产甲烷菌在厌氧消化中的应用研究进展
产甲烷菌的研究进展
产甲烷菌的研究进展XXX生物工程一班生命科学学院xxx大学150080摘要:甲烷菌是一个古老的原生菌。
随亨格特(Hungate)无氧分离技术发展以来,人们对甲烷菌的研究逐渐深入。
从产甲烷菌生存环境分离、筛选出新的产甲烷菌种。
20世纪90年代对甲烷菌的探讨、研究比较多,近10年的研究比较少。
简述了产甲烷菌的发展历史及分类。
产甲烷菌是重要的环境微生物,是古细菌的一种,在自然界的破素循环中起重要作用。
迄今已有种产甲烷菌基因组测序完成。
基因组信息使人们对产甲烷菌的细胞结构、进化、代谢及环境适应性有了更深的理解。
关键词:微生物,产甲烷菌,分类。
Research progress of methanogenic bacteriaZhengzongqiaoThe first class of Biotechnology, College of Life Science, Heilongjiang University, Harbin,150080Abstract: methanogens is an ancient native bacteria. With the Since Heng Gete (Hungate) anaerobic separation technology development, people gradually in-depth study of methanogens. Living environment separated from the methane-producing bacteria filter out new methane-producing bacteria. Of methanogens in the 1990s, research more, nearly 10 years of study is relatively small. The brief history of the development of the methanogenic bacteria and classification. Methane-producing bacteria is an important environmental microorganisms, is a kind of archaebacteria, play an important role in the hormone cycle of the nature of the broken. So far has been a kind of methane-producing bacteria genome sequencing is completed. Genomic information to make The Methanogens the cell structure, evolution, have a deeper understanding of metabolic and environmental adaptability.Keywords: microorganisms, methane-producing bacteria。
生活垃圾厌氧堆肥产甲烷及古细菌多样性分析
生活垃圾厌氧堆肥产甲烷及古细菌多样性分析闫江1,江娟2(1.华中科技大学生命科学与技术学院;2.华中科技大学环境科学与工程学院,武汉430074)摘要:通过厌氧堆肥试验,对厌氧堆肥产甲烷的基本特征进行了研究,结果表明:在厌氧堆肥开始阶段,气体中只有8%的甲烷,二氧化碳产率是甲烷产率的4倍左右;而随着反应的进行,二氧化碳产率呈下降趋势,甲烷产率逐渐升高,并于3个月时达到最高值45%;此后二氧化碳及甲烷产率都逐渐降低。
对3个月时的垃圾堆肥渗出液取样,提取总DNA,对古细菌片段进行限制性片段长度多样性分析(RFLP),在60个随机选出的古细菌rDNA克隆子中,可以划分15个不同的谱型。
对深入了解产甲烷厌氧微生物过程,加快垃圾稳定化具有重要意义。
关键词:生活垃圾;厌氧;堆肥;甲烷;古细菌;RFLP分析中图分类号:X172;X132文献标识码:A文章编号:1003-6504(2006)04-0009-03我国城市垃圾年产量目前已达1.9亿t左右,并以年均近9%的速度增长[1]。
本研究采用厌氧堆肥法处理城市生活垃圾,垃圾在厌氧发酵过程中,会发生水解、酸化和甲烷化等一系列复杂的生物化学反应,并最终被分解成以甲烷和二氧化碳为主的气体-沼气。
Chugh等[2]研究认为,1t含水率为45%、有机物含量为55%的垃圾可产甲烷57.5m3,相当于甲烷含量60%的沼气95.8m3。
因此,厌氧堆肥的产CH4较高而且容易回收利用;所以厌氧堆肥不仅较好地回收了能源,还可以获取有机肥。
本研究着重对生活垃圾厌氧堆肥过程中产气变化进行了分析。
在介绍模拟试验的基础上,对厌氧堆肥工艺产甲烷特征进行了研究。
同时,通过提取厌氧垃圾堆肥渗出液的总DNA中选择性地PCR扩增古细菌群落的16SrDNA片断,在此基础上建立古细菌16SrDNA克隆文库,并利用RFLP法对其进行分析,从而获得有关产甲烷时期垃圾堆肥内部古细菌群落的结构及其多样性的初步信息。
废弃物微藻厌氧消化产氢气和甲烷的优化研究
废弃物微藻厌氧消化产氢气和甲烷的优化研究原林虎;原雨桐【摘要】本文探究了影响微藻厌氧消化的因素(有机负荷、酶预处理、温度)并优化了工艺参数.结果表明:微藻生物质的最佳有机负荷为10.0 g/L,相应的氢气最大产量为18.8 mL/g(以单位挥发性有机质计算),挥发性脂肪酸最大产量为789 mg/L.蛋白酶预处理能够强化微藻水解酸化,且蛋白酶最佳剂量为1.0 g/L,氢气最大产量为20.5 mL/g,pH最低值为5.4.最后在产甲烷相中优化微藻厌氧消化的温度,35℃是产甲烷相最佳温度,甲烷的最大产量为238.9 mL/g,高温环境产生的过程产物反馈抑制了产甲烷菌的活性从而导致甲烷产量下降.【期刊名称】《工业安全与环保》【年(卷),期】2018(044)011【总页数】4页(P80-83)【关键词】微藻;两段式发酵;水解;酸化;氢气【作者】原林虎;原雨桐【作者单位】太原城市职业技术学院城建系太原030027;上海应用技术大学鲁班书院上海201418【正文语种】中文0 引言微藻含有丰富的有机质(碳水化合物4%~57%,蛋白质8%~71%和脂类2%~40%),是厌氧消化产氢气和甲烷的理想原料[1]。
然而在实际工程中多种因素共同作用导致微藻厌氧消化获取的氢气和甲烷远低于理论计算值[2]。
近年来,应用两相厌氧消化系统处理生物质废物受到广泛关注,两段式厌氧消化将水解酸化相和产甲烷相分离开,从而控制每个阶段中微生物处于优势动态[3];此外,与单一相消化系统相比还解除了挥发性脂肪酸(VFA)迅速积累或过度酸化引起的pH值下降而导致产甲烷过程终止的现象[4]。
因此,生物质两段式厌氧消化产氢气和甲烷得到越来越多的研究。
生物质厌氧消化制取甲烷主要包含4个连续的生化过程:水解、酸化、同型产乙酸和甲烷化[5]。
在水解过程中,难降解的有机物在特定功能的转性厌氧或兼性厌氧微生物分泌水解酶的作用下水解为溶解性或大分子有机物。
水解过程是有机物厌氧消化的限速步骤,预处理常用于提高有机物的水解速率[6]。
嗜冷产甲烷茵厌氧消化研究进展
厌氧消化
适冷机制
研究进展
螬 冷产 甲烷菌 是指 能够在 寒冷 ( 0 ℃ ~1 0 T : ) 条 件
产甲烷 菌属于 严格 厌 氧古 细菌 , 广泛 的分 布于 各
下生长 , 同时最适合 生长 温度 在低 温范 围 ( 2 5 ℃ 以下 )
类极端厌 氧环境 中。产 甲烷菌有 一些不 是很完善 的分 类, 通常 是 按 照 温 度 来 划 分 的, 根 据 最 适 生 长 温 度 ( T o p t ) 的不同 , 研究者将产 甲烷 菌分为 嗜冷 ( T o p t 低于
2 O l 3年 3月
嗜冷产 甲烷菌厌氧消化研究进展
4 7
嗜 冷产 甲烷 茵厌 氧 消 化 研 究 进 展
朱 文
( 信息 产业 电子第 十一设 计研究 院科技 工程股份有限公司 , 四川 成都 摘 6 1 0 0 2 1 ) 要: 本文介绍嗜冷产 甲烷菌的适冷机制及其分 布 , 分 析嗜冷厌 氧消化的技术 可行
中, 嗜冷产甲烷菌构 成 了 以上 各种 环境 中重要 的微生
物群落结构 J 。
2 嗜冷产 甲烷菌 的定义与分布
表l 已命名的嗜冷 产甲烷菌 菌株名称 分离 源 最适生 长 温度 / ℃ 最低生长 温度/ ℃ 最高生长 温度/ o C
Me t h a n ℃℃e o i d e s b u r t o n i i
古菌共有 8种 ( 见表 1 ) 。
右) 和极端嗜热 ( T o p t 高于 8 O ℃左右 ) 四个 类群… 。产
甲烷 菌位于厌 氧 消化 食物链 的 最末 端 , 在 自然 界碳 素 循环 中起 着非 常重 要的作用 。现 有的厌 氧消化工 艺大
城市生活垃圾厌氧消化中甲烷产量的生物动力学研究
亿
z l - h lt & Bo gn f f e y 00 V 『 4 I ’ e e n o . q N , Ch mi r i n i e i 2 7, u‘ 2 o 7 e s m 一 O, Ii + r n g r e g m
表 2
Tab 2 .
a e o cdie to o es f r te tng M SW na r bi g si n pr c s o r a i
3 结 果 与讨 论
3 1 累 积 产 气 的 变 化 .
城 市生 活垃圾 高温厌 氧消 化的 累积产 气及产气 速 率 变化 见图 3 。
、
.
图
;
城 市生 活 垃 圾 厌 氧 消 化 中产 甲烷 菌的 生
g … TI r wt u v fme h . l 一 . o h c r e。 +g ta
n
长 曲பைடு நூலகம்
a e obc die to fM SW na r i g si n o
垃 厌 消 化 中产 甲烷 菌 生 长 的 阶段 特
昆 明理 工 大 学 莲 华 园 区 垃 圾 中 转 站 垃 圾 特 性
Cha a trs is o S r m h ots c m p r c e itc fM W fo t e l u a s u t a s e t p o r n fr so fKM US T
删
鼷
睇
l 5 9 I 3 l 7 1 12 52 93 3 7 I l 51 92 32 72 1
中纤 维 素 含 量 较 多 。 经 人 工 分 选 后 , 工 破 碎 成 大 人
图 2 城 市 生 活 垃 圾 间歇 厌 氧 消 化 工 艺简 图
产甲烷菌、产甲烷菌和消化道
产甲烷菌、产甲烷菌和消化道产甲烷菌、产甲烷菌和消化道直到最近,产甲烷菌被分为6级(产甲烷菌、产甲烷菌、产甲烷菌、产甲烷菌、产甲烷菌、产甲烷菌)(6 orders (Methanobacteriales, Methanococcales, Methanomicrobiales, Methanosarcinales, Methanopyrales, Methanocellales),均属于⼴裂⾓菌门。
最近,根据从⼈类肠道中获得的序列,提出了与热等离⼦体催化剂相关的7级产甲烷菌系统学研究。
随后提出了两个名称,甲氧基胞质催化剂(Methanoplasmatales)和甲氧基丙烯酰胺类化合物(Methanomassiliicoccales),后者⽬前已得到原核⽣物系统学国际委员会(International Committee on Systematics of Prokaryotes, ICSP)的验证。
产甲烷是与不同的能量守恒系统耦合的,代表了产甲烷菌唯⼀的能量代谢。
对于这种代谢,产甲烷菌只能使⽤有限数量的底物,这些底物来源于⽔解和发酵细菌对有机物的厌氧降解。
因此,产甲烷菌在微⽣物营养链中有⼀个末端位置。
根据今天使⽤的代谢分类,可以定义产甲烷的氢化、甲基营养和⼄酰营养(或⼄酰碎屑)类别。
⼤多数产甲烷菌是氢氧化菌,利⽤氢⽓(通常是甲酸盐)将⼆氧化碳还原成甲烷。
甲基化产甲烷菌使⽤甲基化化合物,如甲醇、甲胺和甲基硫化物,通过底物特异性甲基转移酶将这些化合物的甲基群转化为CH4。
这种产甲烷的还原当量是通过甲基氧化途径将⼀个甲基额外氧化成⼆氧化碳⽽获得的,与氢氧化途径的第⼀步相反。
该途径的⼀个变体是直接使⽤环境中的氢作为电⼦供体,⽽不是甲基氧化途径产⽣的还原当量。
有趣的是,仅限于此变种的产甲烷菌被发现与肠道环境有关。
最后,很少有与甲烷菌属有关的古细菌能够利⽤⼄酸作为产甲烷的底物。
甲基辅酶M还原酶(MCRI或MCRII同功酶)负责CH3-S-CoM和H-S-CoM中CH4的形成,是所有产甲烷菌共有的。
甲烷厌氧氧化微生物的研究进展
甲烷厌氧氧化微生物的研究进展沈李东;胡宝兰;郑平【摘要】Methane is a major greenhouse gas, which contributes estimatedly 20% to global warming. Microbially mediated anaerobic oxidation of methane (AOM) is an important way to reduce methane emission in nature. According to different coupling reactions, AOM can be divided into two types, Sulphate-dependent anaerobic methane oxidation( SAMO ) and Denitrification-dependent anaerobic methane oxidation ( DAMO ). S024- and NO2-/NO3- function as their terminal electron acceptors, separately. This review summarizes types of AOM and microorganisms involved, elaborates mechanisms of the AOMs, and discusses orientation of the future research and prospects of the application of AOM.%甲烷是一种重要的温室气体,其对全球气候变暖的贡献率约占20%.微生物进行的甲烷厌氧氧化(Anaerobic oxidation of methane,AOM)是减少自然环境中该温室气体排放的重要生物途径.根据耦联反应的不同,可将AOM 分为两类,即硫酸盐还原型甲烷厌氧氧化(Sulphate-dependent anaerobic methane oxidation,SAMO)和反硝化型甲烷厌氧氧化(Denitrification-dependent anaerobic methane oxidation,DAMO),前者以SO2-4作为AOM 的最终电子受体,后者以NO2-/NO3-作为AOM的最终电子受体.深入了解这两种类型AOM的发生机理,有助于更好地理解该生物过程的重要性,为AOM工艺的开发提供理论依据.鉴此,本文简要介绍了不同类型的AOM及其参与的微生物,着重阐述了其发生机理,并探讨了AOM未来的研究方向与应用前景.【期刊名称】《土壤学报》【年(卷),期】2011(048)003【总页数】10页(P619-628)【关键词】硫酸盐还原型甲烷厌氧氧化(SAMO);反硝化型甲烷厌氧氧化(DAMO);机理【作者】沈李东;胡宝兰;郑平【作者单位】浙江大学环境工程系,杭州,310029;浙江大学环境工程系,杭州,310029;浙江大学环境工程系,杭州,310029【正文语种】中文【中图分类】X172甲烷作为一种重要的能源,在人类的生产生活中扮演着重要的角色。
污水处理厂污泥厌氧消化强化产甲烷技术研究
污水处理厂污泥厌氧消化强化产甲烷技术研究污水处理厂污泥厌氧消化强化产甲烷技术研究【引言】随着城市化进程的加快和人们生活水平的提高,污水处理厂的建设和运营成为城市发展必不可少的组成部分。
污水处理厂负责处理城市污水,其中一个重要的处理步骤就是污泥的处理。
传统的污泥处理方式主要是厌氧消化,通过厌氧发酵分解有机物质,产生甲烷等有价值的产物。
然而,传统的厌氧消化方式存在效率低、产物利用率不高的问题,因此需要对污泥厌氧消化强化产甲烷技术进行研究。
【主体】一、强化产甲烷技术的意义污泥中含有大量的有机废弃物质,通过厌氧消化能够将这些有机废弃物转化为有价值的产物甲烷。
甲烷具有高热值和广泛的用途,可以用作燃料替代天然气,用于发电、供暖和燃料电池等方面。
然而,传统的厌氧消化方式存在一些问题,常见的有消化缓慢、产气量低、产气稳定性差等。
因此,通过对厌氧消化过程进行优化和强化,可以提高产气量和产气稳定性,使得污泥的资源化利用更加高效。
二、强化产甲烷技术的方法1. 厌氧菌种优化:选择适宜的厌氧菌种,如甲烷菌和硝化菌,这些菌种能够加速废物降解和产生甲烷。
2. 温度调控:适宜的温度能够促进厌氧发酵的进行,一般在35-38摄氏度之间为宜。
3. pH值调控:适宜的pH值可以提供良好的生存环境和代谢条件,一般在6.5-7.5之间为宜。
4. 进料浓度控制:适量的进料浓度可以提高产气效率和产气量,但过高的浓度会抑制甲烷菌的活性,因此需要进行合理的控制。
5. 辅助材料添加:在厌氧消化过程中添加一些辅助材料,如活性炭、硫酸盐等,能够提供良好的反应环境和营养物质,进一步促进产甲烷过程。
三、强化产甲烷技术的应用展望强化产甲烷技术在污水处理厂污泥处理中具有广阔的应用前景。
首先,通过技术优化可以提高产气效率和产气量,增加污泥的资源化利用率,减少环境污染。
其次,强化产甲烷技术可以改善厌氧消化过程中产生的异味和污染物排放,提升环境友好性。
此外,该技术还可以与其他技术相结合,如利用产生的热能进行有机废水预处理、产生的CO2用于促进蔬菜生长等,进一步提高资源循环利用。
厌氧消化中的产甲烷菌研究进展
厌氧消化中的产甲烷菌研究进展公维佳,李文哲*,刘建禹(东北农业大学工程学院,黑龙江哈尔滨150030)摘要:在厌氧消化过程中,通过控制产甲烷菌的活动可显著提高厌氧消化效率。
文章介绍了厌氧消化中产甲烷菌的生理生化特征及代谢途径,综述了微量元素、硫酸盐、pH值、氧化还原电位等显著影响因子对产甲烷菌活动和甲烷产量的影响。
关键词:厌氧消化;产甲烷菌;显著影响因子中图分类号:X703文献标识码:A收稿日期:2005-12-12基金项目:国家自然科学基金项目(50376009);黑龙江省科技攻关(GC03A304)作者简介:公维佳(1981-),女,黑龙江人,硕士研究生,研究方向为生物质能源。
*通讯作者目前能源与环境已成为影响人类社会可持续发展的重大问题,厌氧消化技术在能源生产和环境保护等方面具有突出的优势而倍受青睐。
沼气发酵是自然界极为普遍而典型的厌氧消化反应,各种各样的有机物通过沼气发酵,不断地被分解代谢产生沼气,从而构成了自然界物质和能量循环的重要环节。
厌氧消化是极为复杂的生物过程,在参与反应的众多微生物中,产甲烷菌的优劣和密度是影响厌氧消化效率和甲烷产量的重要因素,因此对产甲烷菌特征以及影响因子的研究成为重点。
本文试图对这些研究进行综合性的分析总结,为今后的研究提供参考。
1产甲烷菌概述产甲烷菌的研究开始于1899年,当时俄国的微生物学家奥姆良斯基(Omelianski)将厌氧分解纤维素的微生物分为两类,一类是产氢的细菌,后来称产氢、产乙酸菌;另一类是产甲烷菌,后来称奥氏甲烷杆菌(Methanobaci11usomelauskii)。
1901年Sohzgen对产甲烷菌的特征及对物质的转化进一步作了详细的研究。
1936年Barker对奥氏甲烷菌又作了分离研究。
但这些研究,由于厌氧分离甲烷菌的技术尚不完备,均未取得大的进展。
直到1950年Hungate第一次创造了无氧分离技术才使甲烷菌的研究得到了迅速的发展[1]。
生物强化促进餐厨垃圾高温厌氧消化产甲烷性能的研究
第31卷第6期2023年12月环境卫生工程Environmental Sanitation Engineering Vol.31No.6 Dec.2023生物强化促进餐厨垃圾高温厌氧消化产甲烷性能的研究*杜学勋1,史晶晶2,张斯颖2(1.上海老港固废综合开发有限公司,上海200237;2.中国科学院上海高等研究院,上海201210)【摘要】为探究水原脲芽孢杆菌Ureibacillus suwonensis E11的添加量对餐厨垃圾高温(55℃)厌氧消化产甲烷性能的影响,优化生物强化的实验条件,本研究采用5L连续搅拌厌氧反应器,以餐厨垃圾为底物,以长期驯化的高温厌氧污泥为接种物,通过改变微生物添加量(0、5%、10%、15%、20%),对比高温厌氧消化的产甲烷性能,评价强化效果,确定最佳添加剂量,并结合宏基因组数据揭示生物强化的作用机制。
结果表明:与未添加功能微生物的对照组相比,各生物强化组产甲烷量均有明显提高。
最佳的功能微生物添加量为15%,在此条件下,生物强化组(575.14mL/g)比对照组(452.86mL/g)的累积甲烷产量(以VS计)提高27.00%。
生物强化可以在一定程度上提高乙酸的利用效率。
微生物群落结构分析显示生物强化通过提高几种重要水解细菌以及嗜氢产甲烷菌Methanoculleus的相对丰度,来促进餐厨垃圾高温厌氧消化产甲烷。
【关键词】餐厨垃圾;高温厌氧消化;生物强化;宏基因组中图分类号:X799.3文献标识码:A文章编号:1005-8206(2023)06-0046-08DOI:10.19841/ki.hjwsgc.2023.06.008Study on Bioaugmentation to Promote Methanogenic Performance of Thermophilic Anaerobic Digestion of Food Waste DU Xuexun1,SHI Jingjing2,ZHANG Siying2(1.Shanghai Laogang Solid Waste Comprehensive Development Co.Ltd.,Shanghai200237;2.Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai201210)【Abstract】In order to explore the effects of adding Ureibacillus suwonensis E11on the performance of methane production during thermophilic(55℃)anaerobic digestion of food waste,and optimize the experimental conditions for bioaugmentation.A5L continuous stirring anaerobic reactor was used in this study with kitchen waste as substrate long-term acclimated high-temperature anaerobic sludge as inoculum.By changing the microbial addition amount(0,5%,10%,15%,20%),the methanogenic performance of high-temperature anaerobic digestion was compared,the enhancement effect was evaluated,the optimal addition dose was determined,and the mechanism of bioenhancement was revealed by combining metagenomic data.The results showed that compared to the control group without the addition of functional microorganisms,all bioaugmentation groups exhibited a significant increase in methane production.The optimal addition rate of functional microorganisms was15%,and under this condition,the cumulative methane production(measured as VS)in the bioaugmentation group(575.14mL/g)was27.00%higher than that in the control group(452.86mL/g). Bioaugmentation could improve the utilization efficiency of acetic acid to a certain extent.Analysis of the microbial community structure revealed that bioaugmentation promoted the methane production during thermophilic anaerobic digestion of food waste by increasing the relative abundance of several key hydrolytic bacteria and the hydrogenotrophic methanogen Methanoculleus.【Key words】food waste;thermophilic anaerobic digestion;bioaugmentation;metagenome0引言餐厨垃圾是居民在日常饭后所剩余的各类残渣的总称,也是城市生活垃圾的重要组成部分[1]。
产甲烷杆菌的研究和其利用前景
《微生物学》课程论文论文题目:产甲烷杆菌的研究和其利用前景工艺学学院:生命与地理科学学院专业:生物科学班级:S10A学号:20101911131姓名:刘韬成绩:目录1 产甲烷菌的分类................................................................................................................................ -2 -2.产甲烷菌的生态多样性.................................................................................................................... - 2 - 3.生长繁殖特别缓慢.......................................................................................................................... - 3 -4.产甲烷菌代谢途径............................................................................................................................ - 3 -5.甲烷合成的途径................................................................................................................................ - 3 -6.沼气池中产甲烷杆菌和不产甲烷菌的关系.................................................................................... - 4 -6.1不产甲烷细菌为产甲烷菌提供生长基质和产甲烷所需的底物 ......................................... - 4 -6.2不产甲烷细菌为产甲烷菌创造适宜的厌氧环境................................................................. - 4 -6.3不产甲烷细菌为产甲烷菌清除有毒物质............................................................................. - 4 -6.4产甲烷菌为不产甲烷细菌生化反应解除反馈抑制............................................................. - 4 -6.5共同维持沼气发酵环境中的适宜pH值............................................................................... - 5 -6.6不产甲烷细菌构建了产甲烷菌的“古环境” ....................................................................... - 5 -7.产甲烷杆菌的应用前景.................................................................................................................... - 5 -7.1废水处理................................................................................................................................. - 5 -7.2酿酒工业上的应用................................................................................................................. - 5 -7.3产甲烷菌在煤层气开发中的应用......................................................................................... - 6 -8. 结语................................................................................................................................................ - 6 - 参考文献................................................................................................................................................ - 6 -产甲烷杆菌的研究和其利用前景10级生物科学 20101911131 刘韬摘要产甲烷菌是一类重要的极端环境微生物,在地球生物化学碳素循环过程中起着关键作用. 目前,根据产甲烷菌的系统发育和生理生化特性可将已培养的产甲烷菌分为5大目. 产甲烷菌广泛分布在海底及淡水沉积物、水稻田、动物胃肠道、地热及地矿等环境中,生态学研究表明,产甲烷菌在不同的生态环境里具有不同的群落分布特点,并且受不同环境因子的影响而显示出不同的生理代谢功能. 本文综述了国内外近年来产甲烷菌的分类及生态多样性研究进展,同时简述了产甲烷菌在厌氧生物处理和工业酿酒中广阔应用前景.关键词产甲烷菌;分类;生态多样性;废水处理;泸州老窖Methanobacterium research and its prospect Abstract methanogens is an important kind of extreme environmental microbial, in the biogeochemistry of carbon cycle plays a key role in the process. At present, according to the methanogenic bacteria phylogeny and physiological and biochemical characteristics can be cultured methanogens have been divided into 5heads. Methane producing bacteria widely distributed in marine and freshwater sediments rice, water, animal gastrointestinal tract, geothermal and geological environment, ecological studies have indicated, methanogenic bacteria in different ecological environment has different characteristics of community distribution, and affected by different environmental factors and show different physiological and metabolic function. This article reviews the domestic and abroad in recent years and the classification of methane producingbacteria biodiversity research progress, at the same time on themethanogenic bacteria in anaerobic biological treatment and broadapplication prospects in industrial saccharomyces.Key words methanogens; classification; biodiversity; wastewatertreatment; Lu zhou产甲烷菌是一类严格厌氧的原核微生物,是有机物甲烷化作用中食物链的最后一组成员,其独特的厌氧代谢机制使其在自然界物质循环中起着重要作用. 一方面,产甲烷菌是产生温室气体的主要因素,全球甲烷的排放量每年大约是500 t,其中74%是由产甲烷菌代谢产生[1];另一方面,产甲烷菌在有机质的厌氧生物处理工业应用中发挥着关键的作用,如沼气发酵、煤层气开发等. 因此,对产甲烷菌的研究具有重要的理论和实践意义. 随着厌氧培养技术和微生物分子生态技术的发展,更多的实验室能对产甲烷菌进行多角度的研究. 这些研究揭示出产甲烷菌分类地位的多样性,展示出不同环境下产甲烷菌的生态及生理特性的差异性,同时也为产甲烷菌的实际工业应用指明了方向.1 产甲烷菌的分类1776年,Alessandro Volta首次发现了湖底的沉积物能产生甲烷,之后历经一个多世纪的研究,利用有机物产甲烷的厌氧微生物才大致被分为两类:一类是产氢、产乙酸菌,另一类就是产甲烷菌. W.E. Balch等在1979年报道了3个目、4个科、7个属和13个种的产甲烷微生物,他们的分类是建立在形态学、生理学等传统分类特征以及16S rRNA寡核苷酸序列等分子特征基础上的[2].随着厌氧培养技术和菌种鉴定技术的不断成熟,产甲烷菌的系统分类也在不断完善. 《伯杰系统细菌学手册》第9版将近年来的研究成果进行了总结和肯定,并建立了以系统发育为主的产甲烷菌最新分类系统. 产甲烷菌分可为5个大目,分别是:甲烷杆菌目(Methanobacteriales)、甲烷球菌目(Methanococcales)、甲烷微菌目(Methanomicrobiales)、甲烷八叠球菌目(Methanosarcinales)和甲烷火菌目(Methanopyrales) [3],上述5个目的产甲烷菌可继续分为10个科与31个属,它们的系统分类及主要代谢生理特性见表1.2.产甲烷菌的生态多样性产甲烷球菌发现于1982年,生活在260m深、200atm、94℃的海底火山口附近,属于原核生物中的古菌域,具有其它细菌如好氧菌、厌氧菌和兼性厌氧菌所不同的代谢特征. 产甲烷菌的甲烷生物合成途径主要是以乙酸、H2/CO2、甲基化合物为原料[4]. 产甲烷菌在自然界中分布极为广泛,在与氧气隔绝的环境几乎都有甲烷细菌生长,如海底沉积物、河湖淤泥、水稻田以及动物的消化道等. 在不同的生态环境下,产甲烷菌的群落组成有较大的差异性,并且其代谢方式也随着不同的微环境而体现出多样性.3.生长繁殖特别缓慢甲烷细菌生长很缓慢,在人工培养条件下需经过十几天甚至几十天才能长出菌落。
产甲烷菌在厌氧消化中的应用研究进展_林代炎
L IN Dai 2yan 1 , L IN Xin 2jian 2 , YAN G Jing 1 , YE Mei 2feng 1 世纪 70年代中期 ,产甲烷菌只有 1个科 (甲烷杆 菌科) ,分 3个属、9个种。
随着研究手段的发展 以及人们对产甲烷菌的关注 ,据杨秀山等 1991年 报道 ,美国奥斯冈 ( Orego n)产甲烷菌保藏中心 当时收藏的产甲烷菌有 215株分属于 3目、6科、 55种 ,可能是当时最完备的目录 [ 3 ]。
从系统发育 来看 ,到目前为止 ,产甲烷菌分成 5个目 ,分别为 关系 ,望能为产甲烷菌在污水处理工程中发挥更大 1 产甲烷菌研究历史RNA 的同源性进行分类取得了较为满意的结果 ;福建农业学报 23 (1) :106~110 ,2008Fu j i an J ou rnal of A g ricult u ral S ciences文章编号 : 1008 - 0384 ( 2008) 01 - 0106 - 05产甲烷菌在厌氧消化中的应用研究进展林代炎1 ,林新坚2 ,杨 菁1 ,叶美锋1(1.福建省农业科学院农业工程技术研究所 ,福建 福州 350003 ; 2.福建省农业科学院土壤肥料研究所 ,福建 福州 350013)摘 要 :简述了产甲烷菌研究史 ,分析了厌氧消化领域研究进展以及产甲烷菌代谢机理和生理生化特征的关系。
关键词 :厌氧消化 ;产甲烷菌 ;厌氧反应器 中图分类号 : X 703文献标识码 : AAdvance in utilization of methanobacteria f or anaerobic digestion studies( 1 . A ricult ural En gi neeri n g I nstit ute , Fuj i an A ca dem y of A g ricult u ral S ciences , Fuz hou , Fu j i an 350003 , Chi na; 2 . S oi l an d Ferti li z er I nstit ute , Fu j i an A ca dem y of A g ricult uralS ciences , Fuz hou , Fu j i an 350013 , Chi na)so analyzes t he relatio nship between t he research develop ment in anaerobic digestio n and t he metabolic mechanism and t he p hysiological and biochemical characteristics of met hanobacteria. Key words : anaerobic digestion ; met hanogens bacteria ; anaerobic reactor随着人们认识到厌氧发酵技术在污水处理及生制 , 1950年 , Hungate 创造了无氧分离技术才使产 产沼气能源等方面的突出优势 ,对产甲烷菌在厌氧甲烷菌的研究得到了迅速的发展 [ 1 - 2 ]。
厌氧消化实验报告(3篇)
第1篇一、实验目的1. 了解厌氧消化过程中的微生物学原理。
2. 掌握厌氧消化实验的操作步骤。
3. 分析厌氧消化过程中不同因素对产气量的影响。
4. 探讨厌氧消化技术在有机废物处理中的应用。
二、实验原理厌氧消化是一种在无氧条件下,通过微生物的代谢活动将有机废物转化为甲烷、二氧化碳、水和其他副产品的生物化学过程。
该过程主要分为三个阶段:水解酸化阶段、产氢产乙酸阶段和产甲烷阶段。
三、实验材料与仪器1. 实验材料:猪粪、玉米秸秆、厌氧消化菌接种剂、蒸馏水、pH试纸、温度计、搅拌器、气体收集装置等。
2. 实验仪器:恒温培养箱、发酵罐、pH计、气体分析仪等。
四、实验步骤1. 样品准备:将猪粪和玉米秸秆按一定比例混合,加入适量的蒸馏水搅拌均匀,制成有机废物混合物。
2. 接种:将厌氧消化菌接种剂加入混合物中,搅拌均匀。
3. pH调整:使用pH试纸检测混合物的pH值,调整至6.5~7.5。
4. 装罐:将混合物装入发酵罐中,密封。
5. 培养:将发酵罐放入恒温培养箱中,在35℃条件下培养。
6. 产气量测定:每隔一定时间,使用气体收集装置收集发酵产生的气体,并使用气体分析仪测定甲烷含量。
7. 数据分析:记录不同时间点的产气量,分析厌氧消化过程中不同因素对产气量的影响。
五、实验结果与分析1. pH值对产气量的影响:在实验过程中,观察到pH值对产气量有显著影响。
当pH值在6.5~7.5范围内时,产气量较高。
这是因为该pH值范围内,厌氧消化菌的生长和代谢活动最为旺盛。
2. 温度对产气量的影响:实验结果表明,温度对产气量有显著影响。
在35℃条件下,产气量较高。
这是因为该温度范围内,厌氧消化菌的生长和代谢活动最为旺盛。
3. 有机物浓度对产气量的影响:实验结果表明,有机物浓度对产气量有显著影响。
当有机物浓度较高时,产气量较高。
这是因为有机物浓度越高,厌氧消化菌可利用的底物越多,产气量越高。
4. 接种剂对产气量的影响:实验结果表明,接种剂对产气量有显著影响。
厌氧消化池产甲烷菌的筛选及特性研究
S p2 1 e .0 2
厌氧消化池产甲烷菌的筛选及特性研究
金 映虹 , 黎佳媛 , 王锐 萍 , 谢 秀祯 , 黄循吟’
( 海南师范大学 生命科学学院, 海南 海 口 5 15 ) 7 18
摘 要: 从厌氧消化池洚 J污泥 中采集样品 , 生 利用特定培养基进行厌氧培养 , 离筛选得到 2 分 株 茵, 分别编号为A B 通过特定 荧光反应检测鉴定A B 、. 、 均为产甲烷茵. 利用甲醇液体培养基对
产 甲烷 细 菌 , 来被 称 为 奥 氏 甲烷 杆 菌 ( lhn— 后 Me ao —
bc l m l si ; aiu O e uk ) 另一类是能够 产生许多氢 的 ls a i 细 菌 , 来 被 称 为 产 氢 产 乙 酸 菌. 9 1 , 根 后 10 年 孙
(one ) Shgn 对产 甲烷茵 的特征 , 以及产 甲烷菌对物 质 的转化做 了更 加详细地研究p1 由于厌氧分离 . 甲烷 菌 的设 备 和技术 尚不完 备 , 对奥 氏 甲烷 菌所 做 的分离研究 工作并未取得重大 的进展 直到 2 世 , O 纪 7 年代中期 , 甲烷菌只有一个科 , 0 产 被称作 甲烷 杆菌科 , 且分成三个属 , 并 九个 种[ 15 年 , 4 9 0 科学 1 . 家 亨 格 特 ( u gt) 次 创 造 了 严 格 无 氧 分 离 技 H nae 首 术, 这一技术对于甲烷菌的研究具有十分重要的意 义p 随后 , . 人们从各种不同的厌氧生态环境 中分离
s e i c fu r s o y T e r r e s sr i a d sr i A a o l co s e in d t ol c h t a e p cf o o c p . h y we e ma k d a ta n A n t n B. g c l t rWa d sg e o c l tt e meh n il a s e e wh c s rd c d b ta n A o T er s lss o e a n A n o h c u d p o u e g fe b u 0 d y ih Wa p o u e y sr i rB. h u t h w d t t e h s a d B b t o l r d c a at r o t a s s a 2 c l v t n wi t a o q i d u a dt eg s p o u t no ta nWa r h n A sr i S u t a i t meh i o h n l i u d me i m, n a r d c i f sr i s mo et a t n’ . l h o B a
产甲烷过程的研究
产甲烷过程是指有机物质在厌氧条件下,被产甲烷菌转化成甲烷和二氧化碳的过程。
这个过程是全球甲烷排放的主要来源之一,因此对产甲烷过程的研究非常重要。
产甲烷过程的原理是厌氧消化,其中有机物质通过一系列的生化反应被分解成简单的气体和液体。
这个过程可以分为四个阶段:水解阶段、酸化阶段、产氢产乙酸阶段和产甲烷阶段。
其中,产甲烷阶段是整个厌氧消化过程的关键阶段,涉及到有机物质的最终转化。
产甲烷菌是产甲烷过程的主要微生物,它们是一类非常特殊的古菌,能够在没有氧气的环境中生存并利用有机物质。
产甲烷菌通过将有机物质转化成甲烷和二氧化碳来获取能量,这个过程需要氢气作为还原剂。
因此,产甲烷菌在产甲烷过程中起着至关重要的作用。
对产甲烷过程的研究可以通过实验室内模拟厌氧消化过程来进行。
研究人员可以通过控制不同的反应条件,如温度、pH值、有机负荷等,来研究产甲烷菌的生长和代谢特性。
此外,还可以通过基因组学、蛋白质组学和代谢组学等技术手段来研究产甲烷菌的分子生物学特性,进一步深入了解其生长和代谢机制。
总的来说,对产甲烷过程的研究有助于深入了解全球气候变化和环境污染问题,同时也有助于开发更有效的厌氧消化技术,实现有机废弃物的资源化利用。
甲烷与肠道疾病
甲烷与肠道疾病甲烷无色无味,是自然界中天然气和沼气的主要成分,空气中含量较少,甲烷的化学性质较为稳定。
人体结肠中的厌氧菌通过无氧酵解分解摄入的食物产生包括二氧化碳、氢气、甲烷等多种气体。
这些肠道气体参与了许多生物功能的调节,与一些胃肠道疾病密切相关。
有学者称其为“气体递质”.有研究提示,甲烷与结直肠癌、憩室病、肠易激综合征、炎症性肠病等肠道疾病相关。
以下就甲烷在人体胃肠道疾病中作用研究进展作一简要综述。
一、肠道甲烷的产生和排出人体内的甲烷主要由肠道内的产甲烷菌无氧酵解糖类产生。
新生儿肠道内即可检测到产甲烷菌的定植,其主要来源于分娩过程中母体阴道和肠道内的菌群。
人体中的产甲烷菌随年龄增长而变化,至青少年阶段基本稳定,并达到成人水平。
其主要分布在结肠中,并与粪便的黏稠度有关,左半结肠中粪便较硬,则产甲烷菌更占优势。
在小肠细菌过度生长的病人小肠中也发现有产甲烷菌的存在。
有研究认为,十二指肠菌群中产甲烷菌占20%.产甲烷菌是一类厌氧菌,主要为史氏甲烷短杆菌(Methanobrevibacter Smithii),其他还有拟杆菌和梭菌等菌属。
它们以氢气和二氧化碳为底物,产生甲烷和水,反应方程式为4H2+CO2→CH4+2H20.因而,甲烷的产生过程与氢气密不可分,在利用氢气方面产甲烷菌与其他一些细菌存在着竞争关系,如硫酸还原菌、产乙酸菌等。
人体本身较少利用甲烷,约80%通过肠道排气排出,其余20%可穿过肠道黏膜进入循环系统,最终通过肺呼吸排出。
成人中约1/3可通过呼吸试验检测到甲烷,这与地域、性别、年龄、社会经济水平等因素有关。
其他2/3的人群虽在呼出气体中检测不到甲烷,但在大部分人的粪便中都能检测到产甲烷菌。
Wearer等发现,当粪便中产甲烷菌达到一定标准(>108/g),在呼吸气体中即可检测到甲烷。
二、甲烷与肠道疾病以往认为甲烷化学性质稳定,不参与人体的生理代谢活动。
然而,近些年的研究发现,无论是动物模型或是人体试验都证明甲烷可以影响胃肠道神经肌肉功能,呼吸试验中所测得甲烷量与肠传送时间成正比,尽管其机制尚不明确。
产甲烷菌的生态多样性及工业应用
2 产甲烷菌的生态多样性
产甲烷菌属于原核生物中的古菌域,具 有其它细菌如好
4期
傅 霖等:产甲烷菌的生态多样性及工业应用
575
分类单元(目) Taxon (Order)
甲烷杆菌目 Methanobacteriales
表1 产甲烷菌系统分类的主要类群及其生理特性[3] Table 1 Properties of major taxa of methanogens [3]
Abstract Methanogens are important extremophiles, which play a key role in the global carbon cycle. Recently, the cultured methanogens are grouped into five orders based on their phylogeny and phenotypic properties. In addition, there are many different habitats in nature for methanogens, such as marine and freshwater sediments, rice-field soils, animal gastrointestinal tracts, mineral and geothermal environment. The ecology of methanogens indicates that the different ecological methanogenic communities have different distribution characteristics, and the metabolic functions of methanogens are affected by different environmental factors. In this paper, the current knowledge methanogens, such as their definition in taxonomy and ecological diversity is reviewed, and some suggestions related to further studies on the application of methanogens in anaerobic biotreatment and biomethanization are provided. Tab 1, Ref 38 Keywords methanogen; classification; ecological diversity; anaerobic biotreatment; biogasification CLC Q939.908
国内外厌氧消化模型研究进展_杨双春
0引言先进的水处理技术不仅包括水质的处理、污染物的资源化,还包括技术的低能耗。
如何使城市污水处理工艺实现低能耗、高效率、剩余污泥量少、脱氮除磷已经是目前水处理技术研究的方向。
在众多的处理工艺中,人们逐渐认识到采用厌氧生物处理工艺处理有机废水和有机废物的优势,厌氧法适于处理高浓度的有机废水,而且厌氧生物法可把有机物转化为生物能———沼气。
但由于对厌氧处理技术的理论研究远远不够,在以往的污水厂处理工艺和运行管理中,技术人员由于缺乏理论的指导,在设计中出现问题,导致很大的资源浪费[1]。
数学模型法是现代科学研究的重要手段,利用数学模型预测进水水质和水量变化的影响以及适应这些变化所需要采取的运行措施,能够使处理效果最优化。
它有助于描述和理解生物处理系统的反应过程,对设计提供理论上的指导;还有助于工艺的优化和控制,从而更好地指导实际生产运行[2]。
国内外厌氧消化模型研究进展杨双春,邓丹,梁丹丹,潘一辽宁石油化工大学环境与生物工程学院,辽宁抚顺113001摘要厌氧生物法是一种适用于处理高浓度有机废水的高效低能耗的处理工艺,厌氧消化模型是表述兼性细菌和厌氧细菌将可生物降解的有机物分解成二氧化碳、甲烷和水的过程模型。
它是一个具有分解和水解、产酸、产乙酸和产甲烷等过程的复杂的结构化模型。
本文主要介绍了国内外污泥厌氧消化模型的研究现状及其进展,模型包括厌氧消化1号模型(ADM1)、好氧活性污泥-厌氧消化模型(ASM1-ADM1)、单相中温-厌氧消化模型(SPMT-ADM1)、单相高温-厌氧消化模型(SPHT-ADM1)、两相-厌氧消化模型(TP-ADM1)、厌氧消化-活性污泥复合模型(ADM1-ASMs)、硫酸盐还原-厌氧消化模型(SR-ADM1)、硝酸盐还原-厌氧消化模型(NR-ADM1)、产气-厌氧消化模型(GPAE-ADM1)、沉淀池-厌氧消化模型(ST-ADM1)和抑制因子-厌氧消化模型(IK-ADM1)。
《2024年煤炭厌氧发酵产甲烷方法初步研究》范文
《煤炭厌氧发酵产甲烷方法初步研究》篇一一、引言随着能源需求的增长和传统能源的日益减少,寻找新的、可再生的能源已成为当前的重要课题。
煤炭作为一种传统的能源,其清洁、高效利用具有重要意义。
煤炭厌氧发酵产甲烷技术,作为一种新型的煤炭转化技术,有望为煤炭的高效利用提供新的途径。
本文将就煤炭厌氧发酵产甲烷方法的初步研究进行探讨,为相关研究提供参考。
二、煤炭厌氧发酵产甲烷的原理煤炭厌氧发酵产甲烷的过程,主要是在无氧或低氧环境下,通过微生物的发酵作用,将煤炭中的有机物转化为甲烷气体。
这一过程与生物质厌氧消化产甲烷的原理相似,都是通过微生物的代谢活动来实现。
煤炭中的有机物在微生物的作用下,经过水解、酸化、乙酸化和甲烷化等阶段,最终生成甲烷气体。
三、煤炭厌氧发酵产甲烷的方法1. 原料准备:选择合适的煤炭作为原料,进行破碎、筛分等预处理,以提高微生物对煤炭的利用率。
2. 接种微生物:将含有适量微生物的菌种接种到反应器中,为厌氧发酵提供必要的生物催化剂。
3. 反应器设计:设计合理的反应器结构,保证反应器内的无氧或低氧环境,同时便于对反应过程进行监控和控制。
4. 发酵过程控制:控制反应器的温度、pH值、搅拌强度等参数,以保证微生物的正常生长和代谢活动。
5. 收集甲烷:在发酵过程中,及时收集产生的甲烷气体,并进行净化、储存等处理。
四、实验研究及结果分析本文通过实验研究了煤炭厌氧发酵产甲烷的过程。
实验中,我们选择了不同种类的煤炭作为原料,接种了不同的微生物菌种,并对反应器的温度、pH值等参数进行了控制。
实验结果表明,在适当的条件下,煤炭厌氧发酵可以产生较多的甲烷气体。
通过对实验数据的分析,我们得出了最佳的反应条件,为实际生产提供了参考。
五、讨论与展望煤炭厌氧发酵产甲烷技术具有很大的潜力,可以为煤炭的高效利用提供新的途径。
然而,目前该技术还存在一些问题和挑战。
首先,煤炭的成分复杂,不同种类的煤炭对厌氧发酵的效果有很大影响。
其次,微生物的生长和代谢过程受到多种因素的影响,如温度、pH值、营养物质等。
嗜冷性产甲烷菌的研究进展
嗜冷性产甲烷菌的研究进展张伟;万永青;段开红;田瑞华【摘要】Psychrophilic methanogens play a very important role in global carbon cycle,and attract more and more research interests.Though playing an important role in low-temperature anaerobic digestion,the so-far cultured cold-adaptive methanogenic strains are very few.The research progress of Psychrophilic methanogens was reviewed,with the focus on their classification,isolation and cold-adapted mechanisms,as well as the molecular biology techniques.The application of Psychrophilic methanogens in low-temperature anaerobic digestion was also analyzed.%嗜冷产甲烷菌在全球碳素循环中发挥了非常重要的作用,近年来引起了国内外学者的广泛关注.尽管已知冷适应的产甲烷古菌在低温厌氧消化中发挥着重要作用,但目前获得培养的嗜冷产甲烷古菌却很少.综述了嗜冷产甲烷菌的研究进展,阐述了嗜冷产甲烷古菌的分离、嗜冷机制及分子生物学技术的应用,并对嗜冷产甲烷菌在低温厌氧消化中的应用进行了分析.【期刊名称】《安徽农业科学》【年(卷),期】2013(041)013【总页数】5页(P5909-5913)【关键词】嗜冷产甲烷菌;嗜冷机制;分子生物学技术;低温厌氧消化【作者】张伟;万永青;段开红;田瑞华【作者单位】内蒙古农业大学生命科学学院,内蒙古呼和浩特010018;内蒙古农业大学生命科学学院,内蒙古呼和浩特010018;内蒙古农业大学生命科学学院,内蒙古呼和浩特010018;内蒙古农业大学生命科学学院,内蒙古呼和浩特010018【正文语种】中文【中图分类】S181.3随着世界人口的日益增长,人类对自然资源的索取也不断增加,然而人类能利用的自然资源却越来越少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产甲烷菌在厌氧消化中的应用研究进展林代炎1,林新坚2,杨 菁1,叶美锋1(1.福建省农业科学院农业工程技术研究所,福建 福州 350003;2.福建省农业科学院土壤肥料研究所,福建 福州 350013)收稿日期:2007-07-26初稿;2007-12-21修改稿作者简介:林代炎(1963-),男,研究员,主要从事有机废弃物农业资源化利用研究(E 2mail :lindaiyan @1261com )。
基金项目:福建省环保专项基金(1576);福建省财政专项(STIF -Y01)摘 要:简述了产甲烷菌研究史,分析了厌氧消化领域研究进展以及产甲烷菌代谢机理和生理生化特征的关系。
关键词:厌氧消化;产甲烷菌;厌氧反应器中图分类号:X 703文献标识码:AAdvance in utilization of methanobacteria for anaerobic digestion studiesL IN Dai 2yan 1,L IN Xin 2jian 2,YAN G Jing 1,YE Mei 2feng 1(1.A ricultural Engi neering I nstit ute ,Fuj ian A cadem y of A g ricultural S ciences ,Fuz hou ,Fuj ian 350003,China;2.S oil and Fertilizer I nstitute ,Fuj ian A cadem y of A g riculturalSciences ,Fuz hou ,Fuj ian 350013,China )Abstract :This article briefly introduces the progress in using methanobacteria for anaerobic digestion studies.It al 2so analyzes the relationship between the research development in anaerobic digestion and the metabolic mechanism and the physiological and biochemical characteristics of methanobacteria.K ey w ords :anaerobic digestion ;methanogens bacteria ;anaerobic reactor 随着人们认识到厌氧发酵技术在污水处理及生产沼气能源等方面的突出优势,对产甲烷菌在厌氧消化中的研究也越来越重视。
厌氧发酵是极为复杂的生物过程,在参与反应的众多微生物中,产甲烷菌的优劣、密度以及它的生长环境条件是影响厌氧消化效率和甲烷产量的重要因素,因此,对产甲烷菌的代谢机理及生理生化特征,以及在厌氧消化过程中为产甲烷菌创造有利环境条件方面的研究成为该领域的重点。
本文简述了产甲烷菌的研究历史,并分析了厌氧消化系统应用领域研究的快速发展与产甲烷菌代谢机理、生理生化特征研究进展的密切关系,望能为产甲烷菌在污水处理工程中发挥更大作用提供参考。
1 产甲烷菌研究历史产甲烷菌的研究开始于1899年,当时俄国的微生物学家奥姆良斯基将厌氧分解纤维素的微生物分为两类,一类是产氢的细菌,后来称为产氢、产乙酸菌,另一类是产甲烷菌,后来称奥氏甲烷杆菌(Met hanobacill us omel auskii )。
由于研究条件的限制,1950年,Hungate 创造了无氧分离技术才使产甲烷菌的研究得到了迅速的发展[1-2]。
由于产甲烷菌是严格的厌氧菌,对其研究需要较高的技术手段,据《伯杰细菌鉴定手册》第8版记载,到20世纪70年代中期,产甲烷菌只有1个科(甲烷杆菌科),分3个属、9个种。
随着研究手段的发展以及人们对产甲烷菌的关注,据杨秀山等1991年报道,美国奥斯冈(Oregon )产甲烷菌保藏中心当时收藏的产甲烷菌有215株分属于3目、6科、55种,可能是当时最完备的目录[3]。
从系统发育来看,到目前为止,产甲烷菌分成5个目,分别为甲烷杆菌目(Met hanohacteri ales )、甲烷球菌目(Met hanococcales )、甲烷八叠球菌目(M et hano 2sarci nales )、甲烷微菌目(M et hanomicrobi ales )和甲烷超高温菌目(Met hanop y rales )[4],分离鉴定的产甲烷菌已有200多种[5]。
在产甲烷菌分类方面,随着分子生物学的发展,人们利用不同物种间small 2subunit ribosomal RNA 的同源性进行分类取得了较为满意的结果;1996年伊利诺伊大学完成了第1个产甲烷菌福建农业学报23(1):106~110,2008Fuj ian J ournal of A g ricultural Sciences文章编号:1008-0384(2008)01-0106-05本页已使用福昕阅读器进行编辑。
福昕软件(C)2005-2007,版权所有,仅供试用。
Met hanococcus j annaschii 的基因组测序,迄今为止已有4个目的5种产甲烷菌完成基因组测序[5]。
在产甲烷菌代谢方面,已明确它是自养型微生物,能利用环境中的化学能,并发现甲烷生物合成过程的3种途径[1];在产甲烷菌必需营养方面,发现产甲烷菌不仅需C 、N 、P 等营养元素,同时,还需要矿物质营养元素,如K +、Na +、Ca 2+、Co 2+、Cl -、Fe 2+、Fe 3+等[5],同时,已对产甲烷菌的生理生化特征进行深入研究,明确了它合适的生长环境条件,为工程应用提供了依据。
在Hungate [1]分离培养纯化产甲烷菌的技术出现之后,许多微生物学家、生物化学家、污水处理专家从产甲烷菌的形状、结构、生理、生化等多方面进行了研究,从而为厌氧消化技术用于处理污水、回收能源等方面提供了坚实的理论基础。
2 产甲烷菌的代谢机理及生理生化特征其中以;以-7];以甲基化合物为原料的甲烷生物合成不足10%。
甲烷生物合成过程中,甲烷的形成伴随着细胞膜内外化学梯度的形成,这种化学梯度驱动A TP 酶产生细胞内能量通货———A TP 。
一般1种产甲烷菌只具有1种甲烷合成途径,而多细胞结构的甲烷八叠球菌同时含有3种甲烷合成途径,且至少可以利用9种甲烷合成的底物[2]。
产甲烷菌只能利用简单的小分子物质,世代时间相对较长[8]。
产甲烷菌与其他任何细菌相区别的主要特征在于产甲烷菌的代谢产物都是甲烷、二氧化碳和水,且其中有7种辅酶因子与所有微生物及动植物都不同,细胞壁没有D 2氨基酸,胞壁酸的独特结构也与其他细菌有很大区别[9-10]。
这些特征为产甲烷菌的鉴定及分类提供了有效的依据。
对产甲烷菌生物生化特征的研究,明确了产甲烷菌生长环境对环境条件的要求。
产甲烷菌都是专性严格厌氧菌,对氧非常敏感,遇氧后会立即受到抑制,不能生长繁殖,有的还会死亡[11]。
氧化还原电位是衡量厌氧程度的指标,张无敌认为在高温沼气发酵条件下,适宜的氧化还原电位为-600~-560mV ;中温和自然温度条件下适宜的氧化还原电位为-350~-300mV [12]。
一般认为厌氧消化在5~83℃温度范围内进行,产气量随温度变化并有两个高峰:中温35℃和相对高温55℃[13]。
沼气发酵微生物最适宜的p H 值为615~715,超出这一范围,沼气微生物的代谢将减慢或产甲烷细菌受抑制或死亡。
沼气发酵过程是有机物彻底矿化的微生物厌氧代谢过程,一般对有机物碳、氮、磷要求的比例为75∶5∶1[12]。
3 产甲烷菌在厌氧消化中的应用311 厌氧消化工艺流程研究发现,产甲烷菌在污水中可利用的底物很少,只能利用很简单的物质,如二氧化碳、氢、甲酸、乙酸等,这些简单的物质必须由其他发酵性细菌把复杂有机物分解后提供给产甲烷菌,因此要等到其他细菌都大量生长以后才能生长,而且产甲烷菌的世代时间相对较长[8],因此,提出厌氧消化的两阶段理论。
Chosh 于20世纪70年代在厌氧消化的两阶段理论基础上,提出两相生物系统(Two 2p hase Biosystem ,或称两相厌氧消化系统),并开展相关研究认为,在稳态条件下,两相厌氧工艺比一相厌氧工艺在处理效率、处理能力及运行稳定性等方面优越。
一方面是由于相分离为不同的微生物提供了各自适宜的生存条件,另一方面,独立控制的产酸相也起到了预处理和缓冲负荷及水质波动的作用[14-16]。
在不同的研究中,产酸相的酸化特征作为衡量产酸相运行状态的参数受到学者们的重视。
因此,目前在厌氧消化工艺中,为了提高厌氧消化系统的酸化效果,都将酸化调节池与厌氧消化池分开。
管运涛等在传统的两相厌氧生物反应器的产酸相和产甲烷相之间加入了膜分离单元,认为能有效提高污水有机物的酸化率,并提高系统的产气率和产甲烷反应器比产甲烷率[17-19]。
此外,产甲烷菌能够吸收环境中的硫酸根,通过一系列的酶代谢最终形成硫化氢[2]。
因此在收集与利用之前,还必须对甲烷进行脱硫处理,以免产生SO 2等不良气体,造成环境污染。
312 厌氧反应器设计原理厌氧消化是极为复杂的生物过程,在参与反应的众多微生物中,产甲烷菌的优劣和密度是影响厌氧消化率及甲烷产量的重要因素,因此,减少产甲烷菌的流失及为产甲烷菌创造合适的生长环境,以提高产甲烷菌密度,成了厌氧反应器的设计目标。
不同产甲烷菌在合成甲烷时,利用的底物不同,如嗜热甲酸甲烷杆菌,能利用H 2/CO 2和甲酸盐合成甲烷,不能利用乙酸盐、二甲胺和甲醇产甲烷[20-21]。
目前所知,只有甲烷丝菌和甲烷八叠球701第1期林代炎等:产甲烷菌在厌氧消化中应用研究进展本页已使用福昕阅读器进行编辑。
福昕软件(C)2005-2007,版权所有,仅供试用。
菌能裂解乙酸产生甲烷[22],而在有机物厌氧消化的甲烷化作用下,70%以上的甲烷来自乙酸的裂解[6-7]。
因此,人们认为甲烷丝菌和甲烷八叠球菌在厌氧消化产甲烷系统中起着极其重要的作用,并认为前者具有低的底物生长率(即高的底物亲和性),后者具有高的底物生长率(即低的底物亲和性)[7,23],李亚新等研究认为甲烷八叠球菌对基质代谢能力强,当乙酸浓度大于300mg・L-1时,对基质的利用速率是甲烷丝菌的3~5倍[24]。
杨秀山等研究发现,甲烷八叠球菌以3种形式存在于消化器内。
1种是在具滤膜或填充物的消化器内以多细胞沉聚在一起;第2种是以大小不等的包囊存在于絮状污泥中与甲烷丝菌混在一起或附着在颗粒污泥上;第3种是以颗粒状保留在消化器内。
人们为提高厌氧反应器内产甲烷菌密度,在消化器内填加附着物(如A F),使消化器中的生物量形成较大的絮状污泥和进一步使生物量形成颗粒污泥,以保留甲烷八叠球菌于消化器内[25];采用三相分离器,借助颗粒污泥重力沉降作用,保留活性污泥的数量(如UASB);内循环厌氧反应器[26],一方面提高了消化器高度,提高污泥沉降分层效果,并在消化器内自下而上利用三相分离器,分成第一反应室和第二反应室,使颗粒污泥中甲烷八叠球菌在底层第一反应室新进的高乙酸浓度污水中得到积累,使絮状污泥中甲烷丝菌在中层第二反应室由第一反应室处理后的低乙酸浓度污水中得到积累。