输入侧的交流电流波形产生畸变。
开关管及整流管:高频率的开关,在微妙量级时间内产品射频能量,是噪声主要来源,通过辐射或传导方式释放。
分布电容:电路、PCB、散热器等之间在高频开关的突然充放电影响之下,分布电容被激活,这也是噪声的重要来源。
变压器:变压器的分布电容,也会产生噪声。
2、干扰造成的影响噪声会通过传导、辐射、耦合等方式对外传播高频噪声会对设备本身电子器件造成影响,导致电路工作异常,降低器件使用寿命;噪声会对与之临近的设备产生影响,导致临近设备工作紊乱;噪声会通过传导进入电网,影响挂接在电网上的其他设备。
3、干扰如何去除[1]1)电网到设备之间,加装线性滤波器L1、L2、C1组成差模滤波电路,C1为X电容(安规电容);L3、C2、C3组成共模滤波电路,L3为共模电感,C2、C3为Y电容(安规电容)。
2)为开关器件添加RC吸收电路3)接地,接地线尽量短粗,减小接地电阻,辐射可以加屏蔽罩a适合低要求场合;b适合有公共线路阻抗引起噪声的低频场合;c适合于存在共模噪声的高频场合4)电阻电阻选择金属膜电阻(RJ),不用碳膜电阻(RT),RT发热量会随着工作频率升高而急剧增加,会造成器件过热甚至导致器件烧毁。
5)滤波电容选择电容要看他的阻抗-频率特性,一般铝电解电容工作在10K以上时,其阻抗特性会呈现出感性,这是我们不希望发生的。
所以,高频电路要选择特定的滤波电容:回端电容;多芯电容;叠片电容;复合电容:将一个大电容和一个小的瓷片电容并联使用,可获得较好的高频特性,但最高一般可用到1MHZ,再高就无法抑制了。
在开关电源中的电子干扰分析及其解决办法
在开关电源中的电子干扰分析及其解决办法
开关电源因体积小、功率因数较大等优点,在通信、控制、计算机等领域应用广泛。
但由于会产生电磁干扰,其进一步的应用受到一定程度上的限制。
本文将分析开关电源电磁干扰的各种产生机理,并在其基础之上,提出开关电源的电磁兼容设计方法。
开关电源的电磁干扰分析
开关电源的结构如图1所示。
首先将工频交流整流为直流,再逆变为高频,最后再经整流滤波电路输出,得到稳定的直流电压。
电路设计及布局不合理、机械振动、接地不良等都会形成内部电磁干扰。
同时,变压器的漏感和输出二极管的反向恢复电流造成的尖峰,也是潜在的强干扰源。
图1 AC/DC开关电源基本框图
1 内部干扰源
●开关电路
开关电路主要由开关管和高频变压器组成。
开关管及其散热片与外壳和电源内部的引线间存在分布电容,它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。
开关管负载为高频变压器初级线圈,是感性负载。
当原来导通的开关管关断时,高频变压器的漏感产生了反电势E=-Ldi/dt,其值与集电极的电流变化率成正比,与漏感成正比,迭加在关断电压上,形成关断电压尖峰,从而形成传导干扰。
●整流电路的整流二极管
输出整流二极管截止时有一个反向电流,其恢复到零点的时间与结电容等因素有关。
它会在变压器漏感和其他分布参数的影响下产生很大的电流变化。
开关电源的电磁干扰分析及有效的抑制措施
开关电源的电磁干扰分析及有效的抑制措施一、开关电源的概念开关电源就是通过对功率晶体管的导通和关断控制,截取幅值与直流输入相等的矩形脉冲,再通过整流和滤波装置输出稳定的直流电压值。
二、开关电源电磁干扰的产生机理开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;按耦合通道来分,可分为传导干扰和辐射干扰两种。
1、功率开关管开关工作产生的干扰。
开关电源中的功率开关管工作在开关状态,工作时会产生较大的脉冲电压和脉冲电流。
由于在脉冲电流和脉冲电压中含有丰富的高次谐波成分,同时又由于功率开关管导通时整流二极管的恢复特性会形成电流振荡,而在整流二极管上产生的浪涌电压。
2、由于二极管的恢复特性产生的干扰。
当二极管进行高频整流时,由于二极管的PN结,正向电流所储存的电荷在加反向电压时不能马上消失,会形成二极管的反向电流。
这段时间称为反向恢复时间,这时由于加到二极管的反向电压较大,会产生较大损耗和形成较大的干扰来源。
如果二极管在反向电流恢复时的电流变化率di/dt较大,由于电感作用会产生较大的尖峰电压,这就是二极管的恢复噪声。
Di/dt较大时称为硬恢复,Di/dt较小时称为软恢复。
软恢复既可通过吸收回路实现,也可通过谐振开关技术实现。
软恢复对提高开关电源的工作可靠性,减小干扰有很大的好处。
由于肖特基二极管没有载流子蓄积效应,所以恢复噪音很小。
3、由整流滤波电路产生的干扰。
由于交流市电输入的开关电源在输入端接有整流滤波电路,整流二极管的导通角很小,使整流电流的峰值很大,这种脉冲状的二极管整流电流也会产生干扰。
三、抑制开关管电源电磁干扰的措施主要有四种方法,即吸收法、屏蔽技术、滤波技术、接地技术。
1、吸收法,即是在开关管的两端并联RC电路,电容的作用就是把电流中的交流成分吸收掉,但是这时的电感和电容相连就会形成LC振荡回路,所以在其中加上一个电阻,主要的作用就是阻尼作用,把LC振荡回路中产生的能量消耗掉。
怎样抑制开关电源的电磁干扰
怎样抑制开关电源的电磁干扰通常开关电源EMI控制主要采用滤波技术、屏蔽技术、密封技术、接地技术等。
EMI干扰按传播途径分为传导干扰和辐射干扰。
开关电源主要是传导干扰,且频率范围最宽,约为10kHz一30MHz。
抑制传导干扰的对策基本上10kHz 一150kHz、150kHz一10MHz、10MHz以上三个频段来解决。
10kHz一150kHz范围内主要是常态干扰,一般采用通用LC滤波器来解决。
150kHz一10 MHz范围内主要是共模干扰,通常采用共模抑制滤波器来解决。
10MHz以上频段的对策是改进滤波器的外形以及采取电磁屏蔽措施。
采用交流输入EMI滤波器通常干扰电流在导线上传输时有两种方式:共模方式和差模方式。
共模干扰是载流体与大地之间的干扰:干扰大小和方向一致,存在于电源任何一相对大地、或中线对大地间,主要是由du/dt产生的,di/dt也产生一定的共模干扰。
而差模干扰是载流体之间的干扰:干扰大小相等、方向相反,存在于电源相线与中线及相线与相线之间。
干扰电流在导线上传输时既可以共模方式出现,也可以差模方式出现;但共模干扰电流只有变成差模干扰电流后,才能对有用信号构成干扰。
交流电源输人线上存在以上两种干扰,通常为低频段差模干扰和高频段共模干扰。
在一般情况下差模干扰幅度小、频率低、造成的干扰小;共模干扰幅度大、频率高,还可以通过导线产生辐射,造成的干扰较大。
若在交流电源输人端采用适当的EMI滤波器,则可有效地抑制电磁干扰。
电源线EMI滤波器基本原理如图1所示,其中差模电容C1、C2用来短路差模干扰电流,而中间连线接地电容C3、C4则用来短路共模干扰电流。
共模扼流圈是由两股等粗并且按同方向绕制在一个磁芯上的线圈组成。
如果两个线圈之间的磁藕合非常紧密,那么漏感就会很小,在电源线频率范围内差模电抗将会变得很小;当负载电流流过共模扼流圈时,串联在相线上的线圈所产生的磁力线和串联在中线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。
开关电源电磁干扰(EMI)整改汇总
开关电源电磁干扰(EMI)整改汇总开关电源类产品的频率大概分四段:150K-400K-4M-20M-30M,这样分的好处是找问题迅速,一般前一段的主要问题在于滤波元器件上。
小功率开关电源用一个合适的X电容和一个共模电感可消除,从增加的元件对测试结果来看,一般电感对A V值有效,电容对QP值有效。
当然,这只是一般规律。
电容越大,滤除的频率越低。
电感越大(适可而止),滤除的频率越高。
400K-4M这一段主要是开关管,变压器等的干扰。
可以在管与散热片之间加屏蔽层(云母片),或者在引脚上套磁珠。
吸收电路上套磁珠有时也很有效。
变压器初次级之间的Y 电容也是不容忽视的。
次级对初级高压端合适还是低压端有时候对这段频率影响很大。
除此之外,调整滤波器也可以抑制其骚扰。
4M-20M这段主要是变压器等高频干扰,在没有找到根源前,大概通过调整滤波,接地,加磁珠等手段解除,有时也可能是输出端的问题。
20M 以后主要针对齐纳二级管,输出端电源输入端整改。
一般是用到磁珠,接地等。
值得注意的是,滤波器件因该远离变压器,散热器,否则容易耦合。
镇流器整改原理和开关电源类似,但是前部分超标并非调整滤波器件就都可以解除,最有效的办法是Y电容金属外壳,外壳再连接地线。
磁珠对高频抑制效果不错。
根据IEC 60384-14,电容器分为X电容及Y电容,1. X电容是指跨于L-N之间的电容器,2. Y电容是指跨于L-G/N-G之间的电容器。
(L="Line", N="Neutral", G="Ground")X电容底下又分为X1, X2, X3,主要差別在于:1. X1耐高压大于2.5 kV, 小于等于4 kV,2. X2耐高压小于等于2.5 kV,3. X3耐高压小于等于1.2 kVY电容底下又分为Y1, Y2, Y3,Y4, 主要差別在于:1. Y1耐高压大于8 kV,2. Y2耐高压大于5 kV,3. Y3耐高压n/a4. Y4耐高压大于2.5 kVX,Y电容都是安规电容,火线零线间的是X电容,火线与地间的是Y电容.它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模工扰起滤波作用.作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板 (PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。
开关电源的电磁干扰及噪声抑制方法
开关电源的电磁干扰及噪声抑制方法开关电源是现代电子应用中常见的一种电源形式,其工作原理是通过开关管开关控制输入电压的大小和频率以实现电压转换。
但是,开关电源在工作过程中会产生电磁干扰和噪声,对其他电子设备的正常工作产生影响。
因此,为了抑制开关电源的电磁干扰和噪声,在设计和使用开关电源时需要采取一些措施。
首先,开关电源产生的电磁干扰主要包括导向式干扰和辐射式干扰。
导向式干扰是指开关电源通过引线或线路对周围设备产生的电磁干扰,辐射式干扰是指开关电源通过电磁波辐射对周围设备产生的干扰。
对于导向式干扰,可以采取以下措施进行抑制:1.滤波器:在开关电源的输入和输出端加装滤波器,用于滤除高频噪声和电磁干扰。
常用的滤波器有LC滤波器、RC滤波器和Pi型滤波器等。
2.输入电源线路的处理:尽量缩短输入电源线路的长度,采用屏蔽线材,减小电磁干扰的传播路径。
同时,在输入电源线上添加额外的滤波电容和电感,抑制高频噪声。
3.地线处理:通过合理布置地线,减小接地电阻,提高地线的抗干扰能力。
将开关电源的地线与其他设备的接地点连接,共用同一个地线。
对于辐射式干扰,可以采取以下措施进行抑制:1.屏蔽:在开关电源的外壳上添加金属屏蔽罩,减少电磁辐射。
金属屏蔽罩应与开关电源的地线连接,以形成完整的屏蔽。
2.PCB设计:在开关电源的PCB板设计中,合理布局信号和电源线路,减小线路的长度。
同时,采用地平面和电源平面屏蔽,减少信号线和电源线的交叉和干扰。
3.使用低频率开关管:低频率工作的开关管辐射干扰较小,可以有效降低开关电源的电磁辐射干扰。
此外1.选择合适的元器件:选用带有防干扰措施的元器件,如具有抗干扰特性的电解电容和电感器件,减小干扰的产生和传播。
2.电源输出滤波:在开关电源的输出端添加滤波电容和电感,减小输出电压的纹波和噪声。
3.接地处理:通过合理的接地设计和连接方式,减小接地电阻,提高接地抗干扰能力。
4.EMI滤波器:在开关电源的输入端和输出端加装EMI滤波器,进一步滤除高频噪声和电磁干扰。
开关电源的干扰及抑制
开关电源的干扰及抑制第一篇:开关电源的干扰及抑制1.电磁干扰的产生与传输电磁干扰传输有两种方式:一种是传导传输方式,另一种则是辐射传输方式。
传导传输是在干扰源和敏感设备之间有完整的电路连接,干扰信号沿着连接电路传递到接收器而发生电磁干扰现象。
辐射传输是干扰信号通过介质以电磁波的形式向外传播的干扰形式。
常见的辐射耦合有三种:1)一个天线发射的电磁波被另一个天线意外地接收,称为天线对天线的耦合;2)空间电磁场经导线感应而耦合,称为场对线的耦合。
3)两根平等导线之间的高频信号相互感应而形成的耦合,称为线对线的感应耦合。
2.电磁干扰的产生机理从被干扰的敏感设备角度来说,干扰耦合又可分为传导耦合和辐射耦合两类。
传导耦合模型传导耦合按其原理可分为电阻性耦合、电容性耦合和电感性耦合三种基本耦合方式。
辐射耦合模型辐射耦合是干扰耦合的另一种方式,除了从干扰源发出的有意辐射外,还有大量的无意辐射。
同时,PCB板上的走线无论是电源线、信号线、时钟线、数据线或者控制线等,都能起到天线的效果,即可辐射出干扰波,又可起到接收作用。
3.电磁干扰控制技术①传输通道抑制滤波:在设计和选用滤波器时应注意频率特性、耐压性能、额定电流、阻抗特性、屏蔽和可靠性。
滤波器的安装正确与否对其插入损耗特性影响很大,只有安装位置恰当,安装方法正确,才能对干扰起到预期的滤波作用。
在安装滤波器时应考虑安装位置,输入输出侧的配线必须屏蔽隔离,以及高频接地和搭接方法。
屏蔽:电磁屏蔽按原理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽三种。
电场屏蔽包含静电屏蔽和交变电场屏蔽;磁场屏蔽包含低频磁场屏蔽和高频磁场屏蔽。
不同类型的电磁屏蔽对屏蔽体的要求不同。
在实际的屏蔽中,电磁屏蔽效能更大程度上依赖于屏蔽体的结构,即导电的连续性。
实际的屏蔽体由于制造、装配、维修、散热、观察及接口连接要求,其上面一般都开有形状各异、尺寸不同的孔缝,这些孔缝对于屏蔽体的屏蔽效能起着重要的影响作用,因此必须采取措施来抑制孔缝的电磁泄漏。
开关电源的抗干扰分析
开关电源的抗干扰分析引言开关电源产生的干扰,按噪声干扰源种类来分,可以分为尖锋干扰和谐波干扰;若按耦合通路来分,可分为传导干扰和辐射干扰,开关电路框图如图1。
2开关电源的主要干扰2.1一次整流回路的干扰开关电源中的主要噪声干扰之一是由二极管断开时的反向恢复现象引起的,一次整流回路中的整流二极管正向导通时有较大的正向电流流过,它受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失前的一段时间,电流会反向流动,从而导致很大的电流变化。
即一次整流回路的干扰。
2.2开关回路的干扰电源工作时,开关处于高频通断状态,在高频电流环路中,可能会产生较大的空间辐射噪声。
2.3二次整流回路的干扰电源工作时,整流二极管处于高频通断状态,由脉冲变压器、整流二极管以及滤波电容构成的高频开关电流环路,可能向空间辐射噪声。
2.4控制回路的干扰控制回路中的脉冲控制信号是主要的干扰源。
2.5分布电容引起的噪声干扰3抗干扰措施降低干扰是开关电源稳定工作的前提,其主要方法如下。
3.1在电路设计上要优化布局对于开关电路来说,合理的布局可以对电路中产生的辐射噪声加以抑制。
3.1.1元器件布局时的抗干扰措施(1)根据印制板的安装方式,将散热元器件如功率开关器件、稳压器、变压器等安装在印制板的上方,以利于散热;热敏元件应尽量远离散热元件。
(2)在高频电路中,尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰;尽量减小由高频脉冲电流所包围的面积。
(3)输入和输出元件应尽量远离。
(4)在双面印制板设计中,适当加入滤波电容,以便减小电源线阻抗,缩小电流环路,使电路工作更加稳定可靠。
(5)尽量减少环路面积。
这是减少辐射噪声的重要途径,为此,要求开关电源的元件彼此间紧密排列。
如图2为环路面积较大的开关电路,图3为环路面积较小的开关电路。
印制板(PCB)布线抗干扰的措施#e#3.1.2印制板(PCB)布线抗干扰的措施印制电路板的抗干扰设计不仅与布局有关,而且与布线也有相当大的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源的抗干扰技术上网时间:2011-07-01 中心议题:
开关电源的干扰源和抗干扰措施
解决方案:
在电路布局上优化布局
合理接地
采用适当的电路隔离方式
单片机的开关电源工作时,其内部电压和电流波形都以非常短的时间上升和下降,所以开关电源本身就是一个射频干扰产生源。
开关电源产生的干扰,按噪声干扰源种类来分,可以分为尖锋干扰和谐波干扰;若按耦合通路来分,可分为传导干扰和辐射干扰,开关电路框图如图1。
1开关电源的主要干扰
1.1 一次整流回路的干扰
开关电源中的主要噪声干扰之一是由二极管断开时的反向恢复现象引起的,一次整流回路中的整流二极管正向导通时有较大的正向电流流过,它受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失前的一段时间,电流会反向流动,从而导致很大的电流变化。
即一次整流回路的干扰。
1.2 开关回路的干扰
电源工作时,开关处于高频通断状态,在高频电流环路中,可能会产生较大的空间辐射噪声。
1.3 二次整流回路的干扰
电源工作时,整流二极管处于高频通断状态,由脉冲变压器、整流二极管以及滤波电容构成的高频开关电流环路,可能向空间辐射噪声。
1.4 控制回路的干扰
控制回路中的脉冲控制信号是主要的干扰源。
1.5 分布电容引起的噪声干扰
2抗干扰措施
降低干扰是开关电源稳定工作的前提,其主要方法如下。
2.1 在电路设计上要优化布局
对于开关电路来说,合理的布局可以对电路中产生的辐射噪声加以抑制。
2.1.1 元器件布局时的抗干扰措施
(1)根据印制板的安装方式,将散热元器件如功率开关器件、稳压器、变压器等安装在印制板的上方,以利于散热;热敏元件应尽量远离散热元件。
(2)在高频电路中,尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰;尽量减小由高频脉冲电流所包围的面积。
(3)输入和输出元件应尽量远离。
(4)在双面印制板设计中,适当加入滤波电容,以便减小电源线阻抗,缩小电流环路,使电路工作更加稳定可靠。
(5)尽量减少环路面积。
这是减少辐射噪声的重要途径,为此,要求开关电源的元件彼此间紧密排列。
如图2为环路面积较大的开关电路,图3为环路面积较小的开关电路。
2.1.2 印制板(PCB)布线抗干扰的措施
印制电路板的抗干扰设计不仅与布局有关,而且与布线也有相当大的关系。
布线的原则如下:(1)相邻电路之间走线尽量避免平行;若平行走线无法避免,则应在平行信号线之间加一条起屏蔽作用的地线,且尽量加大平行信号线间距,以降低两线之间电磁干扰。
(2)控制回路与输出回路分开,采用单点接地方式。
(3)根据PCB板电流的大小,尽量加粗电源线、接地线,减少环路阻抗;同时使电源线、地线的走向和数据传递的方向一致,这有助于增强抗噪声能力;对于密度很高的PCB板,采用多层板;在双面板设计中,还应该在电源线和地线之间留出一定的空间,以便安装高频特性好的去耦电容。
(4)印制线不要突然拐角,以免发生反馈耦合。
(5)电容引线不能太长,尤其是高频旁路电容不能有引线。
2.2 合理接地
电源系统的接地包括公共参考接地和安全及抗干扰接地。
在电路设计中,要尽量减小接地回路中的公共电阻,且应遵循“一点接地”原则。
如果形成多点接地,会出现闭合的接地环路,从而在磁力线穿过回路时将产生磁感应噪声。
通常利用一个导电平面作为参考地,将接地的各部分就近接到该参考地上。
2.2.1 接地过程应遵循的规则
(1)交流电源地与直流电源地分开。
一般情况下交流电源的零线是接地的,且该零线上往往存在很多干扰,如果交流电源地与直流电源地不分开,将对直流电源和直流电路的正常工作产生影响。
通常采用“浮地技术”将交流电源地与直流电源地分开,这样可以隔离来自交流电源地线的干扰。
(2)功率地与弱电地分开。
功率地是负载电路或功率驱动电路的零电位的公共基准地。
由于负载电路或功率驱动电路的电流较强、电压较高,所以功率地线上的干扰较大。
因此功率
地必须与其他弱电地分别设置,以保证整个系统稳定可靠的工作。
2.2.2 为减小地线干扰,在元件及PCB布线上应采取的措施
(1)尽可能缩短元件的引脚长度或者选用贴片元件,以减小元件分布电感的影响。
(2)在电源端尽可能靠近器件接入滤波电容,以缩短开关电流的流通途径。
(3)PCB板布局时,高频数字信号线要用短线,同时电源线尽可能远离高频数字信号线或用地线隔开。
(4)PCB板的电源线和地线印制条尽可能宽,以减小线阻抗,从而减小公共阻抗引起的干扰噪声。
2.3采用适当的电路隔离方式
开关电源包括两部分,变换部分与控制部分。
一般的变换部分是主要的电磁干扰源,而控制部分是被干扰对象。
为了使电气设备可靠地运行,抗干扰问题的实质是解决电气设备的电磁兼容问题。
隔离技术是电磁兼容性中的重要技术之一。
在开关电源中,电路隔离主要有:模拟电路的隔离、数字电路的隔离、数字电路与模拟电路之间的隔离等。
隔离的主要目的是通过隔离元器件把噪声干扰的路径切断,从而达到抑制噪声干扰的效果。
在采用了电路隔离的措施以后,绝大多数电路都能够取得良好的抑制噪声效果。
2.3.1 利用耦合变压器进行隔离
耦合变压器只能传输交流信号,不能传输直流信号。
因此对地线的低频干扰具有较好的抑制能力,并且电路单元间传输的信号电流只能在变压器绕组中流过,不流经地线,也可以避免对其他电路的干扰。
2.3.2 使用脉冲变压器隔离
图4光电耦合器电路脉冲变压器的匝数较少,而且一次绕组和二次绕组分别绕于铁氧体磁心的两侧,它的分布电容很小,仅为几个皮法,可作为脉冲信号的隔离元件。
脉冲变压器传递输入、输出脉冲信号时,不传递直流分量,因而在微电子技术控制系统中得到了广泛的应用。
2.3.3 采用光电耦合器
进行隔离(图4)编译,编译后,还必须对单片机的熔丝位进行合理配置,才能利用AVRStudio调用WinAVR 编译生成的Coff文件进行调试。
最后,生成的hex文件即可直接下载到芯片中运行。
此外,程序烧录完毕后,可通过AVRStudio4烧录锁存位进行加密。
操作器软件工作流程如图5所示。
3 结语
该操作器的工作电源由门机变频器的主控制板的DC稳压模块供给,系统掉电后的一段时间里,由于变频器储能模块的存在,使得操作器仍然可以比较从容的保存重要的参数信息。
此外,工作稳定可靠,使用简单方便,成本低廉的优点,使得它具备良好的商业应用前景。