LiPON固态电解质与全固态薄膜锂离子电池制备及特性研究
一种全固态电解质的制备方法及应用[发明专利]
专利名称:一种全固态电解质的制备方法及应用
专利类型:发明专利
发明人:李忠涛,程章祯,林艳,孔德斌,张兴豪,吴明铂,智林杰申请号:CN202210090152.X
申请日:20220125
公开号:CN114551997A
公开日:
20220527
专利内容由知识产权出版社提供
摘要:本发明公开了一种全固态电解质的制备方法及应用,由以下步骤组成,将氮掺杂共轭骨架材料与双三氟甲磺酰亚胺锂混合,然后真空烘干,在惰性气体氛围下煅烧,进行压片得到全固态电解质;所述双三氟甲磺酰亚胺锂的浓度为0.1~0.5M;所述NCS与所述有机溶液的质量比为5~9:1。
该材料用作固态电池,具有高的Li+转移数和室温离子电导率,稳定的界面特征,组装的Li/LiFePO4电池也表现出良好的循环稳定性。
申请人:中国石油大学(华东)
地址:266580 山东省青岛市黄岛区长江西路66号
国籍:CN
代理机构:南京灿烂知识产权代理有限公司
代理人:王江南
更多信息请下载全文后查看。
全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能研究共3篇
全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能研究共3篇全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能研究1随着电动汽车及移动终端等市场的不断扩大,对于能量密度和安全性要求越来越高。
全固态锂电池因其具有高能量密度、低污染性、安全性高等优点,成为新的研究热点。
聚氨酯基固态聚合物电解质作为一种非晶态的聚合物电解质,在全固态电池中的应用越来越广泛,成为预测性能的非常有希望的选择。
本文主要研究全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能。
首先,本文对聚氨酯基固态聚合物电解质的基本概念进行了简要介绍,然后详细描述了制备电解质所需的原材料及其比例。
接下来,作者对聚氨酯基固态聚合物电解质的物化性质进行了测试。
实验中采用了压电频率响应法测试其电导率、交流阻抗法测试其内阻值和荧光共振能量转移法测试其锂离子迁移率。
结果表明,聚氨酯基固态聚合物电解质具有良好的电导率和锂离子迁移率,内阻值低,且有望替代传统有机液体电解质,大大提高锂电池的安全性。
最后,作者还对全固态锂电池用聚氨酯基固态聚合物电解质的电化学性能进行了测试。
通过循环伏安法和恒流充放电测试,研究了电解质对电池性能的影响。
实验中发现,该电解质可以有效减少电池内部电阻,提高电池的容量、循环性能和能量密度,可望成为新一代高性能全固态锂电池的重要组成部分。
结合所得结果,本文初步探索了聚氨酯基固态聚合物电解质在全固态锂电池中的应用前景。
然而,一些美中不足的问题,如聚氨酯基固态聚合物电解质在高温下的稳定性还需进一步研究。
因此,今后需要通过改进材料结构、制备方法等途径,进一步提高电解质的成品质量和稳定性,实现其在实际工业应用中的大规模生产和使用本研究初步探索了聚氨酯基固态聚合物电解质在全固态锂电池中的应用前景,结果表明该电解质具有良好的电导率、锂离子迁移率和内阻值,可以提高锂电池的安全性、容量、循环性能和能量密度。
但仍需进一步研究其在高温下的稳定性,并通过改进材料结构和制备方法提高成品质量和稳定性,以实现其在实际工业中的大规模应用全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能研究2全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能研究近年来,随着电动汽车和可穿戴设备等的广泛应用,锂离子电池作为其主要电源,已成为了当今电池市场中的主流产品。
LiSiPON固态薄膜电解质的结构和性能分析
LiSiPON固态薄膜电解质的结构和性能分析李国珍;董磊;任伟;李德军【摘要】以Li3PO4和Si3N4为靶材,利用离子束辅助沉积N离子流轰击法制备非晶结构的固态电解质LiSiPON薄膜.实验中,通过控制N2气和Ar气的流量比,调节薄膜的含氮量.利用X线衍射、X线能量色散谱仪和X线光电子能谱仪研究薄膜的结构和组织成分的变化,并通过电化学阻抗测试仪获得薄膜的离子电导率,研究不同氮氩比对LiSiPON薄膜结构、组成和电学性质的影响.结果表明:N2和Ar流量比为1∶1时,薄膜含氮量最高,离子电导率达到最大值,在室温时电解质薄膜的离子电导可达6.8×10-6S/cm,是一种有潜力应用于全固态薄膜锂离子电池的电解质材料.【期刊名称】《天津师范大学学报(自然科学版)》【年(卷),期】2013(033)004【总页数】4页(P16-19)【关键词】LiSiPON固态电解质;离子束辅助沉积;离子电导率;薄膜锂离子电池【作者】李国珍;董磊;任伟;李德军【作者单位】天津师范大学物理与材料科学学院,天津300387;天津师范大学物理与材料科学学院,天津300387;天津师范大学物理与材料科学学院,天津300387;天津师范大学物理与材料科学学院,天津300387【正文语种】中文【中图分类】TM912.9随着电子器件不断向微型化、轻量化的方向发展,生产与之相匹配的微小尺寸化学电源成为迫切要求,特别是适用于微电子机械系统(microelectronic mechanical systems,MEMS)发展的微电池已引起人们的重视.目前已开展研究的微电池系列有微型锌镍电池、微型全固态锂电池、微型太阳电池、微型温差电池和微型燃料电池等.因为锂是最轻的金属元素,同时电负性最大,可以提供高比能量,因此,微型全固态锂电池被认为是最合适的电源之一.目前,已有许多用于全固态薄膜锂电池的电极薄膜材料,但有关电解质薄膜的研究明显落后于电极薄膜.研制高性能、低成本的电解质薄膜对开发全固态薄膜电池具有非常重要的意义[1-7].近年来,由于具有比能量高、循环性能好及安全性高等优点,且能够适应能源微型化、轻量化的要求,全固体薄膜锂电池逐渐成为研究热点.美国橡树岭国家实验室(ORNL)在1992年以Li3PO4为靶材,在N2气氛中用磁控溅射制备出一种具有良好电化学性能的无机电解质薄膜LiPON(Lithium Phosphorous Oxynitride),其室温电导率达2×10-6 S/cm[9-11].韩国 Lee等[14]以(1-x)Li3PO4·x Li2SiO3为靶材,在N2气氛下采用射频磁控溅射法制备了LiSiPON氧氮化物薄膜电解质,研究发现,随着Si含量增加,薄膜离子电导率逐渐升高,最高达1.24×10-5 S/cm.由于采用离子束辅助沉积可以获得致密均匀的薄膜,且工艺简单,易控制,本研究采用离子束辅助沉积技术制备LiSiPON薄膜,以期获得均匀致密、含氮量高的电解质薄膜.1 实验LiSiPON薄膜采用中国科学院沈阳科学仪器厂制造的FJL560CIZ型超高真空磁控与离子束联合溅射系统中的离子束辅助沉积设备进行制备,溅射靶材为直径50.9 mm、厚度3 mm的圆形Li3PO4靶和边长69.5 mm×69.5 mm、厚度3 mm的方形Si3N4靶.将圆形Li3PO4靶固定于方形Si3N4靶上,组成复合靶.为测量薄膜电解质的离子电导率,选择Au作为阻塞电极,在Si(100)基片上依次沉积了Au、LiSiPON薄膜和Au,形成Au/LiSiPON/Au的“三明治”结构,如图1所示.利用交流阻抗技术测定其离子电导率.其中,沉积的电解质薄膜厚约600 nm,薄膜Au厚约100 nm.实验所采用的基底为单面抛光的(100)单晶硅片,依次用丙酮、乙醇超声清洗15 min,吹干后立即送入真空沉积室中.沉积薄膜时,可利用电脑程序精确设置靶材的溅射时间,通过调节通入沉积室内N2气和Ar气的流量改变薄膜中N的含量,得到不同氮含量的LiSiPON薄膜.溅射离子源的工艺参数为溅射能量1.1 keV,溅射束流20 mA.实验时本底真空高于3.0×10-4 Pa,镀膜时工作气压约为8.0×10-3 Pa.沉积所得薄膜厚度约为500 nm,N2和Ar气的流量比分别为1∶1、1∶2和1∶5,所对应制备的样品编号分别为1#、2#和3#.采用X线衍射(X-raydiffraction,XRD)仪(D/MAX 2 500)确定薄膜的结构,测定光源为Cu KαX射线,扫描范围为20°~80°,步长为0.02°.利用 HitachiTM3000型X线能量色散谱(energy dispersive X-ray spectroscopy,EDS)确定薄膜中的元素组成和含量.LiSiPON固态电解质的化学组成与结构用X线光电子能谱仪(X-ray photoelectron spectroscopy,XPS)测定.用台阶测厚仪(Ambios XP2)测量电解质薄膜的厚度.利用电化学阻抗测试仪(普林斯顿VersaSAT4)对LiSiPON薄膜进行交流阻抗分析,测量频率为1~100 kHz.2 结果与讨论2.1 薄膜的结构和组成图2是LiSiPON薄膜的XRD图谱.除了基底Si外,图谱中没有出现其他衍射峰,说明薄膜主要形态为非晶态.对于固态电解质薄膜而言,玻璃态电解质电导率的各向同性对制备工艺的简化非常有利,由于非晶薄膜骨架中具有较多空隙,这些空隙有利于锂离子运动和传导[12],降低了锂离子迁移的活化能,因此,具有非晶态结构的电解质薄膜的电导率比晶态结构薄膜的电导率高出许多.图3和表1分别为氮氩气体流量比为1∶1的薄膜样品(1#)的EDS图谱和3个样品中Si、O、P和N的原子比.由样品的EDS图谱(图3)可以看出,样品1#中有N的沉积,其他2种样品的EDS图谱与图3类似,说明3种不同溅射条件所得薄膜中均出现了N的沉积.由表1可看出,当N2气流量不同时,薄膜中的N含量也存在明显变化.N2气和Ar气流量比为1∶1(1#)时,薄膜中的N原子百分比最高.薄膜中的含氮量与N2流量成正比,提高混合气体中N2气的比例可以获得氮含量较高的薄膜.同时由表1可知,3种样品中均含有大量的Si,这是由于Si 在Li2O-P2O5体系中的引入有助于形成交错互连的—Si—O—P—键合,有利于提高薄膜的电导率[14].在Li2O-P2O5体系中再引入N可以改变正磷酸盐阴离子的分布,并形成N的交错互连结构,提高Li+的迁移率,从而有助于获得较高的离子电导率.表1 1#、2#和3#样品中Si、O、P和N的原子比Tab.1 Si,O,P and N atom ic percentage of sam ples 1#,2#and 3#%样品编号 Si O P N 1# 39.52 47.70 8.11 4.68 2# 26.82 59.62 8.91 4.65 3# 32.64 49.77 15.05 2.54为了进一步考察IBAD沉积所得LiSiPON薄膜的化学组成,对1#样品薄膜进行XPS谱测试,结果如图4所示.分析图4可知,在结合能为398.1 eV处的不对称峰可以分解为在397.6 eV和399.4 eV处的2个峰,分别对应N的键合的P—N=P和结构,而在404.0 eV附近出现的小峰可能对应的N的键合为O—N=O[15].其中,交错互连的结构对提高Li+的迁移率有贡献,基于N1s峰在397.6 eV和399.4 eV处分解的2个峰的相对强度,可以得到电解质薄膜中约有40%的N是以键合的,由此推算薄膜中约有60%的P属于这种交错互连结构.2.2 薄膜的锂离子电导率图5为Au/LiSiPON/Au的电化学阻抗谱.图5中低频部分对应电极与电解质界面的贡献,高频部分应电解质薄膜的贡献.阻抗值是交流阻抗图中虚部最小时所对应的实部值.图5曲线由高频区的半圆和低频区的斜线两部分组成,具有固态离子导体薄膜在阻塞电极间的单一电介质弛豫过程的典型特征.图5中,0~1 000Ω处的半圆是LiSiPON薄膜的贡献;直线部分来自于Ag/LiSiPON/Ag“三明治”结构的阻塞电极体系,而它的斜率可能与Ag电极和电解质之间界面的粗糙度有关.由图5观察不到晶界对电导率的影响,这从另一个方面说明了制备出的LiSiPON薄膜为非晶态结构.LiSiPON电解质薄膜的阻抗Zel可以通过交流阻抗谱中半圆的低频部分在虚部的局部极小值所对应的实部数值得到,薄膜的电导率式(1)中:R为测得的薄膜阻抗;d为薄膜的厚度;A为电解质薄膜的反应面积.计算得到电解质薄膜的离子电导率为6.8×10-6 S/cm,与Bates等[4]制备的LiPON电解质薄膜相比,本研究沉积所得LiSiPON电解质薄膜的离子电导率有所增加.这可能是因为Si在Li2O-P2O5体系中的引入形成了交错互连的—Si—O—P—键合[16-17],此结构提高了电导率.同时,在Li2O-P2O5体系中引入N可以改变正磷酸盐阴离子的分布,并形成N的交错互连结构,提高Li+的迁移率,从而有助于进一步提高离子电导率[18].3 结论以圆形Li3PO4和方形Si3N4为靶材,采用离子束辅助沉积的方法在N2气气氛中制备了固态电解质LiSiPON薄膜,所制备的薄膜为无色透明,表面平滑致密,没有颗粒团聚、针孔和裂缝等缺陷.N和Si的掺入提高了Li2O-P2O5体系的离子电导率,离子电导率最高可达6.8×10-6 S/cm,说明LiSiPON薄膜对于全固态薄膜锂离子蓄电池而言是一种很有潜力的电解质材料.【相关文献】[1]INSEOK SEO,STEVEWM.New developments in solid electrolytes for thin-film lithium batteries[J].Lithium Ion Batteries-New Developments,2012,2:101—144.[2]王兵.日本利用常温工业试制出全固体薄膜锂离子充电电池[J].功能材料信息,2010,7:5—6.[3]JONESSD,AKRIDGR JR.A thin film solid state microbattery[J].Solid State Ionics,1992,53/56:628—634.[4]BATESJB,GRUZALSKIGR,DUDNEY N J.Rechargeable thinfilm Lithium batteries[J].Solid State Ionics,1994,70/71:619—628.[5]DUDNEY N J,BATESJB,ZUHRR A.Nanocrystalline Li x Mn2-y O4 cathodes for solid-state thin-film rechargeable Lithium batteries[J].J Electrochem Soc,1999,146:2455—2464.[6]耿利群,任岳,朱仁江,等.全固态薄膜锂离子二次电池的研究进展[J].中国西部科技,2013,12(1):8—9.[7]申万,杨志民,邢光健,等.固态薄膜电解质LiSiPON和其性能研究[J].电源技术,2006,30(3):179—182.[8]陈梅.利用常温工艺的全固体薄膜锂电池试制成功 [J].电源技术,2011,35:487—488.[9]WANGB,KWAK BS,SALESBC,et al.Ionic conductivitiesand structureof Lithium phosphorus oxynitride glasses[J].JNon-Cryst Solids,1995,183:297—306.[10]顾正建,郭晓旺,王定友,等.薄膜锂离子电池多层膜非晶无机固体电解质结构模型的建立与性能分析[J].重庆工学院学报,2009,23(9):171—175.[11]YUXh,BATESJB,JELLISONGE.Characterization of Lithium phosphorous oxynitridethin films[J].Proceedings-Electrochemical Society,1997,144:524—532.[12]KARTHIKEYAN A,VINATIER P,LEVASSEUR A.The molecular dynamics study of Lithium ion conduction in phosphate glasses and the roleof non-bridgingoxygen[J].The Journal of Physical Chemistry B,1999,103(30):6185—6192.[13]WANG B,CHAKOUMAKOS B,SALES B.Synthesis,crystal structure,and ionic conductivity of a polycrystalline Lithium phosphorus oxynitride with theγ-Li3PO4 structure[J].Journal of Solid State Chemistry,1995,115(2):313—323.[14]LEE SJ,BAE JH,LEEh W.Electrical conductivity in Li-Si-PO-N oxynitride thin-films[J].JPower Sources,2003,123∶61—64.[15]VEPREK S,IQBAL S,BRUNNER J,et al.Preparation and properties of amorphous phosphorus nitride prepared in a low-pressure plasma[J].Phil Mag B,1981,43(3):527—547.[16]DUCLOT M,SOUQUET JL.Glassy materials for Lithium batteries:Electrochemical properties and devices performances[J].Journal of Power Sources,2001,97/98:610—615.[17]LIU W Y,LI C L,FU Z W.Stability of Lithium phosphorous oxynitride thin film in humid air[J].Acta Phys Chim Sin,2006,22(11):1413—1418.[18]申万.用于薄膜微电池的固态薄膜电解质和正极材料的制备和性能研究[D].北京:北京有色金属研究院,2006:31—35.。
锂磷氧氮(LiPON)固态电解质与Li负极界面特性
3.1 LiPON/Li 界面的原子互扩散现象
实验通过能谱仪观察到界面附近由于电化学 反应发生原子互扩散, 形成界面层 [11,12,29]. 为了验 证这个结果, 本文通过对原始界面模型采用 AIMD 模拟, 来研究界面附近的原子互扩散现象, 并根据 原子互扩散范围得到稳定的界面结构. 图 1 (a)— 图 1(c) 给出的是三种 a-LiPON/Li(100) 原始界面 结构在 20 ps 的 AIMD 模拟中, Li 原子沿 Z 方向 的统计分布. 红色点线图统计的是 Li 金属原子的 分布, 原始界面结构中 Li 金属的原子分布表现出 晶态结构周期性的特征, 即一条条分立的峰. 随着 模拟过程进行, 除了末端被固定的 Li 原子, 界面附 近的 Li 原子会扩散到 a-LiPON 层. 蓝色点线图统 计的是 a-LiPON 层的 Li 原子分布, 由于是非晶结 构, 所以 Li 原子的分布更加无序. 可以观察到 aLiPON 层的 Li 原子同样会扩散到 Li 金属层, 而 且由于 Li 金属层对 Li 原子的扩散阻碍更小, 部分 a-LiPON 层的 Li 原子会扩散较快. 为了能够更好 地理解元素分布和互扩散现象, 在图中添加了辅助 线. 曲线交叉的部分近似认为是发生元素互扩散的 范围, 这个范围作为后续研究界面性质的界面区 域. 对于 a-LiPON/Li(100) 界面, 暴露在表面的局 域结构不同, 原子的扩散会略有差异, 综合三种界 面的结果可以确定出大约 10 Å厚度的界面层.
对于非晶 LiPON 体相结构和 c-LiPON/Li 界 面结构的 AIMD 计算, 为了模拟体相部分对界面 的影响, 本文将界面两端的原子固定 (图 1 中红色 虚 线 区 域 ). 非 晶 LiPON/Li 界 面 结 构 模 型 共 有 320 个原子, c-LiPON/Li 界面结构模型共有 384 个原子. 计算过程采用以 G 点为中心的 1 × 1 × 1 网 格 . 在 NVT 系 综 下 , 使 用 Nosé-Hoover 热 浴 法 [28], 时间步长设为 2 fs, 能量收敛标准为 10–4 eV. 由于室温原子扩散较慢, 所以将体系分别升温至 1000 K 加速原子扩散, 模拟了 20 ps, 以研究界面 层的形成及不同区域原子扩散差异.
锂离子电池固态电解质制备及性能研究【开题报告】
开题报告应用化学锂离子电池固态电解质制备及性能研究一、选题的背景与意义锂无机固态电解质(ion conductor)又称锂快离子导体(super ion conductor),按其晶体结构分为晶态电解质和非晶态电解质。
晶态电解质又称导电陶瓷,目前已研究的有钙钛矿(ABO3)型结构锂离子电解质、NASICON型结构锂离子电解质、LISICON型结构锂离子电解质等;非晶态电解质又称玻璃态电解质,目前已研究的有氧化物玻璃态锂离子电解质、硫化物玻璃态锂离子电解质等[1-5]。
其导电机制是,锂无机固态电解质具有载流子,在导电过程中伴随着Li+的迁移,并且导电能力跟温度有密切关系。
图1.列举了部分重要的晶态和非晶态无机固态电解质的离子电导率[3]。
图1. 部分重要的晶态和非晶态无机固态电解质的离子电导率的Arrhenius曲线Fig. 1. Arrhenius plot of ionic conductivity of important crystalline and amorphous inorganic solidlithium ion conductor.NaA(PO)(A =Ge, Ti and Zr)发现于1968年。
这个结构被描述成AO6 NASICON晶体结构IV243正八面体和PO4正四面体组成的共价键结构[A2P3O12]-,形成3D相互联系通道和两种分布导电离子间隙位置(M·和M··)。
导电离子越过瓶颈从一个位置移动到另一个位置,瓶颈的大小取决于两种间隙位置(M·和M··)的骨架离子性质和载体浓度。
结果是,NASICON类型化合物的结构和电化学性质随着骨架组成的不同而变化。
比如,在化学通式为LiA’IV2-x A’’IV x(PO4)3的化合物,晶胞参数a 和LiGe(PO)。
通过三价阳离子(Al, Cr, Ga, Fe, c取决于A’IV和A’’IV阳离子大小。
(完整版)全固态锂电池技术的研究进展与展望
全固态锂电池技术的研究进展与展望周俊飞(衢州学院化学与材料工程学院浙江衢州324000)摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。
薄膜型全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高安全性锂二次电池。
作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。
关键词:储能;全固态锂离子电池;固体电解质;界面调控1 全固态锂电池概述全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。
全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。
全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。
放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。
目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。
通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。
《2024年新型固态化锂二次电池及相关材料的制备与性能研究》范文
《新型固态化锂二次电池及相关材料的制备与性能研究》篇一一、引言随着科技的发展和人类对能源需求的日益增长,新型电池技术的研究与开发显得尤为重要。
作为现代社会主要的能量来源,二次电池已经成为科技发展中不可或缺的一环。
尤其是固态化锂二次电池,凭借其高能量密度、高安全性和长寿命等特点,成为当下研究的重要领域。
本论文将对新型固态化锂二次电池及其相关材料的制备与性能进行深入研究。
二、新型固态化锂二次电池的概述新型固态化锂二次电池是一种以固态电解质替代传统液态电解质的二次电池。
其优点在于固态电解质具有更高的安全性和更长的寿命,同时也能有效防止电池内部的短路和泄漏。
此外,固态电池在高温和高倍率放电方面也有着良好的性能。
三、相关材料的制备1. 固态电解质的制备固态电解质是新型固态化锂二次电池的关键组成部分。
本论文将研究不同材料的固态电解质制备方法,包括硫化物、氧化物、聚合物等材料体系,探讨不同材料的性能和特点,寻找最优的电解质材料。
制备方法包括溶胶凝胶法、共沉淀法、物理气相沉积法等。
通过对制备过程的温度、压力、时间等参数进行控制,可以得到性能良好的固态电解质。
2. 正负极材料的制备正负极材料是新型固态化锂二次电池的重要组成部分。
我们将研究锂化物、氧化物、硫化物等材料的制备方法和性能,寻找最优的正负极材料。
制备方法主要包括化学气相沉积法、球磨法等。
对于每种材料,我们都将探讨其合成条件、结构和性能,并尝试通过元素掺杂等方法优化其电化学性能。
四、性能研究我们将对新型固态化锂二次电池的电化学性能进行深入研究,包括充放电性能、循环稳定性、倍率性能等。
通过与传统的液态电解质二次电池进行对比,分析固态化锂二次电池的优点和潜在问题。
此外,我们还将研究固态电解质与正负极材料之间的界面性质,以及界面性质对电池性能的影响。
这将有助于我们更好地理解新型固态化锂二次电池的工作原理和性能特点。
五、结论与展望通过本论文的研究,我们将得到一系列性能良好的新型固态化锂二次电池及其相关材料。
全固态锂电池材料、结构及研究进展
书山有路勤为径;学海无涯苦作舟
全固态锂电池材料、结构及研究进展
电动汽车、大规模储能和微型器件等领域的发展要求不断提高现有二次电池的能量密度、功率密度、工作温度范围和安全性,而全固态锂电池作为最具潜力的电化学储能装置,近年来受到广泛关注。
本文阐述了全固态锂电池的优点(即固态电解质的使用有助于提高锂电
池安全性、能量密度和功率密度,拓宽电池工作温度范围和应用领域),指出了作为全固态电池关键材料的固态电解质应满足的要求,并在此基础上分别讨论了聚合物电解质和无机固态电解质(特别是硫化物和氧化物)的优缺点。
此外,文章介绍了固态锂电池的 3 种结构类型,即薄膜型、3D 薄膜型和体型,综述了全固态锂电池从薄膜型向体型发展的历史进程及现状,并在此基础上讨论了全固态电池最终实现安全性、高能量密度和功率密度仍需解决的固态电解质材料方面问题。
随着能源危机和环境污染问题的日益突显,人们对清洁、可再生能源的
需求越来越迫切。
实际应用中,太阳能、风能、水力等可再生能源需要被转化为电能等二次能源才能广泛被人们加以利用。
为解决这类自然可再生能源与电力需求在时空分布上的不匹配问题,储能技术的发展必不可少。
在众多储能技术中,电化学储能技术,即电池的使用受到人们越来越多的
关注。
电池储能具有高效、规模可调的特点,既可整合于电力系统作为能量储
存单元,起到对电网削峰填谷的作用,提高电网运行的可靠性和稳定性,也可用于移动通讯、新能源汽车等领域,为人类生活质量的提高提供源源不断的能量支持。
专注下一代成长,为了孩子。
全固态薄膜锂离子二次电池的研究进展
论 著8全固态薄膜锂离子二次电池的研究进展耿利群任岳*朱仁江陈涛(重庆师范大学物理与电子工程学院,重庆 400047)摘 要:本文综述了全固态薄膜锂离子二次电池的研究进展,主要阐述了薄膜锂电池的结构设计以及正极、负极和固体电解质材料研究现状,并对其今后的发展趋势及研发热点进行了展望。
关键词:全固态薄膜锂离子二次电池;固体电解质;电池结构DOI:10.3969/j.issn.1671-6396.2013.01.0041 引言随着电子信息工业和微型加工技术快速发展,对其所需的微型能源则提出了特殊微型化的要求。
其中全固态薄膜锂离子二次电池因其高的能量密度、强的安全性、长的循环寿命、宽的工作电压和重量轻等优点,成为微电池系统需求的最佳选择[1]。
本文主要介绍了全固态薄膜锂离子二次电池的关键性薄膜材料及电池结构的研究现状,并对其的开发应用及研究前景作了分析。
2 全固态薄膜锂离子二次电池结构的研究薄膜电池结构的设计,对整个电池性能将产生直接的影响;同样对提高电池的能量密度、循环寿命和锂离子的传输速率也起到至关重要的作用。
所以优化薄膜电池结构的设计,则是对构造高性能薄膜锂离子电池做到了强有力的支撑。
1993年美国橡树岭国家实验室(ORNL)Bates等[2]研制出了一种经典的薄膜锂离子电池叠层结构(见图1)。
在衬底上先沉积两层阴阳极电流收集极薄膜,而后依次沉积阴极、固体电解质和阳极薄膜,最后在薄膜电池外表面上涂一层保护层,以此来防止阳极上金属锂和空气中的一些物质发生化学反应。
图1 薄膜锂离子电池结构剖面示意图Baba等[3]研发出另一种典型的薄膜锂离子电池结构(见图2)。
其较图1薄膜锂电池结构设计更为简单,制作更为容易。
在不锈钢衬底上依次沉积各层薄膜电池材料,而在图示中有两个引线端子则是为了便于薄膜电池的连接使用。
这种结构设计很好地提高了整个电池的有效面积,进而也极大地改善了薄膜电池的性能。
Nakazawa等[4]利用直流溅射和射频溅射的方法,研制出一种“直立型”全固态薄膜锂离子电池结构(见图3)。
柔性全固态薄膜锂电池
滋A/cm2 电流充 / 放电时,首次放电面积比容量达到 13.1 滋Ah/cm2。电池可以 65 滋A/cm2(5 )恒电流充 / 放电。
关键词:柔性;PVD;全固态;薄膜锂电池
中图分类号:TM912.9
文献标识码:A
文章编号:1002-087X(2019)08-1250-03
Flexible all-solid-state thin-film lithium battery
WANG Sheng-li, FU Fang-qiao, NING Fan-yu, DING Fei, LIU Xing-jiang
Abstract: The flexible all-solid-state thin-film lithium battery has the characteristics of lightweight, formability and so on. It has shown great promise as a flexible power sources in the fields of wearable, flexible display and others. Thin-film deposition of key materials such as LiCoO2 positive electrode, LiPON solid electrolyte and metal Li negative electrode was realized by PVD technology. Finally, the flexible all-solid-state thin-film lithium battery of LiCoO2/LiPON/Li was successfully fabricated on the flexible ultra-thin stainless steel. The structure and morphology of the film were characterized by XRD and SEM. The electrochemical performance of the battery was tested and analyzed by using the LAND test system and electrochemical workstation. When the battery was charged/discharged with a current of 10 滋A/cm2, the first discharge capacity reached 13.1 滋Ah/cm2. The battery could be charged/ discharged at a constant current of 65 滋A /cm2(5 ). Key words: flexible; PVD; all-solid-state; thin-film lithium battery
全固态锂电池关键材料——固态电解质研究
全固态锂电池关键材料——固态电解质研究摘要:全固态锂电池发展过程中,固态电解质是其中的关键材料,应用固态电解质能够有效解决常规锂电池安全问题。
本文对固态电解质中氧化物固态电解质、硫化物固态电解质以及聚合物固态电解质分别进行了研究,以供参考。
关键词:全固态锂电池;固态电解质;研究传统锂电池采用有机液态电解液时,在使用过程中存在不小的安全问题[1]。
当前,在全固态锂电池成为研究热点,为有效解决全固态锂电池使用安全问题,扩大全固态锂电池的容量,增加电池使用寿命,推动全固态锂电池的实用化,就需要深入研究全固态锂电池的关键材料——固态电解质。
一、氧化物固态电解质氧化物固态电解质按照物质结构划分,主要有玻璃态(非晶态)电解质和晶态电解质。
玻璃态电解质包括反钙钛矿型Li3–2x MxHalO固态电解质和LiPON薄膜固态电解质。
晶态电解质包括石榴石型固态电解质,钙钛矿型Li3x La2/3–xTiO3固态电解质,NASICON型Li1+x AlxTi2–x(PO4)3和Li1+xAlxGe2–x(PO4)3固态电解质等。
反钙钛矿结构固态电解质的成本低且环境友好,同时在室温条件下有着高离子电导率(2.5×10–2S/cm),这一固态点价值还有着热稳定性以及与金属Li稳定和优良的电化学窗口等特性。
当前,主要研究的反钙钛矿型固态电解质为Li3ClO。
通过掺杂高价阳离子(如Mg2+、Sr2+、Ca2+、Ba2+),可以让晶格中出现大量的空位。
而大量的空位,能够有效增加锂离子的传输通道(见图1),降低Li+离子扩散的活化能,进而提高电解质的离子导电能力。
图1 反钙钛矿Li 3ClO 的晶体结构图在高纯氮气中,采用射频磁控溅射高纯LiPO 4靶就能够得到锂磷氮氧(LiPON)薄膜,所得到的薄膜电解质厚度在1µm 以下,且电阻较小,能够有效应用于薄膜锂离子电池。
这一电解质有着良好的综合性能,室温条件下离子电导率为2.3×10–6S/cm ,电化学窗口达到5.5V ,且有着较高的热稳定性,与LiMn 2O 4、LiCoO 2等常用正极和金属Li 负极有着很好的相容性。
锂离子电池固态电解质的研究进展
锂离子电池固态电解质的研究进展王伟;朱航辉【摘要】固态锂离子电池具有安全性能高、能量密度大、工作温区广等优点,是锂离子电池领域的研究热点.固体电解质的研究是固态锂离子电池实现应用的先决条件,目前国内外研究较多的有晶态的LISICON结构、钙钛矿结构、石榴石结构电解质和非晶态的氧化物、硫化物、氮氧化物电解质.概述了锂离子电池固态电解质的研究进展,对各种电解质的发现过程、晶体结构、电导率等性能进行了详细的介绍.%Solid-state lithium ion battery has become an important focus due to higher safety,higher energy density and wider operating temperature compared to the commercial lithium ion battery with liquid organic electrolyte.Research and development of solid electrolyte are the keys for the successful market penetration of solid state lithium ionbattery.Nowadays,two categories materials were widely studied in last decade,crystal materials included LISICON,Perovskite and Garnet type Li ion conductors,glasses state materials included oxides electrolyte system,sulfide electrolyte system and LiPON electrolyte system.The research progresses of solid electrolyte in lithium ion battery were summarized,and introduced the finding,crystal structure,and conductivity of electrolytes.【期刊名称】《应用化工》【年(卷),期】2017(046)004【总页数】5页(P760-764)【关键词】锂离子电池;固态电解质;晶体结构;硫化物电解质【作者】王伟;朱航辉【作者单位】长安大学环境科学与工程学院化学工程系,陕西西安 710054;长安大学环境科学与工程学院化学工程系,陕西西安 710054【正文语种】中文【中图分类】TQ152科技的进步推动了为日用电子产品提供电能的锂离子电池的快速发展,但是,锂离子电池在使用过程中也存在着电解液泄露、燃烧、爆炸等危险。
【文献综述】锂离子电池固态电解质制备及性能研究
文献综述化学锂离子电池固态电解质制备及性能研究锂离子电池具有工作电压高、能量密度高、功率密度高、循环寿命长、自放电率低、可快速充放电、无记忆效应、绿色环保无污染等绝对优点,是当今国际公认的理想化学电源,广泛应用于电子产品、交通工具、军事领域和储能方面[1-3]。
目前国内外锂离子二次电池大部分采用的是液态电解质,在生产使用过程中常常遇到一些问题:电解液生产过程中对水分要求十分严格,在电池生产装配过程中对空气湿度也有十分苛刻的要求[4];液态有机电解质可能泄露,部分电解质还对集流体有腐蚀作用,极大限制了锂离子电池向薄层化、小型化的发展趋势;在过高的温度下发生爆炸从而造成安全事故,无法应用在一些对安全性要求高的场合;此外,液态电解质锂离子电池普遍存在循环容量衰减问题,使用一段时间后由于电极活性物质在电解质中的溶解、反应而部分失效。
而全固态电池安全性高、基本没有循环容量衰减,固体电解质还起到了隔膜的作用,简化了电池的结构,可以向薄层化和小型化发展;此外,由于无需隔绝空气,也简化了生产过程中对设备的要求,电池的外形设计也更加方便、灵活[1-2, 5]。
全固态锂离子电池分两种[2, 6-10],一种是使用聚合物凝胶电解质;另一种是采用无机固态电解质。
聚合物锂离子电解质体系已开展的研究众多,按聚合物主体来分,主要有以下几类:聚醚系(主要为聚氧化乙烯,PEO)、聚丙烯腈(PAN)系、聚甲基丙烯酸酯(PMMA)系、聚偏氟乙烯(PVDF)系和其他类型。
尽管聚合物电解质的发展和应用,可以明显克服液态锂离子电池的一些缺点,避免电解液漏液,容易薄层化和小型化,但是仍存在一些问题亟待解决:比如常温下电导率偏低,与电极相容性差,机械强度仍有待提高。
此外,聚合物电解质制备工艺复杂、原料价格高导致聚合物电解质价格昂贵。
聚合物电解质可通过共聚、交联、形成微孔体系、纳米复合、添加增塑剂等来进行性能改进。
未来聚合物电解质的可能朝着两个方向发展:a)交联短链形成网状凝胶结构,增加导电性;b)添加粉末陶瓷,形成有机-无机复合结构,增加机械强度[2, 9-10]。
全固态电池的材料设计及其电化学性能研究
全固态电池的材料设计及其电化学性能研究一、简介随着能源危机的日益严重,对新型高效能量存储技术的需求与日俱增。
全固态电池作为一种新型高能量密度、长寿命以及安全性能优越的电池技术,备受人们关注。
与传统的液态电池相比,全固态电池由于不需要使用液态电解液,因此具有更高的化学稳定性和更广泛的工作温度范围。
然而,目前全固态电池的理论能量密度和实际能量密度之间存在着巨大的差距,这主要是由于电池中使用的固态电解质材料的性能不够优异所导致的。
因此,全固态电池的材料设计及其电化学性能的研究成为了当前的重要研究方向之一。
二、全固态电池的材料设计1. 固态电解质材料全固态电池中最重要的材料就是固态电解质材料。
固态电解质材料应具有良好的离子导电性能和化学稳定性。
目前在全固态电池中应用最广泛的固态电解质材料包括硫化锂(Li2S)、硫化锂氮(Li2SN)、磷酸盐类(Li3PO4)以及氧化物(Garnet系列),其中以Garnet系列电解质最为理想,能够保证电池的稳定性和安全性。
在综合考虑各种材料性能后,全固态电池中的电解质材料可以采用Li6.5La3Zr1.5Ta0.5O12 (LLZTO)等材料,此类电解质的离子导电性能可达到10-4 S/cm左右,之后由于其热化学稳定性好、操作温度范围宽等优点,广泛地应用于全固态电池中。
2. 电极材料全固态电极的材料选择主要受到电池中电解质材料的限制。
目前常用的全固态电极材料主要包括固态电解质和电极活性材料。
电极活性材料通常由锂离子负极材料和锂离子正极材料构成。
负极材料主要有金属锂、石墨或石墨烯以及硅等。
正极材料由于其化学稳定性以及锂离子的嵌入取出性能等因素,通常采用具有大氧化还原反应能力的材料,如钴酸锂、锰酸锂、氧化钒等。
此外,全固态电极材料的设计还应考虑电极材料与电解质材料之间的界面问题,以达到良好的接触性和界面稳定性。
三、全固态电池的电化学性能研究1. 电化学性能测试全固态电池的电化学性能主要包括如下几个方面:能量密度、功率密度、循环性能、安全性、响应时间等。
LiPON固体电解质膜对金属锂电极的保护作用
图6不同锂电极组成电池的阻抗随循环次数的变化关系
Fig.6 Imped姐ce of di伍∽nt lithi哪cell w charge,discharge
cycles
第9期
丁飞等:LiPON固体电解质膜对金属锂电极的保护作用
·1667·
界面阻抗始终发生剧烈的变化,当循环10次之后其界 面阻抗已经增长的非常大,几乎超过首次循环的界面 阻抗的5倍。该数据表明仅仅十几次循环之后,未经 保护的锂负极表面已经被严重破坏,钝化层不断加厚, 影响到Li+离子的传输扩散,界面极化和电池内阻不断 增大,使电池寿命降低【1引。
摘 要:制备LiPON固体电解质薄膜,通过电沉积手段获得由LiPON膜保护的金属锂电极,测试该电极在有机电解液
体系中的电化学性质。结果表明:LiPON膜的存在,抑制了锂电极和电解液之间的非法拉第反应,使锂电极具有更加
稳定的电极/电解液界面。由于LiPON膜的保护作用,金属锂电极在充放电循环中也表现出优越的界面稳定性,从而获
Iithium ceUs
Pah
Cycle number
Bare Li
Li+LiPoN
CycleNm帆Ⅳ
图5不同锂电极充放电库仑效率随充放电循环次数 的变化关系
Fig.5 Cou】omb e衢ci钮cy of di妇融玎髓t lithium ceH坩
ch砸ge,discharge cycIe
万方数据
a,39|po雪一百U
1 实验
采用中科院微电子研究所生产的SP.3型磁控溅 射台制备LiPON薄膜。基本制备过程为:调节好靶材 和基片间的距离,将溅射室抽真空至5×10。3 Pa,通入
一定流量比例的N2和m至所需的真空室气压(其中 N2是主工作气体,心仅在0%一5%的范围内小比例掺 入),调节射频电源至所设定的功率,开始溅射LiPON 薄膜,溅射时间为10h。
浅谈全固态薄膜锂电池的制备与电化学性能
浅谈全固态薄膜锂电池的制备与电化学性能摘要:全固态薄膜锂电池因为具有解决商用锂离子电池安全性问题、延长电池使用寿命的优势逐渐得到业界广泛的关注,相关的理论研究和实践应用也得到了较大的发展。
但因为全固态薄膜锂电池制备工艺较为复杂,且制备成本高,因而选择科学有效的制备工艺尤为关键。
本文先对全固态薄膜锂电池的特点和关键材料作简要的介绍分析,进而提出全固态薄膜锂电池的制备工艺,最后从全固态薄膜锂电池性能表征、集流体、正极与固相界面结构表征、电化学性能表征三方面对全固态薄膜锂电池电化学性能作系统综述。
关键词:全固态;薄膜锂电池;固相界面;固态电解质;磁控溅射法;真空蒸镀法目前锂电池已经广泛应用于手机、数码产品等电子类产品中,而且随着可再生能源技术的深入发展,锂电池逐渐开始应用于电动汽车行业中,取得了良好的应用效果。
但商用锂电池所存在的过度充电和短路等极易导致安全事故,对人身健康有较大的威胁,如何提升锂电池的应用安全性成为亟需解决的问题。
就目前全固态薄膜锂电池制备工艺来看,镀膜技术是应用较为广泛的技术之一,其可以将材料气化并通过原子或分子沉积的方式制作成膜,继而实现固-固界面紧密结合和高效的固相离子传导[1]。
相比于传统的锂电池,全固态薄膜锂电池因为内部离子传输均会在固相中完成,导致固相界面阻抗变大继而导致电池容量无法得到充分的发挥,而且锂元素的活性较大和易变性,制备过程中可控性差,诸多因素均导致镀膜技术应用受限。
鉴于此,本文提出一种以磁控溅射法制备电极与固态电解质、真空蒸镀法制备金属锂负极的制备工艺,现对具体的制备工艺流程作如下的分析论述。
1.全固态薄膜锂电池的特点全固态薄膜锂电池是一种新型结构的锂电池,其工作原理基本与传统锂电池相似,都是在充电过程中Li+由正极薄膜脱出,在负极薄膜发生还原反应,放电过程则与之相反。
在加工方面,目前全固态薄膜锂电池的制备以磁控溅射法、真空蒸镀法及脉冲激光沉积等工艺为主,电极利用率可以得到有效的提升。
lipon电解质密度_解释说明以及概述
lipon电解质密度解释说明以及概述1. 引言1.1 概述电解质密度作为领域中的一个重要参数,对于电池材料的性能和储能技术的进展起着至关重要的作用。
在过去几十年中,随着能源需求不断增长和环境保护意识的提高,对高性能电池材料的研究与开发变得越来越重要。
其中,Lipon(锂磷氧肝)电解质由于其优异的离子传导性、稳定性和可塑性受到了广泛的关注。
本文将详细解释Lipon电解质密度,并探讨其在能源储存领域中的应用及与电池性能之间的关系。
1.2 文章结构本文分为四个主要部分进行阐述。
首先是引言部分,介绍了Lipon电解质密度研究的背景和意义。
接下来,在"2. Lipon电解质密度解释说明"部分,我们将详细介绍Lipon电解质及其定义,并探讨如何计算Lipon电解质密度以及影响因素。
然后,在"3. Lipon电解质密度概述"部分,我们将从应用角度出发,论述Lipon电解质密度在能源储存中的重要性以及与电池性能之间的关系。
最后,在"4. 结论"部分,我们将总结文章的要点,并对Lipon电解质密度的研究方向和发展前景进行展望。
1.3 目的本文的目的是为读者提供一个全面而清晰的了解Lipon电解质密度及其在能源储存领域中的应用和影响因素。
通过阅读本文,读者将对Lipon电解质密度有一个更深入的理解,并进一步认识到该领域未来可能出现的研究趋势和发展前景。
2. Lipon电解质密度解释说明:2.1 Lipon电解质的定义:Lipon电解质是一种基于锂和氮的固态电解质材料,由锂、磷、氮和氧构成。
它具有高离子导电性和优异的化学稳定性,被广泛应用于先进能源储存系统中,特别是在锂离子电池中。
2.2 Lipon电解质密度的概念与计算方法:Lipon电解质密度是指单位体积内包含的Lipon电解质物质量。
常用的计算方法是通过称量所使用Lipon电解质的重量,并将其除以相应样品的体积来得到密度值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LiPON固态电解质与全固态薄膜锂离子电池制备及特性研究薄膜技术使全固态薄膜锂(锂离子)电池的制造由设想变为现实。
微芯片、微机电系统以及微型存储器等微小器件在低能领域的供电需求,使全固态薄膜锂(锂离子)电池成为未来电池微小型化技术与产业发展的重要方向。
基于此应用需求,本论文比较全面地开展了全固态薄膜锂离子电池中LiPON固态电解质薄膜、LiMn<sub>2</sub>O<sub>4</sub>阴极薄膜、ZnO和Si两种阳极薄膜的制备与特性研究;在此基础上,制备并研究了四种膜系结构的全固态薄膜锂离子电池,电池阴极为退火或未退火的LiMn<sub>2</sub>O<sub>4</sub>薄膜,阳极材料根据电化学可逆反应机理分为ZnO(过渡金属氧化物型)与Si(锂合金型)两种。
根据基底不同,制备的电池又分为刚性石英玻璃基底(厚度为1 mm)和柔性聚酰亚胺(PI)基底(厚度为125μm)两类。
本论文取得的主要结论与创新如下。
以Li<sub>3</sub>PO<sub>4</sub>为靶材、采用射频磁控溅射法在氮气下反应溅射LiPON固态电解质薄膜与Al/Li PON/Al三明治结构,研究固态电解质电化学特性。
通过优化关键制备参数,包括靶基距、溅射功率、工作压强以及氮氩流量比,研究并确定了LiPON固态电解质薄膜的最佳特性与制备参数。
在纯氮气、低压强条件下,通过射频磁控溅射法可得到致密、无缺陷的高品质LiPON薄膜。
通过溅射手段制备Al/LiPON/Al三明治结构中不同粗糙度的底层Al电极,进而得到不同的电解质与电极界面粗糙度,研究不同界面粗糙度时电解质的体电容、体电阻、有效面积以及激活能的变化,发现界面粗糙度的增大对离子电导率的提升有较大帮助。
在不改变LiPON靶材组分与溅射工艺参数的情况下,通过增大电解质界面粗糙度使其离子电导率由1.09μS/cm增加到2.70μS/cm,达到文献报道的较高水平。
研究了退火对LiPON薄膜本征结构和电化学特性的影响规律。
退火会改变LiPON薄膜中氮三配位键N与氮双配位键N的比例关系,在经历300℃1小时退火处理后,LiPON薄膜的离子电导率显著提升,从1.10μS/cm提高到3.28μS/cm。
首次发现,LiPON薄膜可承受400℃-500℃的高温热处理,400℃退火1小时后LiPON薄膜具有1.55μS/cm的离子电导率,500℃退火1小时后仍具有0.13μS/cm的离子电导率。
证明LiPON固态电解质薄膜具有极佳的热稳定性,这对拓展全固态薄膜锂离子电池的高温应用具有参考意义。
通过射频磁控溅射法制备了LiMn<sub>2</sub>O<sub>4</sub>阴极薄膜。
研究发现不同氩氧流量比制备的LiMn<sub>2</sub>O<sub>4</sub>薄膜均为非晶态。
为了避免使用贵金属(Pt、Au)作薄膜电池集流极,制备了LiMn<sub>2</sub>O<sub>4</sub>/Ti薄膜(Ti为集流极),研究氩气下退火对Li Mn<sub>2</sub>O<sub>4</sub>薄膜的影响规律,发现氩气下退火处理无法使LiMn<sub>2</sub>O<sub>4</sub>薄膜转变为尖晶石晶相。
制备了LiMn<sub>2</sub>O<sub>4</sub>/Pt/Ti薄膜(Pt为集流极、Ti为过渡层),研究氧气下退火对LiMn<sub>2</sub>O<sub>4</sub>薄膜的影响规律,当温度达500℃时薄膜出现尖晶石晶相,随着退火温度继续增加,结晶程度进一步提高,800℃氧气下退火后薄膜综合性能最优。
通过射频磁控溅射法制备了具有单一(002)晶向的六方纤锌矿结构ZnO阳极薄膜。
发现大气下300℃退火不会对ZnO薄膜结晶状态产生显著影响。
ZnO是典型的过渡金属氧化物型阳极材料(转化型与锂合金型的复合),在充放电过程中,ZnO与Li存在两种作用:一是ZnO的分解/形成;二是Li-Zn合金的形成/分解。
通过射频磁控溅射法制备了非晶Si阳极薄膜。
非晶Si嵌锂后一般形成非晶态Li<sub>x</sub>Si。
电极材料的薄膜化有助于缓解其在充放电过程中的体积膨胀与收缩,控制容量的衰减,有效缩短锂离子在嵌入脱出过程中的迁移路径,从而改善电极材料的电化学性能。
通过全磁控溅射法制备了首个ZnO阳极全固态薄膜锂离子电池(Ti/ZnO/LiPON/LiMn<sub>2</sub>O<sub>4</sub>/Ti)LiPON<sup>1</sup>。
该电池以未退火的非晶态LiMn<sub>2</sub>O<sub>4</sub>薄膜为阴极、LiPON薄膜为固态电解质、晶态ZnO薄膜为阳极。
在0.5 V–5 V电压区间,以5μA/cm的电流密度充放电时,电池可逆容量为22μAh/cm,证明了非晶态LiMn<sub>2</sub>O<sub>4</sub>具有一定的储锂性能;充放电循环50次后放电容量为20μAh/cm,说明非晶态LiMn<sub>2</sub>O<sub>4</sub>薄膜与ZnO薄膜均具有良好的循环稳定性;该电池还具有良好的倍率性能;电化学阻抗谱分析表明充放电循环在一定程度上导致电池内阻的增大,但不会对电池性能产生显著影响。
该电池制备过程中阴极材料无需高温退火,具有一定的容量、良好的循环稳定性与倍率性能,适用于低功率、低温基底材料领域。
以全磁控溅射法制备了(Pt/ZnO/LiPON/LiMn<sub>2</sub>O<sub>4</sub>/Pt)LiPON全固态薄膜锂离子电池,并对电池整体进行了大气下300℃2小时退火处理。
首次发现全固态薄膜锂离子电池能够承受大气环境下300℃高温且不丧失电池特性,电池容量无明显衰减,验证了全固态薄膜锂离子电池优异的高温环境适应性。
在0.5 V-5V电压区间,以5μA/cm的电流密度充放电时,最大可逆容量为20μAh/cm;充放电循环50次后放电容量为17μAh/cm,具有良好的循环稳定性;电化学阻抗谱分析表明退火大幅增加了电池界面阻抗,增大了电池的内阻,导致了库伦效率的下降;另外,退火还导致了电极材料的“钝化”,致使电池的初始可逆容量下降,但通过5次以上的充放电循环“激活”,电池容量可得到有效恢复。
通过全磁控溅射法制备了非晶Si阳极全固态薄膜锂离子电池(Ti/Si/LiSiPON/LiMn<sub>2</sub>O<sub>4</sub>/Pt/Ti)LiSi PON。
该电池以尖晶石LiMn<sub>2</sub>O<sub>4</sub>(经800℃氧气下退火形成)薄膜为阴极、LiSi PON薄膜为电解质、非晶Si薄膜为阳极。
通过循环伏安测试可知电池具有比ZnO阳极高的放电电压,在1.5 V-5 V电压区间,以20μA/cm 的电流密度充放电时,电池可逆容量达47μAh/cm,50次充放电循环后放电容量为41μAh/cm,具有较高的容量与良好的循环稳定性。
另外,电池可在80μA/cm 的大电流密度下稳定充放电,且具有25μAh/cm的放电容量,倍率性能优异;电化学阻抗谱分析表明充放电循环未对电池阻抗产生显著影响。
该电池的高容量建立在尖晶石LiMn<sub>2</sub>O<sub>4</sub>阴极薄膜与非晶Si阳极薄膜的基础上。
电池特性研究表明,薄膜化的非晶Si较好地抑制了Si材料嵌锂后的体积效应,Si的高容量特性得到证明;因不存在显著的界面损耗,电池表现出良好的循环稳定性;验证了非晶Si薄膜作为全固态薄膜锂离子电池阳极材料的可行性。
通过全磁控溅射法制备了以聚酰亚胺薄膜(Polyimide,PI)为基底的柔性全固态薄膜锂离子电池(Ti/Si/LiSiPON/LiMn<sub>2</sub>O<sub>4</sub>/Ti)LiSiPON。
该电池以125μm厚的聚酰亚胺薄膜为基底,以未退火的LiMn<sub>2</sub>O<sub>4</sub>薄膜为阴极、LiSiPON为电解质、非晶Si薄膜为阳极。
电池在1 V-5 V的电压区间以5μA/cm的电流密度下充放电时,可得到32μAh/cm的最大可逆容量,充放电循环50次后仍具有28μAh/cm的放电容量,循环稳定性优异;电池具有优异的倍率性能,可在20μA/cm的电流密度下稳定充放电,且具有20μAh/cm的放电容量;另外,电池在弯曲受力状态下仍可保持电池性能的稳定,具备柔性薄膜电池的基本特征。
本论文研究的全固态薄膜锂离子电池及其所有功能层全部使用磁控溅射法制备。
另外,本论文所述薄膜电池都覆盖LiPON或LiSiPON保护膜(封装成器件),全部电化学测试均是在室温大气下完成,性能测试结果具有实际应用意义。