工程力学第十三章 压杆稳定
压杆稳定(工程力学课件)
桁架结构
在轴向压力作用下,
短粗压杆 只要满足杆受压时的强度
条件,就能正常工作
细长压杆
破坏形式呈现出与强度问题 截然不同的现象
FN [ ]
A
压杆失稳
细长压杆:
临界压力或临界力ห้องสมุดไป่ตู้Fcr
F Fcr F Fcr
稳定的平衡 不稳定的平衡
压杆失稳
在轴向压力 F 由小逐渐增大 的过程中,压杆由稳定的平衡 转变为不稳定平衡,这种现象 称为压杆失稳。
首先判断压杆的失稳方向
(1)两端约束 1
(2)截面形状
Fcr (2 El)I2
Iz
hb3 12
140 803 12
597.3104
mm4
Iy
bh3 12
80 1403 12
1829.3104
mm4
Fcr1
2 EImin
(l)2
2 10 103 MPa 597.3104 (1 3103 mm)2
mm4
65 435 N 65.44 kN
(N、mm、MPa)
【例 1】 细长压杆,两端为球形铰支,
矩形横截面, E 10 GPa ,求其临界力。
Fcr (2 El)I2
长度影响
【例 2】细长压杆,上端约束为球形铰支,
下端约束在 xOz平面内可视为两端铰支,
Fcr (2 El)I2
在 xOy 平面内可视为一端铰支、一端固定
M
Wz
[ ]
81.67
πD4 i I 64 D 40mm
A πD2 4 4
l 1 3103 75
i
40
查表: 0.54
81.67
压杆稳定教学课件PPT1
=69 kN
FNBC 4.5q ≤Fcr =69
得:q=15.3 kN/m
例 图示矩形截面压杆,h=60mm,b=40mm,杆长l=2m, 材料为Q235钢,E=206GPa 。两端用柱形铰与其它构件 相连接,在正视图的平面(xy平面)内两端视为铰支; 在俯视图的平面(xz平面)内两端为弹性固定,长度因
当x=0时,w=0。
0 A0 Bcoskx
得:B=0,
w Asin kx
w Asin kx
又当x=l时, w=0。
得 Asin kl = 0
要使上式成立,
x
1)A=0
w=0;
Fcr
代表了压杆的直线平衡状态。
A
2) sin kl = 0
w
Fcr
此时A可以不为零。
w
M (x)= Fcrw
l x x
sin
30 20Fra bibliotekFNBC 4.5q
2)求BC杆的临界力
I (D4 d 4 ) (50 4 40 4 ) =181132mm4。
64
64
2m
1m
q
Fcr
2EI ( l ) 2
A
30°
B
Ⅰ Ⅰ C
2 206103×181132
(1.0×2/cos30°×103 )2
[FNBC ] 120kN
例:托架的撑杆为钢管,外径D=50mm,内径d=40mm,
2m
A 30°
Ⅰ Ⅰ C
1m q
B
两端球形铰支,材料为Q235钢, E=206GPa。试根据该杆的稳定性 要求,确定横梁上均布载荷集度 q之许可值。
Ⅰ-Ⅰ截面
解:1)求BC杆的轴力
工程力学——压杆稳定
欧拉公 式
其中:i
I — 截面的惯性半径;为截 面的几何性质; A
=
l
i
称为压杆的柔度(长细 比);反映压杆的柔软 程度。
15N
32 mm
1mm
第一节
压杆稳定的概念
FP<FPcr :直线平衡形式(稳定平衡)
在扰动作用下,直线平衡形式转为弯曲平衡形式,扰动除 去后,能够恢复到直线平衡形式,则称原来的直线平衡构形是 稳定的。 FP>FPcr :弯曲平衡形式(不稳定平衡) 在扰动作用下,直线平衡形式转为弯曲平衡形式,扰动除去 后,不能恢复到直线平衡形式,则称原来的直线平衡形式是不稳 定的。
F
F
1.
计算柔度判断两杆的临界荷载
5m
d
9m
d
d 4 64 d I i 4 d 2 4 A 1 5 L a 125 d i 0 .5 9 4 112.5 b d 4
(a)
(b )
a b
1
0.5
2. 计算各杆的临界荷载
b a P 101
(n ) EI Fcr 2 L Fcr
n 1
kL sin 2
A
适用条件: •理想压杆(轴线为直线,压力 与轴线重合,材料均匀) •线弹性,小变形 •两端为铰支座
y sin
x 挠曲线中点的挠度 l
挠曲线为半波正弦曲线
由此得到两个重要结果:
临界载荷
(a)
z
b
h
正视图:
工程力学压杆稳定
MA=MA =0 相当长为2l旳两端简支杆
Fcr
EI 2
(2l ) 2
l
F
0.5l
两端固定 EI 2
Fcr (0.5l) 2
图形比拟:失稳时挠曲线 上拐点处旳弯矩为0,故可设想 此处有一铰,而将压杆在挠曲 线上两个拐点间旳一段看成为 两端铰支旳杆,利用两端铰支 旳临界压力公式,就可得到原 支承条件下旳临界压力公式。
两端铰支
= 1
一端固定,一端自由 = 2
一端固定,一端铰支 = 0.7
两端固定
= 0.5
§11-4中小揉度杆旳临界压力
一、临界应力与柔度
cr
Fcr A
对细长杆
cr
2 EI (l)2 A
2 Ei2 ( l ) 2
2E ( l )2
记 l
i
i
cr
2E 2
––– 欧拉公式
:柔度,长细比
[cr] = [] < 1,称为折减系数
[ cr ] [ ]
根据稳定条件
F Fcr nst
F A
Fcr Anst
cr
nst
[ cr : 工作压力
: 折减系数
A: 横截面面积
[]:材料抗压许用值
解:首先计算该压杆柔度,该丝杆可简化为图示
下端固定,上端自由旳压杆。
=2
F
l=0.375m
i I d A4
l l 2 0.375 75
i d 0.04 / 4 4
查表, = 0.72
F
A
80 103
0.72 0.042
88.5106 88.5MPa [ ] 160MPa
4
故此千斤顶稳定性足够。
工程力学中压杆稳定PPT课件
端约束情况下的相当长度 l。
29
两杆均为细长杆的杆系如图示,若杆件在ABC面内 因失稳而引起破坏,试求载荷F为最大值时的θ角(设 0<θ<π/2)。设AB杆和BC杆材料截面相同。
细长压杆的失稳往往产生很大的变形甚至导致 整个结构破坏。
16
1875年俄国开伏达河上同名桥,在安装完毕后, 仅当工作车通过时,受压上弦杆发生偏离桁架平面的屈 曲而毁坏。
17
1925年2月13日,修复后的莫济里桥在试车时出现 了问题。幸好桁架落在为试车准备的临时支座上,人 们才可看到斜杆失稳后的情景。
小球在不同 的位置状态 保持平衡状 态的能力不 同。
13
如何判断压杆的稳定与不稳定?
F<Fcr :在扰动作用下,
直线平衡构形转变为弯曲
平衡构形,扰动除去后, 能够恢复到直线平衡构形,
直 线
则称原来的直线平衡构形
平
是稳定的。
衡
构
形
弯弯 曲曲 平平 衡衡 构构 形形
14
如何判断压杆的稳定与不稳定?
F>Fcr :在扰动作用下,
表中将求临界力的欧拉公式写成了同一的形式:
Fcr
π 2 EI
l 2
式中, 称为压杆的长度因数,它与杆端约束情况有关; l
称为压杆的相当长度(equivalent length),它表示某种杆端约束
情况下几何长度为l的压杆,其临界力相当于长度为 l 的两端
铰支压杆的临界力。表13-1的图中从几何意义上标出了各种杆
1
§13-1 压杆稳定性的概念
工程中把承受轴向压力的直杆称为压杆 压杆
2
工程中把承受轴向压力的直杆称为压杆
液压缸顶杆
3
《工程力学》压杆稳定
l i
Fcr cr A
l
例1 : 图示各杆材料和截面均相同,试问哪一 根杆能承受的压力最大, 哪一根的最小?
P
P 1.3a
P
a
(1)
(2)
1.6a (3)
相当长度
(l )1 2a
a
F
F 1.3a
F 1.6a
(3)
(l ) 2 1.3a
(l ) 3 0.7 1.6a 1.12a
Fcr
2 EI
2
适用范围:
3、理想压杆
(轴线为直线,压力与轴线重合,材料均匀) 实际使用的压杆 轴线的初曲率、压力的偏心、材料的缺陷和不均匀 等因素总是存在的,为非理想受压直杆。
4、Euler解、精确解、实验结果的比较:
F B D A F Fcr O
E
G H
C
精确解
A’ Euler解 实验结果 δ
(直线公式)
a b s
a s 令 2 b
材料的第二特征柔度
1 2
中粗杆
1 2
这类杆又称中柔度杆。
cr a b
a、b为与材料性能有关的常数。
中柔度压杆失稳时,横截面上的应力已超过比例极限, 故属于弹塑性稳定问题。
粗短杆
2
B0
可知压杆的微弯挠曲线为正弦函数:
w A sin Kx
利用边界条件
xl
w0
即压杆没有弯曲变形;
A sin kl 0
kl n
A0
n 1 ,2,3,.... .
n 2 2 EI Fcr l2
实际工程中有意义的是最小的临界力值,即
建筑力学压杆稳定课件
由此可以计算压杆在保证稳定的前提下,能承受的最大轴压力,又称为压杆的临界荷载 或容许荷载。当施加的压力小于容许荷载时,构件不会发生失稳破坏,反之,构件将发生失
稳破坏。对于此类问题,一般也要首先计算出压杆的长细比 ,根据 查出相应的折减系 数 ,再按照上式进行计算。
建筑力学压杆稳定
3. 对压杆进行截面设计
建筑力学压杆稳定
• 应用压杆的稳定条件,可以进行三个方面的问题计 算:
• 1. 稳定校核 • 已知压杆的截面形状和尺寸,杆件长度及支承条件
,杆件的轴心压力,根据公式(9-16)即可以验证 压杆是否会发生失稳破坏,即验证其稳定性。
建筑力学压杆稳定
例 9-4 如图 所示,构架由两根直径相同的圆杆构成,杆的材料为 Q235 钢,直径
立,由此可得的适用条件为:
cr
2E 2
p
令
p
2E p
则
p
(9-7) (9-8)
式(9-8)是欧拉公式适用范围的柔度表达形式,表明只有当压杆的实际柔度 p 时,才能
用欧拉公式来计算其临界应力和临界力。显然, p 是应用欧拉公式的最小柔度。压杆的实
际柔度 λ 随压杆的几何形状尺寸和杆端约束条件变化,但 p 是仅由材料性质确定的值。
d=20mm,材料的许用应力 =170MPa,已知 h=0.4m,作用力 F=15kN。试在计算平面内校核
二杆的稳定。
图 9-3
建筑力学压杆稳定
解:(1)计算各杆承受的压力 取结点 A 为研究对象,根据平衡条件列方程
x 0 FAB cos 450 FAC cos 300 0 Y 0 FAB sin 450 FAC sin 300 F 0
建筑力学压杆稳定
第二节 临界力和临界应力 1、影响临界力的因素 实践表明,影响细长压杆临界力的主要因素是材料的特性、截面几何形状和杆件的长度, 以及压杆两端的约束条件。 (1)材料的特性 对于两个截面几何形状及杆件长度相同的木杆和钢杆,受轴向压力 作用,木杆会先失稳,即木杆的临界力比钢杆的小,说明弹性模量 E 小的材料,其临界力也 小。 (2)截面几何形状 当截面尺寸相同,而截面形状不同时,其临界力也会不相同。影 响临界力的截面参数是截面惯性矩,惯性矩越大,杆件就越不容易失稳,说明截面的惯性矩 大,临界力也大。 (3)杆件的长度 其他条件相同时,长杆比短杆更易失去稳定,故临界力要小些。 (4)压杆两端的约束条件 对同一根细长压杆,两端的约束越强,压杆的轴心受压承 载力越大,因而,压杆两端的约束条件对压杆的稳定临界力也有很大的影响。当其他条件相 同时,一端固定、而一端铰支的压杆比两端铰支的更不容易失稳,说明两端支承越牢固,压 杆的临界力就越大。
工程力学中压杆稳定
A sin kl 0
注意到已有B=0,故上式中的A不可能等于 零,否则(c)式将成为w≡ 0而压杆不能保持 微弯状态,也就是杆并未达到临界状态。由
(a)
24
此可知,欲使(c)成立,则必须sinkl=0
满足此条件的kl为
kl 0,π , 2π ,
或即
Fcr l 0,π , 2π , EI
FPcr
n=1
A sin k x A sin
πx l
4FPcr
n=2
9FPcr
2πx A sin k x A sin l
3πx A sin k x A sin l
n=3
26
用上述方法还可推导出另一些杆端约束条件下压杆临界
力的欧拉公式,如表13-1所示。
27
表13–1 各种支承约束条件下等截面细长压杆临界力的欧拉公式
S P
cr
压杆亦发生屈曲.此时压杆 在直线平衡形式下横截面上 的正应力已超过材料的比例 极限.截面上某些部分已进 入塑性状态.为非弹性屈曲. 3.粗短杆
临界应力总图
S
cr s
cr a b
p 2E cr 2
P
S
O
a s p 2E S P b
桁架中的压杆
7
工程中把承受轴向压力的直杆称为压杆
8
嫦娥奔月中的压杆
高压输电线路保持相间距离的受压构件
9
稳定问题:主要针对细长压杆 课堂讨论:横截面为26mm×1mm的钢尺,求其能承受的 Fmax=?
F
若取l 2cm, 按屈服强度 s 235MPa计算, Fmax 235 106 26 10 6 6110 N
工程力学精品课程压杆稳定.ppt
F
b y
解:(a) 判断发生弯曲的方向。由于杆截面是矩形, 杆在不同方向弯曲的难易程度不同,如图:
l
h
z
y
因为
h z
b
Iy Iz
所以在各个方向上发生弯曲时约束条件相同的情况下,压杆最易在xz平面内发生弯曲
(b) 判断欧拉公式的适用范围。因为是细长杆
1
(c) 计算临界压力。由欧拉公式
所以可用欧拉公式
d
A
1 d 2
4
4
l 4l 120
i
d
(b) 判别压杆的性质。
1
2 E 102 p
1
压杆是大柔度杆,用欧拉公式计算临界力。
(c) 计算临界应力。
Pcr
cr
A
2E 2
A
269 kN
(d) 当l1=0.75l时,计算压杆的柔度,判别压杆的性质。
0.75120 90
2
a s
解决压杆稳定问题的关键是确定其临界压力。
二。临界压力的欧拉公式
1 两端铰支压杆的临界压力
y
P
xv
l
v xP
P
M x
P
压杆距支座x处截面上的弯矩是
M Pv
代入挠曲线的近似微分方程
d 2v dx2
M EI
Pv EI
令: k 2 P
则有:
EI
d 2v k2v 0 dx 2
以上微分方程的通解是
z b
y
y
x z
h
解:(a) 求在xz平面内弯曲时的柔度。
iy
Iy A
1 hb3
12
hb
b 12
y
1l
压杆的稳定ppt
定义
01
边界条件是指压杆在支撑条件下的限制条件,如固定、自由、
简支等。
描述
02
不同的边界条件对压杆的稳定性产生不同的影响。例如,固定
边界条件下的压杆比自由边界条件下的压杆更稳定。
影响因素
03
边界条件对压杆稳定性的影响主要表现在支撑反力的分布和大
小上,从而影响压杆的临界载荷和屈曲载荷。
03
压杆稳定性问题的解决策略
合理选择材料和截面形状
选择高强度材料
如合金钢、不锈钢等,能够提高压杆的屈服强度和抗拉强度 ,增加压杆的稳定性。
选择合适的截面形状
如圆形、方形、工字形等,能够改变压杆的截面面积和惯性 矩,进而改变压杆的稳定性。
对压杆进行合理支撑和固定
增加支撑点
通过在压杆的适当位置增加支撑点,能够提高压杆的稳定性,防止其发生屈 曲变形。
船舶设计
在船舶设计中,压杆被用于船体结构的支撑和固定。特 别是在海洋环境中,压杆的稳定性对于抵御海浪冲击和 保证船舶的安全至关重要。
地下工程
在隧道、地铁等地下工程中,压杆被用于支撑和固定土 石方及结构物。其稳定性对于保障地下工程的稳定性和 安全性至关重要。
06
总结与展望
总结
压杆稳定的定义
压杆稳定的重要性
05
压杆稳定性问Leabharlann 的工程应用建筑结构中的压杆稳定性问题
建筑物的支撑结构
在建筑设计中,压杆常被用于支撑和固定建筑结构,如桥梁、高层建筑等。其稳定性直接 影响到建筑物的安全性和使用寿命。
抗风和抗震设计
在地震或强风天气中,建筑物的压杆稳定性显得尤为重要。压杆能够提供必要的支撑力, 帮助建筑物抵御自然灾害。
定义
《压杆稳定》课件
压杆稳定是工程结构中的重要问题,掌握这一原理对于建筑、电力和汽车等 领域都至关重要。
概述
定义
压杆稳定是指结构中的杆件在受压作用下仍能够保持平衡的状态。
原理
受压杆件会发生弯曲和屈曲变形,从而形成侧向支撑力,从而保持杆件的稳定。
应用场景
建筑、桥梁、电力塔和汽车等诸多领域都运用了压杆稳定的原理。
电力工业
电力塔和支架上的压杆稳定设 计,可以防止杆件失去平衡而 导致高压线路的断裂。
总结
1
优缺点
压杆稳定有着较高的稳定性和安全性,但是对材料和结构的要求比较高。
2
发展趋势
随着结构材料和设计技术的不断进步,压杆稳定的设计方法也将日趋完善。
3
应用前景
压杆稳定在建筑、汽车和电力等领域有较广泛的应用前景,是未来工程结构的重 要发展方向。
参考资料
1. 《结构力学》 王兆院 2. 《结构稳定理论》 蔡景达 3. 《Mechanics of Materials》 R.C. Hibbeler
压杆稳定的计算
1
计算模型
压杆稳定的计算通常采用欧拉公式和能量
压力、应力和变形的计算
2
原理来进行分析。
压力、应力和变形是计算压杆稳定所必需
的核心参数。
3
临界负载
临界负载是指杆件失去稳定的负载情况, 其计算方法取决于结构和边界条件。
压杆稳定的优化设计
材料选择
不同材料的强度和刚度各不相同, 选择合适的材料对于杆件的稳定性 至关重要。
结构设计
良好的结构设计可以有效地降低压 杆的压力和应力,从而提高其稳定 性。
优化方法
优化方法可以使得压杆在保证结构 强度的同时,达到最佳的性能和稳 定状态。
《工程力学压杆稳定》课件
压杆的应用案例
建筑
机械
压杆广泛应用于建筑领域,提供 结构稳定和支撑。
在机械工程中,压杆用于连接零 部件和传递力量。
通过案例演示,加深对压杆稳定的理解和应用。
桥梁
桥梁结构中的压杆可以增加桥梁 的稳定性和承重能力。
压杆稳定的条件
压杆稳定是杆件不发生屈曲的状态,包括杆件的截面形状、材料性质、长度等因素。
压杆的计算方法
1
确定杆件的受力状态
根据杆件受力情况进行分析。
2
计算杆件的临界压力
使用适当的公式计算杆件的临界压力。
3
判断是否稳定
根据计算结果判断杆件是否稳定。
压杆稳定的公式有等弯曲时压杆稳定公式和弯矩影响时压杆稳定公式。
《工程力学压杆稳定》 PPT课件
以图文并茂的方式介绍《工程力学压杆稳定》,让你轻松学习压杆的定义、 分类、稳定条件、计算方法和应用案例。
目录
1. 压杆的定义和分类 3. 压杆的计算方法
2. 压杆稳定的条件 4. 压杆的应用案例
压杆的定义和分类
压杆是指受到力作用的细长构件,可分为圆杆、方杆、角杆等多个分类。
《压杆稳定教学》课件
增加约束
总结词
通过增加支撑、固定或增加附加约束,可以 提高压杆的稳定性。
详细描述
约束是影响压杆稳定性的重要因素。通过增 加支撑、固定或附加约束,可以限制压杆的 自由度,从而增强其稳定性。例如,在压杆 的适当位置增加支撑或固定点,可以减小压 杆的弯曲变形,提高其稳定性。此外,通过 增加附加约束,如套箍或加强筋等,也可以 提高压杆的稳定性。
实验结果与分析
实验结果
通过实验观察和数据记录,得到不同条件下 压杆的稳定性表现。
结果分析
根据实验数据,分析影响压杆稳定性的因素 ,如压杆的材料、截面形状、长度、直径等 。通过对比不同条件下的实验结果,总结出
压杆稳定性的一般规律和特点。
THANKS
感谢观看
REPORTING
稳定性安全系数
通过比较临界载荷与实际载荷的大小,来判断压杆的 稳定性。
稳定性试验
通过试验的方法,对压杆进行稳定性测试,以验证其 在实际使用中的稳定性。
PART 02
压杆的分类与计算
REPORTING
长细比较小的压杆
弹性失稳
当受到垂直于杆轴的压力时,杆件会 弯曲并丧失承载能力。
临界压力
当压杆达到临界压力时,杆件将发生 屈曲。
PART 05
压杆稳定性的实验研究
REPORTING
实验目的与原理
实验目的
通过实验研究,掌握压杆稳定性的基本概念和原理,了解影响压杆稳定性的因 素。
实验原理
压杆稳定性是指细长杆在受到轴向压力时,抵抗弯曲变形的能力。当轴向压力 超过某一临界值时,压杆会发生弯曲变形,丧失稳定性。本实验通过观察不同 条件下压杆的变形情况,分析影响压杆稳定性的因素。
根据欧拉公式计算临界应力:$sigma_{cr} = frac{EI}{A}$
压杆稳定问题-工程力学-课件-13
l
P341例13.3:压杆如图,材料为A3 ,E=205GPa,l=2.3m, b =40mm ,h=60mm 。求临界载荷。
h=60
()z>y,连杆在xy 面容易失
杆在不同的纵向平面内约束不同。 =132.8>101,属于细长杆。用
稳计算临界载荷应以z计算。
P y P z
h y b z
2 EI
l
2
Pcr
2 EI
( 2l )
2
Pcr
2 EI
(0.5l )
2
Pcr
2 EI
(0.7 l )
2
9
2 EI Pcr ( l ) 2
杆端支 承情况
细长压杆的临界载荷公式。(欧拉公式)
为长度折算系数,l为相当长度。
一端固定 一端自由 两端铰支 一端铰支 一端固定 两端固定
挠 曲 线 图 形
长度系数
Pcr
l
Pcr
Pcr
Pcr
l
l
l
2
1
0.7
0.5
10
1、Pcr∝EI
2、杆端约束越强,Pcr越大。
注意:
1、细长压杆的临界力公式在弹性范围内适用。
2 EI Pcr ( l ) 2
2、若杆在不同的纵向平面内约束相同,计算临界载荷时取Imin。 因为随着轴向压力增大,压杆总是在抗弯能力差的纵向平面内弯曲。
2
64
l
在临界力作用下,压杆横截面上的应力
N Pcr 63872 4 50.8 MPa 2 40 A A
而A3钢的比例极限为200MPa,说明压杆仍处于弹性阶段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章
压杆稳定
思考题
1 何谓失稳?何谓稳定平衡与不稳定平衡?
2 试判断以下两种说法对否?
(1)临界力是使压杆丧失稳定的最小荷载。
(2)临界力是压杆维持直线稳定平衡状态的最大荷载。
3 应用欧拉公式的条件是什么?
4 柔度λ的物理意义是什么?它与哪些量有关系,各个量如何确定。
5 利用压杆的稳定条件可以解决哪些类型的问题?试说明步骤。
6 何谓稳定系数?它随哪些因素变化?为什么?
7 提高压杆的稳定性可以采取哪些措施?采用优质钢材对提高压杆稳定性的效果如何?
习题
1 图示四根压杆的材料及截面均相同,试判断哪一根杆最容易失稳?哪一根杆最不容易失稳?
2 图示压杆,材料为Q235钢,横截面有四种形式,但其面积均为3.2×103mm2。
试计算它们的临界力,并进行比较。
已知弹性模量E=200GPa,a=240MPa,b=0.00682MPa。
题1图题2图
3 图示压杆的横截面为矩形,h=60mm,b=40mm,杆长l=2.4m,材料为Q235钢,E=200GPa。
杆端约束示意图为:在正视图(a)的平面内两端为铰支;在俯视图(b)的平面内,两端为固定。
试求此杆的临界力。
4 已知柱的上端为铰支,下端为固定,外径D=200mm,内径d=100mm,柱长l =9m,材料为Q235钢,许用应力[σ]=160MPa。
试求柱的许可荷载[F]。
题3图题4图
5 两端铰支工字钢受到轴向压力F=400kN的作用,杆长l=3m,许用应力[σ]=160MPa,试选择工字钢的型号。
6 压杆由两根∟140×12的等边角钢组成,如图示,杆长l=3m,许用应力[σ]=160MPa,两端固支。
承受的轴向压力为F=850kN。
试对压杆进行稳定性校核。
7 图示一简单托架,其撑杆AB为圆截面木杆,已知q=50kN/m,许用应力[σ]=11MPa,AB两端为柱形铰,试求撑杆所需的直径d。
题6图题7图
8 图示结构中,AB为刚性梁,A端为水平链杆,在B点和C点分别与直径d=40mm的钢圆杆铰接。
已知q=35kN/m,圆杆材料为低碳钢,[σ]=170MPa。
试问此结构是否安全?
9 图示结构中钢梁AC及柱BD分别由№22b工字钢和圆木构成,均布荷载集度q=8kN/m。
梁的材料为Q235钢,许用应力[σ]=160MPa;柱的材料为杉木,直径d=160mm,[σ]=11MPa,两端铰支。
试校核梁的强度和立柱的稳定性。