有限差分,有限元,有限体积等的区别介绍

合集下载

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

从差分的空间形式来考虑,可分为中心格式和逆风格式。

考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

有限元素法有限体积法有限差分法有限容积法的区别

有限元素法有限体积法有限差分法有限容积法的区别

1.1 概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

1.2 差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。

(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

1.3 构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

2. FEM2.1 概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

2.2 原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

计算流体力学知识点

计算流体力学知识点

计算流体力学知识点计算流体力学这玩意儿,听起来是不是有点高大上,有点让人摸不着头脑?其实啊,它就藏在我们生活的方方面面,就像一个神秘的小伙伴,时不时地跳出来给我们一些惊喜或者挑战。

咱们先来说说啥是计算流体力学。

简单来讲,它就是一门专门研究流体流动的学问。

比如说,水流过河道、风吹过城市、汽车在空气中飞驰,这些都涉及到流体的流动。

那计算流体力学就是用数学和计算机的方法,来搞清楚这些流动是怎么回事,会产生啥影响。

我记得有一次,我去公园里散步。

那天风挺大的,湖边的柳枝被吹得左摇右摆。

我就突然想到,这风不就是一种流体嘛!它的速度、方向还有力量,都在不断地变化。

如果用计算流体力学的知识来分析,就能算出风在经过不同的障碍物时,速度会怎么降低,压力会怎么变化。

计算流体力学里有一个特别重要的概念,叫控制方程。

这就像是流体流动的“宪法”,规定了它们得怎么动。

比如说连续性方程,它说的是流入一个区域的流体质量,得等于流出这个区域的流体质量,就跟咱们过日子一样,收入和支出得平衡。

还有动量方程,它描述了流体的受力和运动之间的关系,就像你推一个箱子,用的力越大,箱子跑得就越快。

在实际应用中,计算流体力学可厉害了。

比如说在航空航天领域,设计飞机的外形就得靠它。

飞机在天上飞,周围的空气就是流体。

通过计算流体力学的模拟,可以知道怎么设计飞机的翅膀、机身,才能让飞机飞得更快、更稳,还能省油。

汽车行业也是一样,要让汽车的外形更符合空气动力学,减少风阻,提高速度和燃油效率,都得靠计算流体力学来帮忙。

还有能源领域,像火力发电厂的冷却塔,里面热气腾腾的水蒸气往外冒,怎么让这些水蒸气排放得更顺畅,提高发电效率,也得靠计算流体力学来优化设计。

在数值解法这一块,有限差分法、有限体积法和有限元法是常用的几招。

有限差分法就像是把流体流动的区域切成一个个小格子,然后在这些格子上算数值。

有限体积法呢,则是关注每个小体积里的物理量守恒。

有限元法就像是搭积木,把流动区域分成一个个小单元来计算。

有限差分、有限元区别

有限差分、有限元区别

有限差分方法(Finite Differential Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

从差分的空间形式来考虑,可分为中心格式和逆风格式。

考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

有限元法(Finite Element Method)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

有限体积法 有限差分法 有限元法

有限体积法 有限差分法 有限元法

有限体积法有限差分法有限元法有限体积法、有限差分法、有限元法是三种数学方法,它们分别用于求解偏微分方程问题。

在工程、物理、气象、地质和生物等领域中都有广泛的应用。

它们之间的区别在于采用不同的逼近方法和离散化技术。

有限体积法是一种数值方法,通过离散化空间来对流体动力学等宏观定律进行描述。

通过建立小区域的质量平衡方程,计算该区域内的物理量积分,并通过解析物理方程,确定小区域物理量的变化率。

这种方法适用于偏微分方程的求解,同时可以避免非物理现象的出现,在计算过程中也不会涉及到边界值问题。

有限差分法是一种离散化的数学方法,可以将一个连续的函数微分方程转换成一个差分方程。

在计算差分方程时,需要将函数在有限点处进行展开,将其转化为有限项的多项式。

这个多项式可以用于近似函数,从而求解微分方程的数值解。

有限差分法可以应用于所有类型的偏微分方程,包括椭圆型、双曲型和抛物型方程。

有限元法是一种基于函数空间分析的数学方法,用于解决连续性和光滑性强的问题。

将连续问题转化为一组代数方程,通过将求解域分成无限多的小元素或区域,将标量或矢量场用有限个基函数来逼近。

将这些基函数带入微分方程中,并将未知系数替换为求解域中的节点上的未知量,就可以得到代数方程组。

最终,通过解决代数方程组来计算微分方程的数值解。

总之,有限体积法、有限差分法和有限元法是三种常用的数值方法。

它们在求解各种复杂偏微分方程方面都具有优越性。

但是它们在适用条件、误差分析、计算量等方面都有各自独特的特点和限制,因此需要根据不同的实际应用来选择和使用。

机械原理数值计算与仿真

机械原理数值计算与仿真

机械原理数值计算与仿真一、引言随着科技的发展,机械工程领域的研究越来越注重数值计算与仿真技术的应用。

机械原理数值计算与仿真是一种通过计算机模拟和分析机械系统性能的方法,它对于优化设计、提高产品质量和降低研发成本具有重要意义。

本文将介绍机械原理数值计算与仿真的方法及其在机械工程中的应用,并探讨未来发展前景。

二、机械原理数值计算方法机械原理数值计算方法主要包括有限元法、边界元法、有限体积法和有限差分法。

1.有限元法:有限元法是一种将连续体离散化为有限个单元进行计算的方法。

它广泛应用于结构分析、热力学分析和流体力学分析等领域。

2.边界元法:边界元法是一种基于边界条件的数值计算方法。

它主要用于解决边界值问题,具有良好的精度和高效率。

3.有限体积法:有限体积法是一种将计算域划分为若干个体积单元,通过对单元内变量进行积分求解偏微分方程的方法。

它适用于各种流体运动和传热问题。

4.有限差分法:有限差分法是一种基于离散化网格的数值计算方法。

它通过对离散点上的函数值进行差分求解偏微分方程,广泛应用于力学系统仿真和优化设计。

三、数值计算在机械工程中的应用数值计算技术在机械工程中的应用十分广泛,主要包括结构分析、热力学分析、动力学分析和流体力学分析等。

1.结构分析:数值计算方法可以用于分析机械结构的强度、刚度和稳定性,为优化设计和改进产品质量提供依据。

2.热力学分析:数值计算方法可以用于分析机械系统的热传导、热应力和热变形等问题,有助于提高热控系统和热机的设计水平。

3.动力学分析:数值计算方法可以用于分析机械系统的动态性能,如振动、冲击和疲劳等问题,为减振器和阻尼器的设计提供参考。

4.流体力学分析:数值计算方法可以用于分析流体在机械系统中的流动、传热和阻力等问题,有助于优化流体传动系统和热交换器的设计。

四、仿真技术在机械工程中的应用仿真技术在机械工程中的应用主要包括计算机辅助设计(CAD)、计算机辅助制造(CAM)、虚拟样机技术、虚拟现实技术等。

偏微分方程的数值解法与逼近方法

偏微分方程的数值解法与逼近方法

偏微分方程的数值解法与逼近方法一、引言偏微分方程(Partial Differential Equations, PDEs)是数学中重要的研究对象,广泛应用于物理学、工程学、经济学等领域。

由于PDEs的解析解往往难以得到,因此数值解法和逼近方法成为解决PDEs问题的重要手段。

二、数值解法1. 有限差分法(Finite Difference Method)有限差分法通过将连续的偏微分方程转化为离散的差分形式,利用差分近似代替微分运算,从而得到数值解。

其中,向前、向后和中心差分是常用的差分近似方法。

2. 有限元法(Finite Element Method)有限元法是一种将求解区域划分为有限个小单元,在每个小单元上建立局部近似函数,并通过将这些局部函数组合得到整个解的近似。

该方法适用于复杂几何形状和非均匀网格的情况。

3. 有限体积法(Finite Volume Method)有限体积法将求解区域划分为小单元,但与有限元法不同的是,它考虑了守恒量在每个小单元中的变化情况。

通过建立控制体积并利用守恒定律,将偏微分方程转化为积分形式进行计算。

三、逼近方法1. 特征线方法(Method of Characteristics)特征线方法利用特征线的性质对偏微分方程进行求解。

通过对特征线方程进行积分,可以将PDEs转化为常微分方程(ODEs),从而得到数值解。

2. 辛方法(Symplectic Method)辛方法是一种在保持系统辛结构的同时进行数值求解的方法。

它适用于哈密顿系统和保守系统的求解,具有优秀的长期数值稳定性和能量守恒性。

3. 射影方法(Projection Method)射影方法是通过将PDEs投影到更低维度的空间中进行近似求解的方法。

通过将偏微分方程分解为几个步骤,如速度-压力分裂和时间分裂,可以以更高效的方式求解复杂的PDEs。

四、数值算例为了验证偏微分方程的数值解法和逼近方法的有效性,我们选取了经典的热传导方程(Heat Equation)作为例子进行数值算例演示。

cfd数字计算方法

cfd数字计算方法

有限差分法/有限元方法/有限体积法有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

从差分的空间形式来考虑,可分为中心格式和逆风格式。

考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

有限差分,有限元,有限体积等离散方法的区别介绍

有限差分,有限元,有限体积等离散方法的区别介绍

有限差分,有限元,有限体积等等离散方法的区别介绍一、区域离散化所谓区域离散化,实质上就是用一组有限个离散的点来代替原来连续的空间。

实施过程是;把所计算的区域划分成许多互不重迭的子区域,确定每个子区域的节点位置及该节点所代表的控制容积。

节点:需要求解的未知物理量的几何位置;控制容积:应用控制方程或守恒定律的最小几何单位。

一般把节点看成是控制容积的代表。

控制容积和子区域并不总是重合的。

在区域离散化过程开始时,由一系列与坐标轴相应的直线或曲线簇所划分出来的小区域称为子区域。

网格是离散的基础,网格节点是离散化物理量的存储位置。

大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。

1. 有限差分法是数值解法中最经典的方法。

它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。

这种方法发展比较早,比较成熟,较多用于求解双曲线和抛物线型问题。

用它求解边界条件复杂、尤其是椭圆型问题不如有限元法或有限体积法方便。

2. 有限元法是将一个连续的求解域任意分成适当形状的许多微小单元,并于各小单元分片构造插值函数,然后根据极值原理(变分或加权余量法),将问题的控制方程转化为所有单元上的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体合成,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各节点上待求的函数值。

对椭圆型问题有更好的适应性。

有限元法求解的速度较有限差分法和有限体积法慢,在商用CFD软件中应用并不广泛。

目前的商用CFD软件中,FIDAP采用的是有限元法。

3. 有限体积法又称为控制体积法,是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解的微分方程对每个控制体积积分,从而得到一组离散方程。

其中的未知数十网格节点上的因变量。

子域法加离散,就是有限体积法的基本方法。

就离散方法而言,有限体积法可视作有限元法和有限差分法的中间产物。

计算流体力学基础

计算流体力学基础

物理模型与数学模型在概念上的区别
数学模型:对物理模型的数学描写。
比如N-S方程就是对粘性流体动力学的一种数学描写,值得注意的 是,数学模型对物理模型的描写也要通过抽象,简化的过程。
物理模型是指把实际的问题,通过相关的物理定律概括和抽象出来并满足 实际情况的物理表征。
比如,我们研究管道内的流体流动,抽象出来一个直管,和粘性流体模型, 或者我们认为管道内的液体是没有粘性的,使用一个直管和无粘流体模型. 还有,我们根据热传导定律,认为固体的热流率是温度梯度的线形函数, 相应的傅立叶定律就是导热问题的物理模型。因此,不难理解物理模型是 对实际问题的抽象概念,对实际问题的一种描述方式,这种抽象包括了实 际问题的几何模型,时间尺度,以及相应的物理规律。
确定边界条件与初始条件 初始条件与边界条件是控制方程有确定解的前提,控制方程与 相应的初始条件、边界条件的组合构成对一个物理过程完整的数学 描述。 初始条件是所研究对象在过程开始时刻各个求解变量的空间分 布情况。对于瞬态问题,必须给定初始条件。对于稳态问题,不需 要初始条件。 边界条件是在求解区域的边界上所求解的变量或其导数随地点 和时间的变化规律。对于任何问题,都需要给定边界条件。例如, 在锥管内的流动,在锥管进口断面上,我们可给定速度、压力沿半 径方向的分布,而在管壁上,对速度取无滑移边界条件。 对于初始条件和边界条件的处理,直接影响计算结果的精度。
划分计算网
采用数值方法求解控制方程时,都是想办法将控制方程在空 间区域上进行离散,然后求解得到的离散方程组。要想在空间域 上离散控制方程,必须使用网格。现已发展出多种对各种区域进 行离散以生成网格的方法,统称为网格生成技术。 不同的问题采用不同数值解法时,所需要的网格形式是有一 定区别的,但生成网格的方法基本是一致的。目前,网格分结构 网格和非结构网格两大类。简单地讲,结构网格在空间上比较规 范,如对一个四边形区域,网格往往是成行成列分布的,行线和 列线比较明显。而对非结构网格在空间分布上没有明显的行线和 列线。

cae数值计算原理

cae数值计算原理

CAE(计算机辅助工程分析)的数值计算原理主要是基于有限元法、有限差分法、有限体积以及无网格法等数学基础发展起来的。

有限元法是CAE中最常用的数值计算方法之一。

它将连续的物理空间离散化为有限
个单元,每个单元内部满足一定的物理规律,通过求解这些单元的方程组来得到整个物理空间的近似解。

这种方法可以处理复杂的几何形状和非线性问题,因此在工程领域得到了广泛应用。

有限差分法是一种基于差分方程的数值计算方法,它通过将连续的时间或空间离散化为离散的时间或空间点,然后通过求解差分方程来得到近似解。

这种方法在处理流体动力学、地震工程等领域的问题时特别有效。

有限体积法是一种基于控制体积的方法,它将连续的物理空间离散化为一系列的控制体积,每个控制体积内部满足一定的物理规律,通过求解这些控制体积的方程组来得到整个物理空间的近似解。

这种方法在处理流体动力学、燃烧等问题时特别有效。

无网格法是一种不需要离散化物理空间的数值计算方法,它通过直接求解物理空间的积分方程来得到近似解。

这种方法在处理一些需要保持物理规律的精度问题时特别有效,例如结构力学、材料力学等领域的问题。

在CAE中,根据问题的具体需求和特点,可以选择合适的数值计算方法进行求解。

同时,为了提高计算的效率和精度,还需要进行合理的离散化和网格生成。

流体动力学中激波的数值计算分析

流体动力学中激波的数值计算分析

流体动力学中激波的数值计算分析流体动力学(fluid dynamics)是研究流体运动规律和流体力学基本原理的学科。

在流体动力学中,激波是一个重要而常见的现象。

它主要是由于在介质中传播的涡旋状扰动引起流体的瞬间压缩和加速所产生的。

激波的产生和传播过程具有复杂的动力学特征和现象,因此对其数值计算分析很具有研究价值,也对日常工程实践和科学研究具有非常重要的参考意义。

基本理论流体动力学中的激波通常采用守恒律方程组表示,主要包括质量、动量、能量等方程。

对于一维定常流动而言,常用的守恒律方程组包括Euler方程和Navier-Stokes方程等。

Euler方程是在假设流体为完全无黏的情况下得到的:$\frac{\partial \rho}{\partial t}+\frac{\partial (\rho u)}{\partial x}=0$$\frac{\partial (\rho u)}{\partial t}+\frac{\partial (\rho u^{2}+p)}{\partial x}=0$$\frac{\partial (\rho E)}{\partial t}+\frac{\partial (\rho uE+p u)}{\partial x}=0$其中,$\rho$是流体的密度,$u$是流体的速度,$p$是流体的压力,$E$是总能量(包括动能和内能),$x$是坐标。

数值计算分析为了研究和分析激波的产生和传播,需要对激波进行数值计算模拟。

数值计算分析的一般方法是将流动区域离散化成网格,并在每个网格上求解守恒律方程组。

常用的数值方法包括有限差分法,有限元法和有限体积法等。

有限差分法是一种将连续的微分方程转化为差分方程的数值计算方法。

在离散化过程中,需要将流动区域分成若干个网格,每个网格的参数通过有限差分来求取。

这种方法的优点主要有计算简单、过程易懂。

但是其精度受到网格大小和步长限制,精度难以提高。

有限元法 有限差分法 有限体积法的区别

有限元法 有限差分法 有限体积法的区别

三者各有所长:有限差分法:直观,理论成熟,精度可选。

但是不规则区域处理繁琐,虽然网格生成可以使FDM应用于不规则区域,但是对区域的连续性等要求较严。

使用FDM的好处在于易于编程,易于并行。

有限元方法:适合处理复杂区域,精度可选。

缺憾在于内存和计算量巨大。

并行不如FDM和FVM直观。

不过FEM的并行是当前和将来应用的一个不错的方向。

有限容积法:适于流体计算,可以应用于不规则网格,适于并行。

但是精度基本上只能是二阶了。

FVM的优势正逐渐显现出来,FVM在应力应变,高频电磁场方面的特殊的优点正在被人重视。

比较一下:有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程)。

有限容积法和有限差分法最本质的区别是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的精度,还取决与对导数处理的精度,一般有限容积法总体的精度为二阶,因为积分的精度限制,当然有限容积法对于守恒型方程导出的离散方程可以保持守恒型;而后者直接由微分方程导出,不涉及积分过程,各种导数的微分借助Taylor展开,直接写出离散方程,当然不一定有守恒性,精度也和有限容积法不一样,一般有限差分法可以使精度更高一些。

当然二者有联系,有时导出的形式一样,但是概念上是不一样的。

至于有限容积法和有限元相比,有限元在复杂区域的适应性对有限容积是毫无优势可言的,至于有限容积的守恒性,物理概念明显的这些特点,有限元是没有的。

目前有限容积在精度方面与有限元法有些差距。

有限元方法比有限差分优越的方面主要在能适应不规则区域,但是这只是指的是传统意义上的有限差分,现在发展的一些有限差分已经能适应不规则区域。

对于椭圆型方程,如果区域规则,传统有限差分和有限元都能解,在求解效率,这里主要指编程负责度和收敛快慢、内存需要,肯定有限差分有优势。

偏微分方程的数值解法

偏微分方程的数值解法

偏微分方程的数值解法在科学和工程领域中,偏微分方程(Partial Differential Equations,简称PDEs)被广泛应用于描述自然现象和工程问题。

由于许多复杂的PDE难以找到解析解,数值方法成为了求解这些方程的重要途径之一。

本文将介绍几种常见的偏微分方程数值解法,并探讨其应用。

一、有限差分法有限差分法是求解偏微分方程最常用的数值方法之一。

其基本思想是将空间和时间连续区域离散化成有限个点,通过差分逼近偏微分方程中的导数,将偏微分方程转化为差分方程。

然后,利用差分方程的迭代计算方法,求解近似解。

以一维热传导方程为例,其数值解可通过有限差分法得到。

将空间区域离散化为若干个网格点,时间区域离散化为若干个时间步长。

通过差分逼近热传导方程中的导数项,得到差分方程。

然后,利用迭代方法,逐步更新每个网格点的数值,直到达到收敛条件。

最终得到近似解。

二、有限元法有限元法是另一种常用于求解偏微分方程的数值方法。

它将连续的空间区域离散化为有限个单元,将PDE转化为每个单元内的局部方程。

然后,通过将各个单元的局部方程组合起来,构成整个区域的方程组。

最后,通过求解这个方程组来获得PDE的数值解。

有限元法的优势在于可以适应复杂的几何形状和边界条件。

对于二维或三维的PDE问题,有限元法可以更好地处理。

同时,有限元法还可以用于非线性和时变问题的数值求解。

三、谱方法谱方法是利用一组基函数来表示PDE的解,并将其代入PDE中得到一组代数方程的数值方法。

谱方法具有高精度和快速收敛的特点,在某些问题上比其他数值方法更具优势。

谱方法的核心是选择合适的基函数,常用的基函数包括Legendre多项式、Chebyshev多项式等。

通过将基函数展开系数与PDE的解相匹配,可以得到代数方程组。

通过求解这个方程组,可以得到PDE的数值解。

四、有限体积法有限体积法是将空间域划分为有限个小体积单元,将PDE在每个小体积单元上进行积分,通过适当的数值通量计算来近似描述流体在边界上的净流量。

数值模拟方法

数值模拟方法

数值模拟方法数值模拟方法是一种通过计算机模拟实际系统的数学方法,它在科学研究和工程应用中具有广泛的应用。

数值模拟方法可以通过建立数学模型,利用计算机进行数值计算,得到系统的行为和性能,从而为实际问题的分析和解决提供有效的手段。

本文将介绍数值模拟方法的基本原理、常用技术和应用领域。

数值模拟方法的基本原理是将实际系统抽象为数学模型,通过数学方程描述系统的行为规律,然后利用计算机进行数值计算,得到模型的解析解或数值解。

数值模拟方法主要包括有限元方法、有限差分方法、有限体积方法等。

其中,有限元方法是一种将连续系统离散化的方法,它将实际系统分割为有限个单元,通过单元之间的相互作用来描述整个系统的行为;有限差分方法是一种将微分方程转化为差分方程进行求解的方法;有限体积方法是一种将微分方程转化为积分方程进行求解的方法。

这些方法在实际应用中各有优缺点,可以根据具体问题的特点选择合适的方法进行数值模拟。

数值模拟方法在工程领域有着广泛的应用,例如在结构力学中,可以利用有限元方法对结构进行强度和刚度分析,为结构设计提供依据;在流体力学中,可以利用有限体积方法对流体流动进行模拟,为流体工程设计提供支持;在热传导领域,可以利用有限差分方法对热传导过程进行模拟,为热工程设计提供指导。

此外,数值模拟方法还在地球科学、生物医学、材料科学等领域有着重要的应用价值。

总之,数值模拟方法是一种重要的科学计算方法,它通过建立数学模型,利用计算机进行数值计算,为实际问题的分析和解决提供了有效的手段。

随着计算机技术的不断发展,数值模拟方法在科学研究和工程应用中将发挥越来越重要的作用。

希望本文的介绍能够帮助读者对数值模拟方法有所了解,为相关领域的研究和应用提供参考。

4第三章发展型模型方程的有限差分和有限体积方法

4第三章发展型模型方程的有限差分和有限体积方法

4第三章发展型模型方程的有限差分和有限体积方法
发展型模型方程的有限差分和有限体积方法是一种常见的数值计算方法,它可以用于求解模拟各种复杂物理过程所需要的发展模型方程,以及研究物理系统的发展特性。

主要用于多维动态系统的研究,包括液体、气体、固体以及受时变力影响的系统等。

有限差分法是有限元法的一种,是一种用于求解具有连续空间变量的常微分方程的数值求解方法,广泛应用于求解发展型方程,它可以尽可能地保留模型方程中物理参量的准确性。

有限差分法的主要思想是,采用一组有限的离散点对空间中的其中一种物理参量进行采样,然后对每一点求解局部模型方程,以获得有效且准确的数值解。

有限差分法可以模拟任何物理系统的发展过程,并可以求解出它们的时变特性,以便更好地研究它们的发展规律。

有限体积方法是求解发展型方程的另一种常用的数值方法,既可以求解一维的也可以求解多维的发展型方程。

有限体积法的基本思想是,将空间中的物理参量分割成若干个有限的体积元,每一个体积元都满足局部的模型方程,然后再求解相互连接的每一个体积元,以获得全局的解。

偏微分方程数值解

偏微分方程数值解

偏微分方程数值解引言偏微分方程是描述自然界中许多物理现象的数学模型。

然而,大多数偏微分方程的解析解是难以找到的,因此需要采用数值方法来求解。

本文将介绍偏微分方程数值解的基本概念和常用算法。

偏微分方程的分类根据方程中未知函数的个数和自变量的个数,偏微分方程可以分为三类:椭圆型偏微分方程、双曲型偏微分方程和抛物型偏微分方程。

椭圆型偏微分方程通常用于描述稳态问题,如热传导方程。

双曲型偏微分方程适用于描述波动现象,如波动方程。

抛物型偏微分方程常用于描述时间与空间的关系,如扩散方程。

常用数值方法有限差分法有限差分法是求解偏微分方程数值解的一种常见方法。

通过在网格上进行离散化,将偏微分方程转化为代数方程组,并利用差分近似来求解。

求解偏微分方程的关键是将偏导数用差商来近似。

通常选择中心差分、前向差分和后向差分等差分格式来近似求解。

差分格式的选择取决于问题的特性和精度要求。

有限元法有限元法是另一种常用的数值方法,特别适用于求解二维和三维偏微分方程。

有限元法是将问题的连续域划分为有限个单元,利用基函数来逼近解,通过构造能量泛函最小化问题,得到离散方程组的解。

有限元法的优势在于可以适应复杂的几何形状和边界条件,并且能够很好地处理不规则网格。

然而,有限元法的计算量较大,对计算资源的要求较高。

有限体积法有限体积法是一种在控制体积内对连续方程进行积分得到离散形式的方法。

通过对方程进行积分,然后在网格单元内求解积分方程得到离散方程组。

有限体积法的优点是可以直接处理守恒型方程,并且可以较好地处理对流项和障碍物。

然而,有限体积法的精度通常低于有限差分法和有限元法。

数值实例一维热传导方程的数值解考虑一维热传导方程:$$ \\frac{\\partial u}{\\partial t} = \\alpha\\frac{\\partial^2 u}{\\partial x^2} $$其中,u(u,u)是温度场,$\\alpha$是热扩散系数。

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式与高阶格式。

从差分的空间形式来考虑,可分为中心格式与逆风格式。

考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况与柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分与二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间与空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

有限元方法的基础是变分原理与加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数与插值函数形式,便构成不同的有限元方法。

有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

计算流体力学中常用的控制方程离散化方法概述

计算流体力学中常用的控制方程离散化方法概述

计算流体力学中常用的控制方程离散化方法概述计算流体力学是现代流体力学的一种数值计算方法,最早出现是在20世纪50年代。

它主要应用于流体的流动、传热、化学反应、物质转移等方面的数值计算,成为了工程和科学界不可或缺的工具。

计算流体力学中的控制方程离散化方法则是其中重要的一部分,本文将就此进行概述。

一、控制方程离散化在计算流体力学中,控制方程是解决问题的基础,主要包括连续性方程、动量方程和能量方程等。

这些方程通过离散化方法进行处理,变成可以计算机进行处理的数学模型。

离散化的基本思想是将时间和空间分成有限个点来处理,利用简单的数值运算方法计算每个时间步长中的各个物理量。

常用的离散化方法包括有限差分方法、有限体积方法、有限元方法等。

二、有限差分方法有限差分方法是计算流体力学中常用的一种离散化方法,它是一种基于差分的数值方法,利用有限差分近似代替微分方程,求解微分方程数值解的方法。

它的主要思想是将一个连续的空间域区间划分为一些点,对连续波动函数的任意一阶导数代替为该点处差分的近似,从而把原问题转化为一个差分方程组,通过解这个方程组来求解微分方程的近似解。

三、有限体积方法有限体积方法是一种对控制方程离散化方法,它是一种基于控制方程积分形式的方法。

该方法基于微积分的思想,通过对空间区域划分成有限的体积单元来进行数值计算。

在有限体积方法中,我们通常选择一个体积单元V,然后从该体积单元周围的表面积进行积分,得到控制方程的离散形式。

四、有限元方法有限元方法是计算流体力学中另一种常用的离散化方法,它能够适应各种复杂流动情况。

该方法可以将连续问题变为离散问题,进而离散化求解成一些小片断组成的离散问题,并且可以在不同的片段上使用不同阶次的多项式进行近似,从而得到更为准确的结果。

在有限元方法中,我们通常需要先对区域进行剖分,然后利用插值法来构造近似解。

五、总结综合来说,计算流体力学中常用的控制方程离散化方法有有限差分方法、有限体积方法和有限元方法三种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限差分,有限元,有限体积等离散方法的区别介绍1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

从差分的空间形式来考虑,可分为中心格式和逆风格式。

考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。

从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。

不同的组合同样构成不同的有限元计算格式。

对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。

令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。

插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。

有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。

单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。

常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。

在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。

对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。

对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。

(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。

区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。

(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。

有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。

(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。

(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。

对于自然边界条件,一般在积分表达式中可自动得到满足。

对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。

(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值3 有限体积法(Finite Volume Method)又称为控制体积法。

其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。

其中的未知数是网格点上的因变量的数值。

为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。

从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。

简言之,子区域法属于有限体积发的基本方法。

有限体积法的基本思路易于理解,并能得出直接的物理解释。

离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。

限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。

这是有限体积法吸引人的优点。

有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。

就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。

有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。

有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。

有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。

在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。

4 多重网格方法通过在疏密不同的网格层上进行迭代,以平滑不同频率的误差分量.具有收敛速度快,精度高等优点.多重网格法基本原理微分方程的误差分量可以分为两大类,一类是频率变化较缓慢的低频分量;另一类是频率高,摆动快的高频分量。

一般的迭代方法可以迅速地将摆动误差衰减,但对那些低频分量,迭代法的效果不是很显著。

高频分量和低频分量是相对的,与网格尺度有关,在细网格上被视为低频的分量,在粗网格上可能为高频分量。

多重网格方法作为一种快速计算方法,迭代求解由偏微分方程组离散以后组成的代数方程组,其基本原理在于一定的网格最容易消除波长与网格步长相对应的误差分量。

该方法采用不同尺度的网格,不同疏密的网格消除不同波长的误差分量,首先在细网格上采用迭代法,当收敛速度变缓慢时暗示误差已经光滑,则转移到较粗的网格上消除与该层网格上相对应的较易消除的那些误差分量,这样逐层进行下去直到消除各种误差分量,再逐层返回到细网格上。

目前两层网格方法从理论上已证明是收敛的,并且其收敛速度与网格尺度无关[哈克?#####迹?988]。

多重网格法是迭代法与粗网格修正的组合,经过证明迭代法可迅速地将那些高频分量去掉,粗网格修正则可以帮助消除那些光滑了的低频分量,而对那些高频分量基本不起作用。

科研中国 在多重网格计算中,需要一些媒介把细网格上的信息传递到粗网格上去,同时还需要一些媒介把粗网格上的信息传递到细网格上去。

限制算子Iih(i-1)h是把细网格i-1层上的残余限制到粗网格i层上的算子,最简单的算子是平凡单射,另外还有特殊加权限制;插值算子Iih(i-1)h是把粗网格i层上的结果插值到细网格i-1层上的算子,一般采用线性插值或完全加权限制算子。

5 近似求解的误差估计办法共有三大类:单元余量法,通量投射法及外推法.单元余量法广泛地用于以FEM离散的误差估计之中,它主要是估计精确算子的余量,而不是整套控制方程的全局误差.这样就必须假定周围的单元误差并不相互耦合,误差计算采用逐节点算法进行.单元余量法的各种不同做法主要来自对单元误差方程的边界条件的不同处理办法.基于此,该方法能够有效处理局部的残余量,并能成功地用于网格优化程序.通量投射法的基本原理来自一个很简单的事实:精确求解偏微分方程不可能有不连续的微分,而近似求解却可以存在微分的不连续,这样产生的误差即来自微分本身,即误差为系统的光滑求解与不光滑求解之差.该方法与单元余量法一样,对节点误差采用能量范数,故也能成功地用于网格优化程序.单元余量法及通量投射法都局限于局部的误差计算(采用能量范数),误差方程的全局特性没有考虑.另外计算的可行性(指误差估计方程的计算时间应小于近似求解计算时间)不能在这两种方法中体现,因为获得的误差方程数量,阶数与流场控制方程相同.外推法是指采用后向数值误差估计思想由精确解推出近似解的误差值.各类文献中较多地采用Richardson外推方法来估计截断误差.无论是低阶还是高阶格式,随着网格的加密数值计算结果都会趋近于准确解.但由于计算机内存与计算时间的限制,实际上不能采用这种网格无限加密的办法.由Richardson所发展起来的外推方法,可以利用在不同疏密网格上得出的结果估计相应的收敛解,可以估计所用离散方法截断误差的阶数,可以估计所得数值计算的截断误差.该方法有很大的局限性,不能简单地用于复杂湍流流动;并且在数值计算中数值解必须单调地趋近于其收敛值.而文献提出的单网格后向误差估计思想,在采用有限元法FEM,有限容积法FVM时均有应用,并且还用于网格优化程序,但该方法也不能用于复杂湍流流动的数值分析.6 近年来发展的多尺度计算方法包括均匀化方法[9-11]、非均匀化多尺度方法[12-15]、以及小波数值均匀化方法[16]、多尺度有限体积法[17]、多尺度有限元法[1]等。

相关文档
最新文档