最新人教版八年级数学下册导学案

合集下载

2023年人教版八年级数学下册第二十章《加权平均数》导学案

2023年人教版八年级数学下册第二十章《加权平均数》导学案

新人教版八年级数学下册第二十章《加权平均数》导学案一、学习目标:1. 理解数据的“权”和加权平均数的意义。

2. 会计算加权平均数。

学习重点:会计算加权平均数。

学习难点:对“权”的理解。

二、知识链接:简单算术平均数(课前预习)三、导学过程:问题1:(先独立完成,然后小组分工合作交流,选代表展示。

)一家公司打算招聘一名英文翻译. 对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下表所示:应试者听说读写甲85 78 85 73乙73 80 82 831.如果这家公司想找一名综合能力较强的翻译,那听、说、读、写成绩按多少比确定?计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?说明方法.2.如果公司要招聘一名笔译能力较强的翻译,那听、说、读、写成绩按2 :1 :3 :4的比确定,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?说明方法.归纳: 一般地,若n 个数x1 , x2, …, x n 的权分别是w1 , w2 … , w n,则叫做这n 个数的加权平均数.权的意义:——————————————————————————————.思考: 如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按3 : 3 : 2 : 2的比确定,那么甲乙两人谁会被录取?问题2: (小组合作完成)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分.各项成绩均按百分制,进入决赛的前两名选手的单项成绩如下表所示:选手 演讲内容 演讲能力 演讲效果A 85 95 95 B9585951、你能确定他俩的名次吗?2、假如你是A 选手,你能设计一种合理方案,使自己获得第一名吗?四、课堂检测1、有m 个数的平均数是x ,n 个数的平均数是y ,则这(m+n )个数的平均数为( ) A ....22x y x y mx ny mx nyB C D m nm n++++++ 2、某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表所示:候选人测试成绩(百分制) 面试笔试 甲 86 90 乙9283(1) 如果公司认为面试和笔试成绩同等重要,从他们的成绩看,谁将被录取? (2) 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,看看谁将被录取?五、课堂小结六、作业教科书习题20.1 ——113页第1题、122页第5 题20.1.1平均数(2)学习目标1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值4、经历探索加权平均数的应用过程,体验和理解统计的基本思想,学会频数分布表中应用加权平均数的方法学习重点:根据频数分布表求加权平均数学习难点:根据频数分布表求加权平均数教学过程第一步:课堂引入设计的几个问题如下:(1)、请同学读P140探究问题,依据统计表可以读出哪些信息(2)、这里的组中值指什么,它是怎样确定的?(3)、第二组数据的频数5指什么呢?(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

新人教版八年级下册数学导学案

新人教版八年级下册数学导学案

目录学习目标学习目标学习目标$16.1二次根式(一)导学案$16.1二次根式(一)导学案$16.1二次根式(一)导学案$16.1二次根式(一)导学案$16.1二次根式(一)导学案二次根式(二)导学案$16.1$16.1二次根式(二)导学案$16.1二次根式(二)导学案$16.1二次根式(二)导学案$16.1二次根式(二)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(一)导学案作业独立完成()求助后独立完成()未与时完成()未完成()$16.2二次根式的乘除(二)导学案备课时间2014年( 2 )月(26 )日星期(三)学习时间2014年()月()日星期()学习目标1、理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)与利用它们进行运算.2、利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式与利用它们进行计算和化简.学习重点理解ab=ab(a≥0,b>0),ab=ab(a≥0,b>0)与利用它们进行计算和化简.学习难点发现规律,归纳出二次根式的除法规定.$16.2二次根式的乘除(二)导学案$16.2二次根式的乘除(二)导学案$16.2二次根式的乘除(二)导学案$16.2二次根式的乘除(二)导学案$16.2二次根式的乘除(三)导学案$16.2二次根式的乘除(三)导学案$16.2二次根式的乘除(三)导学案$16.2二次根式的乘除(三)导学案$16.3二次根式的加减(一)导学案备课时间2014年( 3 )月( 2 )日星期(日)学习时间2014年()月()日星期()学习目标1、理解和掌握二次根式加减的方法.2、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导二次根式的计算和化简.3、运用二次根式、化简解决问题.学习重点把二次根式化简为最简根式,合并同类二次根式.学习难点会判定是否是最简二次根式.学具使用多媒体课件、小黑板、彩粉笔、三角板等学习内容学习活动设计意图一、创设情境独立思考(课前20分钟)1、阅读课本P 12~13 页,思考下列问题:(1)分析P12页问题,理解二次根式加减的方法。

人教版八年级数学下册导学案(全册)【最新】

人教版八年级数学下册导学案(全册)【最新】

第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。

理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。

(2)被开方数必须是 数。

判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。

(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。

巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。

2.若1213-+-x x 有意义,则x 的取值范围是 。

3.已知122+-+-=x x y ,则=yx4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。

新人教版八年级数学下导学案(全册)

新人教版八年级数学下导学案(全册)

, ,b - 3 等式子的实际意义.说一说他们的共同特征.第十六章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质: a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质 a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0) 。

三、学习过程(一)复习回顾:(1)已知 x 2 = a ,那么 a 是 x 的_____; x 是 a 的____, 记为____, a 一定是 ____数。

(2)4 的算术平方根为 2,用式子表示为=______;正数 a 的算术平方根为4_____,0 的算术平方根为____;式子 a ≥ 0(a ≥ 0) 的意义是。

(二)自主学习(1) 16 的平方根是;(2)一个物体从高处自由落下,落到地面的时间是 t (单位:秒)与开始下落时的高度 h ( 单位:米 ) 满足关系式 h = 5t 2 。

如果用含 h 的式子表示 t ,则t =;(3)圆的面积为 S ,则圆的半径是 ;(4)正方形的面积为 b - 3 ,则边长为。

思考: 16 ,h 5s π定义: 一般地我们把形如 a ( a ≥ 0 )叫做二次根式,a 叫做______。

1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3 , - 16 , 34 , -5 , a (a ≥ 0) , x 2 + 13。

2、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。

所以,在二次根式a中,字母a必须满足,a才有意义。

3、根据算术平方根意义计算:(1)(4)2(2)(3)2(3)(0.5)2(4)(13)2根据计算结果,你能得出结论:(a)2=________,其中a≥0,4、由公式(a)2=a(a≥0),我们可以得到公式a=(a)2,利用此公式可以把任意一个非负数写成一个数的平方的形式。

2023年春八下数学 18-1-3 平行四边形的判定(1) 导学案(人教版)

2023年春八下数学 18-1-3 平行四边形的判定(1) 导学案(人教版)

人教版初中数学八年级下册18.1.3 平行四边形的判定(1) 导学案一、学习目标:1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.重点:掌握平行四边形的判定定理.难点:综合运用平行四边形的性质与判定解决问题.二、学习过程:课前自测平行四边形的性质:边:_____________________________;∵ _______________________________∴ _______________________________角:_____________________________;∵ _______________________________∴ _______________________________对角线:_____________________________;∵ _______________________________∴ _______________________________自主学习思考:反过来,对边相等,或对角相等,或对角线互相平分的四边形是平行四边形吗?也就是说,平行四边形的性质定理的逆命题成立吗?逆命题1:____________________________________________.逆命题2:____________________________________________.逆命题3:____________________________________________.逆命题1:(证明过程)如图,在四边形ABCD中,AB=CD,AD=CB.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理1:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题2:(证明过程)如图,在四边形ABCD中,∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理2:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题3:(证明过程)如图,在四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理3:_________________________________________.几何符号语言:∵ _______________________,∴ _________________________.典例解析例1.如图,以△ABC的各边向同侧作正三角形,即等边△ABD、等边△ACE、等边△BCF,连接DF,EF.求证:四边形AEFD是平行四边形.【针对练习】如图,将□ABCD的四边DA,AB,BC,CD分别延长至点E,F,G,H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.求证:四边形EFGH为平行四边形.例2.如图,四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【针对练习】如图,在□ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.求证:四边形AFCE是平行四边形.例3.如图,□ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.【针对练习】变式1:若E、F继续移动至OA、OC的延长线上,仍使AE=CF,则结论还成立吗?为什么?变式2:问题中AE=CF,过点O作一直线分别交AB、CD于G、H,则四边形GFHE 是平行四边形吗?为什么?达标检测1.下面给出四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是( )A.1:2:3:4B.2:3:2:3C.2:3:3:2D.1:2:2:32.如图,在四边形ABCD中,AB=CD,BC=AD.若∠D=120°,则∠C的度数为( )A.60°B.70°C.80°D.90°3.如图,在□ABCD中,对角线AC、BD交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE= ∠CBF;④∠ABE= ∠CDF.其中不能判定四边形DEBF是平行四边形的有( )A.0个B.1个C.2个D.3个4.四边形ABCD中,AB=9cm,BC=6cm,CD=9cm,当AD=____cm时,四边形ABCD 是平行四边形.5.如图,在□ABCD中,点E,F分别在边AD,BC上,且BE//DF,若AE=5,则CF=_____.6.如图,线段AB,CD相交于点O,且图上各点把线段AB,CD四等分,这些点可以构成平行四边形的个数是_____.7.如图,在□ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,求证:四边形KLMN为平行四边形.8.如图,在□ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.9.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.10.如图,AC是平行四边形ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.。

新人教版八年级数学下册导学案(全册136页)

新人教版八年级数学下册导学案(全册136页)

第十六章 二次根式16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1、理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.(3,3).问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.(46.) (二)学生学习课本知识 (三)、探索新知 1、知识: 如3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。

形如 、 、 不是二次根式。

2、应用举例例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x (x>0)、0、42、-2、1x y+、x y +(x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。

例2.当x 是多少时,31x -在实数范围内有意义? 解:由 得: 。

当 时,31x -在实数范围内有意义.(3)注意:1、形如a (a ≥0)的式子叫做二次根式的概念;2、利用“a (a ≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

二、学生小组交流解疑,教师点拨、拓展例3.当x 是多少时,23x ++11x +在实数范围内有意义? 例4(1)已知y=2x -+2x -+5,求xy的值.(答案:2)(2)若1a ++1b -=0,求a 2004+b 2004的值.(答案:25)三、巩固练习 教材练习. 四、课堂检测 (1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式? -7 37x x 4 16 8 1x(2)、填空题1.形如________的式子叫做二次根式. 2.面积为5的正方形的边长为________. (3)、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.若3x -+3x -有意义,则2x -=_______.3.使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数4.已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 课时: 2 学习内容:1.a (a ≥0)是一个非负数; 2.(a )2=a (a ≥0). 学习目标:1、理解a (a ≥0)是一个非负数和(a )2=a (a ≥0),并利用它进行计算和化简.2、通过复习二次根式的概念,用逻辑推理的方法推出a (a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a )2=a (a ≥0);最后运用结论严谨解题. 教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0时,a 叫什么?当a<0时,a 有意义吗? (二)学生学习课本知识 (三)、探究新知1、a (a ≥0)是一个 数。

人教版初二数学八年级下册教案导学案

人教版初二数学八年级下册教案导学案

第十七章反比例函数课题 17.1.1 反比例函数的意义课时:一课时【学习目标】1.理解并掌握反比例函数的概念。

2.会判断一个给定函数是否为反比例函数。

3.会根据已知条件用待定系数法求反比例函数的解析式。

【重点难点】重点:理解反比例函数的意义,确定反比例函数的表达式。

难点:反比例函数的意义。

【导学指导】复习旧知:1.什么是常量?什么是变量?函数是如何定义的?2.我们学过哪几种函数?每一种函数形式怎样?3.写出下列问题中的函数关系式并说明是什么函数.(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y与另一腰长x之间的函数关系式。

(2)某种文具单价为3元,当购买m个这种文具时,共花了y元,则y与m的关系式。

学习新知:阅读教材P39-P40相关内容,思考,讨论,合作交流完成下列问题。

1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?2.仔细观察反比例函数的解析式y=k/x,我们还可以把它写成什么形式?3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式。

【课堂练习】1.下列等式中y是x的反比例函数的是()①y=4x ②y/x=3 ③y=6x-1 ④xy=12 ⑤y=5/x+2 ⑥y=x/2 ⑦y=-√2/x⑧y=-3/2x2.已知y是x的反比例函数,当x=3时,y=7,【要点归纳】通过今天的学习,你有哪些收获?与同伴交流一下。

【拓展训练】1.函数y=(m-4)x3-|m|是反比例函数,则m的值是多少?2.若反比例函数y=k/x与一次函数y=2x-4的图象都过点A(m,2)(1)求A点的坐标;(2)求反比例函数的解析式。

课题:17.1.2 反比例函数的图象和性质课时:二课时第一课时反比例函数的图象和性质的认识【学习目标】1.体会并了解反比例函数图象的意义。

2.能用描点的方法画出反比例函数的图象。

3.通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。

第十八章勾股定理全章导学案

第十八章勾股定理全章导学案

第十八章勾股定理勾股定理(1)主备人:初审人:终审人:【导学目标】1.能用几何图形的性质和代数的计算方法探索勾股定理.2.知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.3.能运用勾股定理理解用关直角三角形的问题.【导学重点】知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.【导学难点】用拼图的方法验证勾股定理.【学法指导】探究、发现.【课前准备】查阅有关勾股定理的文化背景资料.【导学流程】一、呈现目标、明确任务1.了解勾股定理的文化背景,体验勾股定理的探索过程.2.了解利用拼图验证勾股定理的方法.3.利用勾股定理,已知直角三角形的两边求第三边的长.二、检查预习、自主学习1.动手画画、动手算算、动脑想想.在纸上作出边长分别为:(1)3、4、5(2)6、8、10的直角三角形,且动笔算一下,三条边长的平方有什么样的关系,你能猜想一下吗?2.借图说明(1)观察课本P64页图,思考:等腰直角三角形有什么性质吗?你是怎样得到的?它们满足上面的结论吗?(2)在P65页图中的三个直角三角形中,是否仍满足这样的关系?若能,试说明你是如何求出正方形的面积?3.有什么结论?三、问题导学、展示交流阅读P65页用拼图法证明勾股定理的内容,弄懂面积关系.四、点拨升华、当堂达标1.探究P66页“探究1”.在Rt△ABC中,根据勾股定理AC2 = 2+ 2因为AC=5≈2.236,因此AC木板宽,所以木板从门框内通过.2.讨论《配套练习》P24页选择填空题.五、布置预习预习“探究2”,完成P68页的练习.【教后反思】勾股定理(2)主备人:初审人:终审人:【导学目标】1.能运用勾股定理的数学模型解决现实世界的实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.【导学重点】运用勾股定理解决实际问题.【导学难点】勾股定理的灵活运用.【学法指导】观察、归纳、猜想.【课前准备】数轴的知识【导学流程】一、呈现目标、明确任务1.能运用勾股定理的数学模型解决现实世界的实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.二、检查预习、自主学习1.展示P66页“探究2”,完成填空.2.探究P68页“探究3”.提示:两直角边为1的等腰直角三角形,斜边长为多少?三、问题导学、展示交流1.展示上面的探究成果.2.研究P68页的课文,弄懂无理数在数轴上的表示方法.四、点拨升华、当堂达标1.完成练习题.2.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则c= .⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= .⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= .⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 .3.完成《配套练习》P25页选择填空题.六、布置预习预习习题18.1中1—5题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.继续运用勾股定理的数学模型解决实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.【导学重点】运用勾股定理解决实际问题.【导学难点】勾股定理的灵活运用.【学法指导】观察、归纳、猜想.【课前准备】数的开方运算.【导学流程】一、呈现目标、明确任务继续运用勾股定理的数学模型解决实际问题.二、检查预习、自主学习分小组展示预习成果.三、教师引导讲解习题18.1中10题.1.一个剖面图,怎样抽象成一个几何图形?2.直角三角形在什么地方?3.在直角三角形中,已知哪些边长?4.若设芦苇的长为x,还可以表示哪些线段?5.在这个直角三角形中利用勾股定理可以列一个怎样的式子?四、问题导学、展示交流1.展示上面的讨论结果.2.讨论完成7,8题.五、点拨升华、当堂达标讨论9题.六、布置预习预习下一节,阅读例1前面的课文,完成练习1.【教后反思】勾股定理的逆定理(1)主备人:初审人:终审人:【导学目标】1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系.【导学重点】掌握勾股定理的逆定理及证明.【导学难点】勾股定理的逆定理的证明.【学法指导】发现法、练习法、合作法【课前准备】三角形全等.【导学流程】一、呈现目标、明确任务1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系. 二、检查预习、自主学习下面的三组数分别是一个三角形的三边长a ,b ,c .5、12、13 7、24、25 8、15、17 (1)这三组数满足222c b a =+吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?如果三角形的三边长a 、b 、c ,满足222c b a =+,那么这个三角形是 三角形.问题二:命题1: ,命题2: .命题1和命题2的 和 正好相反,把像这样的两个命题叫做 命题,如果把其中一个叫做 ,那么另一个叫做 .三、教师引导1.说出下列命题的逆命题,这些命题的逆命题成立吗? ⑴同旁内角互补,两条直线平行.⑵如果两个实数的平方相等,那么两个实数平方相等. ⑶线段垂直平分线上的点到线段两端点的距离相等. ⑷直角三角形中30°角所对的直角边等于斜边的一半. 四、问题导学、展示交流 自学P74页例1.五、点拨升华、当堂达标 1.完成习题18.2中1—3题.2.下列三条线段不能组成直角三角形的是( )A . 8, 15, 17B . 9, 12,15C .5,3,2 D .a :b :c =2:3:43.完成练习2. 六、布置预习1.完成《配套练习》P29页选择填空题.2.预习下一节,弄懂方位角的表示.3.完成练习3. 【教后反思】勾股定理的逆定理(2)主备人: 初审人: 终审人:【导学目标】1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识.【导学重点】灵活应用勾股定理及逆定理解决实际问题. 【导学难点】灵活应用勾股定理及逆定理解决实际问题. 【学法指导】抽象、迁移. 【课前准备】勾股定理的逆定理. 【导学流程】一、呈现目标、明确任务1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识. 二、检查预习、自主学习2.边长分别是c b a ,,的△ABC ,下列命题是假命题的是( ).A 、在△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形; B 、若()()c b c b a -+=2,则△ABC 是直角三角形;C 、若∠A ︰∠B ︰∠C =5︰4︰3,则△ABC 是直角三角形;D 、若3:4:5::=c b a ,则△ABC 是直角三角形.3.在△ABC 中,∠C =90°,已知4:3:=b a , 15=c ,求b 的值.4.展示练习3. 三、教师引导 例1(P75例2) 分析:⑴了解方位角,及方位名词; ⑵依题意画出图形;⑶依题意可得PR =12×1.5=18,PQ =16×1.5=24,QR =30;⑷因为242+182=302,PQ 2+PR 2=QR 2,根据勾股定理 的逆定理,知∠QPR =90°; ⑸∠PRS =∠QPR -∠QPS =45°. 四、问题导学、展示交流一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.⑴若判断三角形的形状,先求三角形的三边长;⑵设未知数列方程,求出三角形的三边长5、12、13;⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形. 五、点拨升华、当堂达标1.如图,AB ⊥BC 于点B ,DC ⊥BC 于点C ,点E 是BC 上的点,∠BAE =∠CED =60o,AB =3,CE =4.求:①AE 的长. ②DE 的长. ③AD 的长(提示:先证△____是直角三角形).2.完成《配套练习》P30页选择填空题. 六、布置预习预习这两节的《配套练习》中大题.AB D C【教后反思】练习课主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【导学重点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【学法指导】抽象、迁移.【课前准备】勾股定理的逆定理.【导学流程】一、呈现目标、明确任务1.掌握勾股定理及其逆定理,并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.二、检查预习、自主学习分小组展示预习成果.三、教师引导如图,在四边形ABCD中,∠D=90°,AB=12,CD=3,DA=4,BC=13, 求S四边形ABCD.分析:因为∠D=90°,可连接AC构成直角形,由勾股定理求出AC,这样在△ABC中,三边均知道大小,利用勾股定理可以判断三角形的形状,再用两个三角形的面积求出S四边形ABCD.四、问题导学、展示交流讨论上面的问题,再展示交流.五、点拨升华、当堂达标讨论《配套练习》P29页5—7题和P31页6,7题.六、布置预习DB1.讨论《配套练习》剩余题目.2.预习复习题十八,1—3题.【教后反思】小结(1)主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并能解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【导学重点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【学法指导】转化和数形结合.【课前准备】复习本章内容.【导学流程】一、呈现目标、明确任务1.用勾股定理及其逆定理解决简单问题;2.了解逆命题、逆定理的概念.二、检查预习、自主学习展示预习成果.三、教师引导本章知识结构:四、问题导学、展示交流1.直角三角形三边的长有什么关系?2.已知一个三角形的三边,能否判定它是直角三角形?举例说明.3.如果一个命题成立,那么它的逆命题一定成立吗?举例说明.4.如图,已知P是等边三角形ABC内上点,PA=5,PB=4,PC=3,求∠PBC.四、问题导学、展示交流提示:如果三角形的三条边分别是三、四、五,那么这个三角形一定是直角三角形.但本题长为3,4,5的三条线段不在同一个三角形中,联想到等边三角形的性质,可以将△APC绕点C旋转得到△BCP′.五、点拨升华、当堂达标1.讨论完成“复习题18”中4—7题.4题,可先设每份为k,再用勾股定理的逆定理.5题,不成立的需举反例.6题,可以数单位面积的正方形个数.7题,直接用勾股定理.2.讨论8,9题.六、布置预习预习下一章.B CP'。

2023年人教版八年级数学下册第十八章《平行四边形的性质(第2课时)》导学案

2023年人教版八年级数学下册第十八章《平行四边形的性质(第2课时)》导学案

新人教版八年级数学下册第十八章《平行四边形的性质(第2课时)》导学案学科数学教学内容18.1.1平行四边形的性质(第2课时)年级803 执教授课时间自主学习目标知道平行四边形的概念与性质,并能用转化思想研究新图形。

生生合作目标培养学生发现问题意识和能力师生合作目标树立转化的思想。

合作重点平行四边形的性质的证明合作难点用转化思想研究新图形合作关键用转化思想研究新图形教学流程教学素材教学环节教师行为学生活动引入课题1. 如图,若要使四边形ABCD是平行四边形,可以添加条件: ,添加的理由是2、如图,在□ABCD中,相等的边是,相等的角是,这些边相等的依据是,这些角相等的依据是.3. 如何证明平行四边形的边的性质和角的性质?前置诊断口述倾听学习目标:展示目标口述学生倾听学习内容11.1.如图,在□ABCD中,画出对角线,对角线能画条,分别是.导学1 巡视探讨、交流,自主合作巡视自主独立完成BDAC2.你能找到其他线段之间的关系吗?请分小组探究,新出现的角之间有什么关系?新出现的线段之间有什么关系?新出现的三角形之间有什么关系?理由是什么?3、你能叙述这一结论吗?能不能用几何语言叙述?互动交流指导学生评价举手展示巩固达标巡视独立练习学习内容2 1、如图,在□ ABCD中,AB=10,AD=8,AC⊥BC. 求BC,CD,AC,OA的长,以及□ABCD的面积.2、练习1). 如图,在□ABCD中,BC=10, AC=8,BD=14.△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?2)如图,□ABCD的两条对角线相交于点O, 已知AB=8cm,BC=6cm,△AOB的周长是18cm,那么△AOD的周长是 .3)如图,在□ABCD 中,AB=3,BC=5,对角线AC,BD相交于点O,则OA的取值范围是.4)如图,□ABCD的对角线AC,BD相交于点O,EF过点O且与AB,CD分别相交与点E ,F.求证OE=OF.导学2 提问自主合作评价自学互动交流巡视BOACDEFCBADOBDCAOBDAC教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。

新人教版八年级数学下册导学案(130页)

新人教版八年级数学下册导学案(130页)

义务教育基础课程初中教学资料第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。

理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。

(2)被开方数必须是 数。

判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。

(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。

巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。

2.若1213-+-x x 有意义,则x 的取值范围是 。

3.已知122+-+-=x x y ,则=yx 4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。

人教版八年级下册数学 函数的三种表示方法(导学案)

人教版八年级下册数学 函数的三种表示方法(导学案)

19.1.2 函数的图象第2课时函数的三种表示方法一、新课导入1.导入课题上节课我们学习了函数图象的意义和画图象的方法,这节课我们结合实例来总结画函数图象的一般步骤.2.学习目标(1)能用描点法画函数的图象.(2)能从函数图象上看出函数与自变量的变化规律.(3)知道函数的三种表示方法及它们的优缺点.3.学习重、难点重点:用描点法画函数的图象,从函数图象上读取信息.难点:从图象中说明函数的增减情况.二、分层学习1.自学指导(1)自学内容:P77例3.(2)自学时间:10分钟.(3)自学要求:比照上节画S= x2(x>0) 的图象的过程画函数(1)、(2)的图象,并归纳画函数图象有哪些基本步骤.(4)自学参考提纲:①用描点法画函数图象的一般步骤是什么?②当点在图象上时,点的坐标满足什么条件?③从图象的升降可以知道函数值随自变量怎样变化?④完成P79练习题.(在下图中分别画第1,3题的图象)2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生能否从画图象的方法中总结出画函数图象的一般步骤,是否理解图象升降与y 随 x的变化情况的关系.②差异指导:对学习中存在的疑点进行针对性指导.(2)生助生:相互交流,帮助矫正错误.4.强化(1)用描点法画函数的图象的一般步骤.(2)展示练习的答案,并点评.(3)从图象的升降看函数的增减性.1.自学指导(1)自学内容:P80到P81的例4.(2)自学时间:8分钟.(3)自学方法:认真阅读例2解答过程,理解并明确函数的三种表示方法.(4)自学参考提纲:①函数的三种表示方法分别指的是什么方法?②图象上的点的坐标(x,y)与函数关系式有何联系?③完成P81的练习题.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:巡视课堂,收集学生在自学中存在的问题,遇到的困难.②差异指导:对个别学生存在的疑点进行点拨、引导.(2)生助生:相互交流,帮助矫正错误.4.强化(1)总结函数的三种表示方法的优缺点.(2)展示练习的答案,并点评.(3)展示本节所学知识点和数学思想方法.三、评1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学习方法、收获和困惑.2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、方法、成效及不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本节课的重点是函数的三种表示方法:解析式法、列表法和图象法。

新人教版八年级下册数学教案《导学案》

新人教版八年级下册数学教案《导学案》

新人教版八年级下册数学教学设计《导教案》一、选择题1.以下式子中,是二次根式的是()A.-7B.37C.x D.x2.以下式子中,不是二次根式的是()A.4B.16C.8D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5B.51D.以上皆不对C.5二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提升题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,?底面应做成正方形,试问底面边长应是多少?2.当x是多少时,2x3x+x2在实数范围内存心义?3.若3x+x 3存心义,则x2=_______.4.使式子(x5)2存心义的未知数x有()个.A.0B.1C.2D.无数5.已知a、b为实数,且a5+2102a=b+4,求a、b的值.第一课时作业设计答案:一、1.A2.D3.B二、1.a(a≥0)2.a3.没有三、1.设底面边长为x,则0.2x2=1,解答:x=5.2x30,x 32.依题意得:2x0x0∴当x>-32x3且x≠0时,x+x2在实数范围内没存心义.213.34.B5.a=5,b=-4新人教版八年级下册数学教学设计《导教案》第二课时作业设计一、选择题1.以下各式中15、3a、b21、a2b2、m220、144,二次根式的个数是().A.4B.3C.2D.12.数a没有算术平方根,则a的取值范围是().A.a>0B.a≥0C.a<0D.a=0二、填空题1.(-3)2=________.2.已知x1存心义,那么是一个_______数.三、综合提升题1.计算(1)(9)2(2)-(3)2(3)(16)2(4)(-32)2 23(2332)(2332)2.把以下非负数写成一个数的平方的形式:(1)5(2)3.41(4)x(x≥0)(3)63.已知xy1+x3=0,求x y的值.4.在实数范围内分解以下因式:(1)x2-2(2)x4-93x2-5第二课时作业设计答案:一、1.B2.C二、1.32.非负数三、1.(1)(9)2=9(2)-(3)2=-3(3)(16)2=1×6=3 242(4)(22(5)-6 -3)2=9×=6332.(1)5=(5)2(2)3.4=( 3.4)2(3)1=(1)2(4)x=(x)2(x≥0)66x y10x3x y=34=81 3.30y4x4.(1)x2-2=(x+2)(x-2)新人教版八年级下册数学教学设计《导教案》(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+3)(x-3)(3)略第三课时作业设计一、选择题1.(21)2(21)2的值是().33A.02C.42D.以上都不对B.332.a≥0时,a2、(a)2、-a2,比较它们的结果,下边四个选项中正确的选项是().A.a2=(a)2≥-a2B.a2>(a)2>-a2C.a2<(a)2<-a2D.-a2>a2=(a)2二、填空题1.-0.0004=________.2.若20m是一个正整数,则正整数m的最小值是________.三、综合提升题1.先化简再求值:当a=9时,求a+12a a2的值,甲乙两人的解答以下:甲的解答为:原式=a+(1a)2=a+(1-a)=1;乙的解答为:原式=a+(1a)2=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原由是__________.2.若│1995-a│+ a 2000=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a?的值是正数仍是负数,去掉绝对值)3.若-3≤x≤2时,试化简│x-2│+(x3)2+x210x25。

2022-2023新人教版八年级数学下册导学案全册

2022-2023新人教版八年级数学下册导学案全册

2022-2023新人教版八年级数学下册导学案全册第一单元:有理数的加减第一课时:有理数的加法- 研究目标:掌握有理数的加法运算- 研究内容:正数加正数、负数加负数、正数加负数、有理数加零的运算法则- 研究重点:灵活运用有理数的加法规则解决实际问题- 研究方法:理解规则,多做练题第二课时:有理数的减法- 研究目标:掌握有理数的减法运算- 研究内容:正数减正数、负数减负数、正数减负数、有理数减零的运算法则- 研究重点:理解减法的本质,解决实际问题- 研究方法:理解规则,多做练题第三课时:加减混合运算- 研究目标:运用有理数加减法解决实际问题- 研究内容:有理数的混合运算,包括正数、负数的加减混合运算- 研究重点:分析问题,运用加减法的规则解决问题- 研究方法:多做实际问题练,加强思维训练第二单元:比例与相似第一课时:比例- 研究目标:了解比例的概念,掌握比例的基本性质- 研究内容:比例的定义、比例的基本性质- 研究重点:掌握比例的性质,能够应用到实际问题中- 研究方法:理解概念,多做练题第二课时:比例的应用- 研究目标:学会应用比例解决实际问题- 研究内容:比例的应用,包括物体的放大缩小、图形的相似等- 研究重点:分析问题,应用比例的知识解决实际问题- 研究方法:多做应用题,强化实际操作能力第三课时:相似图形- 研究目标:了解相似图形的性质和判定条件- 研究内容:相似图形的定义、相似图形的性质- 研究重点:掌握相似图形的性质和确定相似关系的条件- 研究方法:理解概念,多做练题......(继续给出下一单元的导学案)。

人教版八年级数学下册第十六章 导学案 第1课时 二次根式的乘法

人教版八年级数学下册第十六章 导学案 第1课时 二次根式的乘法

第十六章 二次根式16.2 二次根式的乘除第1课时 二次根式的乘法学习目标:1.理解二次根式的乘法法则;2.会运用二次根式的乘法法则和积的算术平方根的性质进行简单运算.重点:理解二次根式的乘法法则:()0,0≥≥=⋅b a ab b a .难点:会运用二次根式的乘法法则和积的算术平方根的性质解题.一、知识回顾1.二次根式的概念是什么?我们上节课学了它的哪些性质?2.使式子2有意义的条件是_________.一、要点探究探究点1:二次根式的乘法算一算 计算下列各式,并观察三组式子的结果:_____;94____;_______94)1(=⨯=⨯=⨯ _____;2516____;_______2516)2(=⨯=⨯=⨯ ._____3625____;_______3625)3(=⨯=⨯=⨯思考 你发现了什么规律?你能用字母表示你所发现的规律吗?猜测)0,0______(≥≥=⋅b a b a ,你能证明这个猜测吗?要点归纳:二次根式的乘法法则:一般地,对于二次根式的乘法是)0,0(≥≥⋅=⋅b a b a b a一般地,二次根式相乘,_________不变,________相乘.语言表述:算术平方根的积等于各个被开方数积的算术平方根.例1计算:(1)(2)(3)0,k a b k a b ⋅⋅=⋅⋅⋅⋅≥≥(例2 计算: 37; 1(2)427-3.2⎛⎫⨯ ⎪⎝⎭n b =归纳总结:二次根式的乘法法则的推广:①多个二次根式相乘时此法则也适用,即000)k a b k a b k ⋅⋅=⋅⋅⋅⋅≥≥≥,,(②当二次根号外有因数(式)时,可以类比单项式乘单项式的法则计算,即根号外的因数(式)的积作为根号外的因数(式),被开方数(式)的积作为被开方数(式),即()00a n b mn a b =≥≥,例3 比较大小(一题多解):(2)--方法总结: 比较两个二次根式大小的方法:可转化为比较两个被开方数的大小,即将根号外的正数平方后移到根号内,计算出被开方数后,再比较被开方数的大小被开方数大的,其算术平方根也大.也可以采用平方法.1. ()A B .4C D .22.下面计算结果正确的是 ()A.=B. =C. =D.=3.=_________.探究点2:积的算术平方根的性质一般的()0,0≥≥=⋅b a ab b a ______0,0_a b 要点归纳:算术平方根的积等于各个被开方数积的算术平方根.例4 化简:(1(2()00a b ,≥≥ .1()()200x y ,()≥≥方法总结: 当二次根式内的因数或因式可以化成含平方差或完全平方的积的形式,此时运用乘法公式可以简化运算.例5 计算:1(⨯2()⨯ 3(⨯化简二次根式的步骤:1. 把被开方数分解因式(或因数) ;2. 把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3. 如果因式中有平方式(或平方数),应用关系式a2= | a | 把这个因式(或因数)开出来,将二次根式化简.1. 计算:2.,求出它的面积.a b a b0,0多个二次根式相乘时此法则也适用,即(0,⋅⋅⋅=⋅⋅⋅≥a b c n abc n a()=m a n b mn2.下列运算正确的是()A.=B532-=C(2)(4)8=-⨯-=D5315==⨯= 3.计算:(1)⨯______ ;(2)⨯_______ ;(3)_____.=4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):12()--8,12b,求250a,332b,求参考答案自主学习一、知识链接1.一般地,我们把形如)0a ≥的式子叫作二次根式.2. a ≥0 课堂探究一、要点探究证明:根据积的乘方法则,有222.ab =⋅= ∴b a ⋅就是 ab 的算术平方根.又∵ab 表示 ab 的算术平方根, )0,0(≥≥=⋅∴b a ab b a要点归纳:二次根式的乘法法则:一般地,二次根式相乘,根指数不变,被开方数相乘.例1: 解:(1)(2) 3.===探究点2:积的算术平方根的性质当堂检测。

人教版八年级下册数学教案导学案及答案全册

人教版八年级下册数学教案导学案及答案全册

第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3) 1-m m32+-m m 112+-m m 4522--x x x x 235-+23+x3. 当x 为何值时,分式的值为0? (1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, b a s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分x x 57+xx 3217-x x x --221x 802332xx x --212312-+x x母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。

最新人教版八年级数学下册第十七章 勾股定理导学案(全章)

最新人教版八年级数学下册第十七章 勾股定理导学案(全章)

第十七章 勾股定理 课题:17.1 勾股定理(1)学习目标:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

学习重点:勾股定理的内容及证明。

学习难点:勾股定理的证明。

学习过程: 一、自主学习画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。

(勾3,股4,弦5)。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42_____52,52+122_____132,那么就有_____2+_____2=_____2。

(用勾、股、弦填空) 对于任意的直角三角形也有这个性质吗?勾股定理内容 文字表述: 几何表述: 二、交流展示例1、已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为 a 、b 、c 。

求证:a 2+b 2=c 2。

分析:⑴准备多个三角形模型,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正即4×21× +﹝ ﹞2=c 2,化简可证。

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷勾股定理的证明方法,达300余种。

这个古老而精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

人教版数学八年级下《第二十章数据的分析》导学案

人教版数学八年级下《第二十章数据的分析》导学案

20.1 数据的代表学习目标、重点、难点【学习目标】1、掌握平均数、中位数、众数等数据代表的概念,能根据所给信息求出相应的数据代表.2、掌握加权平均数的计算方法. 【重点难点】1、掌握中位数、众数等数据代表的概念.2、选择恰当的数据代表对数据做出判断.知识概览图某中学举行歌咏比赛,六名评委给某选手打分如下:78分,77分,82分,95分,83分,75分,去掉一个最高分,去掉一个最低分,再统计平均分作为该选手的最后得分.根据打分规则,选手的得分是:14×(78+77+82+83)=14×320=80(分),除了用平均数来衡量选手的得分外,是否还有其他的方法呢? 教材精华知识点1 平均数的概念 算术平均数.1)n k x x f n+++++…+f k )一般地,对于n 个数1x ,2x , ,…,n x ,我们把1n(1x +2x +3x +…n x )叫做这n 个数的算术平均数,简称平均数,记为x ,则x =1n(1x +2x +3x +…n x ).新数据法.当所给数据都在某一常数a 的上下波动时,一般选用简化公式:x =x '+a.其中a 通常取接近于这组数据的平均数较“整”的数,1x '=1x -a ·2x '=2x -a,…,n x '=n x - a, x '=1n(1x '+2x '+…+nx ')是新数据的平均数. 加权平均数.在求n 个数的算术平均数时,如果1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里1f +2f +…+k f =n ),则这n 个数的算术平均数x =1122k kx f x f x f n+++也叫做12,,k x x x ,这k个数的加权平均数,其中12,,,k f f f 分别叫做12,,k x x x 的权.总结:如果1231(),n x x x x x n=++++1231(),n y y y y y n=++++则有下列结论:①112233,,,,,n n x y x y x y x y ±±±±的平均数为x y ±; ②112,233,,,,,,n n x y x y x y x y 的平均数为2x y+; ③123,,,,n ax b ax b ax b ax b ++++的平均数为ax b +. 知识点2 总体、个体、样本调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体. 例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体.从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本.例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉与几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本.知识点3 中位数的概念将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.知识点4 众数的概念一组数据中出现次数最多的数据就是这组数据的众数.例如:求一组数据3,2,3,5,3,1的众数.解:这组数据中3出现3次,2,5,1均出现1次.所以3是这组数据的众数.又如:求一组数据2,3,5,2,3,6的众数.解:这组数据中2出现2次,3出现2次,5,6各出现1次.所以这组数据的众数是2和3.【规律方法小结】(1)平均数、中位数、众数都是描述一组数据集中趋势的量.(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量.(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势.(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据.探究交流1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中.总结:(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据.(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列).若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。

新人教版八年级下册数学导学案(总)

新人教版八年级下册数学导学案(总)

0.2 1-2a⑶(a-1)2⑸(-65)2a新人教版八年级下册数学导学案(总)③从运算结果来看:(a)2=,a2==第一周导学案编号001【课题】二次根式(1课时) 4.归纳,二次根式的性质有:①a≥0,a≥(双重非负性)②(a)=a(a≥0)【学习目标】1、使学生理解二次根式的概念2、使学生掌握二次根式的化简和计算【重点难点】重点:二次根式有意义的条件难点:算术平方根的意义课前准备:1、什么叫做一个数的平方根?如何表示?一般地,若一个数的等于a,则这个数就叫做a的平方根,a的平方根是2、什么是一个数的算术平方根?如何表示?③【二、合作交流】小组内交流完成教材P4练习1、2题(组内核对答案,不懂的才问)【三、展示评价】对学生自主学习和合作交流部分学习困难较大的知识点进行点评。

【四、再认重构】(请同学们静下心来认真独立完成下面的检测)1.当a是怎么样的实数时,下列各式在实数范围内有意义?若一个的平方等于a,则这个数就叫做a的算术平方根,表示为3、认真完成教材P2思考的三个小题:⑴-a+2⑵1⑷-5a⑴,⑵⑶观察以上结果,它们都有什么特点?【一、自主学习】阅读教材P2–P4,结合教材完成下面问题:1.二次根式的定义:注意:定义包含三个内容①1.必需含有二次根号“”②被开方数a≥0③a可以是数,也可以是含有字母的式子判断:2-234a m(m≥0)n2+1是二次根式的有(被开方数或者字母的取值必须大于等于零)2.二次根式有意义的条件:练习:当a是怎样的实数时,下列各式在实数范围内有意义?⑴a-2⑵5-2a⑶-2a⑷a2+23.(a)2和a2的区别:①从运算顺序来看,(a)2是而a2是;②从取值范围来看,(a)2中a而a2中a;2.计算:⑴(7)2⑵(-23)2⑶(3)2⑷(-7)253⑹(-)2⑺-(-m)2653.思维拓展:⑴若a.b为实数,且2-a+b-2=0,求2+b2-2b+1⑵已知24n是整数,求正整数n的最小值。

新人教版八年级数学下册导学案(全册136页)

新人教版八年级数学下册导学案(全册136页)

第十六章 二次根式16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1、理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.(3,3).问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.(46.) (二)学生学习课本知识 (三)、探索新知 1、知识: 如3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。

形如 、 、 不是二次根式。

2、应用举例例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x (x>0)、0、42、-2、1x y+、x y +(x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。

例2.当x 是多少时,31x -在实数范围内有意义? 解:由 得: 。

当 时,31x -在实数范围内有意义.(3)注意:1、形如a (a ≥0)的式子叫做二次根式的概念;2、利用“a (a ≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

二、学生小组交流解疑,教师点拨、拓展 例3.当x 是多少时,23x ++11x +在实数范围内有意义?例4(1)已知y=2x -+2x -+5,求xy的值.(答案:2) (2)若1a ++1b -=0,求a 2004+b 2004的值.(答案:25)三、巩固练习 教材练习. 四、课堂检测 (1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式? -7 37x x 4 16 8 1x(2)、填空题1.形如________的式子叫做二次根式. 2.面积为5的正方形的边长为________. (3)、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.若3x -+3x -有意义,则2x -=_______.3.使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数4.已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 课时: 2 学习内容:1.a (a ≥0)是一个非负数; 2.(a )2=a (a ≥0).学习目标:1、理解a (a ≥0)是一个非负数和(a )2=a (a ≥0),并利用它进行计算和化简.2、通过复习二次根式的概念,用逻辑推理的方法推出a (a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a )2=a (a ≥0);最后运用结论严谨解题.教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0时,a 叫什么?当a<0时,a 有意义吗? (二)学生学习课本知识 (三)、探究新知1、a (a ≥0)是一个 数。

人教版数学八年级下册全套导学案(138页,pdf版 含答案)

人教版数学八年级下册全套导学案(138页,pdf版  含答案)
人教版八年级 数学下册 全册导学案
目录
第十六章 二次根式
16.1 二次根式 ……………………………………………………( 1 ) 16.2 二次根式的乘除 …………………………………………( 10 ) 16.3 二次根式的加减 …………………………………………( 20 )
第十七章 勾股定理
17.1 勾股定理 ……………………………………………………( 29 ) 17.2 勾股定理的逆定理…………………………………………( 40 )

八下
§16.1

1

2 ! "#$%&'( 3 )*!+,-./0.
12
1. 345
61789 x2 a :; x <= a
.
647L@.
@ MN
0 @
. .
B
O-
2. 345
617PQ 3 RST
PQ S RST
.
6U7LVPQ b ! 3 ?WX
Y
6Z7[\]^_`abcb cdePfgh t 6ij5 s 7klc
bgmeP^n h6ij5m 7op.q5h 5t 2 . 89r- h sEF t
第二十章 数据的分析
20.1 数据的集中趋势……………………………………………( 123 ) 20.1.1 平均数………………………………………………( 123 ) 20.1.2 中位数和众数………………………………………( 128 )
20.2 数据的波动程度……………………………………………( 133 )
¼ a ¹
Hª a 0 g a EF ¹ BC@ ¼ a ¹Y
u½¦ a (a 0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册导学案制作人:数学组目录$16.1二次根式(一)导学案 (4)$16.1二次根式(二)导学案 (8)$16.2二次根式的乘除(一)导学案 (12)$16.2二次根式的乘除(二)导学案 (16)$16.2二次根式的乘除(三)导学案 (20)$16.3二次根式的加减(一)导学案 (23)$16.3二次根式的加减(二)导学案 (26)$17.1勾股定理(一)导学案 (29)$17.1勾股定理(二)导学案 (35)$17.1勾股定理(三)导学案 (39)$17.2勾股定理的逆定理(一)导学案 (43)$17.2勾股定理的逆定理(二)导学案 (47)$18.1.1平行四边形的性质(一)导学案 (50)$18.1.1平行四边形的性质(二)导学案 (55)$18.1.2平行四边形的判定(一)导学案 (61)$18.1.2平行四边形的判定(二)导学案 (66)$18.2.1矩形(一)导学案 (70)$18.2.1矩形(二)导学案 (75)$18.2.2菱形(一)导学案 (80)$18.2.2菱形(二)导学案 (84)$18.2.3正方形导学案 (87)$19.1.1变量与函数(一)导学案 (91)$19.1.1变量与函数(二)导学案 (95)$19.1.2函数的图象(一)导学案 (100)$19.1.2函数的图象(二)导学案 (106)$19.1.2函数的图象(三)导学案 (110)$19.2.1正比例函数导学案 (114)$19.2.2一次函数(一)导学案 (119)$19.2.2一次函数(二)导学案 (124)$19.2.2一次函数(三)导学案 (128)$19.2.2一次函数(四)导学案 (132)$19.2.3一次函数与一元一次方程导学案 (135)$19.2.3一次函数与一元一次不等式导学案 (139)$19.2.3一次函数与二元一次方程组导学案 (144)$19.3课题学习选择方案(一)导学案 (149)$19.3课题学习选择方案(二)导学案 (153)$20.1.1平均数(一)导学案 (156)$20.1.1平均数(二)导学案 (161)$20.1.1平均数(三)导学案 (165)$20.1.2中位数和众数(一)导学案 (168)$20.1.2中位数和众数(二)导学案 (173)$20.2数据的波动程度(一)导学案 (177)$20.2数据的波动程度(二)导学案 (182)$16.1二次根式(一)导学案$16.1二次根式(二)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(二)导学案学习目标1、理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及利用它们进行运算.2、利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.学习重点理解ab=ab(a≥0,b>0),ab=ab(a≥0,b>0)及利用它们进行计算和化简.学习难点发现规律,归纳出二次根式的除法规定.学具使用多媒体课件、小黑板、彩粉笔、三角板等学习内容学习活动设计意图一、创设情境独立思考(课前20分钟)1、阅读课本P8 ~ 9页,思考下列问题:(1)填写“探究”内容,总结二次根式的除法法则(2)二次根式的除法公式的逆运用的作用是什么?(3)例6你有其他解法吗?(4)完成P10练习1-32、独立思考后我还有以下疑惑:(课前写在小组的小黑板上)二、答疑解惑我最棒(约8分钟)同伴互助$16.2二次根式的乘除(三)导学案$16.3二次根式的加减(一)导学案学习目标1、理解和掌握二次根式加减的方法.2、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导二次根式的计算和化简.3、运用二次根式、化简解决问题.学习重点把二次根式化简为最简根式,合并同类二次根式.学习难点会判定是否是最简二次根式.学具使用多媒体课件、小黑板、彩粉笔、三角板等学习内容学习活动设计意图一、创设情境独立思考(课前20分钟)1、阅读课本P 12~13 页,思考下列问题:(1)分析P12页问题,理解二次根式加减的方法。

(2)进行二次根式加减时先做什么?再做什么?(3)你能独立解答P13页例1、例2吗?2、独立思考后我还有以下疑惑:(课前写在小组的小黑板上)二、答疑解惑我最棒(约8分钟)甲:乙:丙:丁:同伴互助答疑解惑$16.3二次根式的加减(二)导学案学习目标1、掌握二次根式混合运算的方法2、掌握二次根式的多项式乘法公式的应用.3、复习整式运算知识并将该知识运用于含有二次根式的式子的运算.学习重点二次根式的混合运算规律;学习难点由整式运算知识迁移到含二次根式的运算学具使用多媒体课件、小黑板、彩粉笔、三角板等学习内容学习活动设计意图一、创设情境独立思考(课前20分钟)1、阅读课本P 14 页,思考下列问题:(1)回顾整式的运算规律及乘法公式(2)由例3、例4理解二次根式混合运算的规律(3)由整式运算知识迁移到含二次根式的运算2、独立思考后我还有以下疑惑:(课前写在小组的小黑板上)二、答疑解惑我最棒(约8分钟)甲:乙:丙:丁:同伴互助答疑解惑例5: (2)(3)练习2:(3) (4) 练习3:课本P15页习题16.3第5、6、7、8、9题 五、课堂小测(约5分钟)(1)(6+8)×3 (2)(46-32)÷22 (3)(5+6)(3-5) (4)(10+7)(10-7)六、独立作业我能行1、复习小结第十六章二次根式的内容,写在工具单本上。

2、课本P14页练习3、课本P15页习题16.3第4题()271233-abab ab b a ÷+-)3)(4(33()()()52321-+)35)(35(-+2)25(-)26)(62()1(-+2)252()2(-)223)(3332(2+-)22)(32(2+-$17.1勾股定理(一)导学案三、合作学习探索新知(约15分钟) 1、小组合作分析问题 2、小组合作答疑解惑 3、师生合作解决问题◆关于直角三角形,你知道哪些方面的知识?(1)直角三角形叫Rt △ (2)两锐角互余∠A+∠B=90° (3)三角形的面积s=21ab=21hc (4)30°所对的直角边等于斜边的一半 (5)证明两个直角三角形全等有“HL”◆毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500•年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯 却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突破恍然大悟的样子,站起来,大笑着跑回家去了.同学们,你想知道大哲学家发现了什么吗?(见课件) 问题:大正方形的面积与两个小正方形的面积有什么关 系?◆在约公元前1100年,我国古算书《周髀bì算经》记载,人们已经知道,如果勾是三,股是四,那么弦是五.在我国古代,人们将直角三角形中的短的直角边叫做勾长的直角边叫做股斜边叫做弦.四、归纳总结巩固新知(约15分钟)1、知识点的归纳总结:(1)经过证明被确认正确的命题叫做定理(2)勾股定理: 如果直角三角形两直角边分别 为a 、b,斜边为c ,那么即 直角三角形两直角边 的平方和等于斜边的平方。

2、运用新知解决问题:(重点例习题的强化训练) ◆已知, Rt △ABC 中,a ,b 为的两条直角边,c 为斜边,求:⑴已知: a =3, b =4,求c ⑵已知: c =10,a =6,求b ◆课本P24页练习◆课本P28页习题17.1第1题 五、课堂小测(约5分钟)1.Rt ∆ABC 的两条直角边a=3, b=4,则斜边c= . 2.已知:如图在△ABC 中,∠ACB=90°,以△ABC 的各边为在△ABC 外作三个正方形分别表示这三个正方形的面积, 则的边长为( )A.6B.36C.64D.83 .若直角三角形两直角边分别为12,16,则此直角三角形的周长为( )A.28B.36C.32D.484 .直角三角形的三边长分别为3,4,x ,则x 2等于( ) A.5 B.25 C.7 D.25或7222a b c+=六、独立作业我能行1、预习课本P25-26页,思考预习提纲2、练习册P14-15页预习+应用$17.1勾股定理(二)导学案三、合作学习探索新知(约15分钟) 1、小组合作分析问题 2、小组合作答疑解惑 3、师生合作解决问题(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果在Rt △ ABC 中,∠C =90°,那么222.a b c +=(2)如图,分别以Rt △ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,容易得出S 1、S 2、S 3之间有的关系式为 (3)在长方形ABCD 中,宽AB 为1m ,长BC 为2m , 求AC 长.四、归纳总结巩固新知(约15分钟) 1、知识点的归纳总结:2、运用新知解决问题:(重点例习题的强化训练)S 3S 2S 1BAC例1:一个门框尺寸如下图所示.①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?②若薄木板长3米,宽1.5米呢?③若薄木板长3米,宽2.2米呢?为什么?∵木板的宽2.2米大于1米,∴横着不能从门框通过;∵木板的宽2.2米大于2米,∴竖着也不能从门框通过.∴只能试试斜着能否通过,对角线AC的长最大,因此需要求出AC的长,怎样求呢?例2:一个2.5m长的梯子AB斜靠在一竖直的墙AC上,这时AC的距离为2.4m.如果梯子顶端A沿墙下滑0.4m,那么梯子底端B也外移0.4m吗?解:在Rt△ABC中,∵∠ACB=90°∴ AC2+ BC2=AB2 2.42+ BC2=2.52∴BC=0.7m 由题意得:DE=AB=2.5mDC=AC-AD=2.4-0.4=2m在Rt△DCE中,∵∠DCE=90°∴ DC2+ CE2=DE222+ BC2=2.52∴CE=1.5m∴BE=1.5-0.7=0.8m≠0.4m 答;梯子底端B不是外移0.4m◆P29页第10题:在我国古代数学著作《九章算术》中记载了一道有趣的问题这个问题意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度和这根芦苇的长度各是多少?解:设水池的深度AC为X米,则芦苇高AD为 (X+1)米.根据题意得:BC2+AC2=AB2∴52+X2 =(X+1)225+X2=X2+2X+1X=12∴X+1=12+1=13(米)答:水池的深度为12米,芦苇高为13米.◆P26页第1题,如图,池塘边有两点A、B,点C是与BA 方向成直角的AC方向上的一点,测得CB= 60m,AC= 20m,你能求出A、B两点间的距离吗?(结果保留整数)五、课堂小测(约5分钟)◆课本P26页第2题六、独立作业我能行1、预习课本P26-27页,思考预习提纲2、课本P28习题17.1第2、3、4、5题$17.1勾股定理(三)导学案1、小组合作分析问题2、小组合作答疑解惑3、师生合作解决问题◆用勾股定理证明“斜边、直角边”定理 已知:如图,Rt △ABC 和Rt △A’B’C’中, ∠c= ∠c’=900,AB=A’B’,AC=A’C’。

相关文档
最新文档