北师大版八年级数学上册 勾股定理的应用同步练习题
北师大版八年级勾股定理练习题(含答案)
北师大版八年级数学上【1】勾股定理练习题一、基础达标:1. 下列说法正确的是()A.若 a、b、c是△ABC的三边,则a2+b2=c2;B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;C.若 a、b、c是Rt△ABC的三边, 90∠A,则a2+b2=c2;=D.若 a、b、c是Rt△ABC的三边, 90∠C,则a2+b2=c2.=2. Rt△ABC的三条边长分别是a、b、c,则下列各式成立的是()A.cb+ D.+ C. ca<bba>a=+ B. c2c22+a=b3.如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜边长是()A、2kB、k+1C、k2-1D、k2+14. 已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121B.120C.90D.不能确定6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42 或 32 D.37 或 337.※直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为()(A2d(B d(C)2d(D)d8、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为( )A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是.12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是,另外一边的平方是.18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是.19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是. 二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AE 重合, AC B你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3.解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15, 小汽车 小汽车 B C 观测点所求直角三角形面积为21158602cm ⨯⨯=.答案:260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9.解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11.解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.。
北师大版八年级数学上册第一章勾股定理 1.3勾股定理的应用 同步练习题( 教师版)
北师大版八年级数学上册第一章勾股定理 1.3勾股定理的应用同步练习题一、选择题1.如图,湖的两端有A,B两点,从与BA方向成直角的BC方向上的点C测得CA=130 m,CB=120 m,则AB长为(C)A.30 m B.40 m C.50 m D.60 m2.如图,在水塔O的东北方向32 m处有一抽水站A,在水塔的东南方向24 m处有一建筑工地B,在AB间建一条直水管,则水管的长为(B)A.45 m B.40 m C.50 m D.56 m3.如图1所示,有一个由传感器A控制的灯,要装在门上方离地高4.5 m的墙上,任何东西只要移至该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光 (A)A.4 m B.3 m C.5 m D.7 m4.如图,小明准备测量一段水渠的深度,他把一根竹竿AB竖直插到水底,此时竹竿AB离岸边点C处的距离CD=1.5米,竹竿高出水面的部分AD长0.5米.如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,那么水渠的深度BD为(A)A.2米 B.2.5米 C.2.25米 D.3米二、填空题5.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到D,则橡皮筋被拉长了2cm.6.如图,把一张长为4,宽为2的长方形纸片沿对角线折叠,则重叠部分的面积为2.5.7.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.8.如图所示,长方体的高为3 cm,底面是正方形,边长为2 cm,现使一绳子从点A出发,沿长方体表面到达C处,则绳子最短是5cm.9.勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现:4=1×(3+1),12=2×(5+1),24=3×(7+1),…,分析上面规律,第5个勾股数组为(11,60,61).10.如图,在高3 m、坡面线段距离AB为5 m的楼梯表面铺地毯,则地毯长度至少需7m.11.如图,将一根20 cm长的细木棒放入长、宽、高分别为4 cm,3 cm和12 cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是7cm.12.如图,长方体的长为4 cm,宽为2 cm,高为5 cm,若用一根细线从点A开始经过4个侧面缠绕一圈到达点B,则所用细线的长度最短为13cm.三、解答题13.如图是一个滑道示意图,若将滑道AC水平放置,则刚好与AB一样长,已知滑梯的高度CE=3 m,CD=1 m,求滑道AC的长(图中四边形BDCE为长方形).解:设AC的长为x m,则AB=AC=x m.因为EB=CD=1 m,所以AE=(x-1)m.在Rt△AEC中,∠AEC=90°,由勾股定理,得AC2=CE2+AE2,即x2=32+(x-1)2.解得x=5.所以滑道AC的长为5 m.14.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个半圆柱而成,中间可供滑行部分的横截面是半径为3 m的半圆,该部分的边缘AB=CD =45 m,点E在CD上,CE=5 m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,π取整数3)解:如图:AD=πR=9 m,AB=CD=45 m,DE=CD-CE=45-5=40(m).在Rt△ADE中,AE2=AD2+DE2=92+402=1 681.所以AE=41 m.答:他滑行的最短距离约是41 m.15.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?解:(1)村庄能听到宣传,理由:因为村庄A到公路MN的距离为600米<1 000米,所以村庄能听到宣传.(2)如图,假设当宣讲车行驶到P点开始影响村庄,行驶至Q点结束对村庄的影响,则AP=AQ=1 000米,AB=600米,在Rt△APB中,PB2=AP2-AB2=640 000.所以BP=800米.所以BP=BQ=800米.则PQ=1 600米.所以影响村庄的时间为1 600÷200=8(分钟).答:村庄总共能听到8分钟的宣传.16.如图,直线MN表示一条铁路,A,B是两个城市,它们到铁路的垂直距离分别为AA1=20 km,BB1=40 km,已知A1B1=80 km,现要在A1,B1之间设一个中转站P,使两个城市到中转站的距离之和最短,请你设计一种方案确定P点的位置,并求这个最短距离.解:延长AA1到点D,使A1D=AA1,连接BD交MN于点P,连接PA,此时PA+PB的值最小,与BD的长度相同.过点D作DE⊥BB1交BB1的延长线于点E,因为AA1=20 km, BB1=40 km,A1B1=80 km,所以DE=80 km,BE=60 km.所以BD2=602+802=1002.所以BD=100 km.所以这个最短距离是100 km.。
1.1+探索勾股定理+第1课时同步练习2024-2025学年北师大版数学八年级上册
1.1 探索勾股定理第1课时【基础达标】1.如图,在△ABC中,△B=90°,BC=3,AC=4,则AB的长度为()A.1B.√7C.2√3D.52.在Rt△ABC中,△C=90°,AB=13,AC=12,则△ABC的面积为()A.5B.60C.45D.303.(优秀传统文化)在中国古代建筑中,有一种常见的装饰元素叫作“斗拱”.斗拱由多个小木块组成,它们之间通过榫卯结构相互连接,形成了一种独特的几何美感.如图1,我们选取斗拱模型的一部分,它由三个小木块组成,形状类似于一个直角三角形(图2).假设这个斗拱模型的直角边长度分别为a和b,斜边长度为c.根据工匠的记录,我们知道a=5尺(古代的长度单位),b=12尺,则斜边c为尺.4.如图,在△ABC中,△ACB=90°,AB=5,BC=3,则图中阴影部分的正方形的面积为.5(新考法)如图,在△ABC中,AC=BC=5,P为AC上一动点,连接BP,BP的最小值为3,当BP取最小值时,AP= .【能力巩固】6(新考法)如图,在5×5的网格中,A,B,C都是网格点,则AC的长落在数轴上点()A.M处B.N处C.P处D.Q处7对角线互相垂直的四边形叫作“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=1,BC=4,则AB2+CD2等于()A.15B.16C.17D.208.如图,所有阴影部分的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C的面积依次为6、10、7,则正方形D的面积为.【素养拓展】9(合作学习)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.如图,作AD△BC于点D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.10如图,铁路上A,B两点相距25 km,C,D为两村庄,DA△AB于点A,CB△AB于点B,已知DA=15 km,CB=10 km,现在要在铁路AB边上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少千米处?11(五育并举)为推行五育并举,结合当地特色,某校推出石板画课程,如图,这是小明制作的正方形石板画ABDE,为了方便展示小明又制作了两个直角三角形支架(△ABC和△BDF),点C、B、F在同一直线上,在△ABC中,△ACB=90°,AC=8 cm,BC=7 cm,求C、E两点之间的距离.参考答案1.1 探索勾股定理 第1课时基础达标作业 1.B 2.D 3.13 4.16 5.1能力巩固作业 6.D 7.C 8.23素养拓展作业9.解:在△ABC 中,AB=15,BC=14,AC=13, 设BD=x ,则CD=14-x.由勾股定理得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x )2, ∴152-x 2=132-(14-x )2, 解得x=9, ∴AD=12,∴S △ABC =12BC ·AD=12×14×12=84.10.解:设AE=x ,在Rt△AED 中,x 2+152=DE 2. 在Rt△BCE 中,(25-x )2+102=CE 2.又DE=CE ,所以(25-x )2+102=x 2+152,解得x=10. 答:E 站应建在离A 站10 km 处.11.解:如图,连接CE ,过点E 作EG △AC ,交CA 的延长线于点G , ∴△EGA=90°, ∴△EAG+△AEG=90°. ∴△BAE=90°, ∴△EAG+△BAC=90°, ∴△AEG=△BAC.∴AE=AB,∴△AEG△△BAC(AAS),∴EG=AC=8 cm,AG=BC=7 cm.在Rt△ECG中,EG=8,GC=GA+AC=7+8=15(cm),根据勾股定理得CE=√82+152=17(cm).。
新北师大版八年级上学期勾股定理同步练习题
新北师大版八年级上学期《第一章勾股定理》同步练习题一、选择题1.如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是【】A.6 B.7 C.8 D.92.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是平【】A.40cm B.202cm C.20cm D .102 cm3.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=46,则PE+PF的长是【】A.46B.6 C.42D.264.点P在等腰Rt△ABC的斜边AB所在直线上,若记:k=AP2+BP2,则【】A.满足条件k <2CP2的点P有且只有一个 B.满足条件k<2CP2的点P有无数个 C.满足条件k=2CP2的点P有有限个 D.对直线AB上的所有点P,都有k=2CP25.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是【】A.Sl +S2>S3B.Sl+S2<S3C.S1+S2=S3D.S12+S22=S326.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x-y=2,③2xy+4=49,④x+y=9.其中说法正确的是【】A.①② B.①②③ C.①②④ D.①②③④7. 如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是【】A.1.5 B.2 C.2.25 D.2.58.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是【】A.217 B.25 C.42 D.79.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,43第1题图第2题图第3题图第5题图10.已知△ABC 中,AB=17,AC=10,BC 边上的高AD=8,则边BC 的长为【 】 A .21 B .15 C .6 D .以上答案都不对 11.如图:在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF ∥BC 交AC 于M ,若CM=5,则CE 2+CF 2等于【 】A .75 B .100 C .120 D .12512. 如图,正方形网格中,每个正方形的顶点叫格点,每个小正方形的边长为1,则以格点为顶点的三角形中,三边长都是整数的三角形的个数是【 】 A .4 B .8 C .16 D .2013.如图,P 为等腰△ABC 内一点,过点P 分别作三条边BC 、CA 、AB 的垂线,垂足分别为D 、E 、F ,已知AB=AC=10,BC=12,且PD :PE :PF=1:3:3,则AP 的长为【 】A .43B . 203C .7D .814. 如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是【 】 A .52 B .42 C .76 D .7215. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为【 】 A .90 B .100 C .110 D .121 二,填空题16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕第11题图第12题图第13题图第14题图第6题图第7题图第8题图第9题图一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是 尺.17. 如图,△ABC 中,AB=AC=2,若P 为BC 的中点,则AP2+BP•PC 的值为 ;若BC 边上有100个不同的点P1,P2,…,P100,记mi=APi2+BPi•PiC(i=1,2,…,100),则m1+m2+…+m100的值为 .18.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c .设S△ABC=S,a+b+c=L ,则S 与L 的比SL蕴含着一个奇妙的规律,这个规律与a+b-c 的值有关,观察下面a 、b 、c 取具体勾股数的表: 三边a 、b 、c a+b-c L S S/L 3、4、5 2 12 6 1/2 6、8、10 4 24 24 1 5、12、13 4 30 30 1 8、15、17 6 40 48 3/2 12、16、20 8 4896 2 … … … ………若a+b-c=m ,则观察上表我们可以猜想出SL= (用含m 的代数式表示) 19.如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底3cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为cm .20.图中所示是一条宽为1.5m 的直角走廊,现有一辆转动灵活的手推车,其矩形平板面ABCD 的宽AB 为1m ,若要想顺利推过(不可竖起来或侧翻)直角走廊,平板车的长AD 不能超过 m .21.如图,在△ABC 中,AB=BC=2,∠ABC=90°,D 是BC 的中点,且它关于AC 的对称点是D′,则BD′= . 三、解答题(必须有必要的解答过程)22. 如图,在一棵树CD 的10m 高处的B 点有两只猴子,它们都要到A 处池塘边喝水,其中一只猴子沿树爬下走到离树20m 处的池塘A 处,另一只猴子爬到树顶D 后直线跃入池塘的A 处.如果两只猴子所经过的路程相等,试问这棵树多高? 第16题图第17题图第19题图第20题图第21题图23.如图,在一张长方形ABCD纸张中,一边BC折叠后落在对角线BD上,点E为折痕与边CD的交点,若AB=5,BC=12,求图中阴影部分的面积.24.如图,AD是已知△ABC中BC边上的高.P是AD上任意一点,当P从A向D移动时,线段PB、PC的长都在变化,试探索PB2-PC2的值如何变化?25.某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长为6m、8m.现要将其扩建成等腰三角形,且扩充部分是以8m为直角边的直角三角形.求扩建后的等腰三角形花圃的周长.26.定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.小亮用12根火柴棒,摆成如图所示的“整数三角形”;小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”.(1)请你画出小颖和小辉摆出的“整数三角形”的示意图;(2)你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.①摆出等边“整数三角形”;②摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”.27.我们学习了勾股定理后,都知道“勾三、股四、弦五”.(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是12(9−1),12(9+1);勾是五时,股和弦的算式分别是12(25−1),12(25+1).根据你发现的规律,分别写出勾是七时,股和弦的算式;(2)根据(1)的规律,请用含n(n为奇数,且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数,且m>4)的代数式来表示股和弦.28. 大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC 中,AB=AC ,其一腰上的高为h ,M 是底边BC 上的任意一点,M 到腰AB 、AC 的距离分别为h1、h2.(1)请你结合图形来证明:12h h h +=;(2)当点M 在BC 延长线上时,12h h 、、h 之间又有什么样的结论.请你画出图形,写出结论并证明;(3)利用以上结论解答,如图在平面直角坐标系中有两条直线1l :y=34x+3,2l :y=-3x+3,若2l 上的一点M 到1l 的距离是32.求点M 的坐标.。
北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)
北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)勾股定理是数学中一个重要的定理,它的应用范围广泛。
在北师大版八年级上的教材中,我们学习了如何运用勾股定理解决实际问题。
本文将结合教材中的同步练习题,以及给出答案解析,来展示勾股定理的实际应用。
1. 问题一在一个直角三角形中,已知一条直角边长度为4cm,另外一条直角边长度为3cm。
求斜边的长度。
解析:根据勾股定理可得:斜边的平方等于直角边的平方和。
则斜边的长度可以通过计算√(3²+4²)来得出。
通过计算可知,斜边的长度为√(9+16)=√25=5cm。
所以,斜边的长度为5cm。
2. 问题二一辆汽车以40km/h的速度行驶8小时后停下来。
求汽车行驶的路程。
解析:已知速度和时间,我们可以利用勾股定理来计算汽车行驶的路程。
根据勾股定理,行驶的路程等于速度乘以时间。
所以,汽车行驶的路程为40km/h × 8h = 320km。
因此,汽车行驶的路程为320km。
3. 问题三一个直角三角形的斜边长度是5cm,一直角边和斜边之间的角度是30°。
求另外一个直角边的长度。
解析:已知斜边的长度和角度,我们可以利用勾股定理来计算另外一个直角边的长度。
根据勾股定理,另外一个直角边的长度等于斜边的长度乘以sin(30°)。
sin(30°) = 1/2,所以另外一个直角边的长度为5cm × 1/2 = 2.5cm。
因此,另外一个直角边的长度为2.5cm。
4. 问题四一块长方形农田的对角线长度为13m,较短的直角边的长度为5m。
求较长的直角边的长度。
解析:已知对角线的长度和一个直角边的长度,我们可以利用勾股定理来计算另外一个直角边的长度。
根据勾股定理,较长的直角边的长度等于√(对角线的长度的平方减去已知直角边的平方)。
则较长的直角边的长度可计算为√(13²-5²)。
北师版八年级数学上册1.1.2勾股定理的简单应用 同步训练卷
5/8
参考答案 1-5DADCB 6-10CCBDD 11. 3 12.76 13.18 14.2 15.= 16.356 17. 50 海里 18. 700 元 19. 解:在直角三角形中,由勾股定理可得,直角三角形的斜边长为 5 m, 所以长方形塑料薄膜的面积是 5×20=100(m2). 即阳光透过的最大面积是 100 m2 20. 解:∵S =S 五边形面积 正方形面积 1+S 正方形面积 2+2S , 直角三角形面积 即12(b+a+b)·b+12(a+a+b)·a=c2+2×12ab,即12ab+b2+a2+12ab=c2+ab, 整理得 c2=a2+b2. 因此利用这个图形可以验证勾股定理 21. 解:作 BD⊥AC 于点 D. (1)由勾股定理得 AB=30 米 (2)由面积法得12AB·BC=12AC·BD, ∴BD=24 米, ∴点 B 到直线 AC 的距离是 24 米 22. 解:设阅览室 E 到点 A 的距离为 x km,连接 CE,DE. 在 Rt△EAC 和 Rt△EBD 中,CE2=AE2+AC2=x2+152, DE2=EB2+DB2=(25-x)2+102. ∵EC=ED,∴x2+152=(25-x)2+102, 解得 x=10, 故阅览室建在距点 A10 km 处 23. 解:如图,在 Rt△ACB 中,∠ACB=90°,BC=0.7 m, AC=2.4 m,所以 AB2=0.72+2.42=6.25.
S△ABP=AACP·S△ABC=35×6=3.6; ②当 AB=BP=3,且 P 在 AC 上时,如图②所示,
北师大版八年级数学上册 勾股定理的应用同步练习题
勾股定理的应用同步练习题一、【基础知识精讲】1.勾股定理:直角三角形两直角边的平方和等于斜边的平方。
即:c 2=a 2+b 2(c 为斜边)。
2.勾股定理的逆定理:如果三角形的三边长a 、b 、c 有下面关系:a 2+b 2= c 2,那么这个三角形是直角三角形。
注意:勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。
二、【例题精讲】例1:如图:有一个圆柱,它的高为12厘米,底面半径为3厘米,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面相对的B 点处的食物,沿圆柱侧面爬行的最短路程是多少?(∏的取值为3)例2:如图有一个三级台阶,每级台阶长、宽、高分别为2米、0.3米0.2米,A 处有一只蚂蚁,它想吃到B 处食物,你能帮蚂蚁设计一条最短的线路吗?并求出最短的线路长。
例3:古代数学著作《九章算术》中记载了如下一个问题:有一个水池,水面的边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?三、【同步练习】A组1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10∶00,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?3.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是多少。
ABDCBA·东北B组1.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.14cm B.4cm C.15cm D.3cm2.如图如果点C在SA上且SC=6cm,A处有一只蜗牛想要吃到C处食物,但它不能直接爬到C处,只能沿圆锥曲面爬行,你能画出蜗牛爬行最短路程吗?,若SA=8cm,侧面展开图的夹角为90°,试求最短路径长。
1.3 勾股定理的应用 北师大版数学八年级上册课时同步练习(含解析)
1.3 勾股定理的应用课时同步练习北师大版八年级数学上册一、选择题1.近年来,作为规模较小的城市绿色敞开空间,口袋公园改善了城市生态环境,方便了市民健身休闲.如图,某口袋公园内有两条互相垂直的道路OA,OB,若OA长40m,OB长20m,当小明从A点沿公园内小路(图中箭头所示路线)走到B点时,小明所走的路程可能是( )A.35m B.42m C.44m D.52m2.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5 m的墙上,任何东西只要移至该灯5 m及5 m以内时,灯就会自动发光.请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4米B.3米C.5米D.7米3.用梯子登上20m高的建筑物,为了安全要使梯子的底面距离建筑物15m,至少需要( )m长的梯子.A.20B.25C.15D.54.在直角坐标系中,点P(﹣2,3)到原点的距离是( )A.5B.3C.2D.135.如图,为了求出湖两岸A、B两点之间的距离,观测者从测点A、B分别测得∠BAC=90°,又量得AC=9m,BC=15m,则A、B两点之间的距离为( )A.10m B.11m C.12m D.13m6.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的斜边长为5,较短直角边长为3,则图中小正方形(空白区域)的面积为( )A.1B.4C.6D.97.如图,校园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m.从A点到C点,同学们为了抄近路,常沿线段AC走.这样做会踩坏草坪,而实际上只少走了( )A.10m B.4m C.6m D.8m8.如图有一个水池,水面BE的宽为16尺,在水池的中央有一根芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个芦苇的高度是( )A.26尺B.24尺C.17尺D.15尺9.现有一楼房发生火灾,消防队员决定用消防车上的云梯救人,如图(1)已知云梯最多只能伸长到15m,消防车高3m.救人时云梯伸长至最长,在完成从12m高处救人后,还要从15m高处救人,这时消防车要从原处再向着火的楼房靠近的距离AC为( )A.3米B.5米C.7米D.9米10.如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距( )A.12海里B.13海里C.14海里D.15海里二、填空题11.一艘轮船以16km/ℎ的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/ℎ的速度向东南方向航行,它们离开港口1 小时后相距 .12.如图,将两个边长为1的小正方形,沿对角线剪开,重新拼成一个大正方形,则大正方形的边长是 .13.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为 .14.我国古代《九章算术》中的“折竹抵地问题”:一根竹子高一丈,折断后竹子顶端落在离竹子底端6尺处,折断处离地面的高度为 尺.(一丈=10尺)15.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距 海里.16.如图,在一只底面半径为3cm,高为8cm的圆柱体状水杯中放入一支13cm长的吸管,那么这支吸管露出杯口的长度是 .三、解答题17.八(2)班数学课外活动小组的同学测量学校旗杆的高度时,发现升旗的绳子垂到地面要多1米,当他们把绳子的下端拉开5米后,发现下端刚好接触地面.你能将旗杆的高度求出来吗?18.如图,强大的台风使得一根旗杆BC在离地面3m的A点处折断倒下,旗杆顶部C点落在离旗杆底部B点4m处,旗杆BC折断之前有多高?19.如图,一根竹子AB原高1丈(1丈=10尺),在点C处折断,竹稍A触及地面D处时,点D离竹根B 有3尺,试问折断处离地面有多高?20.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度沿北偏东40°方向航行,乙船沿南偏东50°方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问:乙船的航速是多少?21.如图,一艘小船停留在点A处,在离水面高度为8米的台阶上有一根绳子连接小船,用绳子拉小船移动到点D处,已知开始时绳子的长AC=17米,停止后绳子的长CD=10米,求小船移动的距离AD的长.22.某中学初二年级游同学在学习了勾股定理后对《九章算术》勾股章产生了学习兴趣.今天,他学到了勾股章第7题:“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽.问索长几何?”本题大意是:如图,木柱AB⊥BC,绳索AC比木柱AB长三尺,BC的长度为8尺,求:绳索AC的长度.23.如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从C处吹折,竹子的顶端A刚好触地,且与竹子底端的距离AB是4米.求竹子折断处与根部的距离CB.24.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,若DA=10km,CB=15km,现要在AB上建一个周转站E,使得C,D两村到E站的距离相等,则周转站E 应建在距A点多远处?答案解析部分1.【答案】D【解析】【解答】解:∵两点之间线段最短,∴小明从A点沿公园内小路(图中箭头所示路线)走到B点时的最短距离即为AB的长,∵OA⊥OB,OA=40m,OB=20m,∴AB=OA2+OB2=205m,∵352<422<442<A B2=2500<522,∴小明所走的路程可能为52m,故答案为:D.【分析】根据勾股定理求出AB的长,再比较大小即可。
北师大版八年级上册数学认识勾股定理同步练习题
第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理1.若△ABC中,∠C=90°,(1)若a=5,b=12,则c= ;(2)若a=6,c=10,则b= ;(3)若a∶b=3∶4,c=10,则a= ,b= .2.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为 1.5 m,现需要在相对的顶点间用一块木棒加固,木板的长为 .3.直角三角形两直角边长分别为5 cm,12 cm,则斜边上的高为 .4.等腰三角形的腰长为13 cm,底边长为10 cm,则面积为().A.30 cm2B.130 cm2C.120 cm2D.60 cm25.轮船从海中岛A出发,先向北航行9km,又往西航行9 km,由于遇到冰山,只好又向南航行4 km,再向西航行6 km,再折向北航行2 km,最后又向西航行9 km,到达目的地B,求AB两地间的距离.6.一棵9 m 高的树被风折断,树顶落在离树根3 m 之处,若要查看断痕,要从树底开始爬多高?7.折叠长方形ABCD 的一边AD ,使点D 落在BC 边的F 点处, 若AB =8 cm ,BC =10 cm ,求EC 的长.CF D A参考答案:1.(1)13;(2)8;(3)6,8.2.2.5m.60cm.3.134.D.5.25km.6.4.7.3 cm.构建数学的知识网络学习数学,重要的是要构建一个数学的知识网络,将单一的知识都串联起来,这样有助于对综合型题目的解答。
高效学习经验——把数学的知识点都结合起中考状元XX平日里爱打篮球、爱看球赛,XX给人的第一印象很阳光。
在他看来,他取得高分的最大秘诀就是:基础知识掌握得非常牢固。
在所有学科中,XX认为自己的理科和英语还算不错。
他说他最擅长的是用知识网络法来归纳知识,让零散的知识变得系统、有条理,具体如何做呢?以数学为例,XX会首先联想一个数学关键词比如说一元二次方程,然后围绕着这个关键词想一想,什么叫做一元次方程,一元二次方程有哪些解法,解答一元二次方程的步骤是什么等等,然后再将这些间题的答案写在笔记本中,这样知识就变得非常清晰了。
(最新)北师大版八年级数学上册《勾股定理》同步练习题(附答案)
《勾股定理》同步练习题A 卷(满分100分)一﹑填空题 (每小题2分, 共20分)1. 如图,∠OAB =∠OBC =∠OCD =90°, AB =BC =CD =1,OA =2,则OD 2=____________.2. 如图, 等腰△ABC 的底边BC 为16, 底边上的高AD 为6,则腰AB 的长为____________.3. 如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 200m ,结果他在水中实际游了520m ,求该河流的宽度为____________________m.4. 正方形的面积为18cm 2, 则正方形对角线长为__________ cm.5.在△ABC 中,∠C =90°,若AB =5,则2AB +2AC +2BC =__________.6. 小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走了12米到了B 点,则________ AB 米. 7. 一个三角形三边满足(a+b)2-c 2=2ab, 则这个三角形是 三角形.8. 木工做一个长方形桌面, 量得桌面的长为60cm , 宽为32cm , 对角线为68cm , 这个桌面__________ (填“合格”或“不合格”).9. 直角三角形一直角边为12cm ,斜边长为13cm ,则它的面积为 . 10. 有六根细木棒,它们的长分别是2,4,6,8,10,12(单位:cm ),首尾连结能搭成直角三角形的三根细木棒分别是 . 二﹑选择题(每小题3分, 共30分)11. 一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为 ( )A. 4B. 8C. 10D. 12 12. 小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( )A. 小丰认为指的是屏幕的长度B. 小丰的妈妈认为指的是屏幕的宽度C. 小丰的爸爸认为指的是屏幕的周长D. 售货员认为指的是屏幕对角线的长度 13. 如图中字母A 所代表的正方形的面积为( )A. 4B. 8C. 16D. 64(1题图) A B C200m 520m(3题图) D CB A O (2题图) A B D(13题图)14. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A. 钝角三角形B. 锐角三角形C. 直角三角形D. 等腰三角形15. 一直角三角形的一条直角边长是7cm , 另一条直角边与斜边长的和是49cm , 则斜边的长( )A. 18cmB. 20 cmC. 24 cmD. 25cm 16. 适合下列条件的△ABC 中, 直角三角形的个数为( )①;,,514131===c b a ②6=a ,∠A =45°; ③∠A =320, ∠B =58°;④;,,25247===c b a ⑤.422===c b a ,,A. 2个B. 3个C. 4个D. 5个 17. 在△ABC 中,若12122+==-=n c n b n a ,,,则△ABC 是( )A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形18. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( )A. 15°B. 30°C. 45°D. 60°19. 在△ABC 中,AB =12cm ,BC =16cm,,AC =20cm,,则△ABC 的面积是( )A. 96cm 2B. 120cm 2C. 160cm 2D. 200cm 2 20. 如图:有一圆柱,它的高等于8cm ,底面直径等于4cm (3=π)在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点 处的食物,需要爬行的最短路程大约( )A. 10cmB. 12cmC. 19cmD. 20cm 三、 解答题 (每小题10分, 共50分)21. 如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)22. 如图, 在△ABC 中, AD ⊥BC 于D ,AB =3,BD =2,DC =1, 求AC 2的值. A(20题图)BAB D C23. “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?观测点小汽车小汽车24. 小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗? 25. 如图所示的一块地,∠ADC =90°,AD =12m ,CD =9m ,AB =39m ,BC =36m ,求这块地的面积.B 卷 (满分50分)一、填空题(每小题2分,共10分)1. 如图,AC ⊥CE ,AD =BE =13,BC =5,DE =7,则AC = .2. 如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B3. 在ΔABC 中,若AB=30,AC=26,BC 上的高为AD=24,则此三角形的周长为 .4. 已知两条线段的长为5c m 和12c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形. 5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2. 二、选择题(每小题3分,共15分)6. 在Rt △ABC 中,∠C =90°,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别A BCDE (1题图)(2题图) 2032A B是( )A. 5、4、3、B. 13、12、5C. 10、8、6D. 26、24、107.如图,在同一平面上把三边为BC =3,AC =4、AB =5的三角形沿最长边AB 翻折后得到△ABC ′,则CC ′的长等于( ) A.125 B. 135 C. 56 D. 2458. 直角三角形有一条直角边的长为11,另外两边的长也是正整数,那么此三角形的周长是( ) A. 120 B. 121 C. 132 D. 1239.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A .6cm 2 B .8cm 2 C .10cm 2 D .12cm 2 10.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里 B .30海里 C .35海里 D .40海里三、解答题(11、12题每题8分,13题9分,共25分)11. 如图,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?12.印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?”请用学过的数学知识解答这个问题.13.如图,A 城气象台测得台风中心在A 城正西方向320km的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km的范围内是(9题图)北 南A东(10题图)(7题图)C ′ BCA受台风影响的区域.(1) A 城是否受到这次台风的影响?为什么?(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?参考答案一1、7 ;2、10;3、480; 4、6;5、50;6、15;7、直角;8、合格;9、30;10、6,8,10; 二CDDC DADC AA 三21、13米 22、AC 2=623、20 v 米/秒=72千米/时>70千米/时,超速。
北师大版八年级数学上册《1.3 勾股定理的应用》同步练习题-带答案
北师大版八年级数学上册《1.3 勾股定理的应用》同步练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一艘轮船以16nmile/h的速度从港口A出发向东北方向航行,另一艘轮船以12nmile/h的速度同时从港口A出发向东南方向航行,则离开港口2h后,两船相距()A.25nmile B.30nmile C.35nmile D.40nmile2.如图所示,ABCD是长方形地面,长20MN=m,一只AB=m,宽10AD=m.中间竖有一堵砖墙高2蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它至少要走()的路程.A.27cm B.26cm C.25cm D.24cm3.如图是一个长方体包装盒,高为5cm,底面是正方形,边长为6cm,现需用绳子装饰,绳子从A出发,沿长方体表面绕到C处,则绳子的最短长度是()A.10B.11C.12D.134.如图是一个长为12cm,宽为5cm,高为8cm的长方体,一只蜘蛛从一条侧棱的中点A沿着长方体表面爬行到顶点B去捕捉蚂蚁,此时蜘蛛爬行的最短距离是()A.13 cm B.15 cm C.21 cm D.25cm5.如图所示,一圆柱高8cm,底面半径为2cm,要爬行的最短路程(π取3)是()A .20cmB .10cmC .14cmD .无法确定6.如图,一棵大树在一次强台风中在距地面5m 处折断,倒下后树顶着地点A 距树底B 的距离为12m ,则这棵大树在折断前的高度为( )A .10B .17C .18D .207.如图,一条小巷的左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离OB 为1.5米,梯子顶端到地面距离AB 为2米.若梯子底端位置保持不动,将梯子斜靠在右墙时,梯子顶端到地面距离CD 为2.4米,则小巷的宽度BD 为( )A .2.2米B .2.3米C .2.4米D .2.5米8.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去高六尺,折高者几何?意思是:一根竹子,原高一丈(一丈=十尺),一阵风将竹子折断,竹梢恰好抵地,抵地处离竹子底部6尺远,求折断处离地面的高度.设竹子折断处离地面x 尺,根据题意,可列方程为( )A .222610x +=B .22210)6x x -+=(C .222(10)6x x +-=D .2226(10)x x +=-9.《九章算术》是我国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:今有竹高一丈,末折抵地,去根五尺,问折高者几何?意思是一根竹子,原高一丈(一丈10=尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部5尺远,则折断处离地面的高度是( )A .53B .6.25尺C .4.75尺D .3.75尺10.以下列三条线段的长度为边,其中能组成直角三角形的是( )A .7,2,9B .4,5,6C .3,4,5D .5,10,13二、填空题11.如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和3木棒露在盒外面的最短长度是 ㎝.12.《九章算术》中有一个“折竹抵地”问题:“今有竹高二十五尺,末折抵地,去本五尺,问折者高几何?”意思是:现有竹子高25尺,折后竹尖抵地与竹子底部的距离为5尺,问折处高几尺?即:如图,25AB AC +=尺,5BC =尺,则AC = 尺.13.如图,一个圆柱形水杯,底面直径为8cm ,高为9cm ,则一只小虫从下底点A 处爬到上底B 处,则小虫所爬的最短路径长是(π取3) cm .14.如图,在一个长方形草坪ABCD 上,放着一根长方体的木块.已知6AD =米,4AB =米,该木块的较长边与AD 平行,横截面是边长为2米的正方形,一只蚂蚁从点A 爬过木块到达C 处需要走的最短路程是 米.15.如图,有一圆柱,它的高等于2,底面直径等于()4π3=,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程为 .16.如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是 .17.要将一根笔直的细玻璃棒放进一个内部长、宽、高分别是504030cm cm cm 、、的木箱中,这根细玻璃棒的长度至多为 cm .18.有两棵树,一棵高6米,另一棵高2米,两树相距3米,小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.19.学习完《勾股定理》后,张老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为2米,将绳子拉直,且绳子底端与地面接触,此时绳子端点距离旗杆底端5米,则旗杆的高度为 米.20.已知7x y +=,且x ,y 2291x y ++的最小值是 .三、解答题21.如图,同学们想测量旗杆的高度(米),他们发现系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.小明和小亮同学应用勾股定理分别提出解决这个问题的方案如下:小明:①测量出绳子垂直落地后还剩余1米,如图1;①把绳子拉直,绳子末端在地面上离旗杆底部的距离4AC =米,如图2.小亮:先在旗杆底端的绳子上打了一个结,然后举起绳结拉到如图3点D 处()BD BC =,作DF 垂直AC 于点,F DF EC =.(1)请你按小明的方案求出旗杆的高度BC ;(2)在(1)的条件下,已知小亮举起绳结离旗杆的距离 4.5DE =米,求此时绳结到地面的高度DF .22.如图,明明在距离河面高度为8m 的岸边C 处,用长为17m 的绳子拉点B 处的船靠岸,若明明收绳7m 后,船到达D 处,则船向岸A 移动了多少米?23.如图,一只蚂蚁从点A沿圆柱表面爬到点B,圆柱高为15cm,底面半径为8cm,蚂蚁爬行的最短路线长为多少?24.某中学计划翻修学校体育馆,有一条从楼顶垂下的绳子,绳子顶端A固定在楼顶部,绳子自然垂下至楼底还余2米,当绳子的下端从点C拉开6米至点B时,发现绳子下端刚好接触地面.求体育馆楼高AC的值.25.三月草长莺飞,万物复苏,在一个阳光明媚的周末,李明与同学相约公园放风筝,如图所示风筝线断了、风筝被挂在了树上A点处,他想知道此时风筝距地而的高度,于是他先拉住风筝线垂直到地面上B点、发现风筝线多出2米,然后把风筝线沿直线向后拉开6米,发现风筝线末端刚好接触地而C点(如图所示),请你帮李明求出风筝距离地面的高度AB.参考答案1.D2.B3.D4.B5.B6.C7.A8.D9.D10.C11.512.1213.1514.1015.1016.13m/13米17.50218.519.214206521.(1)旗杆的高度为7.5米DF 米(2) 1.522.向岸A移动了9米23.蚂蚁爬行的最短路线长为17cm.24.体育馆楼高AC的值为8米25.风筝距离地面的高度AB为8米。
勾股定理的应用(原卷版)-2023-2024学年八年级数学上册同步学与练(北师大版)
第03讲勾股定理的应用1.利用勾股定理及逆定理解决生活中的实际问题(梯子滑动、风吹莲动、折竹抵地、台风和爆破、航行和信号塔、速度等问题).2.解决实际问题时,要善于构造直角三角形,把实际问题抽象成几何问题.知识点01勾股定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.题型01求梯子滑落高度【典例1】(2023秋·吉林长春·八年级统考期末)如图,一架2.6m长的梯子AB斜靠在一竖直的墙AC上,∠=︒,这时,梯子的底端B到墙底C的距离BC为1m.90C(1)求此时梯子的顶端A距地面的高度AC.(2)如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B外移0.5m吗?通过计算说明你的结论.【变式1】(2023春·宁夏吴忠·八年级校考期中)如图,将长为25米长的云梯AB斜靠在建筑物的侧墙上,BE长7米.(1)求梯子上端到墙的底端E的距离AE的长;(2)如果梯子的顶端A沿墙下滑4米,则梯脚B将外移多少米?【变式2】(2023·全国·八年级假期作业)如图梯子斜靠在竖直的墙AO,AO长为24dm,OB为7dm.(1)求梯子AB的长.(2)梯子的顶端A沿墙下滑4dm到点C,梯子底端B外移到点D,求BD的长.题型02求旗杆高度【典例1】(2023春·广东汕头·八年级统考期末)如图,某攀岩中心攀岩墙AB的顶部A处安装了一根安全绳AC,让它垂到地面时比墙高多出了1米,教练把绳子的下端C拉开5米后,发现其下端刚好接触地面(即⊥,求攀岩墙AB的高度.BC=米),AB BC5【变式1】(2022春·八年级单元测试)思源中学八(3)班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米;(2)根据手中剩余线的长度计算出风筝线BC的长为65米;(3)牵线放风筝的小明身高1.68米,求风筝的高度CE.【变式2】(2023春·江西宜春·八年级统考期中)一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A后,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.(1)求旗杆的高度OM;(2)玛丽在荡绳索过程中离地面的最低点的高度MN.题型03求小鸟飞行距离【典例1】(2023春·广西贵港·八年级统考期中)有两棵树,一棵高6米,另一棵高3米,两树相距4米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?【变式1】(2023春·广东东莞·八年级校考阶段练习)如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是________.【变式2】(2023春·广西防城港·八年级统考阶段练习)如图,有两棵树,一棵树高AC是10米,另一棵树高BD是4米,两树相距8米(即CD=8米),一只小鸟从一棵树的树梢A点处飞到另一棵树的树梢B点处,则小鸟至少要飞行多少米?题型04求大树折断前的高度【典例1】(2023春·江西南昌·八年级南昌市外国语学校校考期末)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵尺),中部有一处折断,竹梢触地面处地,去根四尺,问折者高几何?”题意是:一根竹子原高1丈(1丈10离竹根4尺,试问折断处离地面多高?【变式1】(2023春·湖南娄底·八年级统考阶段练习)如图,一棵大树在一次强台风中在离地某处折断倒下,树尖落在离树底部12米处,已知原树高是18米,你能求出大树在离地多少米的位置折断吗?【变式2】(2023春·全国·八年级期中)如图,一根垂直于地面的旗杆高8m ,因刮大风旗杆从点C 处折断,顶部B 着地且离旗杆底部的距离4m AB =.(1)求旗杆折断处C 点距离地面的高度AC ;(2)工人在修复的过程中,发现在折断点C 的下方1.25m 的点D 处,有一明显裂痕,若下次大风将修复好的旗杆从点D 处吹断,旗杆的顶点落在水平地面上的B '处,形成一个直角ADB ' ,请求出AB '的长.题型05解决水杯中筷子问题【典例1】(2023春·河北唐山·八年级统考期中)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A .45a <<B .34a ≤≤C .23a ≤≤D .12a ≤≤【变式1】(2023·江苏·模拟预测)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈10=尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.12尺C.13尺D.15尺【变式2】(2023春·内蒙古通辽·八年级校考期中)如图,将一根长24cm的筷子,置于底面直径为5cm,高h,则h的取值范围是________.为12cm的圆柱形水杯中,设筷子露在杯子外面的长度是cm题型06解决航海问题【典例1】(2023·宁夏吴忠·统考二模)如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60︒方向上,继续向东航行20海里到达点B处,测得小岛C在轮船的北偏东15︒方向上,此时轮船与小岛C的距离为____海里.【变式1】(2023春·广东珠海·八年级珠海市前山中学校考期中)如图,某港口O位于东西方向的海岸线上,有甲,乙两艘轮船同时离港,各自沿着一固定方向航行,甲船沿北偏西40︒方向航行,每小时30海里,乙船沿北偏东50︒方向航行,每小时40海里,2小时后,两船分别到达A,B处,此时两船相距多少海里?【变式2】(2022秋·广东深圳·八年级深圳市高级中学校考期中)如图所示,一艘轮船由A港口沿着北偏东60︒的方向航行100km到达B港口,然后再沿北偏西30︒方向航行100km到达C港口.(1)求A ,C 两港口之间的距离;(结果保留根号)(2)C 港口在A 港口的什么方向.题型07求台阶上地毯长度【典例1】(2023春·山西吕梁·八年级统考期中)如图是楼梯的示意图,楼梯的宽为5米,5AC =米,13AB =米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A .652mB .852mC .902mD .1502m 【变式1】(2023春·湖南张家界·八年级统考期中)如图所示的一段楼梯,高BC 是3米,斜边AB 长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A .5米B .6米C .7米D .8米【变式2】(2023春·重庆九龙坡·八年级重庆实验外国语学校校考期中)某会展中心在会展期间准备将高5m 、长13m 、宽2m 的楼道铺上地毯,已知地毯每平方米30元,请你帮助计算一下,铺完这个楼道需要_______________元.题型08判断汽车是否超速【典例1】(2023春·广东汕头·八年级统考期末)某条道路限速80km/h,如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s,小汽车到达B处,此时测得小汽车与车速检测仪间的距离为50m.(1)求BC的长;(2)这辆小汽车超速了吗?【变式1】(2023春·八年级课时练习)如图,一辆小汽车在一条限速70km/h的街路上沿直道行驶,某一时刻刚好行驶到路面车速检测仪A的正前方60m处的C点,过了5s后,测得小汽车所在的B点与车速检测仪A之间的距离为100m.(1)求B,C间的距离.(2)这辆小汽车超速了吗?请说明理由.【变式2】(2023春·全国·八年级专题练习)“交通管理条例第三十五条”规定:小汽车在城市街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方50米处,过了6秒后,测得小汽车与车速检测仪距离130米.(1)求小汽车6秒走的路程;(2)求小汽车每小时所走的路程,并判定小汽车是否超速?题型09判断是否受台风影响【典例1】(2023·全国·八年级假期作业)6号台风“烟花”风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB 由A 向B 移动,已知点C 为一海港,且点C 与直线AB 上的两点A 、B 的距离分别为300km AC =,400km BC =,又500km AB =,经测量,距离台风中心260km 及以内的地区会受到影响.(1)海港C 受台风影响吗?为什么?(2)若台风中心的移动速度为25千米/时,则台风影响该海港持续的时间有多长?【变式1】(2023春·全国·八年级专题练习)如图,某沿海城市A 接到台风警报,在该市正南方向150km 的B 处有一台风中心正以20km /h 的速度向BC 方向移动,已知城市A 到BC 的距离90km AD =,那么:(1)台风中心经过多长时间从B 点移到D 点?(2)如果在距台风中心30km 的圆形区域内都有受到台风破坏的危险,为让D 点的游人脱离危险,游人必须在接到台风警报后的几小时内撤离(撤离速度为6km /h )最好选择什么方向?【变式2】(2023春·湖南郴州·八年级校考阶段练习)如图,有一辆环卫车沿公路AB 由点A 向点B 行驶,已知点C 为一所学校,且点C 与直线AB 上两点A ,B 的距离分别为200m 和150m ,250m AB =,环卫车周围130m以内为受噪声影响区域.(1)学校C 会受噪声影响吗?为什么?(2)若环卫车噪声影响该学校持续的时间有2min ,求环卫车的行驶速度为多少?题型10求最短路径【典例1】(2023春·黑龙江齐齐哈尔·八年级校联考阶段练习)有一圆柱形油罐,如图,要从点A 环绕油罐建梯子,正好到A 点的正上方点B ,问梯子最短要多少米?(已知油罐底面周长是12米,高AB 是5米)【变式1】(2023春·八年级单元测试)如图,在长方体''''ABCD A B C D -中,点E 是棱''B C 的中点,已知3AB =cm ,4BC =cm ,'5AA =cm .一只小虫从A 点出发沿长方体的表面到E 点处觅食,求小虫爬行的最短距离.【变式2】(2023春·全国·八年级专题练习)问题情境:如图①,一只蚂蚁在一个长为80cm ,宽为50cm 的长方形地毛毯上爬行,地毯上堆放着一根正三棱柱的木块,它的侧棱平行且等于场地宽AD ,木块从正面看是一个边长为20cm 的等边三角形.求一只蚂蚁从点A 处到达点C 处需要走的最短路程.(1)数学抽象:将蚂蚁爬行过...的木块的侧面“拉直”“铺平”,“化曲为直”.请在图②中用虚线补全木块的侧面展开图,并用实线连接AC .(2)线段AC 的长即蚂蚁从点A 处到达点C 处需要走的最短路程,依据是_____.(3)问题解决:如图②,展开图中AB =_____,BC =_____.(4)这只蚂蚁从点A 处到达点C 处需要走的最短路程是_____.题型11选址使到两地距离相等【典例1】(2023春·江西赣州·八年级校考期中)为了丰富少年儿童的业余生活,某社区要在如图中AB 所在的直线上建一图书室,本社区有两所学校,分别在点C 和点D 处,CA AB ⊥于点A ,DB AB ⊥于点B ,已知25km 15km 10km AB CA DB ===,,,问:图书室E 应建在距点A 多少千米处,才能使它到两所学校的距离相等?【变式1】(2023春·上海·八年级专题练习)如图,笔直公路上A 、B 两点相距10千米,C 、D 为两居民区,DA AB ⊥于A ,CB AB ⊥于B ,已知6DA =千米,8CB =千米,现要在公路AB 段上建一超市E ,使C 、D 两居民区到E 的距离相等,则超市E 应建在离A 处多远处.【变式2】(2023春·八年级课时练习)为了丰富少年儿童的业余生活,某社区要在如图中的AB 所在的直线上建一图书室,本社区有两所学校所在的位置在点C 和点D 处,CA AB ⊥于A ,DB AB ⊥于B ,已知,2.5km AB =, 1.5km CA =, 1.0km DB =,试问,图书室E 应该建在距点A 多少km 知处.才能使它到两所学校的距离相等?1.(2023春·广东云浮·八年级统考期中)海洋热浪对全球生态带来了严重影响,全球变暖导致华南地区汛期更长、降水强度更大,使得登录广东的台风减少,但是北上的台风增多.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为()A .10mB .15mC .18mD .20m2.(2023·河北衡水·校联考二模)如图,点P 为观测站,一艘巡航船位于观测站P 的南偏西34︒方向的点A 处,一艘渔船在观测站P 的南偏东56︒方向的点B 处,巡航船和渔船与观测站P 的距离分别为45海里、60海里.现渔船发生紧急情况无法移动,巡航船以30海里/小时的速度前去救助,至少需要的时间是()A .1.5小时B .2小时C .2.5小时D .4小时3.(2023春·福建莆田·八年级统考期中)如图所示的是一个长方体笔筒,底面的长、宽分别为8cm 和6cm ,高为10cm ,将一支长为18cm 的签字笔放入笔筒内,则签字笔露在笔筒外的的长度最少为()A .10cmB .()18102cm -C .8cmD .102cm4.(2023·贵州贵阳·统考二模)勾股定理是人类数学文化的一颗璀璨明珠,是用代数思想解决几何问题的最重要工具,也是数形结合的纽带之一.如图,秋千静止时,踏板离地的垂直高度BE =1m ,将它往前推6m 至C 处时(即水平距离CD =6m ),踏板离地的垂直高度CF =4m ,它的绳索始终拉直,则绳索AC 的长是()A .152mB .92mC .6mD .212m 5.(2023春·四川德阳·八年级四川省德阳市第二中学校校考阶段练习)如图,长方体的长15cm BE =,宽10cm AB =,高20cm AD =,点M 在CH 上,且5cm CM =,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是()A .22cmB .25cmC .529cmD .537cm6.(2023春·天津滨海新·八年级校考期中)如图,从电杆上离地面5m 的C 处向地面拉一条长为7m 的钢缆,则地面钢缆A 到电线杆底部B 的距离是______.7.(2023春·湖南长沙·八年级校联考期中)如图,有两棵树,一棵高8米,另一棵高3米,两树相距12米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行______米.8.(2023春·八年级课时练习)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点A 处偏离欲到达地点B 处40m ,结果他在水中实际游的路程比河的宽度多10m .该河的宽度BC 为_____米.9.(2023春·湖北武汉·八年级统考期中)如图,铁路MN 和公路PQ 在点O 处交汇,30QON ∠=︒,公路PQ 上A 处距离O 点240米,如果火车行驶时,火车头周围150米以内会受到噪音的影响,那么火车在铁路MN 上沿MN 方向以72千米/小时的速度行驶时,A 处受到噪音影响的时间为________秒.10.(2023·四川广安·统考中考真题)如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为___________cm .(杯壁厚度不计)11.(2023春·广东惠州·八年级阶段练习)如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,问这棵树有多高?12.(2023春·黑龙江大庆·七年级校联考期中)如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA AB ⊥于点A ,CB AB ⊥于点B ,已知15km DA =,10km CB =,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?13.(2023春·广东广州·八年级校考期中)如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1)A 城是否受到这次台风的影响?为什么?(2)若A 城受到这次台风影响,则A 城遭受这次台风影响有多长时间?14.(2023春·广东广州·八年级华南师大附中校考期中)如图,A 、B 两个村子在笔直河岸的同侧,A 、B 两村到河岸的距离分别为2km AC =,5km BD =,6km CD =,现在要在河岸CD 上建一水厂E 向A 、B 两村输送自来水,要求水厂E 到A 、B 两村的距离之和最短.(1)在图中作出水厂E 的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂E 到A 、B 两村的距离之和的最小值.15.(2023·全国·八年级假期作业)如图,一架长10米的梯子AB ,斜靠在竖直的墙上,这时梯子底端离墙()BO 6米(1)此时梯子顶端A 离地面多少米?(2)若梯子顶端A 下滑3米到C 处,那么梯子底端B 将向左滑动多少米到D 处?16.(2023秋·河南南阳·八年级统考期末)如图,在一条绷紧的绳索一端系着一艘小船,河岸上一男孩拽着绳子另一端向右走,绳端从点C 移动到点E ,同时小船从点A 移动到点B ,且绳长始终保持不变,回答下列问题:(1)根据题意,可知AC ________BC CE +(填“>”“<”“=”);(2)若5CF =米,12AF =米,4AB =米,求男孩需向右移动的距离CE (结果保留根号).17.(2023·江苏·八年级假期作业)新冠疫情期间,为了提高人民群众防疫意识,很多地方的宣讲车开起来了,大喇叭响起来了,宣传横幅挂起来了,电子屏亮起来了,电视、广播、微信、短信齐上阵,防疫标语、宣传金句频出,这传递着打赢疫情防控阻击战的坚定决心.如图,在一条笔直公路MN 的一侧点A 处有一村庄,村庄A 到公路MN 的距离AB 为800米,若宣讲车周围1000米以内能听到广播宣传,宣讲车在公路MN 上沿MN 方向行驶.(1)请问村庄A能否听到宣传?请说明理由;(2)如果能听到,已知宣讲车的速度是300米/分钟,那么村庄A总共能听到多长时间的宣传?18.(2023春·全国·八年级专题练习)吴老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的条件分别求出蚂蚁需要爬行的最短路径长.(1)如图1,正方体的棱长为5cm,一只蚂蚁欲从正方体底面上的点A沿正方体表面爬到点C1处;(2)如图2,长方体底面是边长为5cm的正方形,高为6cm,一只蚂蚁欲从长方体底面上的点A沿长方体表而爬到点C1处;(3)如图3,是一个底面周长为10cm,高为5cm的圆柱体,一只蚂蚁欲从圆柱体底面上的点A沿圆柱体侧面爬到点C处.。
北师大版八年级上册数学第一章 勾股定理 同步测试卷(含答案)
北师大版八年级上册数学第一章勾股定理同步测试卷一、选择题(每题3分,共30分)1.把一个直角三角形的两直角边长同时扩大到原来的3倍,则斜边长扩大到原来的( )A.2倍B.3倍C.4倍D.5倍2.如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=√5,且AC:BD=2:3,那么AC的长为()A. 2√5B. √5C. 3D. 43.下面四组线段能够组成直角三角形的是( )A.2,3,4B.3,4,5C.6,7,8D.7,8,94.如图,阴影部分是一个长方形,则长方形的面积是( )A.3 cm2B.4 cm2C.5 cm2D.6 cm25.满足下列条件的△ABC,不是直角三角形的为( )A.∠A=∠B-∠C B.∠A∶∠B∶∠C=1∶1∶2C.b2=a2-c2 D.a∶b∶c=2∶3∶46.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b 的面积为()A.8B. 9C. 10D. 117.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .π+13B .23C .2432π+ D .213π+ 8.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m,当它把绳子的下端拉开5 m 后,发现下端刚好接触地面,则旗杆的高为 ( )A.8 mB.10 mC.12 mD.14 m9.已知直角三角形的斜边长为5 cm ,周长为12 cm ,则此三角形的面积是( )A .12 cm 2B .6 cm 2C .8 cm 2D .10 cm 210.如图:在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF ∥BC 交AC 于M ,若CM=5,则CE 2+CF 2等于( )A .75B .100C .120D .125二.填空题(共8小题,满分32分)11.已知△ABC 的三边长为a 、b 、c ,满足a+b=10,ab=18,c=8,则此三角 形为 三角形.12.在Rt△ABC中,已知两边长为5、12,则第三边的长为______ .13.如图所示,小明将一张长为20 cm,宽为15 cm的长方形纸剪去了一角,量得AB=3 cm,CD=4 cm,则剪去的直角三角形的斜边长为.c-b=0,14.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+||则△ABC的形状为____________.15.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.16.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,CB′的长为______.17.如图所示,在一棵树上的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只猴子爬到树顶C后直接跃到A处,距离以直线计算,若两只猴子所经过的距离相等, 则这棵树高米.18.在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看成圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈(如图为灯管的部分示意图),则彩色丝带的总长度为__________.三、解答题19.(8分)如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=2,求△ABC 的面积.20.(10分)方格纸中小正方形的顶点叫格点.点A和点B是格点,位置如图.(1)在图1中确定格点C使△ABC为直角三角形,画出一个这样的△ABC;(2)在图2中确定格点D使△ABD为等腰三角形,画出一个这样的△ABD;(3)在图2中满足题(2)条件的格点D有个.21.如图所示,将一个长方形纸片ABCD沿对角线AC折叠.点B 落在E点,AE交DC 于F点,已知AB=8cm,BC=4cm.求折叠后重合部分的面积.22.如图,一根12 m的电线杆AB用铁丝AC,AD固定,现已知用去的铁丝AC=15 m,AD=13 m,又测得地面上B,C两点之间的距离是9 m,B,D两点之间的距离是5 m,则电线杆和地面是否垂直,为什么?23.(12分)为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?24.(14分)阅读理解:我们知道在直角三角形中,有无数组勾股数,例如:5、12、13;9、40、41;…但其中也有一些特殊的勾股数,例如:3、4、5;是三个连续正整数组成的勾股数.解决问题:①在无数组勾股数中,是否存在三个连续偶数能组成勾股数?答:,若存在,试写出一组勾股数:.②在无数组勾股数中,是否还存在其它的三个连续正整数能组成勾股数?若存在,求出勾股数,若不存在,说明理由.③在无数组勾股数中,是否存在三个连续奇数能组成勾股数?若存在,求出勾股数,若不存在,说明理由.答案提示1.B2. D3.B4.C5.D6. C 7.C. 8.C 9.B 10.B.11.直角.12.13或√11913.20 cm14.等腰直角三角形15.8 516. 2或√1017.1518.150 cm 19.解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt △ADB 中,∵∠B+∠BAD=90°,∠B=45°,∴∠B=∠BAD=45°,∴BD=AD=2,在Rt △ADC 中,∵∠C=30°,∴AC=2AD=22,∴CD=()()622222=-,BC=BD+CD=2+6, ∴S △ABC =21×BC ×AD=21×(2+6)×2=1+3. 20.解:(1)(2)如图所示:(3)在图2中满足题(2)条件的格点D 有4个.故答案是:4.21. 解:∵四边形ABCD 是矩形,∴∠D =∠B =90∘,AD =BC ,∵将一个长方形纸片ABCD 沿对角线AC 折叠,∴BC =CE ,∠B =∠E ,∴AD =CE ,∠D =∠E ,在△EFC 和△DFA 中,{∠E =∠D∠EFC =∠DFA CE =AD,∴△EFC ≌△DFA ,∴DF =EF ,AF =CF ,设FC =x ,则DF =8−x ,在RT △ADF 中,DF 2+AD 2=AF 2,即(8−x)2+16=x 2,解得:x =5,即CF =5cm ,∴折叠后重合部分的面积=12CF ×AD =10cm 2.22.解:垂直.理由如下:因为AB =12 m ,AC =15 m ,BC =9 m ,所以AC 2=BC 2+AB 2.所以∠CBA =90°.又因为AD =13 m ,AB =12 m ,BD =5 m ,所以AD 2=BD 2+AB 2.所以∠ABD =90°,因此电线杆和地面垂直.23.解:(1)连接BD ,在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52,在△CBD 中,CD 2=132,BC 2=122,而122+52=132,即BC 2+BD 2=CD 2,∴∠DBC=90°,则S 四边形ABCD =S △BAD +S △DBC =21•AD •AB+21DB •BC=21×4×3+21×12×5=36; (2)所以需费用36×200=7200(元).24.解:①存在三个连续偶数能组成勾股数,如6,8,10,故答案为:存在;6,8,10;②答:不存在,理由是:假设在无数组勾股数中,还存在其它的三个连续正整数能组成勾股数,设这三个正整数为n﹣1,n,n+1,则(n﹣1)2+n2=(n+1)2,(5分)n 1=4,n2=0(舍),当n=4时,n﹣1=3,n+1=5,∴三个连续正整数仍然是3,4,5,∴不存在其它的三个连续正整数能组成勾股数;③答:不存在,理由是:在无数组勾股数中,存在三个连续奇数能组成勾股数,设这三个奇数分别为:2n﹣1,2n+1,2n+3(n>1的整数),(2n﹣1)2+(2n+1)2=(2n+3)2,n 1=27,n2=﹣21,∴不存在三个连续奇数能组成勾股数;。
八年级数学上册《第一章 勾股定理的应用》练习题-带答案(北师大版)
八年级数学上册《第一章勾股定理的应用》练习题-带答案(北师大版)一、选择题1.一艘轮船以16海里∕时的速度从港口A出发向东北方向航行,同时另一艘轮船以12海里∕时从港口A出发向东南方向航行.离开港口1小时后,两船相距( )A.12海里B.16海里C.20海里D.28海里2.小明想知道学校旗杆(垂直地面)的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子拉直后,发现绳子下端拉开5m,且下端刚好接触地面,则旗杆的高是( )A.6mB.8mC.10mD.12m3.一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( ).A.6秒B.5秒C.4秒D.3秒4.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m5.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )A.8米B.10米C.12米D.14米6.将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是( )A.5≤h≤12B.5≤h≤24C.11≤h≤12D.12≤h≤247.如图,A,B两个村庄分别在两条公路MN和EF的边上,且MN∥EF,某施工队在A,B,C三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160km,BC=120km,则A,C 两村之间的距离为( )A.250kmB.240kmC.200kmD.180km8.如图,O是Rt△ABC的角平分线的交点,OD∥AC,AC=5,BC=12,OD等于( )A.2B.3C.1D.1二、填空题9.如图,两阴影部分都是正方形,如果两正方形面积之比为1:2,那么,两正方形的面积分别为.10.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.11.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米.12.如图所示,由四个全等的直角三角形拼成的图中,直角边长分别为2,3,则大正方形的面积为________,小正方形的面积为________.13.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.14.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为秒.三、解答题15.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米,请算出旗杆的高度.16.如图①,一架梯子AB长2.5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5m,梯子滑动后停在DE的位置上.如图②所示,测得BD=0.5m,求梯子顶端A下滑的距离.17.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?18.如图所示,某公路一侧有A、B两个送奶站,C为公路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h,问:多长时间后这个人距B送奶站最近?19.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?20.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.参考答案1.C.2.D.3.C4.A.5.B6.C.7.C.8.A.9.答案为:12,24.10.答案为:8.11.答案为:10.12.答案为:13,1.13.答案为:17m.14.答案为:7或25.15.解:设旗杆的高度为x米,根据勾股定理得x2+52=(x+1)2解得:x=12;答:旗杆的高度为12米.16.解:在Rt△ABC中,AB=2.5m,BC=1.5m故AC=2m在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)=2m 故EC=1.5m故AE=AC﹣CE=2﹣1.5=0.5m答:梯子顶端A下落了0.5m.17.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.18.解:过B作BD⊥公路于D.∵82+152=172∴AC2+BC2=AB2∴△ABC是直角三角形,且∠ACB=90°.∵∠1=30°∴∠BCD=180°﹣90°﹣30°=60°.在Rt△BCD中∵∠BCD=60°∴∠CBD=30°∴CD=0.5BC=0.5×15=7.5(km).∵7.5÷2.5=3(h)∴3小时后这人距离B送奶站最近.19.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.20.解:(1)设存在点P,使得PA=PB此时PA=PB=2t,PC=4﹣2t在Rt△PCB中,PC2+CB2=PB2即:(4﹣2t)2+32=(2t)2解得:t =∴当t =时,PA =PB ;(2)当点P 在∠BAC 的平分线上时,如图1,过点P 作PE ⊥AB 于点E 此时BP =7﹣2t ,PE =PC =2t ﹣4,BE =5﹣4=1在Rt △BEP 中,PE 2+BE 2=BP 2即:(2t ﹣4)2+12=(7﹣2t)2解得:t =83∴当t =83时,P 在△ABC 的角平分线上.。
北师大版八年级上册数学北师大版八年级上册数学 9.同步练习1.3 勾股定理的应用
1.3 勾股定理的应用1.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m .按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( ).A . 2mB .3mC .6mD .9m2.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2 m ,坡角∠A =30°,∠B =90°,BC =6 m . 当正方形DEFH 运动到什么位置,即当AE= m 时,有DC 2=AE 2+BC 2.3.如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为 cm .4.如图,一只蚂蚁从A 点沿圆柱侧面爬到顶面相对的B 点处,如果圆柱的高为8 cm,圆柱的半径为6cm,那么最短路径AB长( ).A.8B.6C.平方后为208的数D.105.一个圆桶,底面直径为24 cm,高32cm,则桶内所能容下的最长木棒为( ) .A.24cmB.32cmC.40 cmD.456.已知小龙、阿虎两人均在同一地点,若小龙向北直走160 m,再向东直走80 m后,可到神仙百货,则阿虎向西直走多少米后,他与神仙百货的距离为340 m?A.100B.180C.220D.2607. 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m,8m.现要将其扩建成等腰三角形,且扩充部分是以8m为直角边的直角三角形...........求扩建后的等腰三角形花圃的周长.8.飞机在空中水平飞行....,某一时刻刚好飞到一个站着不动的女孩头顶正上方4000 m 处,过了20秒,飞机距离这个女孩头顶5000 m,则飞机速度是多少?参考答案1.C142.33. 154.D5.C6.C7. 周长=8+8+8.150 m/s.。
2023-2024学年八年级数学上册《第一章 勾股定理的应用》同步练习题附带答案-北师大版
2023-2024学年八年级数学上册《第一章勾股定理的应用》同步练习题附带答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、选择题1.梯子的底端离建筑物6米,10米长的梯子可以到达建筑物的高度是()A.6米B.7米C.8米D.9米2.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm3.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m4.《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5尺D.5.55尺5.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积41,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.25 B.41 C.62 D.816.如图,斜坡BC的长度为4米.为了安全,决定降低坡度,将点C沿水平距离向外移动4米到点A,使得斜坡AB的长度为4√3米,则原来斜坡的水平距离CD的长度是()米.A.2 B.4 C.2√3D.67.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=√2;再过点P,作P1P2⊥OP1且P1P2=1,得OP2=√3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2021=()A.√2023B.√2022C.√2021D.√2020二、填空题9.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距海里.10.如图是某路口处草坪的一角,当行走路线是A→C→B时,有人为了抄近道而避开路的拐角∠ACB(∠ACB=90°),于是在草坪内走出了一条不该有的捷径路AB.某学习实践小组通过测量可知,AC的长约为6米,BC的长约为8米,为了提醒居民爱护草坪,他们想在A,B处设立“踏破青白可惜,多行数步无妨”的提示牌.则提示牌上的“多行数步”是指多行米.11.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.12.如图,一个长方体铁盒的长,宽,高分别是8 cm,6 cm,24 cm,-根长28 cm的木棒完全装进这个盒子里.(填“能”或“不能”)13.如图,山坡上,树甲从点A处折断,其树顶恰好落在另一棵树乙的根部C处,已知AB=4m,BC =10m,已知两棵树的水平距离为6m,则树甲原来高.三、解答题14.如图,小旭放风筝时,风筝挂在了树上,他先拉住风筝线,垂直于地面,发现风筝线多出1米;把风筝线沿直线BC向后拉5米,风筝线末端刚好接触地面,求风筝距离地面的高度AB.15.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计).16.某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1).如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE点B在DE上,OE的长即为消防车的高3m)17.如图,在笔直的公路AB旁有一座山,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,已知点C与公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20km,停靠站A、B之间的距离为25km,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?18.台风是一种自然灾害,它在以台风中心为圆心,一定长度为半径的圆形区域内形成极端气候,有极强的破坏力.如图,监测中心监测到一台风中心沿监测点B与监测点A所在的直线由东向西移动,已知点C为一海港,且点C与A,B两点的距离分别为300km、400km,且∠ACB=90°,过点C作CE⊥AB于点E,以台风中心为圆心,半径为260km的圆形区域内为受影响区域,台风的速度为25km/h.(1)求监测点A与监测点B之间的距离;(2)请判断海港C是否会受此次台风的影响,若受影响,则台风影响该海港多长时间?若不受影响,请说明理由.参考答案1.C2.B3.C4.B5.D6.A7.D8.B9.3010.411.3.7512.不能13.(4+6√5)m14.解:设AB=x米,则AC=(x+1)米由图可得,∠ABC=90°,BC=5米在Rt△ABC中AB2+BC2=AC2即x2+52=(x+1)2解得x=12答:风筝距离地面的高度AB为12米.15.解:如图设旗杆高度为x米,则AC=AD=x(m),AB=(x−2)(m)而BC=8m 在Rt△ABC中AB2+BC2=AC2,即(x−2)2+82=x2解得:x=17(m)即旗杆的高度为17m.16.解:在 Rt △ABO 中∵∠AOB =90° AB =15m ,OB =12−3=9 (m ) ∴AO =√AB 2−OB 2=√152−92=12 (m )在 Rt △COD 中∵∠COD =90°,CD =15m ,OD =15−3=12 (m ) ∴OC =√CD 2−OD 2=√152−122=9 (m )∴AC =OA −OC =3 (m )答:消防车从原处向着火的楼房靠近的距离 AC 为 3m .17.(1)解:∵AC=15km ,BC=20km ,AB=25km152+202=252∴△ACB 是直角三角形,∠ACB=90°∵12AC ×BC=12AB ×CD∴CD=AC ×BC ÷AB=12(km ).故修建的公路CD 的长是12km ;(2)解:在Rt △BDC 中,BD= √BC 2−CD 2=16(km )一辆货车从C 处经过D 点到B 处的路程=CD+BD=12+16=28(km ). 故一辆货车从C 处经过D 点到B 处的路程是28km .18.(1)解:在RtΔABC 中,AC =300km ,BC =400km ∴AB =√AC 2+BC 2=√3002+4002=500(km )答:监测点A 与监测点B 之间的距离为500km ;(2)解:海港C 受台风影响理由:∵∠ACB =90°,CE ⊥AB∴S ΔABC =12AC ⋅BC =12CE ⋅AB ∴300×400=500CE∴CE =240km∵以台风中心为圆心周围260km 以内为受影响区域∴海港C 会受到此次台风的影响以C 为圆心,260km 长为半径画弧,交AB 于D ,F则DE =EF =260km 时,正好影响C 港口在RtΔCDE 中∵ED =√CD 2−CE 2=√2602−2402=100(km )∴DF =200km∵台风的速度为25千米/小时∴200÷25=8(小时).答:台风影响该海港持续的时间为8小时.。
北师大版八年级上册 勾股定理的应用同步练习题
1.3 勾股定理的应用※课时达标1.如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B离点C 5 cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?2.如图,有一块直角三角形纸片,两直角边 AC=6cm,BC=8cm,现将直角边AC沿直线 AD折叠,使它恰好落在斜边AB上,且与AE 重合,求CD的长.3.在四边形ABCD中,∠B=90°,AB=4,BC=3,CD==12,AD=13,求四边形ABCD的面积※课后作业★基础巩固1.如果梯子底端离建筑物9m,那么15m长的梯子可达到建筑物的高度是______m,一座桥横跨一江,桥长12m,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m,则小船实际行驶 m.2.如图,从电线杆离地面6 m处向地面拉一条长10 m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?3.如图,一圆柱高8cm,底面半径为6cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是____________cm.4.一个直角三角形,两直角边长分别为3和4,下列说法正确的是( ).A.斜边长为25B.三角形的周长为25C.斜边长为5D.三角形面积为205.两只小鼹鼠在地下从同一处开始打洞,一只BC155BAC DEABC DABC朝北面挖,每分钟挖8 cm,另一只朝东面挖,每分钟挖6 cm,10分钟之后两只小鼹鼠相距().A.100cmB.50c mC.140cmD.80cm ☆能力提高6.直角三角形有一条直角边的长是11,另外两边的长都是自然数,那么它的周长是().A.132B.121C.120D.以上答案都不对7.直角三角形的三边是,,a b a a b-+,并且,a b都是正整数,则三角形其中一边的长可能是 ( ).A.61B.71C.81D.918.一棵9m高的树被风折断,树顶落在离树根 3m之处,若要查看断痕,要从树底开始爬多高?9.如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时梯子底部B到墙底端的距离为0.7米,考虑爬梯子的稳定性,现要将梯子顶部A沿墙下移0.4米到A′处,问梯子底部B将外移多少米?10.有一个小朋友拿着一根竹竿通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜入就恰好等于门的对角线长,已知门宽 4尺,请求竹竿高与门高.11.如图,阴影部分是一个半圆,则阴影部分的面积为.(保留π)12.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以 12km/h的速度向东南方向航行,它们离开港口半小时后相距 Km.13.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000 米处,过了 20 秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?●中考在线14.如图,在高2米,坡角为30°的楼梯表面257铺地毯,地毯的长至少需________米.多少?15.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,请你求出旗杆在离底部多少米的位置断裂吗?16.在某一平地上,有一棵高6米的大树,一棵高3米的小树,两树之间相距4米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理的应用同步练习题
一、【基础知识精讲】
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方。
即:c 2=a 2+b 2(c 为斜边)。
2.勾股定理的逆定理:如果三角形的三边长a 、b 、c 有下面关系:a 2+b 2= c 2,
那么这个三角形是直角三角形。
注意:勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。
二、【例题精讲】
例1:如图:有一个圆柱,它的高为12厘米,底面半径为3厘米,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面相对的B 点处的食物,沿圆柱侧面爬行的最短路程是多少?(∏的取值为3)
例2:如图有一个三级台阶,每级台阶长、宽、高分别为2米、0.3米0.2米,A 处有一只蚂蚁,它想吃到B 处食物,你能帮蚂蚁设计一条最短的线路吗?并求出最短的线路长。
例3:古代数学著作《九章算术》中记载了如下一个问题:有一个水池,水面的边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?
三、【同步练习】A组
1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向
东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10∶00,甲、乙两人相距多远?
2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插
入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?
3.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是多少。
A
B
D
C
B
A
·
东
北
B组
1.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()
A.14cm B.4cm C.15cm D.3cm
2.如图如果点C在SA上且SC=6cm,A处有一只蜗牛想要吃到C处食物,但它不能直接爬到C处,只能沿圆锥曲面爬行,你能画出蜗牛爬行最短路程吗?,若SA=8cm,侧面展开图的夹角为90°,试求最短路径长。
C
A
3.在等腰Rt⊿ABC中,∠BAC=900,P为⊿ABC内一点,PA为1,PB为3,PC=7,求∠CPA的大小。