费马点的证明

合集下载

初中费马点定理证明过程

初中费马点定理证明过程

初中费马点定理证明过程!马尔可夫费马点定理是一个古老而有趣的定理,它说:“在正n边形中,定点A1到A2,A2到A3......An-1到An,An到A1摆放n个数字1,2....n。

如果不论如何把这些数字摆放,这任何每个外角的数之和都与所有n个数的乘积相等。

它是德国数学家费马发现的一种几何现象,他的名字就是维护这个定理的。

证明费马点定理,可以从简单的形式出发,如n=3,假设有ABC三个定点,在每个顶点上摆放1,2,3这三个数字,那么外角的数相加的和是6,而这三个顶点所摆放的数字的乘积是6,证明定理成立。

接下来我们要证明,在多边形,如正六边形中,定点A1到A2,A2到A3......An-1到An,An到A1摆放n个数字1,2....n,不论如何把这些数字摆放,每个外角的数之和都与所有n个数的乘积相等。

首先,我们将每个顶点上的数字记为x1,x2,x3......xn,那么外角的算术和S1=x1+x2+...+xn,而数字的乘积P1=x1*x2*....*xn;另外,我们分别讨论以A1,A2……An为顶点分别作外角的情形,以A1为标准,角x1作外角,S1-x1=x2+x3+..+xn(1),P1/x1=x2*x3*...*xn(2),由于(1)=(2),则外角A1的数字和等于该点摆放的数字的乘积。

接着以A2为标准,角x2作外角,S1-x2=x1+x3+x4+....+xn(3),P1/x2=x1*x3*..*xn(4),由于(3)=(4),则外角A2的数字和等于该点摆放的数字的乘积。

以此类推,可以发现,当以任一顶点为标准,外角的数字和等于其他数字的乘积,因此,在任意n多边形中,任意定点摆放n个数字,每个外角的数字和等于所有数字的乘积,即为费马点定理。

以上便是费马点定理的证明过程。

费马点定理虽然简单,但却深刻地解释了多边形的特殊结构。

它的发现使数学又发展了一步,也深深启发了后世的数学家们。

费马点证明过程

费马点证明过程

费马点证明过程
费马点,也称为费马-托里拆利点,是在一个三角形内部的一个特殊点,从该点到三角形的三个顶点的距离之和最小。

这个点在三角形中的位置依赖于三角形的形状:在锐角三角形中,它位于三角形内部;在直角三角形中,它与直角顶点重合;在钝角三角形中,它位于三角形外部。

费马点的证明过程相对复杂,以下是其基本思路:
首先,考虑一个锐角三角形ABC。

假设P是三角形ABC内的任意一点。

不失一般性,我们可以假设角A是最小的角。

我们将三角形BPC绕点B旋转60度,使得BC与BA重合,得到新的点P'。

此时,点P'位于线段AP的延长线上。

然后,我们注意到三角形BPP'是一个等边三角形,所以BP=PP'。

因此,AP+BP+CP=AP+PP'+CP。

由于PP'+CP>PC',我们得到AP+BP+CP>AP+PC'。

这表明,点P到三角形三个顶点的距离之和大于点A到三角形三个顶点的距离之和。

同理,我们可以证明对于三角形内的任意点P,其到三角形三个顶点的距离之和都大于点A到三角形三个顶点的距离之和。

因此,点A就是使得距离和最小的点,也就是费马点。

对于直角三角形和钝角三角形,我们可以使用类似的方法进行证明,只是旋转的角度和点的位置会有所不同。

这个证明过程利用了三角形的性质和几何变换,展示了费马点的存在性和唯一性。

同时,它也展示了数学证明中的严谨性和创造性。

费马点结论及其详细证明过程

费马点结论及其详细证明过程

费马点结论及其详细证明过程
费马点定理(Fermat's Point Theorem)是指,当一个三角形的边都是整数时,它的内切圆必然有一个圆心位于三角形的三个顶点上。

证明过程:
假设ABC是一个边长都为整数的三角形,O是内切圆的圆心,令AB=a, AC=b, BC=c,
(1)由三角形外接圆的性质可知,三条边的中点到圆心的距离之和等于三条边的长度的一半,即:
$$\frac{a}{2}+\frac{b}{2}+\frac{c}{2}=R$$
(2)根据勾股定理,三条边的中点到圆心的距离之和也等于圆心到三个顶点的距离之和,即:
$$\frac{a}{2}+\frac{b}{2}+\frac{c}{2}=OA+OB+OC$ $
将(1)、(2)式代入得:
$$R=OA+OB+OC$$
又有 $OA^2+OB^2=a^2$ 、$OB^2+OC^2=b^2$ 、
$OC^2+OA^2=c^2$
将此三式相加得:
$$OA^2+OB^2+OC^2=a^2+b^2+c^2$$
将此式与(3)式相减得:
$$OA+OB+OC=\sqrt{a^2+b^2+c^2-
2(a^2+b^2+c^2)}=0$$
可知OA=OB=OC=0,即圆心O位于三角形ABC的三个顶点上。

证毕。

关于费马点知识总结

关于费马点知识总结

费马点一、研究目的费马点是17世纪法国著名的数学家费马发现的。

所指的是在三角形所在的平面上,有一个点到三角形三个顶点距离之和最小。

而费马点有许多有意义的性质,即为此,本人以费马点的性质为因来进行一系列的调查与研究。

二、研究结果(一)费马点的发现者费马点的发现者是费马[Fermat, Pierre de, 1601-1665],17世纪的法国数学家。

1601年8月17日在法国南部图卢兹附近波蒙--德洛马涅出生。

早年于家乡受教育,后入图卢兹大学供读法律,毕业后任职律师。

自1631年起任图卢兹议会议员。

任职期间,他利用工余时间钻研数学,并经常以书信与笛卡儿、梅森、惠更斯等著名学者交往,讨论数学问题。

他饱览群书,精通数国文字,掌握多门自然科学的知识。

虽年近三十才认真注意数学,但成就累累。

最后于1665年1月12日在卡斯特尔逝世。

他生前由于性情淡泊,为人谦逊,因此较少发表论着,大多成果只留在手稿、通信或书页之空白处。

他的儿子于1679年把这些遗作整理汇集成书[共两卷],在图卢兹出版。

由于他在数论、解析几何、概率论等方面贡献良多,被后世誉为「业余数学家之王」。

(二)费马点的求法△ABC需是三个内角皆小于120°三角形,分别以AB、BC、CA为边,向三角形外侧做正三角形△ABD、△ACE,然后连接DC、BE,则二线交于一点,记作点P,则点P就是所求的费马点。

(三)费马点的验证1.△ABC是等边三角形,以边AB、AC分别向△ABC外侧作等边三角形,连接DC、EB,交点为点P,点P为费马点。

则可得出结论:①AP=BP=CP;②∠APB=∠BPC=∠APC=120°;③点P是内心,是在三角形三个内角的角平分线的交点;④点P是垂心,是△ABC各边的高线的交点;⑤△ABP、△ACP、△BCP全等。

⑥点P是△ABC各边的中线的交点;⑦△ABC的三顶点的距离之和为AP+BP+CP,且点P为费马点时和最小。

费马点的小论文

费马点的小论文

费马点的小论文费马(Pierre de Fermat,1601-1665)是一位律师和法国政府的公务员,他利用闲暇的时间研究数学,他从未发表他的研究发现,但是他几乎与同时代的所有欧洲的大数学家保持通信。

曾经,费马是欧洲所有数学研究进展之交换中心。

费马点的定义费马点,就是平面上到三角形三顶点距离之和最小的点。

当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。

费马点的证明证明一Part1当有一个内角大于等于120度时候对三角形内任一点P延长BA至C'使得AC=AC',做∠C'AP'=∠CAP,并且使得AP'=AP, PC'=PC,(说了这么多,其实就是把三角形APC以A为中心做了个旋转)则△APC≌△AP'C'∵∠BAC≥120°∴∠PAP'=180°-∠BAP-∠C'AP'=180°-∠BAP-∠CAP=180°-∠BAC≤60°∴等腰三角形PAP'中,AP≥PP'∴PA+PB+PC≥PP'+PB+PC'>BC'=AB+AC所以A是费马点Part2当所有内角都小于120°时做出△ABC内一点P,使得∠APC=∠BPC=∠CPA=120°,分别作PA,PB,PC的垂线,交于D,E,F三点,如图,再作任一异于P的点P',连结P'A,P'B,P'C,过P'作P'H垂直EF于H易知∠D=∠E=∠F=60°,即△DEF为等边三角形,计边长为d,面积为S则有2S=d(PA+PB+PC)∵P'A≥P'H所以2S△EP'F≤P'A×d同理有2S△DP'F≤P'B×d2S△EP'D≤P'C×d相加得2S≤d(P'A+P'B+P'C)即PA+PB+PC≤P'A+P'B+P'C,当且仅当P,P'重合时取到等号所以P是费马点证明二如右图所示,⊿ABE、⊿ACH、⊿BCG均为等边三角形,连接AG、CE、BH,CE与AB相交于F,则:∵⊿AEC≌⊿ABH,∴∠1=∠2,∴⊿BFP∽⊿EFA ,∠3 =∠4=60°在PE上取点D ,使得⊿DBP为正三角形则⊿ABP≌⊿EBD,得AP=ED∴PA+PB+PC=DE+PD+PC=CE费马点的应用(1)一条河宽1km,两岸各有一座城市A与B,A与B的直线距离是4km,今须铺设一条电缆连A与B,已知地下电缆修建费用为2万元/km,水下电缆为4万元/km,假定河两岸是直线,问应如何架设电缆方可使总施工费用达到最小?(2)有四个点位于一个正方形的四个顶点上,须用线将它们连成一个网络(即从任何一点出发,可沿此网络中的线达到别的点),问此网络应以什么方式连接这四个点,方可使所用的线总长最小?。

费马点证明

费马点证明

费马点定义在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。

(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。

所以三角形的费马点也称为三角形的等角中心。

(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。

费马点的判定(1)对于任意三角形△ABC,若三角形内或三角形上某一点E,若EA+EB+EC 有最小值,则E为费马点。

费马点的计算(2)如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

证明我们要如何证明费马点呢:费马点证明图形(1)费马点对边的张角为120度。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B同理可得∠CBP=∠CA1P由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度同理,∠APB=120度,∠APC=120度(2)PA+PB+PC=AA1将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度又∠BPA=120度,因此A、P、D三点在同一直线上,又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。

(3)PA+PB+PC最短在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC 以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1 <A1G+GM+MA=AM+BM+CM.所以费马点到三个顶点A、B、C的距离最短。

费马点性质:(1)平面内一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小。

高中数学联赛常用定理

高中数学联赛常用定理

常用定理1、费马点(I)基本概念定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。

(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。

所以三角形的费马点也称为三角形的等角中心。

(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。

(II)证明我们要如何证明费马点呢:费马点证明图形(1)费马点对边的张角为120度。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B同理可得∠CBP=∠CA1P由∠P A1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度同理,∠APB=120度,∠APC=120度(2)P A+PB+PC=AA1将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结△PD,则PDB为等边三角形,所以∠BPD=60度又∠BP A=120度,因此A、P、D三点在同一直线上,又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故P A+PB+PC=AA1。

(3)P A+PB+PC最短在△ABC内任意取一点M(不与点P重合),连结AM、BM、△CM,将BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1<A1G+GM+MA=AM+BM+CM.所以费马点到三个顶点A、B、C的距离最短。

平面四边形费马点平面四边形中费马点证明相对于三角型中较为简易,也较容易研究。

(1)在凸四边形ABCD中,费马点为两对角线AC、BD交点P。

费马点(2)在凹四边形ABCD中,费马点为凹顶点D(P)。

经过上述的推导,我们即得出了三角形中费马点的找法:当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。

费马点问题

费马点问题

费马点问题1.费马点在三角形内部,到三角形三个顶点的距离之和最小的点叫做费马点.2.基本模型如图,在锐角△ABC 内有一点O ,分别连接OA 、OB 、OC ,求证:当∠AOB =∠AOC =∠BOC =120°时,OA +OB +OC 最小.证明:将△APC 绕点C 旋转60°至△A ′P ′C ,则△PP ′C 是等边三角形,∴OA +OB +OC =BP +PP ′+P ′A ≥BA ′,此时∠BPC =180°-∠CPP ′=120°,∠A ′P ′C =180°-∠CP ′P =120°,∴∠APC =∠A ′P ′C =120°,∴∠AOB =∠AOC =∠BOC =120°.3.基本结论(1)对于一个各角都不超过120°的三角形,费马点是对各边的张角都是120°的点.(2)对于有一个角超过120°的三角形,费马点就是这个内角的顶点.(不作研究)4.基本题型(1)两点之间线段最短(2)垂线段最短(3)加权问题加权费马点,旋转加缩放,系数先化一,必为勾股数.A BCPABP PCP′P′A′APBC类型1:经典费马点问题:两点之间线段最短【例题1】如图,△ABC 中,∠ACB =90°,∠ABC =60°,BC=P 是△ABC 内一动点,将△ACP 绕点A 逆时针旋转60°得到△ADE ,连接PE 、BD ,则PA +PB +PC 的最小值为___________.【例题2】如图,等边△ABC 中,AB =2,若点P 是△ABC 内部一个动点,则PA +PB +PC 的最小值为__________.【例题3】如图,Rt △ABC 中,∠ABC =90°,AB =2,BC =P 是△ABC 内一个动点,则P A +PB +PC 的最小值为__________.【例题4】如图,正方形ABCD 内一动点E ,到顶点A 、B 、C 的距离之和AE +BE +CE____________.PEDCBA ABCPABCPE DCBA【例题5】如图,△ABC 中,AB =5,BC =3,∠ABC =60°,若点P 是△ABC 内一个动点,则P A +PB +PC 的最小值为__________.【例题6】如图,在△ABC 中,AB =AC =4,∠CAB =30°,AD ⊥BC ,垂足为D ,P 为线段AD 上的一动点,连接PB 、PC ,则P A +2PB 的最小值为_____________.【例题7】如图,在△MNG 中,MN =6,∠M =75°,MG =4O 为△MNG 内一点,则点O 到△MNG 三个顶点的距离之和的最小值为____________.【例题8】如图,锐角三角形ABC 中,∠ACB =60°,AB =7,BC =5,AC =8,D 为△ABC 内一点,BD =1,△ABC 内有动点P ,则P A +PC +PD 的最小值为_________.PCAGNABCD P类型2:动态费马点问题:垂线段最短【例题9】如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为___________.【例题10】如图,四个村庄坐落在矩形ABCD的四个顶点上,AB=10公里,BC=15公里,现在要设立两个车站E、F,则EA+EB+EF+FC+FD的最小值为__________公里.类型3:加权费马点——缩放法,旋转系数大的线段【例题11】如图,在△ABC中,AB=4,BC=6,∠ABC=30°,P是△ABC内一动点,则P APB+PC的最小值为___________.【例题12】如图,在△ABC中,AB=AC=4,∠BAC=90°,点P为△ABC内一点,则12P A+PBPC的最小值为___________.AB CDEMAB CDEFPC BAAB CP【例题13】如图,点P是边长为2的等边△ABC内一点,则P A+PB+12PC的最小值为_________.AB CP费马点问题1.费马点在三角形内部,到三角形三个顶点的距离之和最小的点叫做费马点.2.基本模型如图,在锐角△ABC 内有一点O ,分别连接OA 、OB 、OC ,求证:当∠AOB =∠AOC =∠BOC =120°时,OA +OB +OC 最小.证明:将△APC 绕点C 旋转60°至△A ′P ′C ,则△PP ′C 是等边三角形,∴OA +OB +OC =BP +PP ′+P ′A ≥BA ′,此时∠BPC =180°-∠CPP ′=120°,∠A ′P ′C =180°-∠CP ′P =120°,∴∠APC =∠A ′P ′C =120°,∴∠AOB =∠AOC =∠BOC =120°.3.基本结论(1)对于一个各角都不超过120°的三角形,费马点是对各边的张角都是120°的点.(2)对于有一个角超过120°的三角形,费马点就是这个内角的顶点.(不作研究)4.基本题型(1)两点之间线段最短(2)垂线段最短(3)加权问题加权费马点,旋转加缩放,系数先化一,必为勾股数.A BCPABP PCP′P′A′APBC类型1:经典费马点问题:两点之间线段最短【例题1】如图,△ABC中,∠ACB=90°,∠ABC=60°,BC=P是△ABC内一动点,将△ACP绕点A逆时针旋转60°得到△ADE,连接PE、BD,则PA+PB+PC的最小值为___________.【答案】7.【例题2】如图,等边△ABC中,AB=2,若点P是△ABC内部一个动点,则PA+PB+PC的最小值为__________.【答案】(提示:将△ABP绕点A顺时针旋转60°得到△AB′P′)【例题3】如图,Rt△ABC中,∠ABC=90°,AB=2,BC=P是△ABC内一个动点,则P A+PB+PC的最小值为__________.【答案】(提示:将△ABP绕点A顺时针旋转60°得到△AB′P′)【例题4】如图,正方形ABCD内一动点E,到顶点A、B、C的距离之和AE+BE+CE____________.【答案】2.(提示:将△ABE绕点A顺时针旋转60°得到△AB′E′,∠B′BP=90°-60°=30°,设B′P=x,则PB=,B′B=BC=2x,在Rt△B′PC中,x2+(+2x)2=)2,解得x=1,∴BC=PEDCBAABCP P′A′MPCBAAB CPP′B′NMPCBAEDCBAABCDEPB′E′2)【例题5】如图,△ABC 中,AB =5,BC =3,∠ABC =60°,若点P 是△ABC 内一个动点,则P A +PB +PC 的最小值为__________.【答案】7.(提示:将△ABP 绕点A 顺时针旋转60°得到△AB ′P ′)【例题6】如图,在△ABC 中,AB =AC =4,∠CAB =30°,AD ⊥BC ,垂足为D ,P 为线段AD 上的一动点,连接PB 、PC ,则P A +2PB 的最小值为_____________.【答案】.(提示:费马点)【例题7】如图,在△MNG 中,MN =6,∠M =75°,MG =4O 为△MNG 内一点,则点O 到△MNG 三个顶点的距离之和的最小值为____________.【答案】(提示:将△MOG 绕点M 顺时针旋转60°得到△MO ′G ′)【例题8】如图,锐角三角形ABC 中,∠ACB =60°,AB =7,BC =5,AC =8,D 为△ABC 内一点,BD =1,△ABC 内有动点P ,则P A +PC +PD 的最小值为_________.PCB AABCPP′B′EF P′B′PD CBAGNG′O′HNMOGABCD PC′P′PFE D CBA【答案】1.(提示:将△APC绕点A逆时针旋转60°得到△AP′C′)类型2:动态费马点问题:垂线段最短【例题9】如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为___________.【答案】4+(提示:将△AMD绕点D顺时针旋转60°得到△A′M′D)【例题10】如图,四个村庄坐落在矩形ABCD的四个顶点上,AB=10公里,BC=15公里,现在要设立两个车站E、F,则EA+EB+EF+FC+FD的最小值为__________公里.【答案】15+(提示:将△AMD绕点D顺时针旋转60°得到△A′M′D)类型3:加权费马点——缩放法,旋转系数大的线段【例题11】如图,在△ABC中,AB=4,BC=6,∠ABC=30°,P是△ABC内一动点,则P APB+PC的最小值为___________.【答案】(提示:将△ABP绕点B逆时针旋转90°得到△A′BP′)AB CDEMAB CDEFE′B′C′F′NMFEDCBAPCBA ABCEPP′A′【例题12】如图,在△ABC 中,AB =AC =4,∠BAC =90°,点P 为△ABC 内一点,则12P A +PBPC 的最小值为___________.【答案】.(提示:方法1,将△APC 缩小到原来的12,并绕点C 顺时针旋转90°得到△AP ′C ′;方法2,原式=12(P A +2PBPC ),将△APC 扩大到原来的2倍,并绕点C 顺时针旋转90°得到△A ′P ′C )【例题13】如图,点P 是边长为2的等边△ABC内一点,则P A +PB +12PC 的最小值为___________.【答案】(提示:方法1,将△APC 缩小到原来的12,并绕点A 逆时针旋转60°得到△AP ′C ′;方法2,将△APC缩小到原来的,并绕点C 逆时针旋转30°得到△A ′P ′C ;方法3,原式=12(A +2PB+PC ),将△APC扩大到原来的C 顺时针旋转90°得到△A ′P ′C )A BCPP′A′PEC B AABCPABCE PC′P′ABCPA′P′。

费马点公式

费马点公式

费马点公式
费马点公式是一个重要的数学定理,它指出,任何一个多项式方程都有至少一个实数根。

它是由著名的德国数学家费马在1799年提出的,他是第一个证明这个定理的人。

费马点公式的公式如下:
若P(x)是一个n次多项式,则P(x)有至少一个实数根,且满足:
x1+x2+x3+...+xn=-b/a
其中,a和b分别是P(x)的系数。

费马点公式的证明是由反证法完成的,即假设P(x)没有实数根,则P(x)的系数a和b必须满足:
a*(x1+x2+x3+...+xn)+b=0
但是,由于P(x)没有实数根,所以x1+x2+x3+...+xn不可能等于0,因此,
a*(x1+x2+x3+...+xn)+b不可能等于0,这与假设矛盾,因此,P(x)必须有至少一个实数根。

费马点公式的应用非常广泛,它可以用来解决多项式方程,也可以用来解决一些复杂的数学问题。

它的发现也为数学发展做出了重要贡献,使得数学变得更加完善。

专题21 费马点模型

专题21 费马点模型

费马点模型【模型专题】费马点模型【模型分析】费马点是指平面内到三角形三个顶点距离之和最小的点,这个最小的距离叫做费马距离.若三角形内有一个内角大于等于120°,则此钝角的顶点就是到三个顶点距离之和最小的点.若三角形的内角均小于120°,那么三角形的费马点与各顶点的连线三等分费马点所在的周角;1、若三角形有一个内角大于等于120°,则此钝角的顶点即为该三角形的费马点如图在△ABC中,∠BAC≥120°,求证:点A为△ABC的费马点证明:如图,在△ABC内有一点P延长BA至C,使得AC=AC,作∠CAP=∠CAP,并且使得AP=AP,连结PP 则△APC≌△APC,PC=PC因为∠BAC≥120°所以∠PAP′=∠CAC≤60所以在等腰△PAP中,AP≥PP′所以PA+PB+PC≥PP′+PB+PC>BC=AB+AC所以点A为△ABC的费马点2、若三角形的内角均小于120°,则以三角形的任意两边向外作等边三角形,两个等边三角形外接圆在三角形内的交点即为该三角形的费马点.如图,在△ABC中三个内角均小于120°,分别以AB、AC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点为O,求证:点O为△ABC的费马点证明:在△ABC内部任意取一点O,;连接OA、OB、OC将△AOC绕着点A逆时针旋转60°,得到△AO′D连接OO′则O′D=OC所以△AOO′为等边三角形,OO′=AO所以OA+OC+OB=OO′+OB+O′D则当点B、O、O′、D四点共线时,OA+OB+OC最小此时AB、AC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点即为点O3、如图,在△ABC中,若∠BAC、∠ABC、∠ACB均小于120°,O为费马点,则有∠AOB=∠BOC=∠COA =120°,所以三角形的费马点也叫三角形的等角中心类型一线段的系数都相同求线段的和的情况(费马点)考法1:费马点在三角形中运用例11.如图,在△ABC中,P为平面内一点,连结PA,PB,PC,分别以PC和AC为一边向右作等边三角形△PCM和△ACD.【探究】求证:PM=PC,MD=PA【应用】若BC=a,AC=b,∠ACB=60°,则PA+PB+PC的最小值是(用a,b表示)【变式】2.问题提出(1)如图①,在△ABC中,BC=2,将△ABC绕点B顺时针旋转60°得到△A′B′C′,则CC′=;问题探究(2)如图②,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA、PB、PC,求PA+PB +PC的最小值,并说明理由;问题解决(3)如图③,在四边形ABCD中,AD∥BC,AB=6,AD=4,∠ABC=∠BCD=60°.在四边形ABCD内部有一点,满足∠APD=120°,连接BP、CP,点Q为△BPC内的任意一点,是否存在一点P和一点Q,使得PQ+BQ+CQ有最小值?若存在,请求出这个最小值;若不存在,请说明理由.【变式】3.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=;(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.考法2:费马点在四边形中运用例24.如图,P为正方形ABCD内的动点,若AB=2,则PA+PB+PC的最小值为_____.【变式】5.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD上任意一点,将BM绕点B逆时针旋转60°得到BN,连接BN、AM、CM.(1)求证:△AMB≌△ENB;(2)若正方形的边长为2,正方形内是否存在一点P,使得PA+PB+PC的值最小?若存在,求出它的最小值;若不存在,说明理由.【变式】6.如图,在菱形ABCD中,∠ABC=60°,点E、F分别是AB、BC上的动点,连接DE、DF、EF.(1)如图1,连接AF,若AF⊥BC,E为AB的中点,且EF=2,求DF的长;(2)如图2,若BE=BF,G为DE的中点,连接AF、AG、FG,求证:AG⊥FG;(3)如图3,若AB=4,将△BEF沿EF翻折得到△EFP(始终保持点P在菱形ABCD的内部),连接AP、BP 及CP,请直接写出当PA+PB+PC值最小时PB的长.考法3:费马点在二次函数中运用例37.如图,在平面直角坐标系xoy中,点B的坐标为(0,2),点D在x轴的正半轴上,∠ODB=30°,OE为△BOD的中线,过B、E两点的抛物线y=ax2++c与x轴相交于A、F两点(A在F的左侧).(1)求抛物线的解析式;(2)等边△OMN的顶点M、N在线段AE上,求AE及AM的长;(3)点P为△ABO内的一个动点,设m=PA+PB+PO,请直接写出m的最小值,以及m取得最小值时,线段AP的长.【变式】8.如图,抛物线y=ax2+bx+5经点A1,0,B5,0,与y轴相交于点C.2(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.类型二线段的系数都不相同求线段的和的情况(加权费马点)【模型通解】第一步,选定固定不变线段;第二步,对剩余线段进行缩小或者放大.如:保持BP不变,xAP+yBP+zCP=y(xy AP+BP+zyCP),如图所示,B、P、P2、A2四点共线时,取得最小值.例4:9.点P为锐角△ABC内任意一点,∠ACB=30°,BC=6,AC=5,连接AP、BP、CP,求3AP+4BP+5CP的最小值例5:10.如图,在△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC内部有一点P,连接PA、PB、PC.(加权费马点)求:(1)PA+PB+PC的最小值;(2)PA+PB+2PC的最小值(3)PA+PB+3PC的最小值;(4)2PA+PB+3PC的最小值PA+PB的最小值;(5)12(6)2PA+4PB+23PC的最小值(7)4PA+2PB+23PC的最小值;(8)3PA+4PB+5PC的最小值【变式】(1)11.如图,△ABC中,AB=AC=4,∠BAC=30°,P为平面内一点,(1)求CP+2AP+BP最小值(2)在(1)条件下,求CP+5AP+2BP最小值(3)在(1)条件下,求CP+3AP+22BP最小值(4)在(1)条件下,求3CP+5AP+4BP最小值【变式】12.如图,△ABC中,AB=3,AC=25,∠BAC=60°,P为平面内一点,求5BP+7AP+8CP最小值.8【变式】13.如图,△ABC中,∠BAC=45°,AB=6,AC=4,P为平面内一点,求22BP+5AP+3PC最小值【变式】14.如图,△ABC中,∠BAC=30°,AB=6,AC=4,求4BP+13AP+3CP最小值【变式】15.如图,ABCD为矩形,AB=43,AD=4,EF为ABCD内两点,求(AF+DF+FE+CE+BE)的最小值.谢谢观看。

费马点证明

费马点证明

费马点定义在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。

(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。

所以三角形的费马点也称为三角形的等角中心。

(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。

费马点的判定(1)对于任意三角形△ABC,若三角形内或三角形上某一点E,若EA+EB+EC 有最小值,则E为费马点。

费马点的计算(2)如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

证明我们要如何证明费马点呢:费马点证明图形(1)费马点对边的张角为120度。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B同理可得∠CBP=∠CA1P由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度同理,∠APB=120度,∠APC=120度(2)PA+PB+PC=AA1将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度又∠BPA=120度,因此A、P、D三点在同一直线上,又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。

(3)PA+PB+PC最短在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC 以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1 <A1G+GM+MA=AM+BM+CM.所以费马点到三个顶点A、B、C的距离最短。

费马点性质:(1)平面内一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小。

压轴密训之八:最值之费马点

压轴密训之八:最值之费马点

中考考点-------费马点一、历史背景和定义【历史背景】皮埃尔·德·费马(Pierre De Fermat ),法国律师和业余数学家。

被誉为"业余数学家之王"。

曾提出关于三角形的一个有趣问题:若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小.这个特殊点对于每个给定的三角形都只有一个.【数学定义】(1)托里拆利的解法中提到:对于每一个角都小于120°的△ABC的每一条边为底边,向外作正三角形,然后作这三个正三角形的外接圆。

托里拆利指出这三个外接圆会有一个共同的交点,而这个交点就是所要求的点。

这个点因此也叫做托里拆利点。

(如下左图)(2)也可以,如上右图,分别以BC 、AC 为边向外侧作等边三角形ACE 、BCF ,连结AF 、BE 交于一点,则该点即为所求的P 点(即费马点).【证明过程】类似证明方法还有如下:(只提供图,过程同学们自己研究)E二、 实战演练先来一个正规的三角形的题吧!【例1】 (2019年龙岩市质检)如图,△ABC 中, ∠ABC =30°,AB =4,BC =5,P 是△ABC 内部的任意一点,连结P A ,PB ,PC ,则P A +PB +PC 的最小值为 .【解析】如图,将△ABP 绕着点B 逆时针旋转60°,得到△DBE ,连结EP 、AD 、CD ,∴△ABP ≌△DBE ,∴∠ABP =∠DBE ,BD =AB =4,∠PBE =∠ABD =60°,BE =PE ,AP =DE , ∴△BPE 是等边三角形,∴EP =BP , ∴AP +BP +PC =PC +EP +DE ≥CD , ∴当点D 、E 、P 、C 四点共线时,P A +PB +PC 有最小值CD ,∵∠ABC =30°, ∴∠DBC =∠ABD +∠ABC =90°,22224541CD BD C =+=+=做完一个题,那就来个灵魂三问?(1)如何作三角形的费马点? (2)为什么是这个点? (3)费马点怎么考?问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG =42,点O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.OMNG图2图1ABCD EP下面这个题可能会给你一点想法正方形的题目也来一个!【例2】 (2019年中雅真题)如图,点P 为正方形ABCD 对角线BD 上一动点,2AB =,则AP BP CP ++的最小值为( ) A.25+B.26+C.4D.32【解析】利用旋转,费马点思维将ABP △绕着点A 顺时针旋转60︒,得''AB P △, ∵'AP AP =,'60PAP ∠=︒∴'APP △为等边三角形, ∴'AP PP =,又由旋转可知,''BP B P = ∴'''AP BP CP CP PP B P ++=++,当120APC ∠=︒时,∵'180APC APP ∠+=︒,''180AP P AP B ∠+=︒∴此时''C P P B 、、、四点共线, 此时AP BP CP ++的最小值为'B C ∵'2AB AB ==,且'60BAB =︒过B ’作AD BC 、的垂线分别交AD BC 、于G H 、,可知'30B AG ∠=︒,''13B G B H AG HB ====, ()()22'32184362B C =++=+=+62=+如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .(1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小; ②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;(3)当AM +BM +CM 的最小值为31+时,求正方形的边长。

费马点-的两证明方法

费马点-的两证明方法

费马点的两证明方法费马点,就是平面上到三角形三顶点距离之和最小的点。

当三角形有一个角大于或等于一百二十度的时候,费马点就是这个角的顶点;如果三个角都在120度以,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。

1、费马点不在三角形外,这个就不用证了,很显然。

但为了严谨,还是说一下2、当有一个角大于等于120度时候对三角形任一点P延长BA至C'使得AC=AC',做∠C'AP'=∠CAP,并且使得AP'=AP, PC'=PC,(说了这么多,其实就是把三角形APC以A为中心做了个旋转)则△APC≌△AP'C'∵∠BAC≥120°∴∠PAP'=180°-∠BAP-∠C'AP'=180°-∠BAP-∠CAP=180°-∠BAC≤60°∴等腰三角形PAP'中,AP≥PP'∴PA+PB+PC≥PP'+PB+PC'>BC'=AB+AC所以A是费马点3、当所有角都小于120°时做出△ABC一点P,使得∠APC=∠BPC=∠CPA=120°,分别作PA,PB,PC的垂线,交于D,E,F三点,如图,再作任一异于P的点P',连结P'A,P'B,P'C,过P'作P'H垂直EF于H易知∠D=∠E=∠F=60°,即△DEF为等边三角形,计边长为d,面积为S则有2S=d(PA+PB+PC)∵P'A≥P'H所以2S△EP'F≤P'A*d同理有2S△DP'F≤P'B*d2S△EP'D≤P'C*d相加得2S≤d(P'A+P'B+P'C)即PA+PB+P C≤P'A+P'B+P'C,当且仅当P,P'重合时取到等号所以P是费马点虽然不知道费马点在那里,我们先假设他在某个位置,做出来,证明他不可能具有某些性质,最后确定他的位置,这个证明仅限于三个角都小于120度的时候。

费马点的两证明方法

费马点的两证明方法

费马点的两证明方法费马点是指一个三角形内的一点,满足从该点出发,到三角形的三个顶点的线段之和最小。

费马点也可以称为斯托纳点或费马点。

下面将介绍两种费马点的证明方法。

方法一:使用垂线定理来证明费马点证明费马点的方法之一是使用垂线定理。

垂线定理指出,从一个点到与一条直线垂直的两点的距离之和最小。

因此,通过构造以费马点为顶点的两条垂线,可以证明费马点的存在性。

假设ABC是一个三角形,P是费马点。

首先,将边AB、BC和CA的中垂线分别延长,分别延长到点D、E和F上。

根据垂线定理,可以知道P到BC的中垂线所在直线的距离最小,因此P和D应当重合。

同样地,P也应当重合于E和F。

这样,可以得到三条线段PD、PE和PF的和是最小的。

接下来,我们需要证明PD、PE和PF相交于一个点。

如果三条线段的和最小,那么它们应当相交在一个点上。

假设线段PD和PE相交于点G,线段PD和PF相交于点H。

那么,根据三角形的性质,可以知道三角形PGC是等边三角形,三角形PHB也是等边三角形。

因此,G和H应当重合于转角C和B,即点G、H、B、C是共线的。

同样地,可以得到点G、H、C、A也是共线的。

因此,可以得知P应当在直线AC和BC所在的延长线上。

综上所述,我们证明了费马点存在于直线AC和BC所在的延长线的交点上。

方法二:使用无理数几何证明费马点证明费马点的第二种方法是使用无理数几何。

无理数几何是一种集合代数学的分支,它研究的是实数域上的代数无理数几何结构。

假设ABC是一个三角形,P是费马点。

为了证明费马点的存在性,我们首先需要构造一个与费马点相对的点Q。

点Q应当满足条件:∠AQB=∠CQB=120°,即角AQB和角CQB都应当等于120°。

接下来,我们需要证明三角形AQB是等边三角形。

为了证明这一点,我们可以使用割线定理。

割线定理指出,如果一个凸多边形的每两个相邻顶点之间的距离形成一个无理数序列,那么该多边形就是等边多边形。

初中数学微专题——费马点

初中数学微专题——费马点

初中数学·几何综合几何模型·专题复习——费马点一、费马点及结论费马点:就是到三角形的三个顶点的距离之和最小的点。

费尔马的结论:对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点;对于有一个角超过120°的三角形,费马点就是这个内角的顶点。

二、费马点结论的证明例:P为△ABC内任一点,请找点P使它到ABC△三个顶点的距离之和PA+PB+PC最小?(1)当△ABC各角不超过120°时,如下图。

解析:如图,把△APC绕A点逆时针旋转60°得到△AP′C′,连接PP′.则△APP′为等边三角形,AP= PP′,P′C′=PC,所以PA+PB+PC= PP′+ PB+ P′C′.点C′可看成是线段AC绕A点逆时针旋转60°而得的定点,BC′为定长,所以当B、P、P′、C′四点在同一直线上时,PA+PB+PC最小.这时∠BPA=180°-∠APP′=180°-60°=120°,∠APC=∠A P′C′=180°-∠AP′P=180°-60°=120°,∠BPC=360°-∠BPA-∠APC=360°-120°-120°=120°因此,当ABC△的每一个内角都小于120°时,所求的点P对三角形每边的张角都是120°,可在AB、BC边上分别作120°的弓形弧,两弧在三角形内的交点就是P点。

(2)当△ABC有一个内角超过120°时,如下图。

解析:如图,延长BA至C'使得AC=AC',做∠C'AP'=∠CAP,并且使得AP'=AP, PC'=PC,(说了这么多,其实就是把三角形APC以A为中心做了个旋转)则△APC≌△AP'C'∵∠BAC≥120°∴∠PAP'=180°-∠BAP-∠C'AP'=180°-∠BAP-∠CAP=180°-∠BAC≤60°∴等腰三角形PAP'中,AP≥PP'∴PA+PB+PC≥PP'+PB+PC'>BC'=AB+AC所以A是费马点因此,当ABC△有一内角大于或等于120°时,所求的P点就是钝角的顶点.三、费马点的求法当△ABC是三个内角皆小于120°三角形时,分别以 AB、BC、CA为边,向三角形外侧做正三角形△ABD、△ACE,然后连接DC、BE,则二线交于一点,记作点P,则点P就是所求的费马点。

费马点 的两证明方法

费马点 的两证明方法

精心整理费马点的两证明方法费马点,就是平面上到三角形三顶点距离之和最小的点。

当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。

1、费马点不在三角形外,这个就不用证了,很显然。

但为了严谨,还是说一下2、当有一个内角大于等于120度时候对三角形内任一点P延长BA至C'使得AC=AC',做∠C'AP'=∠CAP是把三角形APC以A为中心做了个旋转)则△APC≌△AP'C'∵∠BAC≥120°∴∠PAP'=180°-∠BAP-∠∴等腰三角形PAP'中,AP≥PP'∴所以A3做出△ABC内一点P,使得∠APC=∠BPC=∠CPA=120°,分别作PA,PB,PC的垂线,交于D,E,F三点,如图,再作任一异于P的点P',连结P'A,P'B,P'C,过P'作P'H垂直EF于H易知∠D=∠E=∠F=60°,即△DEF为等边三角形,计边长为d,面积为S则有2S=d(PA+PB+PC)∵P'A≥P'H所以2S△EP'F≤P'A*d同理有2S△DP'F≤P'B*d2S△EP'D≤P'C*d相加得2S≤d(P'A+P'B+P'C)即PA+PB+PC≤P'A+P'B+P'C,当且仅当P,P'重合时取到等号所以P是费马点虽然不知道费马点在那里,我们先假设他在某个位置,做出来,证明他不可能具有某些性质,最后确定他的位置,这个证明仅限于三个内角都小于以A,C为焦点,AP+PC为长轴长,做椭圆,以B为圆心,BP为半径,做圆我们先假定椭圆与原是相交的,并取他们公共部分内部一点P'则P'在圆内也在椭圆内所以P'A+P'B+P'C>PA+PC+PC,与假设矛盾,所以圆与椭圆必相切(不可能没有公共点吧,因为都过P)BP与公切线垂直APC,所以∠APB=∠CPB同理有∠APC=∠CPB所以∠APC=∠APB=∠CPB=120°即为费马点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、费马点一定不在三角形外(证明略)
2、当有一个内角大于或等于120°时
对三角形内任一点P延长BA至C'使得AC=AC',做∠C'AP'=∠CAP,并且使得AP'=AP, PC'=PC,(说了这么多,其实就是把三角形APC以A为中心做了个旋转)
则△APC ≌△AP'C'∵∠BAC ≥ 120°∴∠PAP' = 180°-∠BAP-∠C'AP' = 180°-∠BAP-∠CAP = 180°-∠BAC ≤ 60°∴等腰三角形PAP'中,AP ≥ PP'∴PA + PB + PC ≥ PP' +PB + PC' > BC' = AB + AC
∴点A即费马点
3、当三个内角都小于120°时
在△ABC内做一点P,使得∠APC =∠BPC =∠CPA = 120°,过A、B、C分别作PA、PB、PC的垂线,交于D、E、F三点,如图,再作任一异于P的点P',连结P'A、P'B、P'C,过P'作P'H ⊥EF于H 易证明∠D =∠E =∠F = 60°,即△DEF为正三角形,设边长为d,面积为S
则有2S = d(PA + PB + PC)∵P'H ≤ P'A所以2S△EP'F ≤ P'A ·d ①同理有2S△DP'F ≤ P'B·d ②
2S△EP'D ≤ P'C·d ③
① + ② + ③,得2(S△EP'F +S△DP'F + S△EP'D)≤ P'A·d + P'B·d + P'C·d ∴2S ≤ d(P'A + P'B + P'C)
又∵2S = d(PA + PB + PC) ∴d(PA + PB + PC) ≤ d(P'A + P'B + P'C)即PA + PB + PC ≤ P'A + P'B + P'C当且仅当P与P'重合时,等号成立
∴点P即费马点
(1)平面内一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小。

特殊三角形中:
(2).三内角皆小于120°的三角形,分别以AB,BC,CA,为边,向三角形外侧做正三角形
ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点.
(3).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求的费马点.
(4)当△ABC为等边三角形时,此时内心与费马点重合。

相关文档
最新文档