受弯构件正截面承载力的计算表格
受弯构件正截面承载力计算—单筋矩形截面受弯构件
a1 f c bx f y As
直接求得所需的钢筋面积。
并应满足As ≥ minbh;
若≥出现As<minbh时,则应按minbh配筋。
计算步骤4
选择钢筋直径并进行截面布置,得
到实际配筋面积As、as和h0。
截面设计
控制截面
在等截面受弯构件中,指弯矩组合设
计值最大的截面;在变截面受弯构件中,
构件种类
梁
板
纵向受力钢
筋层数
1层
2层
1层
混凝土强度等级
≤ 25
45mm
70mm
25mm
≥ 30
40mm
65mm
20mm
计算步骤2
根据公式
x
M a1 f c bx( h0 )
2
解一元二次方程求得截面受压区高度x,并满足
x b h0
否则应加大截面,或提高fc ,或改用双筋梁。
计算步骤3
单筋矩形截面受弯构件截面复核
(建筑规范)
截面复核:是指已知截面尺寸、混凝土和钢筋
强度级别以及钢筋在截面上的布置,要求计算截面
的承载力Mu或复核控制截面承受某个弯矩计算值M是
否安全。
截面尺寸
已知条件
材料强度级别
钢筋在截面上的布置
钢筋布置
复核内容
配筋率
截面的承载力Mu
复核步骤1
检查钢筋布置是否符合
M u f cd bh02 b 1 0.5 b
当由上式求得的Mu<M时,可采取提高混凝土
级别、修改截面尺寸,或改为双筋截面等措施;
复核步骤五
当x≤ξbh0时,由公式
x
M u f cd bxM u f sd As h0
混凝土结构设计原理-受弯构件正截面承载力
受弯构件正截面承载力计算
第一阶段:构件未开裂,弹性工作阶段。 第二阶段:带裂缝工作阶段。 第三阶段:钢筋塑流阶段。
受弯构件正截面承载力计算
阶段Ia — 抗裂计算依据; 阶段II — 变形、裂缝宽度计算依据; 阶段IIIa — 承载力计算依据。
受弯构件正截面承载力计算
二 钢筋混凝土梁正截面的破坏形式
受弯构件正截面承载力计算
钢筋的布置 Construction of reinforced bars
梁腹板高度hw>450mm时,要求在梁两侧沿高度每隔200mm设置一根纵 向构造钢筋,以减小梁腹部的裂缝宽度,直径≥10mm。
1. 为保证耐久性、防火性以及钢筋与混凝土的粘结性能,钢筋的混凝 土保护层厚度一般不小于25mm,与环境类别有关;
HRB335 钢筋 HRB400 钢筋
b s,max b s,max
最大配筋率ρmax
b max b
1 f c
fy
受弯构件正截面承载力计算
最小配筋率ρmin
最小配筋率规定了少筋和适筋的界限
min
As ft 0.45 bh fy
且同时不应小于0.2%
受弯构件正截面承载力计算
2.
3.
矩形截面梁高宽比h/b=2.0~3.5;T形截面梁高宽比h/b=2.5~4.0;
梁的高度h通常取为1/10~ 1/15梁跨,由250mm以50mm为模数增大; 梁宽为120、150、180、200、220、250、300……
受弯构件正截面承载力计算
三 受弯构件的力学特性
P
A B
M
P C D A
少筋梁:一裂即坏,裂缝很宽,脆性破坏,截面过大不经济,设计时应避免。 适筋梁:受拉钢筋屈服,混凝土达抗压极限强度,充分利用材料,作为设计依据 超筋梁:压区混凝土的压碎,受拉钢筋未屈服,脆性破坏,设计时应避免。
钢筋混凝土受弯构件—T形截面梁正承载力计算
现浇肋梁楼盖(梁跨中截面) (a)
槽型板 (b)
(a)
(b)
空(c心) 板
(c)
单元4 T形截面梁正截面承载力计算
T形梁有效(计算)翼缘宽度:
离梁肋越远,T形梁翼缘受压的 压应力越小,因此对受压翼缘的宽 度有一定限制,在这个限制的宽度 范围内,认为翼缘的压应力均匀分 布。
单元4 T形截面梁正截面承载力计算
2.T形梁截面复核例题
上一例题中,若已配置受拉钢筋为8Φ25,即As=4418mm2,弯矩设计值 M=650KN.m,其余已知条件不变,试验算截面是否安全。
解题分析:T形梁首先需要确定计算翼缘宽度,之后判定T形截面类别,再进 行相应计算。 [解] (1)确定翼缘计算宽度
as
同上一题,取bf'=600mm
(2)判别T形截面类别
fc=9.6N/mm2,ft=1.1N/mm2; fy=300N/mm2, ξb=0.55
1
fcbf
hf
h0
hf 2
1.0 9.6
600
100
730
100 2
391 .7 10 6
N .mm
391 .7KN.m 450 KN.mm 第二类T形截面
(3)求M1
139.8mm b h0
0.55 740mm
(5)求As As
1 fcbx 1 fc b f
fy
bh f
1.0 9.6 250139.8 1.0 9.6 600 250100 2238mm2
300
(6)选钢筋 选用6Φ22,As=2281mm2
6Φ22
250
单元4 T形截面梁正截面承载力计算
求:验算截面是否安全
(整理)3受弯构件承载力计算
1 、一般构造要求受弯构件正截面承载力计算1 、配筋率对构件破坏特征的影响及适筋受弯构件截面受力的几个阶段受弯构件正截面破坏特征主要由纵向受拉钢筋的配筋率ρ大小确定。
配筋率是指纵受受拉钢筋的截面面积与截面的有效面积之比。
(3-1)式中As——纵向受力钢筋的截面面积,;b——截面的宽度, mm;——截面的有效高度,——受拉钢筋合力作用点到截面受拉边缘的距离。
根据梁纵向钢筋配筋率的不同, 钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型, 不同类型梁的破坏特征不同。
(1)适筋梁配置适量纵向受力钢筋的梁称为适筋梁。
适筋梁从开始加载到完全破坏, 其应力变化经历了三个阶段, 如图3.8。
第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小, 梁截面上各个纤维的应变也很小, 其应力和应变几乎成直线关系, 混凝土应力分布图形接近三角形, 如图3.8(a)。
当弯矩增大时, 混凝土的拉应力、压应力和钢筋的拉应力也随之增大。
由于混凝土抗拉强度较低, 受拉区混凝土开始表现出明显的塑性性质, 应变较应力增加快, 故应力和应变不再是直线关系, 应力分布呈曲线,当弯距增加到开裂弯距时, 受拉边缘纤维的应变达到混凝土的极限拉应变, 此时,截面处于将裂未裂的极限状态, 即第I阶段末, 用Ia表示, 如图3.13(b)所示。
这时受压区塑性变形发展不明显, 其应力图形仍接近三角形。
Ia阶段的应力状态是抗裂验算的依据。
第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时, 受拉区混凝土的拉应变超过其极其拉应变,受拉区出现裂缝, 截面即进入第Ⅱ阶段。
裂缝出现后, 在裂缝截面处, 受拉区混凝土大部分退出工作, 未开裂部分混凝土虽可继续承担部分拉力, 但因靠近中和轴很近, 故其作用甚小, 拉力几乎全部由受拉钢筋承担, 在裂缝出现的瞬间, 钢筋应力突然增加很大。
随着弯矩的不断增加, 裂缝逐渐向上扩展, 中和轴逐渐上移。
, 这时截面所能承担的弯矩称为屈服弯矩。
精华混凝土结构的受弯构件正截面承载力计算
Mu Mu,max s,max 1 fcbh02
(这种情况在施工质量出现问题,混凝土没有达到设计强度 (3)时当会As产<r生m。inb)h时,不能使用,应采取措施(加固等)。
第四章 受弯构件正截面承载力 4、公式应用之二---截面设计
已知:弯矩设计值M 求:截面尺寸b、h(h0);截面配筋As;以及材料强度fy、fc 未知数:受压区高度x、 b、h(h0)、As、fy、fc 基本公式:两个
单筋部分
x 2
)
+
f y As f y As2 M f y As (h0 a)
纯钢筋部分
▲ As’(受压钢筋)与As2(纯钢筋部分的受拉钢筋)组成 的“纯钢筋截面”的受弯承载力与混凝土无关;
▲截面破坏形态不受As2配筋量的影响,理论上这部分配 筋可以很大,如形成钢骨混凝土构件。
第四章 受弯构件正截面承载力
CC=1fcbx
T=fyAS
(2)计算公式
X 0 M 0
1 fcbx f yAs f y As
M
Mu
1
fcbx(h0
x) 2
f yAs(h0
a)
第四章 受弯构件正截面承载力
6、双筋梁计算简图和计算公式的分解 (1)计算简图的分解
As
As
As
As1
As2
fy'As'
fy'As'
M
1fcbx
简支梁:h=(1/10 ~ 1/16)L,b=(1/2~1/3)h ; 简支板:h = (1/30 ~ 1/35)L 。 (c)按经济配筋率估计截面尺寸。 (根据工程经验,截面尺寸的选择范围较大,为此需从经济角度进 一步分析)
第四章 受弯构件正截面承载力 ▲配筋率与总造价的关系曲线(了解)
单筋矩形截面受弯构件正截面承载能力计算
适用条件同矩形截面
M1
1 fc
b
' f
b
h
' f
h0
h
' f
2
M2
1
f
c
bx
h0
x
2
M M1 M2
As1
1 fc
b
' f
b
fy
h
' f
As
As1 As2
1 fc
b
' f
b
h
' f
fy
As2
3)如果截面平衡方程不满足要求,重新 按截面设计问题进行计算。
正截面承载能力计算系数与 计算方法
M
f
y
As
h0
x 2
f y As h0 1 0.5
f y As h0 s
M
1
f
c
bx
h0
x 2
1
fcbh02 1 0.5 1 fcbh02as
h0
x 2
f
' y
As'
h0
a
' s
较单筋增加项
适用条件
x b h0 1) x 2a ' 2)
不满足条件 2)
Mu f y As h0 as'
计算方法
1)截面设计 给定:截面尺寸、材料强度、弯矩
求:配筋
As , As'
受压和受拉都未知 受压已知,求受拉 受拉以知,求受压
4受弯构件正截面承载力计算(2)
εmax=0.0033 ε′s=0.002
a′ s M x
α 1 fc
A′s f′y h0 As fy
b x
A′s
εs
as
As
(a)
(b) 图3-12
(c)
(d)
第 三
混凝土
章
由计算图式平衡条件可建立基本计算公式:
∑X =0
′ ′ As f y = As f y + α1 f cbx
有效翼缘宽度 实际应力图块
b′f
等效应力图块
实际中和轴
第 三
图3-15
混凝土
章
b′f的取值与梁的跨度l0, 梁的净距sn, 翼缘高度hf′及 受力情况有关, 《规范》规定按表4-5中的最小值取用。
T型及倒 形截面受弯构件翼缘计算宽度b′f 型及倒L形截面受弯构件翼缘计算宽度 ′ 型及倒 形截面受弯构件翼缘计算宽度
§4.4 双筋矩形截面承载力计算 1. 应用条件: 1.荷载效应较大, 而提高材料强度和截面尺寸受 到限制; 2. 存在反号弯矩的作用(地震作用); 3. 由于某种原因, 已配置了一定数量的受压钢筋。
第 三
混凝土
章
2. 基本公式及适用条件: 基本假定及破坏形态与单筋相类似, 以IIIa作为 承载力计算模式。 (如图)
第 三 章
混凝土
(2)截面复核: 已知:b×h, fc, fy, fy′, As, As′ 求: Mu 解:求 x =
f y As − f
/ y
A/s
α 1 f cb
当2as ′ ≤x≤ξbh0 截面处于适筋状态,
x ′ ′ ′ M u = α1 f cbx (h0 − ) + As f y (h0 − as ) 2
钢筋混凝土受弯构件正截面承载力计算—单筋矩形截面梁计算
受压混凝土的应力-应变关系
计算原则
2)等效矩形应力图
简化原则:受压区混凝土的合力大小不变;受压区混凝土的合力作用点不变。
等效矩形应力图形的混凝土受压区高度 x 1xn ,等效矩形应力图形的应力值 为 1 fc, 1、1 的值见下表。
表 1、1 值
混凝土强 度等级
≤C50
C55
C60
C65
C70
C75
(2)求跨中截面的最大弯矩设计值。
因仅有一个可变荷载,故弯矩设计值应有取下列两者中的较大值:
M 1 1.2g 1.4q l 2
8
1 1.2 5 1.4 10 5.02 62.5
8
M 1 1.35g 1.4 0.7q l 2
8
1 1.35 5 1.4 0.7 10 5.02 51.7
需要加固、补强
计算原则
1)基本假定
01 平截面假定。
02
钢筋的应力 s 等于钢筋应变 s 与其弹性模量 Es 的乘积,但不得大
于其强度设计值 fy,即
s sEs fv
03 不考虑截面受拉区混凝土的抗拉强度。
计算原则
04
受压混凝土采用理想化的应力-应变关系,当混凝土强度等级为
C50及以下时,混凝土极限压应变 cu=0.0033。
(1)受拉钢筋为4 25,As=1964 mm2; (2)受拉钢筋为3 18,As=763 mm²。
单筋矩形截面梁计算
解 查表得:
fc 9.6N/mm2
ft 1.10N/mm2
f y 300N/mm2 c 1.0
b 0.550
c 30mm
单筋矩形截面梁计算
(1)
d
25
h0 h c 2 450 30 2 408
T形截面构件正截面受弯承载力计算(单筋T形截面)
x>hf′,为第二种T形截面,根据受压区计算高度计算
结构参数 结构最小配筋率 荷载参数 防止超筋破坏系数α1 配筋及截面参数 钢筋种类 截面高度h,(mm) 计算跨度l0,(mm) 翼缘高度hf′,(mm) ←根据《钢混》表3-2计算计算翼缘宽度bf′ 初选受拉侧第一排钢筋(mm) 截面有效高度h0,(m) 混凝土截面积Ac,(mm2) 材料参数 混凝土轴心抗拉强度设计值ft,(N/mm2) 受压钢筋的强度设计值fy′,(N/mm2) 混凝土的弹性模量Ec,(N/mm2) T形截面,根据受压区计算高度计算As 截面抵抗矩系数αs 计算受拉侧钢筋截面面积As,(mm2) √,满足最小配筋率 受拉侧第一排(每米)钢筋根数 受拉侧第二排(每米)钢筋根数 受拉侧第二排钢筋截面面积As2,(mm2) √,大于计算配筋面积 √,满足最小配筋率 0.419 6708.96 5 0 0.00 × ,ξ>α1ξb,停止计算,会发生超筋破坏,应按双筋T形截面计算 1.43 360.00 30000.00 35.00 0.00 740.00 240000.00 HRB400 800.00 6000.00 180.00 1.00 0.20%
2 2
结构参数 钢筋混凝土结构系数γd 弯矩设计值M,(N· mm) 1.20 荷载参数 1100000000.00 配筋及截面参数 C30 300.00 500.00 350.00 500.00 50.00 0.00 60.00 240000.00 材料参数 14.30 360.00 200000.00 0.518 0.599 442.99 3.02% 50 0 9817.48 9817.48 4.42%
参数分类 常数参数 输入参数 阶段参数 跨页引用 计算结果 手动取值 变量求解 混凝土级配 梁肋宽度b,(mm) 翼缘宽度bf,(mm) 梁肋净距sn,(mm) 计算翼缘宽度bf′,(mm) 初选受拉侧第一排钢筋直径Φ,(mm) 参考书为:《 初选受拉侧第二排钢筋直径Φ,(mm) 水工钢筋混凝 土结构学(第受拉钢筋合力点至受拉区边缘的距离a,(mm) 5版)》(中 构件截面积A,(mm2) 国水利水电出 版社) 混凝土轴心抗压强度设计值fc,(N/mm2) 受拉钢筋的强度设计值fy,(N/mm ) 钢筋的弹性模量Es,(N/mm2) 鉴别T形截面 相对界限受压区结算高度ξb 计算As 相对受压区计算高度ξ 混凝土受压区计算高度x,(mm) 配筋率ρ 受拉侧第一排钢筋直径Φ,(mm) 受拉侧第二排钢筋直径Φ,(mm) 配筋As 受拉侧第一排钢筋截面面积As1,(mm ) 受拉侧钢筋总截面面积As 配筋率ρ
3.2双筋、T形受弯构件的正截面承载力
解:(1) 已知混凝土强度等级C30, α1=1.0,fc=14.3N/mm2 ;HRB400钢筋, fy=360N/mm2,ξb=0.518,αs=60mm, h0=700mm60mm=640mm
(2) 判别截面类
fyAs=360N/mm2×3041mm2=1094760N>α1fcb'fh'f =14.3N/mm2×600mm×100mm=858000N
属第二类T形截面。
(3) 计算x
(4)计算极限弯矩Mu 安全
3.5 双筋矩形截面正截面承载力计算
3.5.1 概述
受压钢筋
定义:同时配置受
拉和受压钢筋的情
A s'
况
一般来说采用双筋
截面不经济
As
受拉钢筋
A's——受压区纵向受力钢筋的截面面积; a’s——从受压区边缘到受压区纵向受力钢筋合 力作用之间的距离。
对于梁,当受压钢筋按一排布置时,可取
a’s=35mm ; 当 受 压 钢 筋 按 两 排 布 置 时 , 可 取 a’s=60mm。 对于板,可取a's=20mm。
用HPB235钢筋配筋,截面承受的弯矩设计值 M=4.0×108N·mm,当上述基本条件不能改变时, 求截面所需受力钢筋截面面积。
解:(1) 判别是否需要设计成双筋截面 查表得α1=1.0,fc=9.6N/mm2,fy=210N/mm2 b=250mm,h0=600-70=530mm为
选用3 28(As=1847mm2)。
3.6 T形截面正截面承载力计算
3.6.1 概述
将腹板两侧混凝土挖去后 可减轻自重,但不降低承 载力。
建筑工程T形及倒L形截面受弯构件翼缘 计算宽度b’f 见表。
受弯构件正截面承载能力计算
其特点有: (1)只能沿 弯矩作用方 向,绕中和 轴单向转动 (2)只能在 从受拉钢筋 开始屈服到 受压区混凝 土压坏的有 限范围内转 动φy-φu。
(3)转动的同时,能传递一定的弯矩,即截面的极限弯矩 Mu 塑性铰出现后,简支梁即形成三铰在一直线上的破坏机构。
3.《规范》采用的正截面极限受弯承载力计算方法
2.适筋梁正截面的受力性能 (1)适筋梁的受力阶段
第Ⅰ阶段(弹性工作阶段) 加载→开裂 开裂弯矩Mcr
第Ⅱ阶段(带裂缝工作阶段) 开裂→屈服 屈服弯矩My
第Ⅲ阶段(破坏阶段) 屈服→压碎 极限弯矩Mu
不同阶段截面应力分布图的应用
Ⅰa阶段的应力状态是抗裂验算的依据。 Ⅱ 阶段的应力状态是裂缝宽度和变形验算的依据。 Ⅲa阶段的应力状态作为构件承载力计算的依据
有柱帽 无柱帽
1/32~1/40 1/30~1/35
注:表中l0为梁的计算跨度。当l0≥9m时,表中数值宜乘以1.2。
(2)板的最小厚度
按构造要求,现浇板的厚度不应小于下表的数值。现 浇板的厚度一般取为10mm的倍数。
(3)板的配筋
①受力钢筋 用来承受弯矩产生的拉力 ②分布钢筋
作用,一是固定受力钢筋的位置,形成钢筋网;二是 将板上荷载有效地传到受力钢筋上去;三是防止温度或混 凝土收缩等原因沿跨度方向的裂缝。
ecu
a’
A
’ s
e s
x
M
h0
Cs=ss’As’ Cc=fcbx
As
a
>ey
T=fyAs
双筋截面在满足构造要求的条件下,截面达到Mu 的标志仍然是受压边缘混凝土应变达到εcu。 受压区 混凝土的应力仍可按等效矩形应力考虑。当相对受压
受弯构件正截面承载力计算
b 净距30mm
钢筋直径d
净距25mm 钢筋直径d
h b
2 ~ 2.5
3.5(矩形截面) ~ 4.0(T形截面)
二、梁正截面受弯性能的试验分析
1、适筋粱的工作阶段(试验)
试验 梁
荷载分 配梁 P
外加荷 载
应变 计
位移
L/3
计
L/3
L
As
bh0
数据采集 系统
h0 h
As b
2. 受弯阶段正截面各阶段应力状态
nb
xnb h0
cu cu y
y
超筋破坏
xb 矩形应力图形的界限受压区高度
b 矩形应力图形的界限受压区相对高度
b
xb h0
1xb
h0
1 cu cu y
1
1
y
1
1 fy
cu
Es cu
界限受压区高度
fcu 50Mpa时:
b
1
0.8 fy
0.0033 Es
b即n nb
b即n nb
c c Ec
t t Ec
c xn sAs
s s Es
2. 基本公式及适用条件
压区混凝土等效矩形应力图形(极限状态下)
cu
xn=nh
xn=nh0
0
C
A
h0 h
s
Mu
s
sAs
b
xn=nh
0
Mu
1 fc
yc C
x=1xn
sAs
xn=nh
0
Mu
fc yc
C
sAs
引入参数1、1进行简 化
原则:C的大小和作用点 位置不变
1
受弯构件正截面承载力计算3资料.
当Mu≥M时,认为截面受弯承载力满足要求,否则为不安全。当Mu大于M
过多时,该截面设计不经济。
其中ξ的物理意义:①由 x h知0 ,ξ称为相对受压区高度;②由
知, fy 1 fc
ξ与与 混纵凝向土受有拉效钢面筋积配筋的百比分b值h率0,ρ也相考比虑,了不两仅种考材虑料了力纵学向性受能拉指钢标筋的截比面值面,积能As
【 解 】 查 表 得 fc=9.6N/mm2 , ft =1.10N/mm2 , fy =300N/mm2 , ξb=0.550 , α1=1.0 , 结 构 重 要 性 系 数 γ0=1.0,可变荷载组合值系数Ψc=0.7 1. 计算弯矩设计值M
钢筋混凝土重度为25kN/m3 ,故作用在梁上的恒荷载 标准值为
b 和 min
当环境类别为一类时(即室内环境)一般取:梁内一层 钢筋时,as=40mm;梁内两层钢筋时,as=65mm; 对于 板 as=20mm。
★截面复核
已知:截面尺寸b,h(h0)、截面配筋As,以及材料强度 fy、fc 求:截面的受弯承载力 Mu>M 未知数:受压区高度x和受弯承载力Mu
④选配钢筋
【例3.2.1】 某钢筋混凝土矩形截面简支 梁,跨中弯矩设计值M=80kN·m,梁的截 面 尺 寸 b×h=200×450mm , 采 用 C25 级 混凝土,HRB400级钢筋。试确定跨中截 面纵向受力钢筋的数量。
【解】查表得fc=11.9 N/mm2,ft=1.27 N/mm2,fy =360 N/mm2,α1=1.0,ξb=0.518
gk=10+0.25×0.55×25=13.438kN/m 简支梁在恒荷载标准值作用下的跨中弯矩为
Mgk=gk l02/8=13.438×62/8=60.471kN. m
_第三章 受弯构件的正截面承载力计算(
二.截面尺寸
为统一模板尺寸、便于施工,通常采用梁
宽度b=120、150、180、200、220、 250mm, 250mm以上者以50mm为模数递增。 梁高度h=250、300、350、 400 、…800mm ,800mm以上者以100mm为 模数递增。
h
b
简支梁的高跨比h/l0一般为1/8 ~ 1/16。 矩形截面梁高宽比h/b=2.0~ 3.5,T形截面
B F 5 0 0 , H P B 3 0 0 、 B 4 0 0
H
R
H
R
截面尺寸确定
● 截面应有一定刚度,使正常使用阶段的验算能满足 挠度变形的要求。 ● 根据工程经验,常按高跨比h/l0 来估计截面高度: ● 简支梁可取h=(1/8 ~ 1/16)l 2~1/ 3. 5)h ; 0 ,b=(1/ ● 简支板可取h = (1/25 ~ 1/40) l0 。
(
)
2种破坏情况—超筋破坏
..\..\混凝土结构设计原理录像\超筋梁的破坏.wmv
配筋量过多: 受拉钢筋未达到屈服,受压砼先达到极限压应
变而被压坏。 承载力控制于砼压区,钢筋未能充分发挥作 用。 裂缝根数多、宽度细,挠度也比较小,砼压坏 前无明显预兆,属脆性破坏。
(三)第3种破坏情况——少筋破坏 ..\..\混凝土结构设计原理录像\少筋梁的破坏.wmv
M u 2 f bh 1 c 0 b
(1 0.5 b )
⒊承载力复核 如果 如果
M ≤ Mu M > Mu
安全 不安全
方法二、查表法 ⒈验算配筋率: 如果 ≥ min 则按步骤2. 进行。
< min 则按素混凝土梁计算Mu。
⒉由①式计算
钢筋混凝土受弯构件正截面承载力计算_例题
min 最小配筋率
min b
My
B
max b
界限配筋率 Mu
适筋梁 ρmin<ρ<ρmax A少筋梁ρ>ρmax
0
超筋破坏形态
b
少筋破坏形态
图3-8 M0 —Φ0示意图
f0
min
M0cr
26
φ0
钢筋混凝土受弯构件正截面承载力计算
钢筋混凝土受弯构件正截面承载力计算
对各阶段和各特征点进行详细的截面应力 — 应变分析:
c max
应变图
应力图
t max
Mcr
M ftk sAs Ia II My
y
xf M fyAs IIa III Mu fyAs Z fyAs=Z IIIa D
M
sAs
I
19
sAs
钢筋混凝土受弯构件正截面承载力计算
图3-8 M0 —Φ0示意图
27
钢筋混凝土受弯构件正截面承载力计算
2).超筋破坏形态( ρ >ρ
b
)
其特点是混凝土受压区先压碎,纵向受拉钢筋不屈服。 破坏始自混凝土受压区先压碎,纵向受拉钢筋应力尚小 于屈服强度,但此时梁已告破坏。试验表明,钢筋在梁破坏 前仍处于弹性工作阶段,裂缝开展不宽,延伸不高,梁的挠 度亦不大。总之,它在没有明显预兆的情况下由于受压区混 凝土被压碎而突然破坏,故属于脆性破坏类型。 超筋梁虽配置过多的受拉钢筋,但由于梁破坏时其应力 低于屈服强度,不能充分发挥作用,造成钢材的浪费。这不 仅不经济,且破坏前没有预兆,故设计中不允许采用超筋梁。
31
钢筋混凝土受弯构件正截面承载力计算
界限破坏形态 特征:受拉钢筋屈服的同时受压区混凝土被压碎。 界限破坏的配筋率ρb实质上就是适筋梁的最大 配筋率。当ρ< ρ b时,破坏始自钢筋的屈服,当ρ > ρ b时,破坏始自受压区混凝土的压碎, ρ = ρ b时,
建筑结构受弯构件的正截面和斜截面受弯承载力计算
三.等效矩形应力图 1.问题的提出:由图(a)的方法进行计算,需 要进行积分运算,为避免之,简化计算, 欲将图(a) 换成(b)图; 2.换算对象:混凝土压应力分布图形; 3.换算原则:将曲线分布换算成矩形分布, 保持合力大小及作用点不变。 X fc ,(对相关参数进 4.换算结果: X c , 1 fc 行说明)
四. 界限相对受压区高度ξb ξb=0.8/(1+fy/0.0033Es)
适筋截面 b
界限配筋截面 b
超筋截面 b
五.适筋梁与少筋梁的界限及最小配筋率 1.确定原则:适筋梁与少筋梁破坏的界限是 裂缝一出现受拉钢筋的应力即达屈服,宣 告梁破坏。此时对应的梁的配筋率即为最 小配筋率 min 2.最小配筋率的具体取值为 max( 0.45 f f ,0.002 )
因此配置箍筋并不能减小近支座52五受弯构件斜截面承载力计算斜截面受剪承载力计算公式影响梁受剪承载力的因素无腹筋梁的受剪承载力受到很多因素的影响如剪跨比混凝土强度纵筋配筋率荷载形式集中荷载分布荷载加载方式直接加载间接加载结构类型简支梁连续梁及截面形在直接加载荷载作用于梁顶面情况下剪跨比是影响集中荷载作用下无腹筋梁抗剪强度的主要因素
1 f cbx f y As f y As
x M M u 1 f cbx(h0 ) f y As (h0 a) 2
四、双筋矩形截面受弯构件的正截 面受弯承载力计算
3.适用条件 (1) X bh0 —确保纵向受拉钢筋屈服; (2) X 2as —确保受压钢筋屈服。 三.计算方法 1.截面设计 (1)情况1:已知截面尺寸、材料等级环境 类别及弯矩,求纵向受拉和受压钢筋截面 面积。
一.概述 1.双筋截面:截面受拉和受压区均布置有纵向钢筋,且在计 算中考虑它们受力; 2.在受压区布置受力钢筋是不经济的; 3.工程中通常仅在以下情况下采用双筋截面: (1)当截面尺寸和材料强度受建筑使用和施工条件(或整 个工程)限制而不能增加,而按单筋截面计算又不满足适 筋截面条件时,可采用双筋截面,即在受压区配置钢筋以 补充混凝土受压能力的不足。 (2)由于荷载有多种组合情况,在某一组合情况下截面承 受正弯矩,另一种组合情况下承受负弯矩,这时也出现双 筋截面。 (3)由于受压钢筋可以提高截面的延性,因此,在抗震结 构中要求框架梁必须必须配置一定比例的受压钢筋。
第3章受弯构件的正截面承载力计算
1)承载力计算基本资料:已知截面尺寸b 、h 、材料强度f c 、f t 、f y 、钢筋面积A s ,确定需用的计算参数α1、h 0、ξb 。
计算步骤:(1)验算bh A min s ρ≥,满足要求则进入下一步。
此处,%)/4520.0max(y t min f f ,=ρ (2)求受压区高度x ,由s y c 1A f bx f =α得到bf αA f x c 1s y =(3)验算受压区高度x ,此时x 可能出现如下两种情况: 若0b h ξx ≤,则转入(4)—①) 若0b h ξx >,则转入(4)—②) (4)确定受弯承载力M u①由)2(0c 1xh bx f M -≤α,求出受弯受弯承载力M u 。
②求受弯承载力M u 。
取0b h ξx =。
得到)5.01(b b 20c 1u ξξα-=bh f M2) 配筋计算基本资料:已知截面尺寸b 、h 、材料强度f c 、f t 、f y ,确定需用的计算参数α1、h 0、ξb ; 荷载效应M 。
计算步骤:(1) 求受压区高度x ,由)2(0c 1xh bx f M -≤α得到bf Mh h x c 12002--α= (2) 验算受压区高度0b h ξx <,如满足要求则进入下一步. (3) 求受拉钢筋面积A s ,由s y c 1A f bx f =α,得到yc 1s f bxf A α=(4) 验算bh A min s ρ≥,当bh A min s ρ<时取bh A min s ρ=此处%)/4520.0max(y t min f f ,=ρ1)承载力计算基本资料:已知截面尺寸b 、h 、材料强度f c 、f t 、f y 、f ’y 、钢筋面积A ’s 、A s ,确定需用的计算参数α1、h 0、ξb 。
计算步骤:(1)求受压区高度x , 由'y s y c 1-s A f A f bx f ‘=α得b f αA f xc 1s y =(2)验算受压区高度x ,此时x 可能出现如下三种情况:若'2s a x <,则转入①; 若0'≤≤2h x a b s ξ,则转入②若0>h x b ξ,则转入③ (3)确定受弯承载力M u①'2s a x <,由)-('0s s y u a h A f M =求得受弯承载力M u②0'≤≤2h x a b s ξ,由)-()2-('0''01s s y c u a h A f x h bx f M +=α求得受弯承载力M u ③0>h x b ξ,求得受弯承载力M u ,取0h x b ξ=得)-()0.5-1('0''b 201s s y b c u a h A f bh f M +=ξξα2)配筋计算(1)已知M ,求A ’s 、A s基本资料:已知截面尺寸b 、h 、材料强度f c 、f t 、f y ,确定需用的计算参数α1、h 0、ξb ;荷载效应M 。
钢筋混凝土矩形截面受弯构件正截面受弯承载力计算系数表
d≦25d=28-40
C15 2.49 1.49 1.63
1.32C20 3.22 1.93
2.11
1.71C25 3.95
2.37 2.59
2.1C30 4.82 2.9
3.16 2.56
≦C350.40.20.15一二三四
中柱和边柱10.80.70.6
角柱、框支柱 1.210.90.8
0.2
分类
轴心受压构件的全部钢筋
偏心受压及偏心受拉构件的受压
钢筋
钢筋混凝土受弯构件最大配筋百分率%
混凝土强度等级Ⅰ级 Ⅱ级
Ⅲ级混凝土构件中纵向受力钢筋的最小配筋率% C40-C600.40.2柱截面纵向钢筋的最小总配筋率百分比 表2—7—3
类别抗震等级
受弯构件、偏心受压构件、大偏
心受拉构件的受拉钢筋及小偏心
受拉构件每一侧的受拉钢筋
全部纵向钢筋一侧纵向钢筋钢筋种类纵向受拉钢筋水平分布钢筋竖向分布钢筋HPB2350.250.250.2HRB335\HRB400\RRB4000.20.20.16 最小配箍率:ρsv.min=0.02*fc/fyv 混凝土构件中纵向受力钢筋的最小配筋率% 表2—7—1
受压构件受力类型 最小配筋百分率
0.6
0.2
受弯构件、偏心受拉、轴心受拉构件一侧的受拉钢筋
0.2和45ft/fy中的较大值深梁中钢筋的最小配筋百分率 表2—7—2。
T形截面受弯构件正截面承载力计算
0M d
Mu
f cd
bf
x
h0
x 2
0M d
Mu
f
sd
As
h0
x 2
计算图式
(4-40) (4-41) (4-42)
适用条件
(1) x b h0
第一类T形截面的x
由于一般T形截面的
hf
h0
hf
,即 h'f
h0
。
较小,因而 值也小,
h0
所以一般均能满足这个条件。
(2) min As ,b为T形截面的梁肋宽度
(2)T形截面翼缘计算宽度b'f的取值 T形截面 bf 越宽,h0 越大,抗弯内力臂越大。
但实际压区应力分布如图所示,纵向压应力 沿宽度分布不均匀。
办法:限制 b'f 的宽度,使压应力分布均匀,并取fcd ?。
实际应力图块
有效翼缘宽度 bf 等效应力图块
实际中和轴
《公路桥规》规定,T形截面梁(内梁)的受压翼板有效
优点:不降低截面承载能力,节省混凝土用量和减轻自重, 增大跨越能力。
翼缘板(简称翼板):截面伸出部分
梁肋或梁腹:其宽度为b的部分
注意:判断一个截面在计算时是否属于T形截面,不是看 截面本身形状,而是要看其翼缘板是否能参加抗压作用。
工字形截面、箱形截面、∏截面均可按T形截面处理。
倒T梁(图b)只能按矩形截面处理。
bh0 在验算T形截面的值时,近似地取梁肋宽b来计算,为什么?
2.第二类T形截面 (x hf ) 计算图式
基本计算公式:
C1 C2 T fcdbx fcdh'f b'f b fsd As
(4-43)
M 0