Creep_0329蠕变
63Sn37Pb和Sn0.7Cu钎料的蠕变性能研究的开题报告
63Sn37Pb和Sn0.7Cu钎料的蠕变性能研究的开题报告
研究背景:
在现代制造业中,钎焊技术被广泛应用于电子、汽车、航空航天、石化等领域中,是一种高效、经济、绿色的连接工艺。
钎焊连接后,连接体在使用过程中会遭受到各
种外部力的作用,从而产生蠕变现象。
了解钎焊连接体的蠕变特性,有助于提高连接
的可靠性和寿命。
研究目的:
本研究旨在比较63Sn37Pb和Sn0.7Cu钎料的蠕变性能,探究其蠕变机制,并为钎焊连接的设计和预测蠕变寿命提供基础数据。
研究方法:
1. 制备材料:选用63Sn37Pb和Sn0.7Cu作为基础钎料,采用真空气氛下充填材料的方法进行试样的制备。
2. 蠕变实验:在650℃的高温下,采用恒载荷法对试样进行蠕变试验,记录试样变形量、载荷大小等数据。
3. 分析试验结果:通过数据分析和对试样微结构的观察,比较不同钎料的蠕变性能和蠕变机制。
研究意义:
钎焊连接体的蠕变特性是影响其性能和寿命的重要因素,本研究通过对不同钎料的蠕变性能比较,有助于更好地了解蠕变机理和预测蠕变寿命,为实际应用提供参考
和指导。
液体卷材说明书 (408 聚合物改性沥青防水涂料)
液体卷材说明书(408聚合物改性沥青防水涂料)液体卷材是一款单组份水性环保产品,其是由合成高分子聚合物和高品质乳化沥青为基料,通过特殊改性工艺将高聚物和沥青完全融合,再加上各种填料和助剂精制而成,固含量高,干燥速度快,与混凝土基层附着力强,干燥成膜后形成一种柔韧、高强的防水涂膜,防水涂膜有类似橡胶卷材的效果,并且具有优异的低温柔性和高温抗流挂性。
产品特点:环保性:水性产品,安全环保,不含有毒有害物质,不释放毒害物质。
施工性:单组份产品,开桶即用,施工方便快捷,可采用刷涂、滚涂、喷涂等多种施工方式,满足客户苛刻的施工要求。
防水耐水性:优异的防水性能,刷到哪里成膜到哪里,无缝衔接,在基层上形成一层完整的防水膜,干透后的涂膜耐水性优异,可长期泡水。
柔韧抗裂性:优异的延伸性和低温柔性,拥有≥600%的延伸率,具有一定的蠕变性能来修复基层微小裂缝引起的漏水,高温抗流挂性,≥130℃高温不流淌。
粘结性:粘接力强,在多种基材上表现出优异的附着力,相比传统水泥基防水涂料,其跟新旧沥青基卷材和油膏的粘结力更好。
适用范围:1、适用于各类混凝土、砖石结构的平面立面防水防潮处理;2、适用于各种新旧建筑物的屋面、厨卫阳台、地下室等的防水工程;3、适用于桥梁、道路、污水处理池等的防水工程。
建议用量:1、水性基材处理剂或固面剂,建议1Kg施工 4-5 平方;2、液体卷材,干膜厚度 1.5mm 建议用量 2.5-3kg/平方;3、耐候保护涂料,两遍施工建议用量 1Kg/平方。
注意事项:施工温度10-40℃、湿度30%-70%,施工完后48h禁止淋雨;为保证成膜性能,液体卷材宜分多遍施工,每次施工厚度不要超过1mm。
贮存:本品为褐色至黑色粘稠液体,塑料桶包装,应在密封干燥且阴凉的条件下保存,避免结冰,自生产日起,保质期为六个月。
Liquid coil material specification(408 polymer modified asphaltwaterproof coating)Liquid coil material is a one-component water-based environmentally friendly product, which is made from synthetic polymer and high-quality emulsified asphalt as the base material. The polymer and asphalt are completely fused, then refined with various fillers and additives. It has high solid content, fast drying speed, strong adhesion to the concrete base, and could forms a flexible, high-strength waterproof coating after drying. Waterproof coating film effect similarly with rubber coiled material, and has excellent low temperature flexibility and high temperature anti-sagging performance.Product features:Environmentally friendly: water-based products, safe and environmentally friendly, does not contain toxic and harmful substances, does not release toxic and harmful substances.Constructability: One-component product, ready to use once opened, easy and fast for construction, can be used by brushing, rolling, spraying and other methods to meet customers' demanding construction requirements. Waterproof and water resistance: excellent waterproof performance, where the film will form after brushed once, can be seamlessly connected. a complete waterproof film will form on the base layer, the dried coating film has excellent water resistance, can soak in water for a long time.Flexible and crack resistance:excellent elongation and low temperature flexibility, with an elongation of ≥600%, and a certain creep performance to repair water leakage caused by small cracks in the base, high temperature anti-sagging performance, does not flow under high temperature ≥130 ℃. Adhesion:strong adhesion, showing excellent adhesion on a variety of substrates, compared with traditional cement-based waterproof coating, it has better adhesion to new and old asphalt-based coils and ointment.Scope of application:1. Applicable to the waterproof and moisture-proof treatment of various types of concrete and masonry flat facades;2. Applicable to the waterproofing of roofs, kitchen balconies, basements, etc., for various new and old buildings;3. Applicable to waterproof works for roads, sewage treatment tanks, etc.Suggested usage:1. Water base material treatment agent or solid surface agent, 1Kg for 4-5 square meters is recommended;2. Liquid coil material, for 1.5mm thick dry film, 5-3kg / square is recommended;3. Weather-resistant protective coating, applytwo times, 1Kg / square is recommended.Note:The construction temperature is 10-40 ℃, the humidity is 30% -70%, rain is prohibited 48h after the construction is completed; in order to ensure the film-forming performance, the liquid coil should be applied in multiple times, and the thickness of each layer should not exceed 1mm.Storage:This product is a brown to black viscous liquid, packaged in plastic drums, should be stored in a sealed dry and cool condition, avoid icing, the shelf life is six months from the date of production.。
蠕变-creep
一、蠕变-徐变-creep
金属在高温和低于屈服强度的应力作用下,材料塑性变形量随时间延续而增加的现象。
蠕变(creep)(缓慢变形) (德语名:kriechen)
它与塑性变形不同,塑性变形通常在应力超过弹性极限之后才出现,而蠕变只要应力的作用时间相当长,它在应力小于弹性极限时也能出现。
蠕变曲线
蠕变在低温下也会发生,但只有达到一定的温度才能变得显著,称温度为蠕变温度。
对各种金属材料的蠕变温度约为0.3Tm,Tm为熔化温度,以热力学温度表示。
通常碳素钢超过300-350℃,合金钢在400-450℃以上时才有蠕变行为,对于一些低熔点金属如铅、锡等,在室温下就会发生蠕变。
改善蠕变方法
改善蠕变可采取的措施有:
1.高温工作的零件要采用蠕变小的材料制造,如耐热钢等;
2.对有蠕变的零件进行冷却或隔热;
3.防止零件向可能损害设备功能或造成拆卸困难的方向蠕变。
一种蠕行控制方法叫什么
一种蠕行控制方法叫什么引言蠕行(creep)是材料学中常见的现象,指的是材料在长时间受到持续作用力时发生的无反弹性变形。
蠕行现象在许多领域都存在,如工程结构设计、材料加工和地质工程等。
为了控制蠕行现象,人们提出了许多方法。
本文将介绍一种“蠕行控制方法”。
蠕行控制方法的原理目前通常使用的蠕行控制方法主要分为两大类:应力降低法和材料改性法。
- 应力降低法:通过减小材料的受力强度,使其承受更小的应力从而降低蠕变速率。
例如,在工程结构设计中,可以采用增大材料截面尺寸、增加结构支撑等方式来降低结构的应力水平,从而减缓蠕变速率。
- 材料改性法:通过改变材料的组织结构,调控材料的形变行为,从而控制蠕行现象。
例如,通过合金化、陶瓷增强、纤维增强等手段来改变材料的微结构,增强材料的抗蠕变性能。
然而,以上方法都有其局限性。
应力降低法需要在设计初期耗费大量的时间和精力,并且难以在运营期进行调整;材料改性法则需要以提高材料强度为代价,无法得到完美的控制效果。
因此,人们需要一种更加高效和实用的蠕行控制方法。
一种新的蠕行控制方法:多物理场耦合法近年来,随着科学技术的发展和理论模拟能力的提高,人们提出了一种新的蠕行控制方法,即多物理场耦合法。
这种方法基于多物理场的相互作用,通过控制不同物理场的耦合行为来实现对蠕行现象的控制。
多物理场指的是同时存在于同一介质或系统中的多个物理场,例如电场、热场、磁场、应力场等。
而耦合行为则是指这些物理场之间的相互影响和相互作用。
通过调控不同物理场的大小、分布和时间演化等参数,可以改变材料内部的微观状态,从而影响材料的蠕变行为。
多物理场耦合法的具体实施方式可以通过数值模拟、实验验证和实际应用等不同途径来进行。
其中,数值模拟是其中的重要手段之一。
通过建立适当的物理模型和数值算法,可以模拟不同物理场的耦合行为,并通过改变参数来控制蠕行现象。
实验验证可以通过实验室试验和实际工程应用来进行,通过对不同物理场的加载和监测,验证多物理场耦合法对蠕行的控制效果。
电子汽车衡鉴定规程
电子汽车衡检修规程1。
概述汽车衡属于国家规定的强制检定计量器具,每次检修或调试完毕,须经法定计量检定机构检定合格方准予使用。
1.1 系统组成电子汽车衡通常由秤台、称重传感器、连接件、限位装置、接线盒、称重显示仪表等零部件组成,根据使用要求可以选配打印机、大屏幕显示器、计算机、稳压电源和UPS不间断电源等外部设备。
1。
2 工作原理被称重物或载重汽车置于秤台上,在重力作用下,秤台将重力传递至承重支承头,使称重传感器弹性体产生形变,贴附于弹性体应变梁上的应变计桥路失去平衡,输出与重量数值成正比例的电信号,经线性放大器将信号放大,再经A/D 电路转换为数字信号,由仪表的微处理器(CPU)对信号进行处理后直接显示重量数据,并经打印机打印记录称重数据。
如果配置计算机,可将计量数据输入计算机管理系统进行综合管理.2。
技术指标2.1 汽车衡主要技术指标2.1。
1型号:SCS/ZCS—100PN2.1.2制造商:梅特勒-托利多(常州)测量技术有限公司2。
1。
3额定量程:100吨2.1。
4最大安全过载:125%FS/40吨2。
1.5允许通过的汽车轴载分度值:20千克2.1.6台面尺寸:20m(L)×3.4m(W)2。
1.7结构:4节台秤,全钢结构,秤台刚性:1/1000,安全系数之2.52。
1。
8基础形式:无基坑2.1。
9精度:OIML III级2.1.10电源:220AC(—15%〜+10%),50HZ±2%2.1.11秤台防护等级:室外工作,防护等级IP682。
1。
12秤台结构设计增强:称体连接处加强设计,满足高频次,耐磨损的恶劣使用要求2。
2 传感器主要技术指标2.2。
1 型号:SLC8202.2.1 注册商标:POWERCELL PDX®。
2.2.2 制造商:梅特勒—托利多(常州)精密仪器有限公司2。
2。
3 结构:压式柱型DWP不锈钢材料外壳,焊接蜜蜂2。
2.4 额定容量:50吨2。
P91钢焊缝蠕变超声检测的敏感参数选择
化 j 、 噪声 分析 以及 非 线 性 方 法¨ 。 等 。文 l 1 ]
表明 , 不 同材料 的蠕 变 机 理不 同 ,其 超声 检 测 的敏 感 参 数也有 所 不 同。 目前 , 针对 P 9 1 钢 焊缝蠕 变超 声检 测敏 感 参 数 的系统 性 研 究 较 少 。本 文对 P 9 1钢 焊 缝 蠕 变 超 声 检 测 的敏感 参数 进行 r比较 全 面 的实 验研 究 ,采用
I SSN 1 0 00 0 0 5 4
一 — —
清华大学学报 ( 自然 科 学 版 ) 2 0 1 5 年 第 5 5卷 第 3 期
J Ts i n g h u a Un i v( S c i& Te c h n o 1 ) ,2 0 1 5 ,Vo 1 . 5 5, No . 3
c r e e p l o a d i n g[ J ] .A r c h i v e o f Ap p l i e d Me c h a n i c s ,2 0 1 1 ,8 1
( 1 1 ) :1 6 7 9—1 6 9 6.
t e s t[ J ] .Ko r e a n J o u r n a l o y Me t a l s a n d Ma t e r i a l s , 2 0 1 1 , 4 9
e v a l u a t i o n t e c hn i q u e s f o r a s s e s s me n t o f c r e e p a n d f a t i g u e
p r o g r a m [ J ] . T r a n s a c t i o n s o y t h e I n d i a n I n s t i t u t e o y
传感器原理传感器原理9
Definition: When the strain gauge is stuck on the tested piece, when the temperature is constant, its loading characteristics and unloading characteristics do not coincide, that is, mechanical hysteresis.
Main factors: the deformation transfer performance of binder and base material and the installation quality of strain gauge. Measures to obtain higher strain limit: select binder and base material with higher shear strength. The thickness of substrate and binder should not be too large, and should be cured properly.
Causes: Strain gauge in the mechanical strain, its internal will produce residual deformation, so that sensitive grid resistance a small amount of irreversible changes; When the strain gauge is manufactured or bonded, if the sensitive grid is improperly deformed or the adhesive is not cured sufficiently. Measures to reduce mechanical hysteresis: Before the experiment, the specimen should be loaded and unloaded several times in advance to reduce the experimental error caused by mechanical hysteresis.
冻结红砂岩非线性蠕变模型的研究_单仁亮
-
大,岩石蠕变趋于稳定的时间不断增加。在应力水 平为 0.45 的条件下,岩石蠕变仍属于稳定蠕变,岩 样 不 会 发 生破 坏 。 岩 样轴 向 变 形 量最 终 保 持 在
1.205 mm。岩石垂直方向的应力可由下式计算:
H
(3)
式中: 为岩石重度(kN/m3); H 为岩石埋深(m)。
0.2 ℃时,开始加载。通过低温单轴抗压强度试验
确定红砂岩瞬时单轴强度为 40.93 MPa。根据参考 文献[15]确定蠕变应力水平分别为 0.36、0.45 和
0.54。启动加载系统,给试件迅速加载至所需荷载,
记录此刻的变形量,之后不间断记录试件变形量, 试验过程中保持轴压波动幅度不超过 10 kPa。当 试样变形稳定( d / dt ≤ 0.000 3h 1 , 类蠕变)以 后,本级加载蠕变试验结束,随即进行下一级蠕变 试验,直到岩石试件趋于破坏(Ⅱ类蠕变)时,停 止试验。
摘
要: 对-10℃的冻结红砂岩进行了单轴蠕变试验, 应力水平依次为 0.36、 0.45 和 0.54, 发现当应力水平为 0.36 和 0.45 时,
红砂岩蠕变为稳定蠕变,当应力水平为 0.54 时,蠕变为不稳定蠕变。应力水平越高,蠕变达到稳定的时间越长。对蠕变曲 线的导函数进行分析,发现红砂岩不稳定蠕变的加速阶段门槛值为 13 h。通过对实测数据的拟合,得到了 3 个应力水平下红 砂岩蠕变的经验方程。由开尔文体、改进麦克斯韦尔体和改进陈沅江体串联组成了理论模型,并得到了模型参数,理论曲线 与实测曲线吻合较好,能够较好地反映冻结红砂岩的蠕变规律。试验结果为采用冻结法施工的矿井评价冻结壁的稳定性提供 了相应的参考。 关 键 词:冻结红砂岩;蠕变特性;经验方程;理论模型 文献标识码:A 中图分类号:TU 452
钛合金耐压结构蠕变数值计算方法与试验验证
钛合金耐压结构蠕变数值计算方法与试验验证王雷;屈平;黄进浩;张爱锋;万正权【摘要】通过对比分析多种典型蠕变本构模型,考虑应力水平、本构模型、蠕变时间等三个因素的影响,确定了TC4ELI材料钛合金常温压缩蠕变本构方程及其系数,初步建立了钛合金耐压结构蠕变数值计算方法.对钛合金环肋圆柱壳模型开展蠕变数值计算,给出蠕变前后模型的应力、应变和位移的变化情况.结果表明:修正的时间强化模型可以表征钛合金耐压结构初始蠕变阶段和稳态阶段的蠕变特性,能够适用于深海钛合金耐压结构的蠕变计算;产生蠕变变形后钛合金耐压结构应力重新分配,高应力区范围有所扩大,蠕变后弹性应变和总应变均减小;相比于纵向,蠕变对环肋圆柱壳结构的径向变形影响更大.【期刊名称】《船舶力学》【年(卷),期】2019(023)002【总页数】10页(P190-199)【关键词】蠕变;钛合金;耐压结构;蠕变本构方程;蠕变曲线;数值计算方法【作者】王雷;屈平;黄进浩;张爱锋;万正权【作者单位】中国船舶科学研究中心, 江苏无锡 214082;深海载人装备国家重点实验室, 江苏无锡 214082;中国船舶科学研究中心, 江苏无锡 214082;深海载人装备国家重点实验室, 江苏无锡 214082;中国船舶科学研究中心, 江苏无锡 214082;深海载人装备国家重点实验室, 江苏无锡 214082;中国船舶科学研究中心, 江苏无锡214082;深海载人装备国家重点实验室, 江苏无锡 214082;中国船舶科学研究中心, 江苏无锡 214082;深海载人装备国家重点实验室, 江苏无锡 214082【正文语种】中文【中图分类】U661.430 引言蠕变是材料在恒定应力作用下,应变随时间的延长而增长的流变现象。
与传统的塑性变形不同,蠕变在应力小于材料屈服极限时也会出现[1-2]。
钛合金在深海环境下会产生不同程度的蠕变变形[3]。
与航空领域钛合金在高温下的中低应力拉伸蠕变现象不同[4],深海环境的钛合金耐压结构蠕变属于常温下的高应力压缩蠕变。
高温电子式蠕变试验机 蠕变试验机技术指标
高温电子式蠕变试验机蠕变试验机技术指标RDL—50高温电子蠕变试验机接受德国DOLI公司原装进口的EDC—222掌控器,软件系统接受CreepTest试验软件。
设备主机刚度大。
蠕变专用负荷轮辐式传感器,抗侧向本领强,并接受温度补偿技术,提高了试验机长时工作的牢靠性。
掌控器具有独特的动态校准功能;防止漂移,保证长时试验的负荷测量及掌控精度。
外置掌控器可脱离计算机独立完成试验。
温度掌控系统接受可控硅移向触发方式控温,延长大气炉寿命,控温精度高。
设备可依据已设定的参数条件,试验过程中自动执行加温、保温、加载、数据记录等操作;判定试验结束后自动执行降温、卸载、停止数据记录等操作。
高温炉温度偏差:波动度2℃,梯度3℃(550℃—1100℃)金属、固态;(优先)凸台的圆形截面试样10—M16mm,凸台的矩形截面试样厚度1—3mm;其他非标小尺寸比例试样应提前核实。
高温蠕变试验机可以短时间保留机械杠杆称重的长期稳定性,同时也可以配置较高的稳定性与伺服加荷系统,还可以完全地脱离机械加荷的使用,这种设备可以随时地与机械比对。
对于高温蠕变试验机,很多伙伴并不是特别的了解,带你了解高温蠕变试验机的这几个紧要功能。
功能一:高温蠕变试验机拥有高效的数据处理功能。
这种设备接受的掌控方式是计算机掌控方式,它可以掌控数显数据的处理,质量上佳的设备还可以实现存储打印。
计算机与试验机接受了数据连接的方式,本机的数据往往都是由计算机进出采集,计算机对数据采集之后,在通过计算机相当专业的软件对数据进行绘制。
绘制出来的图像可以看出一些数据是否异常。
功能二:高温蠕变试验机对数据的存储功能。
计算机与设备连接之后,对于设备中监测到的数据还以特定的数据存储于计算机之中,对于这些数据,假如计算机也可以打印机进行连接之后,还可以对数据进行打印,打印出来的报告可以对设备的监测进行确定的数据分析。
依据一些专业的技术人员介绍,在平常的生活中需要对高温蠕变试验机进行一些常规的检查,除了这些检查之外,本机还可以对一些设定的程序进行一些温控性能的试验。
Cree XLamp CXB3590 LED产品数据册说明书
CXB3590-0000-00 0N0HCD35G CXB3590-0000-000N0HCD40GCXB3590-0000-000N0HCD50GCXB3590-0000-000R0HCB30GCXB3590-0000-000N0HCD40GE E .C o m /X L A m pCLD-DS126 Rev 3ACree ® XLamp ® CXB3590 LEDProDuCt DEsCriPtionThe XLamp ® CXB3590 LeD Array is the brightest member of the second generation of the CXA family that delivers up to 30% higher efficacy and up to 20% higher lumens than the first generation in the same LES. The higher performance second generation CXA LeD Arrays provide a drop-in performance upgrade to existing CXA LeD designs to shorten product development time. Available in 2‑step, 3-step and 5-step easyWhite ® bins, the CXB3590 LeD delivers high lumen output and high efficacy in a single, easy-to-use package that eliminates the need for reflow soldering.The CX Family LeD Design Guide provides basic information on the requirements to use the CXB3590 LeD successfully in luminaire designs.fEaturEs•30-mm optical source• Mechanical and optical designconsistent with CXA35 LED• Available in 70‑, 80‑ and 90‑minimum CRI options• Cree easyWhite ® 2‑, 3‑ and 5‑step binning• Forward voltage options: 36‑V class & 72-v class• 85 °C binning and characterization • Extremely uniform color over viewing angle• Top-side solder connections • Thermocouple attach point• NEMA SSL‑3 2011 standard flux bins • RoHS and ReACh compliant • UL ® recognized component(e349212)taBLE of ContEntsCharacteristics ............................................2Operating Limits ..........................................3Flux Characteristics, EasyWhite ® Order Codes and Bins ‑ 36 V .................................4Flux Characteristics, EasyWhite ® Order Codes and Bins ‑ 72 V .................................7Relative Spectral Power Distribution ......10electrical Characteristics .........................11Relative Luminous Flux ............................12Typical Spatial Distribution ......................14Performance Groups - Brightness ..........14Performance Groups - Chromaticity .......15Cree easyWhite ® Bins Plotted on the 1931 CIe Curve .........................................16Bin and Order Code Formats ...................17Mechanical Dimensions ..........................17Thermal Design ........................................18Notes ........................................................20Packaging . (21)CharaCtEristiCsoPErating LiMitsThe maximum current rating of the CXB3590 depends on the case temperature (Tc) when the LED has reached thermal equilibrium under steady‑state operation. The graphs shown below assume that the system design employs good thermal management (thermal interface material and heat sink) and may vary when poor thermal management is employed. Please refer to the Mechanical Dimensions section on page 17 for the location of the Tc measurement point.Another important factor in good thermal management is the temperature of the Light Emitting Surface (LES). Cree recommends a maximum LES temperature of 135 °C to ensure optimal LED lifetime. Please refer to the Thermal Design section on page 18 for more information on LES temperature measurement.Notes • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRImeasurements. See the Measurements section (page 20).• Cree XLamp CXB3590 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimumspecified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.** Flux values @ 25 °C are calculated and for reference only.fLuX CharaCtEristiCs, EasyWhitE ® Order COdes and Bins - 36 V (i f = 2400 ma, t J = 85 °C)The following table provides order codes for XLamp CXB3590 LEDs. For a complete description of the order code nomenclature, pleasesee the Bin and Order Code Formats section (page 17).Notes • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRImeasurements. See the Measurements section (page 20).• Cree XLamp CXB3590 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimumspecified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.**Flux values @ 25 °C are calculated and for reference only.fLuX CharaCtEristiCs, EasyWhitE ® Order COdes and Bins - 36 V (i f = 2400 ma, t J = 85 °C) - COntinuedNotes • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRImeasurements. See the Measurements section (page 20).• Cree XLamp CXB3590 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimumspecified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.**Flux values @ 25 °C are calculated and for reference only.fLuX CharaCtEristiCs, EasyWhitE ® Order COdes and Bins - 36 V (i f = 2400 ma, t J = 85 °C) - COntinuedNotes • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRImeasurements. See the Measurements section (page 20).• Cree XLamp CXB3590 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimumspecified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.** Flux values @ 25 °C are calculated and for reference only.fLuX CharaCtEristiCs, EasyWhitE ® Order COdes and Bins - 72 V (i f = 1200 ma, t J = 85 °C)The following table provides order codes for XLamp CXB3590 LEDs. For a complete description of the order code nomenclature, pleasesee the Bin and Order Code Formats section (page 17).Notes • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRImeasurements. See the Measurements section (page 20).• Cree XLamp CXB3590 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimumspecified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.**Flux values @ 25 °C are calculated and for reference only.fLuX CharaCtEristiCs, EasyWhitE ® Order COdes and Bins - 72 V (i f = 1200 ma, t J = 85 °C) - COntinuedNotes • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRImeasurements. See the Measurements section (page 20).• Cree XLamp CXB3590 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimumspecified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.**Flux values @ 25 °C are calculated and for reference only.fLuX CharaCtEristiCs, EasyWhitE ® Order COdes and Bins - 72 V (i f = 1200 ma, t J = 85 °C) - COntinuedrelatiVe speCtral pOwer distriButiOnThe following graph is the result of a series of pulsed measurements at 2400 mA for the 36‑V CXB3590 and 1200 mA for the 72‑V = 85 °C.CXB3590 and TJELECtriCaL CharaCtEristiCsThe following graph is the result of a series of steady‑state measurements.relatiVe luminOus FluxThe relative luminous flux values provided below are the ratio of:• Measurements of CXB3590 at steady‑state operation at the given conditions, divided by= 85 °C for the 36‑V CXB3590.• Flux measured during binning, which is a pulsed measurement at 2400 mA at TJUsing the 36‑V CXB3590 LED as an example, at steady‑state operation of Tc = 25 °C, I= 2800 mA, the relative luminous flux ratio is 120%Fin the chart below. A CXB3590 LED that measures 11,000 lm during binning will deliver 13,200 lm (11,000 * 1.2) at steady‑state operation = 2800 mA.of Tc = 25 °C, IFrelatiVe luminOus Flux - COntinuedThe relative luminous flux values provided below are the ratio of:• Measurements of CXB3590 at steady‑state operation at the given conditions, divided by= 85 °C for the 72‑V CXB3590.• Flux measured during binning, which is a pulsed measurement at 1200 mA at TJUsing the 72‑V CXB3590 LED as an example, at steady‑state operation of Tc = 25 °C, I= 1400 mA, the relative luminous flux ratio is 120%Fin the chart below. A CXB3590 LED that measures 11,000 lm during binning will deliver 13,200 lm (11,000 * 1.2) at steady‑state operation = 1400 mA.of Tc = 25 °C, IFtyPiCaL sPatiaL DistriButionperFOrmanCe GrOups - BriGhtness (36 V, i F = 2400 m a; 72 V, i F = 1200 ma, t J = 85 °C)XLamp CXB3590 LEDs are tested for luminous flux and placed into one of the following bins.= 85 °C)perFOrmanCe GrOups - ChrOmatiCity (tjXLamp CXB3590 LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates.Bin anD orDEr CoDE forMatsBin codes and order codes are configured as follows:order Code Bin CodeSeries = CXA35Internal codeCRI Specification0 = Standard CRIH = 80 CRI minimumU = 90 CRI minimumY = 93 CRI minimumKit codeVf classN0 = 36-V classR0 = 72-V classPerformance classSeries = CXA35Chromaticity binVf classN0 = 36-V classR0 = 72-V classInternal codeCRI SpecificationB = 70 CRI minimumH = 80 CRI minimumU = 90 CRI minimumY = 93 CRI minimumFlux binPerformance classMEChaniCaL DiMEnsionsDimensions are in mm.Tolerances unless otherwisespecified: ±.13x° ±1°Meaning of B3590XB3590N = 36‑V CXB3590B3590R = 72‑V CXB3590B3590XthErMaL DEsignThe CXB family of LED arrays can include over a hundred different LED die inside one package, and thus over a hundred different junction temperatures (T J ). Cree has intentionally removed junction‑temperature‑based operating limits and replaced the commonplace maximum T J calculations with maximum ratings based on forward current (I F ) and case temperature (Tc). No additional calculations are required to ensure that the CXB LED is being operated within its designed limits. LES temperature measurement provides additional verification of good thermal design. Please refer to page 22 for the Operating Limit specifications.There is no need to calculate for T J inside the package, as the thermal management design process, specifically from T SP to ambient (T a ), remains identical to any other LED component. For more information on thermal management of Cree XLamp LEDs, please refer to the Thermal Management application note . For CXB soldering recommendations and more information on thermal interface materials (TIM), LES temperature measurement, and connection methods, please refer to the Cree XLamp CX Family LeDs soldering and handling document . The CX Family LeD Design Guide provides basic information on the requirements to use Cree XLamp CXB LeDs successfully in luminaire designs.To keep the CXB3590 LED at or below the maximum rated Tc, the case to ambient temperature thermal resistance (R_c‑a) must be at or below the maximum R_c‑a value shown on the following graph, depending on the operating environment. The y‑axis in each graph is a base 10 logarithmic scale.As the figure at right shows, the R_c‑a value is the sum of the thermal resistance of the TIM (R_tim) plus the thermal resistance of the heat sink (R_hs).R_j-c Tc R_timR_hs TaR_j-c TcR_c-aTathErMaL DEsign - ContinuEDnotEsMeasurementsThe luminous flux, radiant power, chromaticity, forward voltage and CRI measurements in this document are binning specifications only and solely represent product measurements as of the date of shipment. These measurements will change over time based on a number of factors that are not within Cree’s control and are not intended or provided as operational specifications for the products. Calculated values are provided for informational purposes only and are not intended or provided as specifications.pre-release Qualification testingPlease read the LED Reliability Overview for details of the qualification process Cree applies to ensure long‑term reliability for XLamp LEDs and details of Cree’s pre‑release qualification testing for XLamp LEDs.Lumen MaintenanceCree now uses standardized IES LM‑80‑08 and TM‑21‑11 methods for collecting long‑term data and extrapolating LED lumen maintenance. For information on the specific LM‑80 data sets available for this LED, refer to the public LM‑80 results document.Please read the Long-Term Lumen Maintenance application note for more details on Cree’s lumen maintenance testing and forecasting. Please read the Thermal Management application note for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature.rohs ComplianceThe levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product ecology section of the Cree website..rEaCh ComplianceREACh substances of very high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up‑to‑date REACh Declaration. REACh banned substance information (REACh Article 67) is also available upon request.uL® recognized ComponentThis product meets the requirements to be considered a UL Recognized Component with Level 4 enclosure consideration. The LED package or a portion thereof has been investigated as a fire and electrical enclosure per ANSI/UL 8750.Vision advisoryWARNING: Do not look at an exposed lamp in operation. Eye injury can result. For more information about LEDs and eye safety, please refer to the LeD eye Safety application note.PaCkagingCree CXB3590 LEDs are packaged in trays of 10. Five trays are sealed in an anti‑static bag and placed inside a carton, for a total of 50 LEDs per carton. Each carton contains 50 LEDs from the same performance bin.Dimensions are in inches.Tolerances: ±.13x° ±1°LABEL WITH CREE BIN CODE, QUANTITY, LOT #BAGLABEL WITH CREE BIN CODE, QUANTITY, LOT #CXB3590-0000-00 0N0HCD35GCXB3590-0000-00 0N0HCD35G CXB3590-0000-000N0HCD40GCXB3590-0000-000N0HCD50GCXB3590-0000-000R0HCB30GCXB3590-0000-000N0HCD40G。
10w小时蠕变强度
10w小时蠕变强度英文回答:Creep strength, which measures a material's resistance to deformation under sustained load, is a crucial property in various engineering applications, particularly those involving high-temperature and long-term service. Creep strength is often expressed as the stress that causes a specified amount of creep strain over a specific time period, typically 100,000 hours (10w hours).Factors such as temperature, stress level, material composition, and microstructure significantly influence the creep strength of a material. High temperatures promote atomic diffusion and dislocation movement, leading to increased creep rates. Higher stresses also accelerate creep by increasing the driving force for plastic deformation.Various techniques can improve a material's creepstrength, including:Alloying: Adding alloying elements can strengthen the material's microstructure and inhibit dislocation movement.Heat treatment: Heat treatment processes, such as tempering and annealing, can optimize the microstructure and reduce defects that contribute to creep.Grain refinement: Reducing grain size can hinder dislocation movement and enhance creep resistance.Surface treatments: Coatings and surface modifications can protect the material from environmental degradation and reduce surface creep.In summary, creep strength is a critical consideration for materials subjected to sustained loads and elevated temperatures. Understanding the factors affecting creep strength and employing appropriate strengthening techniques is essential for ensuring the integrity and longevity of engineering components.中文回答:蠕变强度,用于衡量材料在持续载荷作用下抵抗变形的能力,是各种工程应用中至关重要的性能,尤其是涉及高温和长期使用的情况。
高温蠕变拉森算法详解
高温蠕变拉森算法详解在工程上,许多结构部件长期运行在高温条件下,如火力发电设备中的汽轮机、锅炉和主蒸汽管道,石油化工系统中的高温高压反应容器和管道,它们除了受到正常的工作应力外,还需承受其它的附加应力以及循环应力和快速较大范围内的温度波动等作用,因此其寿命往往受到蠕变、疲劳和蠕变-疲劳交互作用等多种机制的制约。
疲劳-蠕变交互作用是高温环境下承受循环载荷的设备失效的主要机理,其寿命预测对高温设备的选材、设计和安全评估有十分重大的意义,一直是工程界和学术界比较关心的问题,很多学者提出了相应的寿命预测模型。
本文对常见的寿命估算方法进行简单的介绍。
寿命-时间分数法对于疲劳-蠕变交互作用的寿命估算问题主要采用线性累积损伤法,又叫寿命-时间分数法。
寿命时间分数法认为材料疲劳蠕变交互作用的损伤为疲劳损伤和蠕变损伤的线性累积,如下式所示:其中Nf为疲劳寿命,ni为疲劳循环周次,tr为蠕变破坏时间,t为蠕变保持时间。
该方法将分别计算得到的疲劳损伤量和蠕变损伤量进行简单的相加,得到总的损伤量,计算十分简单,不过需要获得相应温度环境下纯蠕变和纯疲劳的试验数据。
由于该方法没有考虑疲劳和蠕变的交互作用,其计算结果和精度较差。
为了克服不足,提高计算精度,研究人员提出了多种改进形式。
例如谢锡善的修正式如下:Lagneborg提出的修正式如下:上述式子中,n为交互蠕变损伤指数,1/n为交互疲劳损伤指数,A、B为交互作用系数。
两个修正表达式均增加了交互项,可以用来调整累积损伤法的预测结果和实验结果之间误差,极大地提高了预测结果的可靠性。
频率修正法(FM法)及频率分离法(FS法)目前,工程上广泛使用的疲劳-蠕变寿命估算方法大多数都是基于应变控制模式的估算方法。
频率修正法是Coffin提出来的,认为低周疲劳中主要损伤是由塑性应变所引起的,Eckel在此基础上提出以下公式:式中:tf为破坏时间,K为依赖温度的材料常数,ϑ为频率,∆εp为塑性应变范围。
creep蠕变基础知识
蠕变模型将flac3d 的蠕变分析option 进行了简单的翻译,目的是为了搞清楚蠕变过程中系统时间是如何跟真实时间对应的。
2.1 简介Flac3d 可以模拟材料的蠕变特性,即时间依赖性,flac3d2.1提供6种蠕变模型: 1. 经典粘弹型模型 model viscous 2. model burger 3. model power 4. model wipp 5. model cvisc6. powe 蠕变模型结合M-C 模型产生cpow 蠕变模型(model cpow )7. 然后WIPP 蠕变模型结合D-P 模型产生Pwipp 蠕变模型(model pwipp ); 8 model cwipp以上模型越往下越复杂,第一个模型使用经典的maxwell 蠕变公式,第二个模型使用经典的burger 蠕变公式,第三个模型主要用于采矿及地下工程,第四个模型一般用于核废料地下隔离的热力学分析,第五个模型是第二个模型的M-C 扩展,第六个模型是第三个模型的M-C 扩展,第七个模型是第四个模型的D-P 扩展,第八个模型也是第四个模型的一种变化形式,只是包含了压硬和剪缩行为。
2.2蠕变模型描述2.2.1只介绍经典粘弹型模型即maxwell 蠕变公式牛顿粘性的经典概念是应变率正比于应力,对于粘性流变应力应变关系以近似于弹性变形的方式发展。
粘弹型材料既有粘性又有弹性,maxwell 材料就是如此,在一维空间它可以表示为一根弹簧(弹性常数κ)连接一个粘壶(粘性常数η),它的力-位移增量关系可以写成:ηκμFF+=∙∙(2.1)式中∙μ是速度,F 是力,设力的初始值为F ,增量值为F '经过一个t ∆时间步,式(2.1)可以写成ηκμ2F F t F F t +'+∆-'=∆∆ (2.2) 这就是中心差分公式。
解F '得21)(C C F F μκ∆+=' (2.3)ηκ211tC ∆-= ηκ2112t C ∆+=式(2.3)写成偏应力与应变增量的关系()212C G C d ij d ij d ij εσσ∆+=(2.4)上式中:ij ij ij d ij δεεε∆-∆=∆31ij ij ij d ij δσσσ31-=η211tG C ∆-= η2112t G C ∆+=这里,ij ε∆为应变增量张量分量,ij σ为初始应力张量分量,G 为剪切模量。
JMatPro计算原理与准确性讨论
相互作用项(基于两两之 间相互作用)
info@
中仿科技---专业信息化软件及技术咨询公司 CnTech Co.,Ltd--- Leading Engineering Virtual Prototyping Solutions Provider
JMatPro计算原理与准确性讨论 动态物理模型的建立 强大的金属材料数据库 广泛且经实验验证的计算结果
中仿科技---专业信息化软件及技术咨询公司 CnTech Co.,Ltd--- Leading Engineering Virtual Prototyping Solutions Provider
Gm
xiGio RT xilogexi xi x j v (xi x j )v
i i i ji v
Gibbs energy of pure components 纯组元的吉布斯 自由能
Ideal entropy 理想状态下 的焓
Interaction terms(Based on pairwise interactions)
3.4 Mechanical Properties
机械性能
Two types of strengthening mechanism are treated.
可考虑两种强化机制
• • Solid solution strengthening.
固溶强化
Particle strengthening.
第二相粒子强化
中仿科技---专业信息化软件及技术咨询公司 CnTech Co.,Ltd--- Leading Engineering Virtual Prototyping Solutions Provider info@
为提高高温合金的蠕变程度的方法
为提高高温合金的蠕变程度的方法Improving the creep resistance of high-temperature alloys is a significant challenge in materials science and engineering. 高温合金的蠕变抗性是材料科学和工程领域面临的重大挑战之一。
Creep is the tendency of a material to slowly deform under stress at high temperatures, which can lead to component failure in applications such as gas turbines, nuclear reactors, and aerospace components. 蠕变是材料在高温下受力逐渐发生变形的趋势,这可能导致在燃气涡轮机、核反应堆和航天器件等应用中出现零部件失效。
Therefore, finding effective methods to enhance the creep resistance of high-temperature alloys is crucial for ensuring the reliability and performance of these critical applications. 因此,寻找提高高温合金蠕变抗性的有效方法对于确保这些关键应用的可靠性和性能至关重要。
One approach to improving the creep resistance of high-temperature alloys is through alloy composition and microstructure design. 通过合金成分和微观结构设计来提高高温合金的蠕变抗性是一种方法。
结构胶 抗蠕变能力测试
结构胶抗蠕变能力测试简介结构胶是一种常用于建筑、汽车、航空航天等领域的粘接材料,具有优异的粘接性能和耐久性。
在实际应用中,结构胶需要具备抗蠕变能力,即在长时间受力下不会发生形变。
本文将介绍结构胶的抗蠕变能力测试方法和相关参数。
抗蠕变能力的重要性在工程结构中,结构胶承担着重要的连接和支撑作用。
如果结构胶在长时间受力下发生蠕变,会导致连接不可靠,甚至引发事故。
因此,结构胶的抗蠕变能力是评估其性能和可靠性的重要指标之一。
抗蠕变测试方法1. 弹性恢复率测试弹性恢复率是衡量材料抗蠕变能力的重要参数之一。
测试方法如下:1.准备一块结构胶样品,并将其固定在测试平台上。
2.在给定的荷载下,持续施加压力,使结构胶样品发生蠕变。
3.停止施加压力后,记录结构胶样品恢复到原始形状的时间和程度。
4.根据恢复时间和程度计算弹性恢复率。
2. 蠕变试验蠕变试验是评估结构胶抗蠕变能力的常用方法之一。
测试方法如下:1.准备一块结构胶样品,并将其固定在测试平台上。
2.施加一定的荷载,并保持一段时间,使结构胶样品发生蠕变。
3.停止施加荷载后,观察结构胶样品的恢复情况。
4.根据恢复程度、时间和施加荷载的关系,评估结构胶的抗蠕变能力。
3. 循环蠕变试验循环蠕变试验是模拟实际工程中长期受力情况下结构胶的性能变化。
测试方法如下:1.准备一块结构胶样品,并将其固定在测试平台上。
2.施加一定的荷载,并保持一段时间,使结构胶样品发生蠕变。
3.停止施加荷载后,观察结构胶样品的恢复情况。
4.重复施加荷载和停止的过程,记录每个周期中结构胶样品的蠕变程度和恢复情况。
5.根据循环周期和蠕变程度的关系,评估结构胶的抗蠕变能力。
抗蠕变能力的影响因素结构胶的抗蠕变能力受多种因素的影响,包括材料的性质、温度、湿度、施加荷载的大小和持续时间等。
1. 材料的性质不同类型的结构胶具有不同的抗蠕变能力。
一般来说,高强度、高粘度的结构胶具有更好的抗蠕变能力。
2. 温度和湿度温度和湿度对结构胶的抗蠕变能力有显著影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#1
#2
Ti (ii) “Sequential”
1 T
(a) “Series-alternating” - The two mechanisms are constrained to operate alternately.
& ln ε s
#1
#2
1 1 1 = + & s ε1 ε 2 & & ε
At ant T, observed creep rate is; “independent” ⎛ Q ⎞
mechanism
& ε s ∝ exp⎜ − ⎟ RT ⎠ ⎝
Q : apparent
activation energy
“Series-alternating” B (Sequential)
“Series-dependent”
Transition behavior in creep
Consider two mechanisms with true activation energies Q1 and Q2 (i) “Independent” [Mechanisms occur independently of each other]
t 1 ∑i 1 1 1 1 = i = + + ⋅⋅⋅ + = ∑ & & & & & εs ε ε1 ε 2 εi i εi 1 1 1 = + for two mechanisms & & & ε s ε1 ε 2
(b) Other definition: “Series dependent” [Both mechanisms occur together, but slowest mechanism controls creep.] We will use series-alternating to represent sequential.
(ii) “Sequential” (a) Series-alternating [two mechanisms depend on each other. one cannot occur without the other.] e.g. Polycrystal Dislocations The two mechanisms are constrained to operate alternately. move in grains σ The time length during which each process operates are additive; t = t1 + t2 + t3 + · · · · + tm To maintain integrity in material;
& For i mechanism; steady-state creep rate is ε s = & & & Thus, for two mechanisms; ε s = ε1 + ε 2
“Apparent activation energy” comes from
& ∑ε
i
i
⎛ Q ⎞ & ε s = ω exp⎜ − ⎟ (ω: constant) ⎝ RT ⎠ & & ∂ (ln ε s ) R ∂ε s Q = −R =− & ∂ (1 / T ) ε s ∂ (1 / T ) For two mechanism having Q1 and Q2; ⎛ Q ⎞ ⎛ Q ⎞ & & & ε s = A exp⎜ − 1 ⎟ + B exp⎜ − 2 ⎟ = ε1 + ε 2 (A,B : constant) ⎝ RT ⎠ ⎝ RT ⎠ & ∂ε s Q ⎛ − Q1 ⎞ Q 2 ⎛ −Q2 ⎞ = − 1 A exp⎜ − B exp⎜ ⎟ ⎟ ∂ (1 / T ) R RT ⎠ R RT ⎠ ⎝ ⎝ & & & Q1 Q Q ε + Q 2ε 2 R ∂ε s &1 + 2 ε 2 = 1 1 & ∴Q = − ⋅ = ε & & & & & ε s ∂ (1 / T ) ε s εs ε1 + ε 2 Q − Q1 λ = Simplify to & & where λ = ε 2 / ε1 Q 2 − Q1 1 + λ
GBS
σ
• grain boundary sliding • Accommodated in grain
1 1 =∑ & & εs i εi 1 1 1 = + For two processes; & & & ε s ε1 ε 2
ε s = ε1 = ε 2 = ⋅ ⋅ ⋅⋅ = ε m
& & ε1 ⋅ ε 2 & & ε1 + ε 2
Measure Q as a function of T : polycrystalline Al
AB ─ Low temperature behavior BC ─ Transition CD ─ High temperature behavior
Q varies with T below 250 K. Q ≅ 27.5 kcal/mol (=115 kJ/mol) from 250-375 K Q ≅ 35 kcal/mol (=146 kJ/mol) from 500-800 K
& & Ti: Intersection temperature where ε1 = ε 2
∴ Values of Q may increase or decrease as T is increased.
Ti
1 T
Transition behavior in creep Consider two mechanisms with true activation energies Q1 and Q2 (i) “Independent” [Mechanisms occur independently of each other]
Transition behavior in creep
Consider two mechanisms with true activation energies Q1 and Q2 (i) “Independent” [Mechanisms occur independently of each other]
(b) “Series dependent” - Both mechanisms occur together, but slowest mechanism controls creep. 1
Ti
T
Transition behavior in creep
Consider two mechanisms with true activation energies Q1 and Q2 (i) “Independent” [Mechanisms occur independently of each other]
& ln ε s
−
Q1
R
ln2
A
−
Q2
R
#1
#2
Ti
1 T
⎛ Q ⎞ ⎛ Q ⎞ & & & ε s = A exp⎜ − 1 ⎟ + B exp⎜ − 2 ⎟ = ε1 + ε 2 ⎝ RT ⎠ ⎝ RT ⎠ (A,B : constant)
& & & At Ti , ε s = 2ε1 = 2ε 2 (point A)
& Let ε i = ti ⋅ ε i , thus
& ∴ εs =
Apparent activation energy for two mechanisms;
⎛ Q ⎞ ⎛ Q ⎞ A exp⎜ − 1 ⎟ ⋅ B exp⎜ − 2 ⎟ ⎝ RT ⎠ ⎝ RT ⎠ & εs = ⎛ Q ⎞ ⎛ Q ⎞ A exp⎜ − 1 ⎟ + B exp⎜ − 2 ⎟ ⎝ RT ⎠ ⎝ RT ⎠
& For i mechanisms; steady-state creep rate is ε s = & & & Thus, for two mechanisms; ε s = ε1 + ε 2
“Apparent activation energy” comes from
& ∑ε
i
i
⎛ Q ⎞ & ε s = ω exp⎜ − ⎟ (ω: constant) ⎝ RT ⎠ & & ∂ (ln ε s ) R ∂ε s Q = −R =− & ∂ (1 / T ) ε s ∂ (1 / T ) For two mechanism having Q1 and Q2; ⎛ Q ⎞ ⎛ Q ⎞ & & & ε s = A exp⎜ − 1 ⎟ + B exp⎜ − 2 ⎟ = ε1 + ε 2 (A,B : constant) ⎝ RT ⎠ ⎝ RT ⎠ & ∂ε s Q ⎛ − Q1 ⎞ Q 2 ⎛ −Q2 ⎞ = − 1 A exp⎜ − B exp⎜ ⎟ ⎟ ∂ (1 / T ) R RT ⎠ R RT ⎠ ⎝ ⎝ & & & R ∂ε s Q1 Q Q ε + Q 2ε 2 &1 + 2 ε 2 = 1 1 & ε ∴Q = − ⋅ = & & & & & ε s ∂ (1 / T ) ε s εs ε1 + ε 2 Q − Q1 λ = Simplify to & & where λ = ε 2 / ε1 Q 2 − Q1 1 + λ