第2章 随机信号的时域分析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机信号分析
第二章 随机信号的时域分析
14 /80
(2)均方值与方差 均方值:随机变量X(t)的二阶原点矩为随机过程的 均方值。 2 E[ X (t )] x 2 f X ( x, t )dx
方差:随机变量X(t)的二阶中心矩为随机过程的方 差,记为D[X(t)],即
X (t ) D[ X (t )] E{X (t ) E[ X (t )]}
E[ X (t ) X (t )] mX 2 (t ) X 2 (t )
若CX(t1,t2)=0,则称X(t1)和X(t2)是不相关的。
随机信号分析
第二章 随机信号的时域分析
19 /80
(3)自相关系数
CX (t1 , t2 ) X (t1 , t2 ) X (t1 ) X (t2 )
FX ( x, t ) f X ( x, t ) x
为随机过程X(t)的一维概率密度。
随机信号分析Байду номын сангаас
第二章 随机信号的时域分析
8 /80
随机过程一维分布的性质:
0 FX ( x, t ) 1 FX ( , t ) 0 FX ( , t ) 1 FX ( x, t )
随机信号分析
第二章 随机信号的时域分析
4 /80
(4) 随机过程的特点
Y( t ) A cos(t )
注:字母大写表示随机变量,A,Φ就是随机变量,Y(t) 表示随机过程。 随机过程具有随机变量和时间函数的特点 在进行观测前是无法预知是空间中哪一个样本 全体样本在t1时刻的取值Y(t1)是一个不含t变化的随机 变量
C X (t1, t2 ) E{[ X (t1 ) mX (t1 )][X (t2 ) mX (t2 )]}
[ x1 mX (t1 )][x2 mX (t2 )] f X ( x1 , x2 ; t1 , t2 )dx1dx2
两个时刻的状态
关系 CX (t1, t2 ) RX (t1, t2 ) mX (t1 )mX (t2 ) 方差 CX (t , t ) RX (t , t ) mX (t )mX (t )
随机信号分析
第二章 随机信号的时域分析
11 /80
例:设随机过程 Y (t ) X cos 0t ,其中w0是常数, X是均值为零,方差为1的正态随机变量,求 t 0, 2 0 时Y(t)的概率密度,及Y(t)的一维概率密度 解:
f X ( x) 1 x2 exp( ) 2 2
i 1 m
pi (t ) P{Y (t ) yi }
数学期望: mY (t ) yi pi (t )
i 1 m
均方值: E[Y (t )] yi 2 pi (t )
2 i 1
m
方差: Y 2 (t ) D[Y (t )] [ yi mY (t )]2 pi (t )
2
2
[ x mX (t )] f X ( x, t )dx
2
均方差(标准差): D[ X (t )] X 2 (t ) X (t )
随机信号分析
第二章 随机信号的时域分析
15 /80
(3)离散型随机过程的数字特征 概率密度函数: f Y ( y; t ) pi (t ) ( y yi )
31cos 4t1 cos 4t2 5cos 4t1 5cos 4t2 6 cos 4t1 cos 4t2
随机信号分析
第二章 随机信号的时域分析
21 /80
例:求随机过程 X (t ) a cos(0t ) 的数学期望, 方差及自相关函数。其中,a、w0为常数, 是在区间[0,2 ]上均匀分布的随机变量。 解:
x
f X (u, t )du
f X ( x, t )dx 1
随机信号分析
第二章 随机信号的时域分析
9 /80
(2)二维概率分布
对于随机过程X(t),在任意两个时刻t1和t2可得到两 个随机变量X(t1)和X(t2),可构成二维随机变量 {X(t1),X(t2)},它的二维分布函数
随机信号分析
第二章 随机信号的时域分析
5 /80
(1)按照时间和状态是连续还是离散来分类
2.1.2 随机过程的分类
连续型随机过程 随机过程X(t)对于任意时刻,都是连续型随机变量, 即时间和状态都是连续的情况。 连续型随机序列 随机过程X(n)在任一离散时刻的状态是连续型随机变 量,即时间是离散的,状态是连续的情况。 离散型随机过程 随机过程X(t)对于任意时刻都是离散型随机变量,即时 间是连续的,状态是离散的情况。 离散型随机序列 对应于时间和状态都是离散的情况,即随机数字信号
X (t1 ) 0 X (t2 ) 0
注:随机过程的期望、方差、自相关函数、协方差函 数、自相关系数等存在的条件是:
E{ X (t ) } 2 E{ X (t ) }
随机信号分析
第二章 随机信号的时域分析
20 /80
例2.1:设随机过程 Y (t ) X cos 4t , X 是均值为5, Y (t ) 方差为6的随机变量,求 的均值、方差、自相 关函数和自协方差函数。
x1 x2 f X ( x1 , x2 ; t1 , t2 )dx1dx2
两个时刻的状态
若RX(t1,t2)=0,则称X(t1)和X(t2)是相互正交的。 均方值 RX (t , t ) E[ X (t )]
2
随机信号分析
第二章 随机信号的时域分析
18 /80
(2) 自协方差函数 二阶联合中心矩
随机信号分析
第二章 随机信号的时域分析
1 /80
第二章 随机信号的时域分析
2.1 随机过程的基本概念与统计特性(3) 2.2 平稳随机过程(26) 2.3 两个随机过程联合的统计特性(42) 2.4 复随机过程(50) 2.5 随机过程的微分与积分(55) 2.6 高斯过程(63) 2.7 各态历经过程(70)
2
为随机过程X(t)的二维概率密度。
随机信号分析
第二章 随机信号的时域分析
10 /80
(3)n维概率分布
n维概率分布函数
FX ( x1, x2 ,, xn ; t1, t2 ,, tn ) P{X (t1 ) x1, X (t2 ) x2 ,, X (tn ) xn }
n维概率密度
i 1
m
随机信号分析
第二章 随机信号的时域分析
16 /80
随机过程的期望与方差
X (t ) Y (t )
X (t )
mX (t )
Y (t )
mY (t ) t1 t 2
0
t1 t 2
t
0
t
相同数学期望和方差,不同相关性的两个随机过程
随机信号分析
第二章 随机信号的时域分析
17 /80
二、二维数字特征
n FX ( x1, x2 ,, xn ; t1, t2 ,, tn ) f X ( x1, x2 ,, xn ; t1, t2 ,, tn ) x1x2 xn
一个随机过程不同时刻状态间互相独立,即X(t1) 和X(t2)互相独立
f X ( x1, x2 ; t1, t2 ) f X ( x1, t1 ) f X ( x2 , t2 )
12 /80
当t1 0时,fY ( y )
1 y2 exp( ) 2 2
当t1
2
0
时,fY ( y )
1 y2 exp( ) 2 2
令t1 t , 则 fY ( y , t ) 1 y2 exp( ) 2 2 cos 0t 2 cos 0t
课后习题2-1
随机信号分析
2.1 随机过程的基本概念及统计特性
2.1.1 随机过程的基本概念
(1)随机函数与随机信号 随某些参量变化的随机变量称为随机函数 通常将以时间为参量的随机函数称为随机过程,也 称为随机信号。 (2)确定性过程和随机过程 确定性过程:就是事物的变化过程可以用一个(或 几个)时间t的确定的函数来描绘。 随机过程:就是事物变化的过程不能用一个(或几 个)时间t的确定的函数来加以描述。 随机信号和噪声统称为随机过程
FX ( x1 , x2 ; t1 , t2 ) P{X (t1 ) x1 , X (t2 ) x2 }
称为随机过程X(t)的二维概率分布函数。
若 FX ( x1 , x2 ; t1 , t2 ) 对x1,x2的偏导数存在,则定义
FX ( x1, x2 ; t1, t2 ) f X ( x1, x2 ; t1, t2 ) x1x2
第二章 随机信号的时域分析
13 /80
2.1.4 随机过程的数字特征
一、一维数字特征
(1)数学期望 对于任意的时刻t,X(t)是一个随机变量,将这 个随机变量的数学期望定义为随机过程的数学期望, 记为mx(t),即
mX (t ) E[ X (t )] xf X ( x, t )dx
随机信号分析
第二章 随机信号的时域分析
7 /80
2.1.3 随机过程的分布
(1)一维概率分布 对于任意的时刻t,X(t)是一个随机变量,设x为任 意实数,定义
FX ( x, t ) P{X (t ) x}
为随机过程X(t)的一维分布函数。
若 FX ( x, t )的一阶偏导数存在,则定义
随机信号分析
第二章 随机信号的时域分析
6 /80
(2)按照随机过程的分布函数进行分类 高斯过程(2.6) 瑞利过程(6.3) 马尔可夫过程(7.1) 泊松过程(7.2) 维纳过程(7.2)
(3)按照统计特性、频带等来分类 各态历经随机过程(2.7) 平稳随机过程(2.2) 非各态历经随机过程 非平稳随机过程 宽带随机过程 窄带随机过程(6.2) 白噪声随机过程(3.3) 色噪声随机过程
解:E[ X ] 5, D[ X ] 6 E[ X 2 ] D[ X ] E 2 [ X ] 6 25 31
mY (t ) cos 4t E[ X ] 5cos 4t
2 Y (t ) cos 2 4t D[ X ] 6 cos 2 4t
RY (t1 , t2 ) E[ X cos 4t1 X cos 4t2 ] cos 4t1 cos 4t2 E[ X 2 ] 31cos 4t1 cos 4t2 CY (t1 , t2 ) RY (t1 , t2 ) mX (t1 )mX (t2 )
随机信号分析
第二章 随机信号的时域分析
2 /80
随机信号分析
第二章 随机信号的时域分析
3 /80
(3)随机过程的定义 定义1:设随机试验的样本空间为Ω ={ei},对于空间 的每一个样本 (t T ) ,总有一个时间函数X(t, ei)与之 对应 ei ,对于空间的所有样本 e ,可有一族 时间函数X(t,e)与其对应,这族时间函数称为随机过 程,简记为X(t)。 定义2:设有一个过程X(t),若对于每一个固定的时 刻tj(j=1,2,…),X(tj)是一个随机变量,则称X(t)为随 机过程。 定义3:设Ek(k=1, 2, …)是随机试验。 每一次试验都 有一条时间波形(样本函数),记作xi(t),所有可 能出现的结果的总体{x1(t), x2(t), …, xn(t), …}就构 成一随机过程,记作X(t)。 无穷多个样本函数的总体叫做随机过程
(1) 自相关函数 设X(t1)和X(t2)是随机过程X(t)在t1和t2二个任意时刻 的状态,fX(x1,x2;t1,t2)是相应的二维概率密度,称它 们的二阶联合原点矩为X(t)的自相关函数,简称相 关函数
RX (t1 , t2 ) E[ X (t1 ) X (t2 )]
令Y1 Y (t1 ) X cos 0t1
Y1 dx 1 所以X , cos 0t1 dy1 cos 0t1
dx fY ( y1 , t1 ) f X ( x) dy1
2 y1 1 1 exp( ) 2 2 cos 0t1 cos 0t1 2
随机信号分析
第二章 随机信号的时域分析