单电源运算放大器滤波电路
单电源运放与滤波电路
单电源运放与滤波电路我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh和Vol。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V也或者会更低。
利用单电源运算放大器构建全波整流电路
利用单电源运算放大器构建全波整流电路利用单电源运算放大器构建全波整流电路使用单电源运算放大器时,在双极性信号环境下实现简单功能可能也非常具有挑战性,往往要求附加运算放大器和/或其他电子元件。
现在有了替代方案。
MAX44267具有独特的内置电荷泵,使用单电源供电可实现双电源轨性能。
电路设计图1所示的电路中使用具有真正零输出的MAX44267单电源、双运放实现全波整流器,该放大器仅使用了单个电源轨。
电路已经存在了很长时间。
电路要求负电源,以使XI 放大器输出等于输入电压0.5倍的负电压。
注意,输入为正值时,XI的增益为-0.5V/V再加上二极管压降,所以OPI节点恰好等于输入的-0.5倍。
输入摆动至负值时,X1被二极管D1截断,由于电阻分压(R1+R2与R3)的原因,OPI节点也为输入电压的一半。
然后放大器X2提供进一步增益(-2V/V),修正较早的50%衰减。
R1、R2和R3为标准值,而R4很容易用两个120kΩ电阻并联实现。
全部4个电阻的比值非常重要:R2=0.5×R1;R4=2×R3;以及R1+R2+R3=R4。
二极管Dl可以为任意低泄漏信号二极管,例如1N914。
电容C1有助于降低MAX44267的电荷泵噪声。
低频时,输出几乎无误差。
在图2所示的输出过零点,仅有8mV 的失真。
这是由于XI放大器必须从被Dl截断的状态恢复造成的。
然而其他大多数只有单电源的放大器,输入过零时,输出达不到真正零输出。
随着频率升高,输出开始显现出较大失真。
以下的示波器截图中,给出了各种输入幅值和频率时的情况。
图3、4和5所示分别为200mVp-p输入信号在200Hz、lkHz和lOkHz 时的情况:数据表明,频率限制了电路结构。
尤其是运放X1需要有限时间从开路状态恢复,必须以其最大速率摆动,以跟踪输入。
目前为止,仅仅展示了小信号,但该结构也能处理较大的信号幅值。
注意,尽管波形看起来好得多,但踪迹缩放比例隐藏了在低幅值信号上可见的误差。
单电源运放电路
单电源运放电路
单电源运放电路是一种常见的电路设计,常用于需要单电源供电的应用中。
与双电源运放电路相比,单电源运放电路只需一种电源电压,更加简单且经济。
本文将介绍单电源运放电路的基本原理和常见应用。
单电源运放电路的基本原理是通过一个供电电源,将运放的非反相输入端接地,反相输入端通过电阻和电容网络与电源相连,从而实现幅值放大和信号的运算。
在单电源运放电路中,由于电源电压范围的限制,输出信号的幅值可能受到一定的限制。
单电源运放电路的常见应用包括放大电路、滤波电路、积分电路和微分电路等。
在放大电路中,单电源运放电路可以将输入信号放大到更高的幅值,以满足特定应用的要求。
滤波电路利用单电源运放电路的特性,可以消除输入信号中的高频干扰,实现信号的滤波效果。
积分电路和微分电路则利用单电源运放电路对输入信号进行积分和微分运算,广泛应用于信号处理和控制系统中。
为了实现更好的性能,单电源运放电路通常需要采取一些措施来解决电源电压范围限制带来的问题。
例如,可以通过添加偏置电路来保证输出信号的偏置电压正确,以避免信号失真。
此外,还可以采用电源电压稳压器来提供稳定的电源电压,以保证电路的正常工作。
总之,单电源运放电路是一种简单且经济的电路设计,常用于单电源供电的应用中。
通过合理的设计和措施,可以实现信号的放大、滤波、积分和微分等功能,满足不同应用的要求。
运算放大器7大经典电路实图分析!
运算放大器7大经典电路实图分析!运放的基本分析方法:虚断,虚短。
对于不熟悉的运放应用电路,就使用该基本分析方法。
运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。
8号线攻城狮1运放在有源滤波中的应用上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。
有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。
该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。
其中电阻R280是防止输入悬空会导致运放输出异常。
滤波最常用二阶有源低通滤波电路为巴特沃兹低通滤波,单调下降,曲线平坦最平滑;●巴特沃兹低通滤波中用的最多的是赛伦凯乐电路,即仿真的该电路。
一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。
如果该滤波器还有放大功能,要知道该滤波器的增益是多少。
当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。
二阶有源低通滤波电路的通带放大倍数为 1+Rf /R1 ,与一阶低通滤波电路相同;截止频率为:注明,m的单位为欧姆, N 的单位为 u。
所以计算得出截止频率为:●切比雪夫,迅速衰减,但通带中有纹波;●贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。
8号线攻城狮2运放在电压比较器中的应用上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相让软件处理一下就可以),该电路在交流信号测频中广泛使用。
该电路实际上是过零比较器和深度放大电路的结合。
将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。
运算放大器用作滤波的原理
运算放大器用作滤波的原理
运算放大器可以用作滤波器的原理是利用其高增益特性和输入输出之间的线性关系。
运算放大器可以通过配置电阻、电容和电感等元件来搭建不同类型的滤波器电路。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
下面分别介绍它们的原理:
1. 低通滤波器:用于从输入信号中滤除高频成分,只保留低频部分。
运算放大器可以通过电容和电阻组成RC电路,将高频信号绕过放大器输出。
低频信号经过放大器的增益放大后,直接输出。
2. 高通滤波器:用于从输入信号中滤除低频成分,只保留高频部分。
运算放大器可以通过配置电容和电阻组成RC电路,将输入信号经过放大器的直流分量滤除。
高频信号经过放大器的增益放大后,直接输出。
3. 带通滤波器:用于只传递一定频率范围内的信号。
运算放大器结合电容、电阻和电感组成带通滤波器电路,可以选择性地传递一定范围的频率信号。
4. 带阻滤波器:用于抑制一定频率范围内的信号。
运算放大器结合电容、电阻和电感组成带阻滤波器电路,可以选择性地阻止一定范围的频率信号通过。
总之,运算放大器作为滤波器的原理在于通过电容、电阻和电
感等元件的组合,来调整运算放大器的输入输出特性,实现对不同频率信号的选择和处理。
利用单电源运算放大器构建全波整流电路
厂
很 容易用两 个 l 2 O k e 2 电 阻 并 联 置 电荷泵 ,使 用单 电源供 电可实现 双 R4
电源 轨 性 能 。
{
/ _ . _ l _ _ , ,
一
实 现 。 全 部 4个 电 阻 的 比 值 非 常 重
要 :R1 0 . 5×R】 ;R 4 =2 X R3 ; 以 及
信 号 2 0 0 I I z 、l kHz 和t 0 kHz 时 的 情 开 路 状 态 恢 复 , 必 须 以 其 最 人 速 率 摆 常 要 求 电 路 采 用 双 电 源 工 作 , 本 文 介
况:
动 ,以跟 踪 输 入 。 目前为 止 ,仅仅 展示 了小信 号 ,
有 助干 降 低 M AX 4 4 2 6 7 的 电荷 泵 零输 出的M A X4 4 2 6 7 单 电源 、双运放 容 C1
实 现 全 波 整 流 器 ,该 放 大 器 仅 使 用 了 噪 声 。
号) ;V O U T 失真 为2 mV( 蓝 色信号 )
单 个 电源轨 。 电路 已经存 在 了很长时 间。 电路 要求 负电源 ,以使X1 放大 器 输 出等 于输入 电压一0 . 5 倍 的负 电压 。 注 意 ,输 入 为正 值 时 ,xl 的 增 益 为
一
0 . 5 V/ V再加 上二 极 管 压 降 ,所 以
m4 V - -2 0 0 mY ,1 k H z ( 黄色信号 ) 图2 v ( 黄 色信号 ) 为1 V p  ̄ @l k H z ;蓝 色信
号为V
O Pl 节 点恰好等 于输 入的一 0 . 5 倍。
V 失真为8 mV( 蓝色信号 )
低 频时 ,输 出 几乎 无误 差 。在 图
带通滤波器电路及参数的确定
图1所示是一个多路负反馈二阶有源带通滤波器,它使用单个通用运算放大器(通用运放)接成单电源供电模式,易于实现。
它的上限截止频率和下限截止频率可以非常近,具有非常很强的频率选择性。
令C1=C2=C,Req是R1和R2并联的值。
品质因数Q等于中心频率除以带宽,Q = fC/BW。
由式可以看出可以通过让R3的值远大于Req来获得大的Q值
Q值越大,频率选择性越好,带宽越小。
反之则反。
令中心频率为fc,则计算公式如下:
其中
关于本有源带通滤波器电路的详细论述及PSPICE仿真结果请访问:
有源带通滤波器
借助本工具软件,您可以:
输入增益GAIN,带宽BW,中心频率F,电容值C,计算有源带通滤波器电阻值R1,R2,R3:
另外关于PWM的低通滤波可以参考《德州仪器高性能单片机和模拟期间》。
单电源运放电路
单电源运放电路一、概述单电源运放电路是指在电路中只有一个正电源,没有负电源的情况下使用的运放电路。
这种电路常见于便携式设备中,因为它可以减小设备体积和成本。
二、单电源运放的特点1. 只有一个正电源,没有负电源。
2. 输出信号不能超过正电源和地之间的范围。
3. 不能直接连接负载。
三、解决单电源运放的问题1. 偏置电压:由于单电源运放没有负电源,会导致输出信号出现偏置。
解决方法是添加偏置网络或使用带有输入偏置的运放。
2. 输出信号范围:由于输出信号不能超过正电源和地之间的范围,需要添加一个参考电压来限制输出范围。
3. 直接连接负载:由于单电源运放不能直接连接负载,需要添加一个耦合器来隔离直流偏置并提供交流通路。
四、常用的单电源运放配置1. 非反向比例放大器:将输入信号乘以一个系数并输出。
常用于音频处理和传感器接口等应用。
2. 反向比例放大器:将输入信号取反并乘以一个系数并输出。
常用于信号放大和电压调节等应用。
3. 滤波器:将输入信号通过一个滤波器并输出。
常用于音频处理和信号处理等应用。
五、单电源运放的优缺点1. 优点:(1)体积小,成本低。
(2)适合便携式设备。
(3)易于设计和实现。
2. 缺点:(1)输出范围受限制。
(2)偏置电压会影响精度。
(3)不能直接连接负载。
六、应用案例单电源运放常见于便携式设备中,如移动电话、MP3播放器等。
以移动电话为例,它需要使用单电源运放来处理音频信号并驱动扬声器。
在这种情况下,单电源运放可以减小设备体积和成本,并提供高品质的音频输出。
七、总结单电源运放是一种适合便携式设备的运放电路,它具有体积小、成本低等优点。
但是它也存在着输出范围受限制、偏置电压会影响精度等缺点。
在设计单电源运放电路时需要注意解决这些问题,并根据具体应用需求选择合适的电路配置。
电路基础原理运算放大器的放大与滤波作用
电路基础原理运算放大器的放大与滤波作用电路基础原理是电子学的基础,而运算放大器作为电路中的重要组成部分,在电子技术中发挥着重要的作用。
本文将介绍运算放大器的放大和滤波作用。
运算放大器是一种电子放大器,具有高增益和低失真的特性。
它通常由一个差动输入级、一个差动放大级和一个输出级组成。
差动输入级能够提供高共模抑制比,差动放大级能够提供高增益,输出级能够提供较大的输出电流。
这样的结构使得运算放大器能够将输入信号进行放大,同时还能够消除输入中的共模干扰。
运算放大器的放大作用在很多电路中得到应用。
在信号处理中,运算放大器可以将输入信号放大到合适的幅度,以满足后续电路的需求。
例如,在音频放大器中,运算放大器可以将微弱的声音信号放大到足够大的幅度,以驱动扬声器发出声音;在测量仪器中,运算放大器可以放大微小的传感器信号,以便进行准确的测量。
此外,运算放大器还可以实现滤波功能。
滤波是将特定频率范围的信号从混合的信号中分离出来的过程。
运算放大器可以通过正确选择电容和电阻的参数来实现滤波的功能。
根据不同的滤波需求,可以设计出低通滤波器、高通滤波器、带通滤波器和带阻滤波器等不同类型的电路。
例如,当需要从输入信号中滤除高频噪声时,可以使用低通滤波器。
低通滤波器的基本原理是通过将高频信号分流到地,只传递低频信号。
通过在运算放大器的输入端串联一个电容,可以实现低通滤波的效果。
类似地,当需要滤除低频噪声时,可以使用高通滤波器。
带通滤波器则可以将指定频率范围内的信号通过,而滤除其他频率范围的信号。
带阻滤波器则是将指定频率范围内的信号屏蔽掉。
通过将运算放大器与滤波器相结合,可以实现更复杂的电路功能。
例如,可以使用运算放大器与多个滤波器级联来实现多级滤波器,以获得更加精确的滤波效果。
此外,运算放大器也可以与其他电子元件相结合,如电容、电感等,来实现更加多样化的滤波特性。
总之,电路基础原理中的运算放大器具有放大和滤波的作用。
它能够将输入信号放大到合适的幅度,并可以通过滤波器来滤除不需要的信号成分。
使用单电源的运放交流放大电路
使用单电源的运放交流放大电路在采用电容耦合的交流放大电路中,静态时,当集成运放输出端的直流电 压不为零时,由于输出耦合电容的隔直流作用,放大电路输出的电压仍为零。
所 以不需要集成运放满足零输入时零输出的要求。
因此,集成运放可以采用单电源 供电,其-VEE 端接"地"(即直流电源负极),集成运放的+Vcc 端接直流电源正极, 这时,运放输出端的电压 V0只能在0〜+Vcc 之间变化。
在单电源供电的运放交 流放大电路中,为了不使放大后的交流信号产生失真, 静态时,一般要将运放输 出端的电压V0设置在0至+Vcc 值的中间,即V0=+Vcc/2。
这样能够得到较大的 动态范围;动态时,V0在+Vcc /2值的基础上,上增至接近+Vcc 值,下降至接 近0V,输出电压uo 的幅值近似为Vcc /2。
图3请见原稿Q +VocRi1. 2. 1单电源同相输入式交流放大电路图3是使用单电源的同相输入式交流放大电路。
电源 Vcc 通过R1和R2 分压,使运放同相输入端电位由于 C 隔直流,使RF 引入直流全负反馈。
所以, 静态时运放输出端的电压 V0=V-~V+=+Vc /2; C 通交流,使RF 引入交流部分负 反馈,是电压串联负反馈。
放大电路的电压增益为放大电路的输入电阻 Ri=R1/R2/rif ~R 1/R2,放大电路的输出电阻 R0=r0f 〜0。
1. 2. 2单电源反相输入式交流放大电路图4是使用单电源的反相输入式交流放大电路。
电源V cc 通过R1和R 2 分压,使运放同相输入端电位 SEf ,为了避免电源的纹波电压对V+电位的干扰,可以在R2两端并联滤波电容C3,消除谐振;由于C1隔 直流,使RF 引入直流全负反馈。
所以,静态时,运放输出端的电压V0=V-~V+=+Vcc+ l> 22k« 订C 1 出(MWr ______________ t+10 10HF工图3单电源同相输入成交流敝大电路/2; C1通交流,使RF 引入交流部分负反馈,是电压并联负反馈。
运放的供电滤波
运放的供电滤波运放的供电滤波是运放电路设计中非常重要的一个环节,它可以有效地抑制电源噪声和防止电路中的振荡,从而提高运放电路的性能和稳定性。
下面将详细介绍运放的供电滤波原理、方法和实践。
一、运放供电滤波原理运放的供电滤波主要是通过在电源和地之间添加滤波器来实现的。
滤波器的作用是减小电源电压的波动和噪声,同时防止电路中的振荡。
根据频率响应的不同,滤波器可以分为低通滤波器、高通滤波器和带通滤波器。
在运放供电中,一般使用低通滤波器来抑制高频噪声。
二、运放供电滤波方法1.电源退耦滤波电源退耦滤波是在运放的电源和地之间添加一个由电阻、电容和电感组成的滤波器,以减小电源电压的波动和噪声。
其中,电容可以滤除高频噪声,电感可以滤除低频噪声。
1.电源内阻滤波电源内阻滤波是在运放的电源和地之间添加一个低阻抗的电源内阻滤波器,以减小电源内阻对电路性能的影响。
该方法可以有效地抑制电源内阻引起的噪声和振荡。
1.频率补偿滤波频率补偿滤波是在运放的输出端添加一个由电阻、电容和电感组成的滤波器,以减小电路中的振荡。
该方法可以通过调整滤波器的参数来优化电路的频率响应,从而提高电路的稳定性和性能。
三、运放供电滤波实践在进行运放供电滤波时,需要考虑以下几个因素:1.确定滤波器的类型和参数:根据运放电路的具体要求和实际情况,选择合适的滤波器类型和参数。
例如,对于高频噪声,可以选择低通滤波器;对于低频噪声,可以选择高通滤波器等。
2.3.选择合适的元件:选择合适的电阻、电容和电感元件,以保证滤波器的性能和稳定性。
例如,选择低阻抗的电源内阻滤波器可以有效地抑制电源内阻引起的噪声和振荡等。
4.5.合理布局:在电路板布线时,需要合理布局滤波器的位置,以保证滤波器的效果。
例如,将滤波器靠近运放的电源和地引脚放置,可以减小电源和地之间的距离,从而减小噪声和振荡的影响。
6.7.调试与优化:在进行电路调试时,需要对滤波器进行优化,以保证电路的性能和稳定性。
单电源运算放大器滤波电路
单电源运算放大器电路应用图集(三):滤波电路(上)这节非常深入地介绍了用运放组成的有源滤波器。
在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。
这个电容实际上是一个高通滤波器,在某种意义上说,像这样的单电源运放电路都有这样的电容。
设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。
这样才可以保证电路的幅频特性不会受到这个输入电容的影响。
如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。
如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。
这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。
这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。
滤波器的实现很简单,但是以下几点设计者必须注意:1. 滤波器的拐点(中心)频率2. 滤波器电路的增益3. 带通滤波器和带阻滤波器的的Q值4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell)不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。
即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。
通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。
或者可以通过几次实验而最终确定下来。
如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。
3.1 一阶滤波器一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性3.1.1 低通滤波器典型的低通滤波器如图十三所示。
图十三3.1.2 高通滤波器典型的高通滤波器如图十四所示。
图十四3.1.3 文氏滤波器文氏滤波器对所有的频率都有相同的增益,但是它可以改变信号的相角,同时也用来做相角修正电路。
图十五中的电路对频率是F 的信号有90 度的相移,对直流的相移是0度,对高频的相移是180度。
运放直流放大电路单电源电路
运放直流放大电路单电源电路下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!运放直流放大电路单电源电路1. 介绍运放直流放大电路是一种常用的电子电路元件,用于信号放大和滤波等应用。
6种简单电路图之LM358应用电路图
6种简单电路图之LM358应用电路图(直流耦合低通RC有源滤波器低漂移峰值检测器)关键词:有源滤波器运放运算放大器运放电路电路图LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源趣与电源电压无关。
它的使用范圉包括传感放大器、直流增益模组,音频放大器、工业控制、DC增益部件和其他所有可用单电源供电的使用运算放大器的场合。
LM358应用电路图:LM358 的特性(FeatUres):.内部频率补偿•低输入偏流•低输入失调电压和失调电流.共模输入电压范围宽,包括接地•差模输入电压范围宽,等于电源电压范围.直流电压增益高(约IOOdB).单位增益频带宽(约IMHz)•电源电压范围宽:单电源(3—30V);.双电源(±1.5 —±15V)•低功耗电流,适合于电池供电•输出电压摆幅大(0至VCC-1.5V)参数输入偏置电流45 nA输入失调电流50 nA输入失调电压2.9mV输入共模电压最大值VCC~1.5 V共模抑制比80dB电源抑制比IOOdBLM358应用电路图:LM358应用电路图,CI直梯合低通RC有源谑:枝器低漂移峰值检测器Voltage FOIlOWerI电压跟随器Rl功率放大器外围电路S-s≡z tt ≡⅛⅛H屯压控制振荡器Va)固定电流源脉冲发生盐> V -®S S I ?H ∣∙ ⅞≡8>0 A QA i M O -,?÷ WKA + ≤√;' 卜 z >■>「Q> ⅞A ∙-•畑TL∕HZ7787-33桥式电流放大器引用差分输入信AR2)AS ShoWni VO== 2 (√2 - Vl直流差动放大器。
单电源运算放大器全波整流电路_精密半波、全波整流电路结构原理图解
单电源运算放⼤器全波整流电路_精密半波、全波整流电路结构原理图解利⽤⼆极管(开关器件)的单向导电特性,和放⼤器的优良放⼤性能相结合,可做到对输⼊交变信号(尤其是⼩幅度的电压信号)进⾏精密的整流,由此构成精密半波整流电路。
若由此再添加简单电路,即可构成精密全波整流电路。
⼆极管的导通压降约为0.6V左右,此导通压降⼜称为⼆极管门坎电压,意谓着迈过0.6V这个坎,⼆极管才由断态进⼊到通态。
常规整流电路中,因整流电压的幅值远远⾼于⼆极管的导通压降,⼏乎可以⽆视此门坎电压的存在。
但在对⼩幅度交变信号的处理中,若信号幅度竟然⼩于0.6V,此时⼆极管纵然有⼀⾝整流的本事,也全然派不上⽤场了。
在⼆极管茫然四顾之际,它的帮⼿——有优良放⼤性能的运算放⼤器的适时出现,改变了这种结局,⼆者⼀拍即合,⼩信号精密半波整流电路即将⾼调登场。
请看图1。
图1 半波精密整流电路及等效电路上图电路,对输⼊信号的正半波不予理睬,仅对输⼊信号的负半波进⾏整流,并倒相后输出。
(1)在输⼊信号正半周(0~t1时刻),D1导通,D2关断,电路等效为电压跟随器(图中b电路):在D1、D2导通之前,电路处于电压放⼤倍数极⼤的开环状态,此时(输⼊信号的正半波输⼊期间),微⼩的输⼊信号即使放⼤器输⼊端变负,⼆极管D1正偏导通(相当于短接),D2反偏截⽌(相当于断路),形成电压跟随器模式,因同相端接地,电路变⾝为跟随地电平的电压跟随器,输出端仍能保持零电位。
(2)在输⼊信号负半周(t1~t2时刻),D1关断,D2导通,电路等效反相器(图中c电路):在输⼊信号的负半波期间,(D1、D2导通之前)微⼩的输⼊信号即使输出端变正,⼆极管D1反偏截⽌,D2正偏导通,形成反相(放⼤)器的电路模式,对负半波信号进⾏了倒相输出。
在⼯作过程中,两只⼆极管默契配合,⼀开⼀关,将输⼊正半波信号关于门外,维持原输出状态不变;对输⼊负半波信号则放进门来,帮助其翻了⼀个跟头(反相)后再送出门去。
差分放大电路 单电源
差分放大电路单电源差分放大电路单电源是一种常用的电路,可以将两个输入信号的差值放大,同时抑制共模信号,从而提高电路的抗干扰能力。
本文将从电路原理、设计方法和应用实例等方面介绍差分放大电路单电源的相关知识。
一、电路原理差分放大电路单电源由两个运算放大器组成,如图1所示。
其中,运放A1和A2构成差动放大器,输入信号为V1和V2,输出为差分信号Vout。
运放A3为缓冲放大器,将Vout信号放大输出。
差分放大电路单电源的原理是利用差动放大器对于共模信号的抑制作用,将两个输入信号的差值放大。
在理想情况下,差动放大器对于共模信号的抑制作用可以达到无限大,从而实现完美的差分放大。
二、设计方法差分放大电路单电源的设计方法包括增益计算、电源选择和滤波器设计等方面。
1. 增益计算差分放大电路单电源的增益计算方法如下:G = -Rf/Rin其中,G为电路的增益,Rf为反馈电阻,Rin为输入电阻。
2. 电源选择差分放大电路单电源需要选择合适的电源电压,以保证运放工作在稳定的工作区域。
3. 滤波器设计差分放大电路单电源需要设计合适的滤波器,以滤除高频噪声和低频杂波,提高电路的抗干扰能力。
三、应用实例差分放大电路单电源广泛应用于各种测量和控制系统中,如温度测量、压力测量、振动测量等。
以温度测量为例,差分放大电路单电源可以将两个温度传感器的输出信号进行差分放大,从而得到温度差值。
此外,差分放大电路单电源还可以抑制共模噪声,提高测量系统的精度和稳定性。
四、总结差分放大电路单电源是一种常用的电路,可以将两个输入信号的差值放大,同时抑制共模信号,从而提高电路的抗干扰能力。
差分放大电路单电源的设计方法包括增益计算、电源选择和滤波器设计等方面。
差分放大电路单电源广泛应用于各种测量和控制系统中,具有重要的应用价值。
LM324应用电路图
LM324系列运算放大器就是价格便宜得带差动输入功能得四运算放大器。
可工作在单电源下,电压范围就是3、0V-32V或+16V、LM324得特点:1、短跑保护输出2、真差动输入级3、可单电源工作:3V-32V4、低偏置电流:最大100nA(LM324A)5、每封装含四个运算放大器。
6、具有内部补偿得功能。
7、共模范围扩展到负电源8、行业标准得引脚排列9、输入端具有静电保护功能LM324引脚图(管脚图)LM324应用电路图:1、LM324电压参考电路图2、LM324多路反馈带通滤波器电路图3、LM324高阻抗差动放大器电路图4、LM324函数发生器电路图5、LM324双四级滤波器6、LM324维思电桥振荡器电路图7、LM324滞后比较器电路图恒流源运算放大器LM324得D单元构成恒流源,使用中为保证恒流源得线性度,应充分保证电阻R16与R17阻值不小于R14与R15得10倍,且R14与R15、R16与R17两两之间阻值误差要尽可能地小,只有这样才能保证锯齿波得线性度,调试时有时测得得锯齿波为下凹得,这就是由于R14与R15或R16与R17两个电阻之间阻值有较大得差值造成得。
本文就高性能集成四运放LM324得参数,进行实用电路设计,论述电路原理。
LM324就是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它得内部包含四组形式完全相同得运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示得符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo得信号与该输入端得位相反;Vi+(+)为同相输入端,表示运放输出端Vo得信号与该输入端得相位相同。
LM324得引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
运算放大器正向放大电路 单一电源
运算放大器正向放大电路单一电源运算放大器是一种广泛应用于电路设计中的放大器。
它主要用于放大微弱信号,以提高信号强度,并能实现信号的线性放大。
本文将介绍运算放大器正向放大电路的基本原理、电路组成、工作方式以及一些常见应用示例,希望能为读者提供一定的指导意义。
运算放大器正向放大电路的基本原理是利用电压放大器的特性,对输入信号进行放大。
它主要由一个运算放大器芯片和相关的电阻、电容等元件组成。
其中,芯片通常包含多个放大器输入端和一个输出端。
电路输入与输出之间的放大倍数可以通过调节芯片的反馈电阻来实现。
在运算放大器正向放大电路中,输入信号通常通过一个电阻与运算放大器的非反相输入端相连接,同时通过另一个电阻与运算放大器的反相输入端相连接。
这样,输入信号经过放大后,通过输出端输出。
运算放大器正向放大电路的工作方式是基于运算放大器的特性,即非反相输入端和反相输入端的电压差趋近于零。
当输入信号从电阻流过时,根据欧姆定律,会在反相输入端产生一定大小的电流。
为了让反相输入端电压趋向于零,运算放大器会将输出信号通过反馈电阻反馈到非反相输入端,以调节电流的大小,使得输入信号与输出信号之间的误差尽可能小。
运算放大器正向放大电路的应用非常广泛。
它可以用于音频放大器、滤波器、传感器信号放大电路等。
例如,我们可以将运算放大器正向放大电路用于音频放大器中,将微弱的音频信号放大到足够的水平,以驱动扬声器产生音频声音。
另外,也可以将它应用于传感器信号放大电路中,将传感器采集的微弱信号放大,以便进行后续的处理和分析。
总之,运算放大器正向放大电路是一种非常重要的电路设计中的组成部分。
它的基本原理是利用运算放大器芯片的特性,对输入信号进行放大。
通过调节反馈电阻,可以实现信号的线性放大,并将其应用于不同的场景中。
因此,了解和掌握运算放大器正向放大电路的原理与应用,对于电路设计工程师来说,具有重要的指导意义。
LM324应用电路图
LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在单电源下,电压范围是3.0V-32V或+16V.LM324的特点:1.短跑保护输出2.真差动输入级3.可单电源工作:3V-32V4.低偏置电流:最大100nA(LM324A)5.每封装含四个运算放大器。
6.具有内部补偿的功能。
7.共模范围扩展到负电源8.行业标准的引脚排列9.输入端具有静电保护功能LM324引脚图(管脚图)LM324应用电路图:1.LM324电压参考电路图2.LM324多路反馈带通滤波器电路图3.LM324高阻抗差动放大器电路图4.LM324函数发生器电路图5.LM324双四级滤波器6.LM324维思电桥振荡器电路图7.LM324滞后比较器电路图恒流源运算放大器LM324的D单元构成恒流源,使用中为保证恒流源的线性度,应充分保证电阻R16与R17阻值不小于R14与R15的10倍,且R14与R15、R16与R17两两之间阻值误差要尽可能地小,只有这样才能保证锯齿波的线性度,调试时有时测得的锯齿波为下凹的,这是由于R14与R15或R16与R17两个电阻之间阻值有较大的差值造成的。
本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。
LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
电源滤波电路(图)电源滤波电路解析
电源滤波电路、整流电源滤波电路分析电源滤波电路整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。
为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。
常用的滤波电路有无源滤波和有源滤波两大类。
无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等).有源滤波的主要形式是有源RC滤波,也被称作电子滤波器.直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。
脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。
对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T—1).(T为整流输出的直流脉动电压的周期。
)电阻滤波电路RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
如图1(B)RC滤波电路。
若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S.由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉.在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。
而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实.这种电路一般用于负载电流比较小的场合。
电感滤波电路根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。
因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。
电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。
(A)电容滤波(B) C—R—C或RC-π型电阻滤波脉动系数S=(1/ωC2R’)S’(C) L—C电感滤波(D)π型滤波或叫C—L—C滤波图1 无源滤波电路的基本形式并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单电源运算放大器电路应用图集(三):滤波电路(上)
这节非常深入地介绍了用运放组成的有源滤波器。
在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。
这个电容实际上是一个高通滤波器,在某种意义上说,像这样的单电源运放电路都有这样的电容。
设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。
这样才可以保证电路的幅频特性不会受到这个输入电容的影响。
如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。
如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。
这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。
这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。
滤波器的实现很简单,但是以下几点设计者必须注意:
1. 滤波器的拐点(中心)频率
2. 滤波器电路的增益
3. 带通滤波器和带阻滤波器的的Q值
4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell)
不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。
即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。
通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。
或者可以通过几次实验而最终确定下来。
如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。
3.1 一阶滤波器
一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性
3.1.1 低通滤波器
典型的低通滤波器如图十三所示。
图十三
3.1.2 高通滤波器
典型的高通滤波器如图十四所示。
图十四
3.1.3 文氏滤波器
文氏滤波器对所有的频率都有相同的增益,但是它可以改变信号的相角,同时也用来做相角修正电路。
图十五中的电路对频率是F 的信号有90 度的相移,对直流的相移是0度,对高频的相移是180度。
图十五
3.2 二阶滤波器
二阶滤波电路一般用他们的发明者命名。
他们中的少数几个至今还在使用。
有一些二阶滤波器的拓扑结构可以组成低通、高通、带通、带阻滤波器,有些则不行。
这里没有列出所有的滤波器拓扑结构,只是将那些容易实现和便于调整的列了出来。
二阶滤波器有40dB 每倍频的幅频特性。
通常的同一个拓扑结构组成的带通和带阻滤波器使用相同的元件来调整他们的Q 值,而且他们使滤波器在Butterworth 和Chebyshev 滤波器之间变化。
必须要知道只有Butterworth 滤波器可以准确的计算出拐点频率,Chebyshev 和Bessell滤波器只能在Butterworth 滤波器的基础上做一些微调。
我们通常用的带通和带阻滤波器有非常高的Q 值。
如果需要实现一个很宽的带通或者带阻滤波器就需要用高通滤波器和低通滤波器串连起来。
对于带通滤波器的通过特性将是这两个滤波器的交叠部分,对于带阻滤波器的通过特性将是这两个滤波器的不重叠部分。
这里没有介绍反相Chebyshev 和Elliptic 滤波器,因为他们已经不属于电路集需要介绍的范围了。
不是所有的滤波器都可以产生我们所设想的结果――比如说滤波器在阻带的最后衰减幅度在多反馈滤波器中的会比在Sallen-Key 滤波器中的大。
由于这些特性超出了电路图集的介绍范围,请大家到教科书上去寻找每种电路各自的优缺点。
不过这里介绍的电路在不是很特殊的情况下使用,其结果都是可以接受的。
3.2.1 Sallen-Key滤波器
Sallen-Key 滤波器是一种流行的、广泛应用的二阶滤波器。
他的成本很低,仅需要一个运放和四个无源器件组成。
但是换成Butterworth 或Chebyshev 滤波器就不可能这么容易的调整了。
请设计者参看参考条目【1】和参考条目【2】,那里介绍了各种拓扑的细节。
这个电路是一个单位增益的电路,改变Sallen-Key 滤波器的增益同时就改变了滤波器的幅频特性和类型。
实际上Sallen-Key 滤波器就是增益为1的Butterworth 滤波器。
图十六
3.2.2 多反馈滤波器
多反馈滤波器是一种通用,低成本以及容易实现的滤波器。
不幸的是,设计时的计算有些复杂,在这里不作深入的介绍。
请参看参考条目【1】中的对多反馈滤波器的细节介绍。
如果需要的是一个单位增益的Butterworth 滤波器,那么这里的电路就可以给出一个近似的结果。
图十七
3.2.3 双T滤波器
双T 滤波器既可以用一个运放也可仪用两个运放实现。
他是建立在三个电阻和三个电容组成的无源网络上的。
这六个元件的匹配是临界的,但幸运的是这仍是一个常容易的过程,这个网络可以用同一值的电阻和同一值的电容组成。
用图中的公式就可以同时的将R3 和C3 计算出来。
应该尽量选用同一批的元件,他们有非常相近的特性。
3.2.3.1 单运放实现
图十八
如果用参数非常接近的元件组成带通滤波器,就很容易发生振荡。
接到虚地的电阻最好在E-96 1%系列中选择,这样就可以破坏振荡条件。
图十九
3.2.3.2 双运放实现
典型的双运放如图20到图22所示
图二十
图二十一
图二十二。