第六章习题汇编

合集下载

第6章习题及参考答案

第6章习题及参考答案

第6章习题和参考答案6.1 用系统命名法命名下列各化合物。

(1)(CH 3)2CHCH 2CH 2CH 2Cl (2)CH 3CH 2CBr 2CH 2CH (CH 3)2(CH 3)2C-C(CH 3)2CH 2Br2CH 2CH 3CH 3C CCH(CH 3)CH 2Cl⑶⑷CH Cl BrCH 2CH 3CHCHCH 2CH 3BrCH 3⑸⑹C 2H 52H 5H ClBr HCCH 2CH 3C 6H 5Br(7)(8)ClClCH 3SO 3H (9)(10)CH 3BrCH 2I(11)(12)CH 3ClClCl CH 3HBrCH 3Br (13)(14)CH 3CH 3C 2H 5H ClCHH C 2H 5CCH 2CHCCBr(15)(16)解:(1)3-甲基-1-氯戊烷; (2)2-甲基-4,4-二溴己烷; (3)2,2,3,3-四甲基-1-溴己烷; (4)4-甲基-5-氯-2-戊炔;(5)(Z)-1-氯-1-溴-1-丁烯;(6)2-甲基-1-苯基-1-溴丁烷;(7) (R )-1-苯基-1-溴丙烷; (8)(3R ,4R )-3-氯-4-溴己烷; (9) 3-甲基-5-氯苯磺酸; (10)5-氯-1,3-环己二烯; (11) 顺-1-甲基-4-溴环己烷; (12) 3-碘甲基环己烯(13) (1S ,2R ,3R )-1-甲基-2,3-二溴环己烷; (14) (S )-2,2,3-三氯丁烷 (15) 4-溴-1-丁烯-3-炔; (16) (3E ),(6R )-5,5-二甲基-6-溴-3-辛烯6.2 写出下列化合物的结构式。

(1) 异丙基氯; (2) 烯丙基溴; (3) β-苯基乙基溴; (4) 对氯苄基溴; (5) 新戊基碘; (6) 叔丁基氯(7) (S)-2-碘辛烷 (8) 6,7-二甲基-5-氯二环[3.2.1]辛烷 (9) 反-1-苯基-2-氯环己烷 (10) 1,2,3-三氯环己烷所有异构体的稳定构象解:CH 3CH 2CH 2CHCH 3ClBrCH 2CH CH 2(1)(2)CH 2CH 2Br CH 2BrCl(3)(4)C CH 2CH 3CH 3CH 3I C Cl CH 3CH 3CH 3(5)(6)C 6H 133I HCH 3C H 3ClClPh(9)(8)(7)ClClClClClClClClCl(10)6.3 写出1-溴丁烷与下列试剂反应的主要产物。

数学第六章 实数试题含答案

数学第六章 实数试题含答案

数学第六章 实数试题含答案一、选择题1.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ).A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)2.一列数1a , 2a , 3a ,…… n a ,其中1a =﹣1, 2a =111a -, 3a =211a -,……, n a =111n a --,则1a ×2a ×3a ×…×2017a =( ) A .1B .-1C .2017D .-2017 3.下列说法错误的是( )A .﹣4是16的平方根B2 C .116的平方根是14D5 4.下列说法错误的是( )A .a 2与(﹣a )2相等B互为相反数 CD .|a|与|﹣a|互为相反数 5.若a 2=(-5)2 ,b 3=(-5)3 ,则a+b 的值是( ) A .0或-10或10B .0或-10C .-10D .0 6.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1 B .-5或5 C .11或7 D .-11或﹣7 7.1是a 的相反数,那么a 的值是( )A.1B.1C. D8.0=,则x 和y 的关系是( )A .0x y ==B .0x y -=C .1xy =D .0x y +=9.下列各数中,介于6和7之间的数是( )ABCD10.下列判断正确的有几个( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;3的立方根;④无理数是带根号的数;⑤2.A .2个B .3个C .4个D .5个二、填空题11.m 的平方根是n +1和n ﹣5;那么m +n =_____.12.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 13.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).14.规定运算:()a b a b *=-,其中b a 、为实数,则4)+=____15.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是2)⊕3=___.16.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.17.__________0.5.(填“>”“<”或“=”) 18.规定用符号[]x表示一个实数的整数部分,如[3.65]3,1==,按此规定1⎡=⎣_____. 19.已知2(21)0a ++=,则22004a b +=________.20.用“*”表示一种新运算:对于任意正实数a ,b,都有*1a b.例如8914*=,那么*(*16)m m =__________.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b是有理数,并且满足等式52b a =+,求a ,b 的值.解:因为52b a -=+所以()52b a =-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y是有理数,并且满足等式2x 2y 17--=-x y +的值.22.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①31000100==,又1000593191000000<<,10100∴<<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9. ③如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.23.对于实数a,我们规定用}{a}为 a 的根整数.如}=4.(1)计算?(2)若{m}=2,写出满足题意的m 的整数值;(3)现对a 进行连续求根整数,直到结果为2为止.例如对12进行连续求根整数,第一次}=4,再进行第二次求根整数}=2,表示对12连续求根整数2次可得结果为2.对100进行连续求根整数, 次后结果为2.24.观察下来等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______.25.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?26.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯= 计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:用定义的规则分别计算出P 1,P 2,P 3,P 4,P 5,P 6,观察所得的结果,总结出规律求解.详解:因为P 1(1,-1)=(0,2);P 2(1,-1)=P 1(P 1(1,-1))=P 1(0,2)=(2,-2);P 3(1,-1)=P 1(P 2(2,-2))=(0,4);P 4(1,-1)=P 1(P 3(0,4))=(4,-4);P 5(1,-1)=P 1(P 4(4,-4))=(0,8);P 6(1,-1)=P 1(P 5(0,8))=(8,-8);……P 2n-1(1,-1)=……=(0,2n );P 2n (1,-1)=……=(2n ,-2n ).因为2017=2×1009-1, 所以P 2017=P 2×1009-1=(0,21009).故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.2.B解析:B【解析】因为1a =﹣1,所以2a =11111112a ==---(),3 a =21121112a ==--,4 a =3111112a ==---,通过观察可得:1 a ,2a ,3a ,4 a ……的值按照﹣1,1 2, 2三个数值为一周期循环,将2017除以3可得372余1,所以2017a 的值是第273个周期中第一个数值﹣1,因为每个周期三个数值的乘积为: 11212-⨯⨯=-,所以1a ×2a ×3a ×…×2017a =()()372111,-⨯-=-故选B. 3.C解析:C【分析】分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.【详解】A .﹣4是16的平方根,说法正确;B .2,说法正确;C . 116的平方根是±14,故原说法错误; D .,说法正确.故选:C .【点睛】此题考查了平方根以及算术平方根的定义,熟记相关定义是解题的关键.4.D解析:D【分析】利用平方运算,立方根的化简和绝对值的意义,逐项判断得结论.【详解】∵(﹣a)2=a2,∴选项A说法正确;a=a,互为相反数,故选项B说法正确;互为相反数,故选项C说法正确;∵|a|=|﹣a|,∴选项D说法错误.故选:D.【点睛】此题主要考查了绝对值的意义,平方运算及立方根的化简.掌握立方根的化简和绝对值的意义是解决本题的关键.5.B解析:B【分析】直接利用平方根和立方根的计算得出答案.【详解】∵a2=(-5)2,b3=(-5)3,∴a=±5,b=-5, ∴a+b=0或-10,故选B.【点睛】本题考查了平方根和立方根,掌握平方根和立方根的性质是关键.6.A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y的值即可.【详解】解:∵|x|=2,y2=9,且xy<0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.7.A解析:A【详解】只有符号不同的两个数,我们称这两个数互为相反数,则1)1=-=-a 考点:相反数的定义8.D解析:D【分析】根据立方根的性质得出x+y=0即可解答.【详解】0+=,∴x+y=0故答案为D .【点睛】本题主要考查了立方根的性质,通过立方根的性质得到x+y=0是解答本题的关键.9.A解析:A【分析】求出每个根式的范围,再判断即可.【详解】解:A 、67,故本选项正确;B 、78,故本选项错误;C 、78,故本选项错误;D 、34,故本选项错误;故选:A .【点睛】本题考查了估算无理数的大小的应用,关键是求出每个根式的范围.10.B解析:B【分析】根据平方根的定义判断①;根据实数的定义判断②;根据立方根的定义判断③;根据无理数的定义判断④;根据算术平方根的定义判断⑤.【详解】解:①一个数的平方根等于它本身,这个数是0,因为1的平方根是±1,故①错误; ②实数包括无理数和有理数,故②正确;3的立方根,故③正确;④π是无理数,而π不带根号,所以无理数不一定是带根号的数,故④错误;⑤2,故⑤正确.故选:B.【点睛】本题考查了平方根、立方根、算术平方根及无理数、实数的定义,是基础知识,需熟练掌握.二、填空题11.11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答解析:11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答案为11.【点睛】此题主要考查了平方根,正确利用平方根的定义得出n的值是解题关键.12.【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=8 18181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.13.①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式解析:①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a (b×c+c) +(b×c+c)=abc+ac+bc+c 2 两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.14.4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】===4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】4)+4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.15.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.17.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.18.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】19.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b −1=0,∴a=,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】 本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.20.+1【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..【点睛】此题考查实数的运算,解题的关键是要掌握运算法则.三、解答题21.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17--=-所以()2x 2y 17-=- 所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.22.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论; ②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①31000100==,10001951121000000<< ,∴10100<<,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵38512=,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<<∴56<<,可得5060<<,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.23.(1)3;(2)2,3,4(3)3【分析】(1的大小,再根据新定义可得结果;(2)根据定义可知12,可得满足题意的m 的整数值;(3)根据定义对100进行连续求根整数,可得3次之后结果为2.【详解】解:(1)根据新定义可得,,故答案为3;(2)∵{m}=2,根据新定义可得,1,可得m 的整数值为2,3,4,故答案为2,3,4; (3)∵{100}=10,{10}=4,{4}=2,∴对100进行连续求根整数,3次后结果为2;故答案为3.【点睛】本题考查了估算无理数的大小的应用,主要考查了对新定义的理解能力,准确理解新定义是解题的关键.24.(1)275,572;(2)(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a ,三位数是100a+10(a+b )+b ;右边的两位数是10a+b ,三位数是100b+10(a+b )+a ;“数字对称等式”为:(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a]. 故答案为275,572;(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.25.(1;(2)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,cm ,(2)∵22r ππ=,∴r =∴2=2C r π=圆,设正方形的边长为a∵22a π=,∴a∴=4C a =正∴1C C ===<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.26.(1)2550;(2)50505150a m +【分析】(1)利用所给规律计算求解即可;(2)先去括号,再分组利用所给规律计算.【详解】解:(1)原式()()()21004985052=++++⋅⋅⋅++ 102252550=⨯=(2)原式()()23100234101a a a a m m m m =+++⋅⋅⋅+++++⋅⋅⋅+50505150a m =+【点睛】本题考查的知识点是去括号与添括号、有理数的加法、合并同类项,灵活运用加法的运算律是解此题的关键.。

八年级数学上册第六、七章知识汇总及练习

八年级数学上册第六、七章知识汇总及练习

第六章《数据的分析》知识整理1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数2、平均数(1)平均数:一般地,对于n 个数,,,,21n x x x 我们把)(121n x x x n+++ 叫做这n 个数的算术平均数,简称平均数,记为x 。

(2)加权平均数:一组数据,,,,21n x x x 的权分加为n w w w ,,21,则称为这n 个数的加权平均数。

(如:对某同学的数学、语文、科学三科的考查,成绩分别为72,50,88,而三项成绩的“权”分别为4、3、1,则加权平均数为:134188350472++⨯+⨯+⨯)3、众数一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

4、平均数、中位数、众数的联系 A 、都可以作为一组数据的代表。

B 、平均数比较可靠和稳定,它包括所有数据提供的信息。

因而应用最为广泛。

但计算比较麻烦,容易受到极端数的影响。

C 、众数可靠性差,但其大小只与这组数据中部分数据有关。

计算简单,在一组数据中有不少数据重复出现时,常选用它来表示这组数据的集中趋势。

D 、中位数可靠性也差,它与数据的排序有关,不受极端数据的影响,计算简单,当一组数据中个别数据变动较大时,适合用中位数表示。

第七章《平行线的证明》知识整理1.推理证明的必要性:我们认识事物,可能有偏差,有时是“想当然”,过于草率,有时是“乱花迷人眼”,观察产生了错觉,但无论哪一种情况,没有严格的证明都是不能令人放心和信服的。

nnn w w w w x w x w x ++++++ 212211例1:当x 为任意实数时,542++x x 的值都大于零吗?2.检验数学结论是否正确的常用方法:检验数学结论常用的方法:实验验证法、举例反例、推理论证等。

例2:如果y x ,那么一定有x>y 吗?3.定义的概念:对一些名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义。

《数据结构》习题汇编06第六章树和二叉树试题

《数据结构》习题汇编06第六章树和二叉树试题

第六章树和二叉树试题一、单项选择题1.树中所有结点的度等于所有结点数加()。

A. 0B. 1C. -1D. 22.在一棵树中,()没有前驱结点。

A. 分支结点B. 叶结点C. 根结点D. 空结点3.在一棵二叉树的二叉链表中,空指针域数等于非空指针域数加()。

A. 2B. 1C. 0D. -14.在一棵具有n个结点的二叉树中,所有结点的空子树个数等于()。

A. nB. n-1C. n+1D. 2*n5.在一棵具有n个结点的二叉树的第i层上(假定根结点为第0层,i大于等于0而小于等于树的高度),最多具有()个结点。

A. 2iB. 2i+1C. 2i-1D. 2n6.在一棵高度为h(假定根结点的层号为0)的完全二叉树中,所含结点个数不小于()。

A. 2h-1B. 2h+1C. 2h-1D. 2h7.在一棵具有35个结点的完全二叉树中,该树的高度为()。

假定空树的高度为-1。

A. 5B. 6C. 7D. 88.在一棵具有n个结点的完全二叉树中,分支结点的最大编号为()。

假定树根结点的编号为0。

A. ⎣(n-1)/2⎦B. ⎣n/2⎦C. ⎡n/2⎤D. ⎣n/2⎦ -19.在一棵完全二叉树中,若编号为i的结点存在左孩子,则左子女结点的编号为()。

假定根结点的编号为0A. 2iB. 2i-1C. 2i+1D. 2i+210.在一棵完全二叉树中,假定根结点的编号为0,则对于编号为i(i>0)的结点,其双亲结点的编号为()。

A. ⎣(i+1)/2⎦B. ⎣(i-1)/2⎦C. ⎣i/2⎦D. ⎣i/2⎦-111.在一棵树的左子女-右兄弟表示法中,一个结点的右孩子是该结点的()结点。

A. 兄弟B. 子女C. 祖先D. 子12.在一棵树的静态双亲表示中,每个存储结点包含()个域。

A. 1B. 2C. 3D. 413.已知一棵二叉树的广义表表示为a (b (c), d (e ( , g (h) ), f ) ),则该二叉树的高度为()。

6 维生素 生物化学习题汇编 sqh

6 维生素 生物化学习题汇编 sqh

目录第六章维生素 (2)一、填充题 (2)二、是非题 (4)三、选择题(下列各题有四个或五个备选答案,试从其中选出一个) (5)四、问答题 (6)参考文献 (8)第六章维生素一、填充题1、维生素是维持生物体正常生长所必需的一类( )[1]有机物质。

主要作用是作为( )[2]的组分参与体内代谢。

2、根据维生素的( )[3]性质,可将维生素分为两类,即( )[4]和( )[5]。

3、维生素A的活性形式是( )[6],可与视蛋白组成( )[7],后者是维持( )[8]视觉所必需的。

4、维生素D在体内的最高活性形式是( )[9],它是由维生素D3分别在( )[10]和( )[11]二次( )[12]而来的。

5、维生素D在体内的主要作用是调节( )[13]代谢,与( )[14]生长有关。

6、维生素K的主要作用是作为( )[15]的辅酶,促进肝脏凝血酶原中Glu残基的( )[16],生成( )[17],修饰后的凝血酶原与()[18]结合,才能被激活转化为凝血酶。

7、维生素B1由( )[19]环与( )[20]环通过([21])相连,主要功能是以( )[22]形式,作为( )[1]和( )[2]的辅11、微量21、辅酶32、溶解42、水溶性维生素52、脂溶性维生素63、11-顺视黄醛73、视紫红质83、暗94、1,25-二羟胆钙化醇104、肝脏114、肾脏124、羟化135、钙磷145、骨骼156、羧化酶166、羧化176、γ-羧基谷氨酸186、Ca2+197、嘧啶207、噻唑217、亚甲基227、TPP酶,转移二碳单位。

8、维生素B2的化学结构可以分为二部分,即( )[3]和( )[4],其中( )[5]原子上可以加氢,因此有氧化型和还原型之分。

9、维生素B3由( )[6]与( )[7]通过( )[8]相连而成,可以与( )[9],( )[10]和( )[11]共同组成辅酶( )[12],作为各种( )[13]反应的辅酶,传递( )[14]。

第六章 习题

第六章 习题

第六章习题一、填空题1、当定时器T0工作在方式3时,要占用定时器T1的和两个控制位。

2、在定时器T0工作方式3下,TH0溢出时,标志将被硬件置1去请求中断。

3、在定时器T0工作方式3下,欲使TH0停止工作,应执行一条的指令。

4、使用定时器/计数器1设置串行通信的波特率时,应把定时器/计数器1设定作方式,即方式。

5、当计数器产生计数溢出时,把定时器/计数器的TF0(TF1)位置“1”。

对计数溢出的处理,在中断方式时,该位作为位使用;在查询方式时,该位作位使用。

6、在定时器工作方式1下,计数器的宽度为16位,如果系统晶振频率为6MHz,则最大定时时间为,若系统晶振频率为12MHz,则最大定时时间为。

7、8051单片机内部设有两个16位定时器/计数器,即和。

8、T0由两个8位特殊功能寄存器和组成,T1由和组成。

9、定时时间与定时器的、及有关。

10、MCS-51的定时器/计数器作计数器时计数脉冲由外部信号通过引脚和提供。

11、MCS-51的定时器/计数器T0的门控信号GATE设置为1时,只有引脚为高电平且由软件使置1时,才能启动定时器/计数器T0工作。

12、当T0为方式,T1为方式的时候,8051单片机的定时器可提供3个8位定时器/计数器。

二、选择题1、在下列寄存器中,与定时/计数控制无关的是()A、TCONB、TMODC、SCOND、IE2、在工作方式0下,计数器是由TH的全部8位和TL的5位组成,因此其计数范围是()A、1~8192B、0~8191C、0~8192D、1~40963、如果以查询方式进行定时应用,则应用程序中的初始化内容应包括()A、系统复位、设置工作方式、设置计数初值B、设置计数初值、设置中断方式、启动定时C、设置工作方式、设置计数初值、打开中断D、设置工作方式、设置计数初值、禁止中断4、与定时工作方式1和0比较,定时工作方式2不具备的特点是()A、计数溢出后能自动重新加载计数初值B、增加计数器位数C、提高定时精度D、适于循环定时和循环计数应用5、要想测量INT0 引脚上的一个正脉冲宽度,那么特殊功能寄存器TMOD的内容可以为()。

第六章--机械的平衡习题与答案..(汇编)

第六章--机械的平衡习题与答案..(汇编)

第六章机械的平衡1 机械平衡分为哪几类?2何谓刚性转子与挠性转子?3 对于作往复移动或平面运动的构件,能否在构件本身将其惯性力平衡?4 机械的平衡包括哪两种方法?它们的目的各是什么?5 刚性转子的平衡设计包括哪两种设计?它们各需要满足的条件是什么?6 经过平衡设计后的刚性转子,在制造出来后是否还要进行平衡试验?为什么?7机械平衡的目的?8什么叫静平衡?9什么叫动平衡?10 动静平衡各需几个平衡基面?11刚性转子静平衡的力学条件是;动平衡的力学条件是。

12下图所示的两个转子,已知m1r1=m2r2,转子(a)是_____不平衡的;转子(b)是_____不平衡的。

13下图(a)、(b)、(c)中,s为总质心,图______中的转子具有静不平衡;图______中的转子具有动不平衡。

14平面机构的平衡问题,主要是讨论机构的惯性力和惯性力矩对的平衡。

15机构总惯性力在机架上平衡的条件是平面机构总质心。

16研究机械平衡的目的是部分或完全消除构件在运动时所产生的,减少或消除在机构各运动副中所引起的力,减轻有害的机械振动,改善机械工作性能和延长使用寿命。

17对于绕固定轴回转的构件,可以采用的方法,使构件上所有质量的惯性力形成平衡力系,达到回转构件的平衡。

若机构中存在作往复运动或平面复合运动的构件,应采用方法,方能使作用在机架上的总惯性力得到平衡。

18动平衡的刚性回转构件静平衡的。

19用假想的集中质量的惯性力及惯性力矩来代替原机构的惯性及惯性力矩,该方法称为。

20如图所示曲轴上,四个曲拐位于同一平面内,若质径积m1r1=m2r2=m3r3=m4r4,l1=l2=l3,试判断该曲轴是否符合动平衡条件?为什么?21图示一盘形回转体,其上有四个不平衡质量,它们的大小及质心到回转轴线的距离分别为:m 110=kg ,214kg m =,316kg m =,420kg m =,1200mm r =,r 2400=mm ,3300mm r =,4140mm r =,欲使该回转体满足静平衡条件,试求需加平衡质径积m r b b 的大小和方位。

高中数学必修二第六章平面向量及其应用专项训练题(带答案)

高中数学必修二第六章平面向量及其应用专项训练题(带答案)

高中数学必修二第六章平面向量及其应用专项训练题单选题1、定义空间两个向量的一种运算a⃑⊗b⃑⃑=|a⃑|⋅|b⃑⃑|sin⟨a⃑,b⃑⃑⟩,则关于空间向量上述运算的以下结论中恒成立的有()A.λ(a⃑⊗b⃑⃑)=(λa⃑)⊗b⃑⃑B.(a⃑⊗b⃑⃑)⊗c⃑=a⃑⊗(b⃑⃑⊗c⃑)C.(a⃑+b⃑⃑)⊗c⃑=(a⃑⊗c⃑)+(b⃑⃑⊗c⃑)D.若a⃑=(x1,y1),b⃑⃑=(x2,y2),则a⃑⊗b⃑⃑=|x1y2−x2y1|答案:D分析:A.按λ的正负分类讨论可得,B.由新定义的意义判断,C.可举反例说明进行判断,D.与平面向量的数量积进行联系,用数量积求出两向量夹角的余弦值,转化为正弦值,代入计算可判断.A.(λa⃑)⊗b⃑⃑=|λa⃑||b⃑⃑|sin<λa⃑,b⃑⃑>,λ>0时,<λa⃑,b⃑⃑>=<a⃑,b⃑⃑>,(λa⃑)⊗b⃑⃑=λ|a⃑||b⃑⃑|sin<a⃑,b⃑⃑>=λ(a⃑⊗b⃑⃑),λ=0时,λ(a⃑⊗b⃑⃑)=0,(λa⃑)⊗b⃑⃑=0,成立,λ<0时,<λa⃑,b⃑⃑>=π−<a⃑,b⃑⃑>,sin<λa⃑,b⃑⃑>=sin(π−<a⃑,b⃑⃑>)=sin<a⃑,b⃑⃑>(λa⃑)⊗b⃑⃑=−λ|a⃑||b⃑⃑|sin< a⃑,b⃑⃑>=−λ(a⃑⊗b⃑⃑),综上,A不恒成立;B.a⃑⊗b⃑⃑是一个实数,(a⃑⊗b⃑⃑)⊗c⃑无意义,B不成立;C.若a⃑=(0,1),b⃑⃑=(1,0),c⃑=(1,1),则a⃑+b⃑⃑=(1,1),<a⃑+b⃑⃑,c⃑>=0,(a⃑+b⃑⃑)⊗c⃑=|a⃑+b⃑⃑||c⃑|sin0=√2×√2×0=0,<a⃑,c⃑>=π4,<b⃑⃑,c⃑>=π4,(a⃑⊗c⃑)+(b⃑⃑⊗c⃑)=1×√2×sinπ4+1×√2×sinπ4=2,(a⃑+b⃑⃑)⊗c⃑≠(a⃑⊗c⃑)+(b⃑⃑⊗c⃑),C错误;D.若a⃑=(x1,y1),b⃑⃑=(x2,y2),则|a⃑|=√x12+y12,|b⃑⃑|=√x22+y22,cos <a ⃑,b ⃑⃑>=1212√x 12+y 12×√x 22+y 22,sin <a ⃑,b ⃑⃑>=√1−cos 2<a ⃑,b ⃑⃑>=√1−(x 1x 2+y 1y 2)2(x 12+y 12)(x 22+y 22)=1221√(x 1+y 1)(x 2+y 2), 所以a ⃑⊗b ⃑⃑=|a ⃑||b ⃑⃑|sin <a ⃑,b⃑⃑>=|x 1y 2−x 2y 1|,成立. 故选:D .小提示:本题考查向量的新定义运算,解题关键是理解新定义,并能运用新定义求解.解题方法一种方法是直接利用新定义的意义判断求解,另一种方法是把新定义与向量的数量积进行联系,把新定义中的sin <a ⃑,b ⃑⃑>用cos <a ⃑,b⃑⃑>,而余弦可由数量积进行计算. 2、若|AB⃑⃑⃑⃑⃑⃑|=5,|AC ⃑⃑⃑⃑⃑⃑|=8,则|BC ⃑⃑⃑⃑⃑⃑|的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13)答案:C分析:利用向量模的三角不等式可求得|BC⃑⃑⃑⃑⃑⃑|的取值范围. 因为|BC⃑⃑⃑⃑⃑⃑|=|AC ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑|,所以,||AC ⃑⃑⃑⃑⃑⃑|−|AB ⃑⃑⃑⃑⃑⃑||≤|BC ⃑⃑⃑⃑⃑⃑|≤|AC ⃑⃑⃑⃑⃑⃑|+|AB ⃑⃑⃑⃑⃑⃑|,即3≤|BC ⃑⃑⃑⃑⃑⃑|≤13. 故选:C.3、已知非零平面向量a ⃗,b ⃑⃗,c ⃗,下列结论中正确的是( )(1)若a ⃗⋅c ⃗=b ⃑⃗⋅c ⃗,则a ⃗=b ⃑⃗;(2)若|a ⃗+b ⃑⃗|=|a ⃗|+|b ⃑⃗|,则a ⃗//b⃑⃗ (3)若|a ⃗+b ⃑⃗|=|a ⃗−b ⃑⃗|,则a ⃗⊥b ⃑⃗(4)若(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,则a ⃗=b ⃑⃗或a ⃗=−b⃑⃗ A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4)答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果.已知非零平面向量a ⃗,b ⃑⃗,c ⃗,(1)若a ⃗⋅c ⃗=b ⃑⃗⋅c ⃗,则(a ⃗−b ⃑⃗)⋅c ⃗=0,所以a ⃗=b ⃑⃗或(a ⃗−b ⃑⃗)⊥c ⃗,即(1)错;(2)若|a ⃗+b ⃑⃗|=|a ⃗|+|b ⃑⃗|,则a ⃗与b ⃑⃗同向,所以a ⃗//b⃑⃗,即(2)正确;(3)若|a ⃗+b ⃑⃗|=|a ⃗−b ⃑⃗|,则|a ⃗|2+|b ⃑⃗|2+2a ⃗⋅b ⃑⃗=|a ⃗|2+|b ⃑⃗|2−2a ⃗⋅b ⃑⃗,所以2a ⃗⋅b ⃑⃗=0,则a ⃗⊥b⃑⃗;即(3)正确;(4)若(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,则|a ⃗|2−|b ⃑⃗|2=0,所以|a ⃗|=|b⃑⃗|,不能得出向量共线,故(4)错; 故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.4、已知向量a ⃑,b ⃑⃑满足|a ⃑|=√3,|b ⃑⃑|=2,且a ⃑⊥(a ⃑−b ⃑⃑),则a ⃑与b⃑⃑的夹角为( ) A .30°B .60°C .120°D .150°答案:A分析:利用数量积的定义,即可求解.解:a ⃑⊥(a ⃑−b ⃑⃑),所以a ⃑⋅(a ⃑−b ⃑⃑)=0,即|a →|2−|a →||b →|cos <a →,b →>=0,解得cos <a →,b →>=√32,又因为向量夹角的范围为[0°,180°],则a ⃑与b ⃑⃑的夹角为30°,故选:A. 5、在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且(a +b )2−c 2=4,C =120°,则△ABC 的面积为( )A .√33B .2√33C .√3D .2√3 答案:C解析:利用余弦定理可求ab 的值,从而可求三角形的面积.因为C =120°,故c 2=a 2+b 2−2abcos120°=a 2+b 2+ab ,而(a +b )2−c 2=4,故c 2=a 2+b 2+2ab −4=a 2+b 2+ab ,故ab =4,故三角形的面积为12×ab ×sin120°=√34×4=√3,故选:C.6、△ABC 内角A,B,C 的对边分别为a,b,c ,已知b 2+c 2−a 2=bc ,则A =( )A .π6B .5π6C .π3D .2π3答案:C分析:利用余弦定理求出cosA ,再求出A 即可.∵b 2+c 2−a 2=bc ,∴cosA =b 2+c 2−a 22bc =bc 2bc =12,∵0<A <π,∴A =π3. 故选:C7、已知向量a ⃑=(−1,m ),b ⃑⃑=(m +1,2),且a ⃑⊥b⃑⃑,则m =( ) A .2B .−2C .1D .−1答案:C分析:由向量垂直的坐标表示计算.由题意得a ⃑⋅b⃑⃑=−m −1+2m =0,解得m =1 故选:C .8、已知直角三角形ABC 中,∠A =90°,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB⃑⃑⃑⃑⃑⃑⋅PC ⃑⃑⃑⃑⃑⃑的最大值为( )A .16+16√55B .16+8√55C .165D .565答案:D分析:建立如图所示的坐标系,根据PB ⃑⃑⃑⃑⃑⃑·PC⃑⃑⃑⃑⃑⃑=|PD ⃑⃑⃑⃑⃑⃑|2−5可求其最大值. 以A 为原点建系,B (0,2),C (4,0),BC:x 4+y 2=1,即x +2y −4=0,故圆的半径为r =√5 ∴圆A:x 2+y 2=165,设BC 中点为D (2,1),PB ⃑⃑⃑⃑⃑⃑·PC ⃑⃑⃑⃑⃑⃑=PD ⃑⃑⃑⃑⃑⃑2−14BC ⃑⃑⃑⃑⃑⃑2=|PD ⃑⃑⃑⃑⃑⃑|2−14×20=|PD ⃑⃑⃑⃑⃑⃑|2−5, |PD |max =|AD |+r =√5+√5=√5,∴(PB ⃑⃑⃑⃑⃑⃑·PC ⃑⃑⃑⃑⃑⃑)max =815−5=565, 故选:D.多选题9、下列说法正确的有( )A .若a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,则a ⃑//c ⃑B .若a ⃑=b ⃑⃑,b ⃑⃑=c ⃑,则a ⃑=c ⃑C .若a ⃑//b ⃑⃑,则a ⃑与b⃑⃑的方向相同或相反D .若AB ⃑⃑⃑⃑⃑⃑、BC ⃑⃑⃑⃑⃑⃑共线,则A 、B 、C 三点共线 答案:BD分析:取b⃑⃑=0⃑⃑可判断AC 选项的正误;利用向量相等的定义可判断B 选项的正误;利用共线向量的定义可判断D 选项的正误.对于A 选项,若b ⃑⃑=0⃑⃑,a ⃑、c ⃑均为非零向量,则a ⃑//b ⃑⃑,b ⃑⃑//c ⃑成立,但a ⃑//c ⃑不一定成立,A 错;对于B 选项,若a ⃑=b ⃑⃑,b ⃑⃑=c ⃑,则a ⃑=c ⃑,B 对;对于C 选项,若b ⃑⃑=0⃑⃑,a ⃑≠0⃑⃑,则b⃑⃑的方向任意,C 错; 对于D 选项,若AB ⃑⃑⃑⃑⃑⃑、BC ⃑⃑⃑⃑⃑⃑共线且AB 、BC 共点B ,则A 、B 、C 三点共线,D 对.故选:BD.10、下列说法正确的是( )A .向量不能比较大小,但向量的模能比较大小B .|a ⃑|与|b ⃑⃑|是否相等与a ⃑与b⃑⃑的方向无关 C .若a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,则a ⃑//c ⃑D .若向量AB ⃑⃑⃑⃑⃑⃑与向量CD⃑⃑⃑⃑⃑⃑是共线向量,则A ,B ,C ,D 四点在一条直线上 答案:AB分析:根据向量的定义以及向量模的定义可判断A ,B ;举反例b⃑⃑=0⃑⃑时可判断C ;由共线向量的定义可判断D ,进而可得正确选项.对于A :向量即有大小又有方向不能比较大小,向量的模可以比较大小,故选项A 正确;对于B :|a ⃑|与|b ⃑⃑|分别表示向量a ⃑与b ⃑⃑的大小,与a ⃑,b⃑⃑的方向无关,故选项B 正确; 对于C :当b ⃑⃑=0⃑⃑时,向量a ⃑与c ⃑可以是任意向量都满足a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,故选项C 不正确;对于D :若向量AB⃑⃑⃑⃑⃑⃑与向量CD ⃑⃑⃑⃑⃑⃑是共线向量,表示AB ⃑⃑⃑⃑⃑⃑与CD ⃑⃑⃑⃑⃑⃑方向相同或相反,得不出A ,B ,C ,D 四点在一条直线上,故选项D 不正确;故选:AB.11、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2cosAsinB =b 2sinAcosB ,则△ABC 的形状为( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形答案:AC分析:根据正弦定理和二倍角公式进行求解.∵a 2cosAsinB =b 2sinAcosB∴由正弦定理得sin 2AcosAsinB =sin 2BsinAcosB ,∵sinAcosA ≠0∴sinAcosA =sinBcosB ,即sin2A =sin2B∴2A =2B 或2A +2B =π,即该三角形为等腰三角形或直角三角形.故选:AC.填空题12、已知a ⃗,b ⃑⃑是空间两个向量,若|a ⃗|=2,|b ⃑⃗|=2,|a ⃗−b ⃑⃗|=√7,则cos 〈a ⃗,b⃑⃑〉=________. 答案:18 分析:根据向量几何法的模长公式,可得向量数量积的值,根据向量夹角余弦值的公式,可得答案.由|a ⃑−b ⃑⃑|=√7,可知(a ⃑−b ⃑⃑)2=7,则|a ⃑|2−2a ⃑⋅b⃑⃑+|b ⃑⃑|2=7, ∵|a ⃑|=2,|b ⃑⃑|=2,∴a ⃑⋅b ⃑⃑=12,则cos⟨a ⃑⋅b ⃑⃑⟩=a ⃑⃑⋅b ⃑⃑|a ⃑⃑|⋅|b ⃑⃑|=18. 所以答案是:18. 13、如图,在矩形ABCD 中,AB =3,AD =2,DE =2EC ,M 为BC 的中点,若点P 在线段BD 上运动,则PE⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗的最小值为______.答案:2352 分析:构建直角坐标系,令AP⃑⃑⃑⃑⃑⃗=λAB ⃑⃑⃑⃑⃑⃗+(1−λ)AD ⃑⃑⃑⃑⃑⃗求P 的坐标,进而可得PE ⃑⃑⃑⃑⃑⃗,PM ⃑⃑⃑⃑⃑⃑⃗,由向量数量积的坐标表示及二次函数的性质求最值即可.以A 为坐标原点,AB ,AD 分别为x ,y 建系,则E(2,2),M(3,1),又AB ⃑⃑⃑⃑⃑⃗=(3,0),AD ⃑⃑⃑⃑⃑⃗=(0,2),令AP⃑⃑⃑⃑⃑⃗=λAB ⃑⃑⃑⃑⃑⃗+(1−λ)AD ⃑⃑⃑⃑⃑⃗=(3λ,2−2λ),0≤λ≤1, 故P(3λ,2−2λ),则PE⃑⃑⃑⃑⃑⃗=(2−3λ,2λ),PM ⃑⃑⃑⃑⃑⃑⃗=(3−3λ,2λ−1), PE⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗=(2−3λ)(3−3λ)+2λ(2λ−1) =13λ2−17λ+6, 所以λ=1726时,PE ⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗取最小值2352. 所以答案是:2352.14、海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =45m ,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则AB 两点的距离为______m .答案:45√5分析:先将实际问题转化为解三角形的问题,再利用正、余弦定理求解。

2022第六章 社区营养管理和营养干预真题模拟汇编

2022第六章 社区营养管理和营养干预真题模拟汇编

2022第六章社区营养管理和营养干预真题模拟汇编2022第六章社区营养管理和营养干预真题模拟07-281、制定营养干预计划,必须明确()。

(单选题)A. 目的性、针对性B. 可行性、灵活性C. 有效性D. 以上都正确试题答案:D2、以下关于食物中毒事件紧急报告的内容不正确的是()。

(单选题)A. 食物中毒发生的时间、地点、单位B. 中毒人数和死亡人数、中毒症状、发生的原因及采取的措施C. 需要解决的问题和要求D. 现场调查的结果试题答案:D3、营养干预的效果评价的比较性统计方法有()。

(单选题)A. t检验B. 卡方检验C. 非参数检验D. 以上都正确试题答案:D4、食品相关公共卫生突发事件的处理分为()(多选题)A. 救治中毒患者B. 技术处理C. 对中毒场所清洁D. 行政处理E. 可疑中毒食品的控制处理试题答案:B,D,E5、食物中毒法定报告单位有()(多选题)A. 食物生产单位B. 省级卫生行政部门C. 发生食物中毒的单位D. 县级卫生行政部门E. 接收治疗食物中毒患者的卫生机构试题答案:C,E2022第六章社区营养管理和营养干预真题模拟07-271、个体健康风险因素评估中,健康型的可表示为()。

(单选题)A. 增长年龄<评价年龄<实际年龄B. 评价年龄>实际年龄>增长年龄C. 评价年龄>增长年龄>实际年龄D. 评价年龄一实际年龄一增长年龄试题答案:A2、食物中毒法定报告单位有()。

(多选题)A. 食物生产单位B. 省级卫生行政部门C. 发生食物中毒的单位D. 县级卫生行政部门E. 接收治疗中毒患者的卫生机构试题答案:C,E3、公共卫生突发事件的平时预防主要是做好()工作。

(多选题)A. 监测B. 预警C. 就地处理D. 控制蔓延E. 信息收集试题答案:A,B4、SPSS软件具有()统计功能。

(多选题)A. 描述性统计和卡方检验B. 均值比较C. 相关分析D. 回归分析E. 一般线性模型试题答案:A,B,C,D,E5、食物中毒采集的样品可能包括()?(多选题)A. 患者的呕吐物B. 患者的血液C. 患者的尿液和粪便D. 剩余的食品E. 食品容器和加工用具表面涂抹试题答案:A,B,C,D,E2022第六章社区营养管理和营养干预真题模拟07-261、KYN是近年来国内外推崇的健康管理项目,它属于()。

七上第6章章节复习题

七上第6章章节复习题

七上第6章章节复习题# 第六章章节复习题## 第一节基本概念回顾1. 定义与特点请列举本章所学概念的三个主要特点,并给出一个例子说明。

2. 原理与应用简述本章所学原理在实际生活中的应用场景。

3. 公式与计算列出本章中最重要的三个公式,并分别说明它们的应用范围。

## 第二节重点知识梳理1. 关键概念辨析对比本章中容易混淆的两个概念,说明它们的区别和联系。

2. 案例分析选择一个与本章内容相关的案例,分析其关键点和解决策略。

3. 图表解读解释本章中出现的图表,说明它们如何帮助理解知识点。

## 第三节综合能力提升1. 问题解决给出一个综合性问题,要求学生运用本章知识进行解答。

2. 批判性思维针对本章中的一个观点或理论,提出可能的批判性问题。

3. 创新应用鼓励学生思考如何将本章知识应用到新的领域或情境中。

## 第四节习题演练1. 选择题A. 描述本章中的一个概念。

B. 选择正确的应用场景。

2. 填空题根据所学知识,填写下列空格以完成句子。

3. 简答题简述本章中一个重要原理,并解释其重要性。

4. 计算题运用本章公式,解决下列计算问题。

5. 论述题论述本章知识在特定领域的应用,并给出你的观点。

## 第五节拓展阅读与思考1. 推荐阅读推荐与本章内容相关的进一步阅读材料。

2. 思考问题提出几个与本章内容相关的思考问题,鼓励学生进行深入思考。

3. 实践活动设计一项实践活动,让学生将理论知识应用于实践中。

注意:请在复习时,重点关注每个部分的核心知识点,并通过习题演练来检验自己的掌握程度。

同时,不要忽视拓展阅读和实践活动,它们能够帮助你更全面地理解和应用所学知识。

第六章习题12答案

第六章习题12答案

根据表1
根据表2 1450
1 980 1 370
4 260 2000
9260 16 87 0
1 450
根据表3
根据表4
4 962
6 5 0 0
3 830
6 500 8 792
根据表5
1 950
1 950
根据表6
900
6 408
7 308
根据表8
42 87 0
待分配 1 450 4 962 1 980 2 270 8 358 6
17 730
56 000) 34 170 86 500)
51 900
0.6
制造费用
合计
17 528 59 438 25 722 85 312 43 250 144 750 0.5
产品名称:乙产品
生产成本明细账
**生 产成 本明 细账 年 月日
2 28
3 31
摘 要
在产品费用 本月生产费用
原接材料
7 600 38 500
3 31 本月生产费用
3
生产费用累计
31
312020费/1/3用1 分配率
定额
实际
定额 实际 定额
实际
成 本项 目
原材 料
14 50 0
16 05 0
7 000
7 600
21 50 0
23 65 0
1.1
燃料及 动力
(工时
8130
(工时 17 820 (工时
25 950
0.3
直接工资 30 500)
• 借:制造费用
4 000

管理费用
1030


贷:辅助生产成本

初二数学上册第六章练习题

初二数学上册第六章练习题

初二数学上册第六章练习题抽象代数初步内容练习初二数学上册第六章练习题1. 设A = {2, 4, 6, 8, 10},B = {1, 2, 3, 4, 5, 6, 7},求A ∩ B。

解:A ∩ B = {2, 4, 6}2. 已知集合A的元素个数为6,集合B的元素个数为8,且A ∩ B 有4个元素,求A ∪ B的元素个数。

解:根据容斥原理,A ∪ B的元素个数为 A的元素个数 + B的元素个数 - A ∩ B的元素个数 = 6 + 8 - 4 = 103. 设集合A = {1, 2, 3, 4, 5},集合B = {3, 4, 5, 6, 7},求A - B。

解:A - B = {1, 2}4. 已知集合U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},集合A = {2, 4, 6, 8},求A'。

解:A' = U - A = {1, 3, 5, 7, 9, 10}5. 设集合A = {x | x是正整数,1 ≤ x ≤ 10},集合B = {x | x是正整数,5 ≤ x ≤ 15},求A ∩ B。

解:A ∩ B = {x | x是正整数,5 ≤ x ≤ 10}6. 设集合A = {x | x是偶数,1 ≤ x ≤ 10},集合B = {x | x是奇数,1 ≤ x ≤ 10},求A ∩ B。

解:A ∩ B = ∅ (空集)7. 设集合U = {a, b, c, d, e, f, g, h, i, j},集合A = {a, b, c, d},集合B = {b, d, f, h},求 (A ∪ B)'。

解:(A ∪ B)' = U - (A ∪ B) = U - {a, b, c, d, f, h} = {e, g, i, j}8. 已知集合A = {x | x是负整数,-5 ≤ x ≤ 0},集合B = {x | x是奇数,-7 ≤ x ≤ 3},求A - B。

第6章习题答案

第6章习题答案

习题目录6.1 (3)6.2 (3)6.3 (4)6.4 (6)6.5 (7)6.6 (7)6.7 (7)6.8 (8)6.9 (10)6.10 (11)6.11 (11)6.12 (12)6.13 (13)6.14 (13)6.15 (14)6.16 (15)6.17 (15)6.18 (16)6.19 (16)6.20 (16)6.21 (16)6.22 (17)6.23 (18)6.24 (19)6.25 (19)6.26 (19)6.27 (20)6.28 (20)6.29 (20)6.30 (21)6.31 (22)6.32 (22)6.33 (22)6.34 (23)6.35 (24)6.36 .................................................................................................................... 错误!未定义书签。

6.37 (25)6.38 (26)6.39 (26)6.40 (27)6.41 (27)6.42 (28)6.43 .................................................................................................................... 错误!未定义书签。

6.44 .................................................................................................................... 错误!未定义书签。

6.45 (32)6.46 (35)输入序列的101的最后一个“1”,输出Z=1。

其余情况下输出为“0”。

(1) (2)解:1)S 0:起始状态,或收到101序列后重新开始检测。

第六章练习题与参考解答(第四版)

第六章练习题与参考解答(第四版)

第六章练习题及参考解答6.1表6.5是中国1985-2016 年货物进出口贸易总额()与国内生产总值()的数据。

表6.5 中国进出口贸易总额和国内生产总值单位:亿元年份货物进出口贸国内生产总值年份货物进出口贸国内生产总值易总额(Y)(X)易总额(Y)(X)1985 2066.719098.9 2001 42183.62 110863.1 1986 2580.4 10376.22002 51378.15 121717.4 1987 3084.2 12174.62003 70483.45 137422.0 1988 3821.8 15180.42004 95539.09 161840.2 1989 4155.9 17179.72005 116921.77 187318.9 1990 5560.1218872.92006 140974.74 219438.5 1991 7225.7522005.62007 166924.07 270232.3 1992 9119.6227194.52008 179921.47 319515.5 1993 11271.02 35673.22009 150648.06 349081.4 1994 20381.948637.52010 201722.34 413030.3 1995 23499.94 61339.92011 236401.95 489300.6 1996 24133.86 71813.62012 244160.21 540367.4 1997 26967.24 79715.02013 258168.89 595244.4 1998 26849.68 85195.52014 264241.77 643974.0 1999 29896.23 90564.42015 245502.93 689052.1 2000 39273.25 100280.1 2016 243386.46 740598.7 资料来源:《中国统计年鉴2017》(1)建立货物进出口贸易总额的对数对国内生产总值的对数的回归方程;(2)检测模型的自相关性;(3)采用广义差分法处理模型中的自相关问题。

(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题

(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题

(名师选题)(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题单选题1、魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB=()A.表高×表距表目距的差+表高B.表高×表距表目距的差−表高C.表高×表距表目距的差+表距D.表高×表距表目距的差−表距答案:A分析:利用平面相似的有关知识以及合分比性质即可解出.如图所示:由平面相似可知,DEAB =EHAH,FGAB=CGAC,而DE=FG,所以DE AB =EHAH=CGAC=CG−EHAC−AH=CG−EHCH,而CH=CE−EH=CG−EH+EG,即AB =CG−EH+EG CG−EH ×DE =EG×DE CG−EH +DE = 表高×表距表目距的差+表高.故选:A.小提示:本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.2、已知单位向量a ⃗,b⃗⃗,则下列说法正确的是( ) A .a ⃗=b ⃗⃗B .a ⃗+b ⃗⃗=0⃗⃗C .|a ⃗|=|b ⃗⃗|D .a ⃗//b⃗⃗ 答案:C分析:利用向量的有关概念及单位向量的定义依次判断即得.对于A ,向量a ⃗,b ⃗⃗为单位向量,向量a ⃗,b⃗⃗的方向不一定相同,A 错误; 对于B ,向量a ⃗,b ⃗⃗为单位向量,但向量a ⃗, b⃗⃗不一定为相反向量,B 错误; 对于C ,向量a ⃗,b ⃗⃗为单位向量,则|a ⃗|=|b⃗⃗|=1,C 正确; 对于D ,向量a ⃗,b ⃗⃗为单位向量,向量a ⃗,b ⃗⃗的方向不一定相同或相反,即a ⃗与b⃗⃗不一定平行,D 错误. 故选:C.3、已知向量a ⃑=(−1,m ),b ⃗⃑=(2,4),若a ⃑与b⃗⃑共线,则m =( ) A .−1B .1C .−2D .2答案:C分析:根据平面向量共线坐标表示可得答案.由题意得2m =−4,即m =−2.故选:C4、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( )A .向东南走3√2kmB .向东北走3√2kmC .向东南走3√3kmD .向东北走3√3km答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km ,即向东北走3√2km .故选:B.5、已知向量a ⃑,b ⃗⃑满足|a ⃑|=2,|b ⃗⃑|=1,a ⃑⋅(a ⃑−2b ⃗⃑)=2,则a ⃑与b⃗⃑的夹角为( ) A .30°B .60°C .120°D .150°答案:B分析:由题意,先求出a ⃑⋅b⃗⃑,然后根据向量的夹角公式即可求解. 解:因为a ⃑⋅(a ⃑−2b ⃗⃑)=a ⃑2−2a ⃑⋅b ⃗⃑=|a ⃑|2−2a ⃑⋅b ⃗⃑=4−2a ⃑⋅b ⃗⃑=2,所以a ⃑⋅b⃗⃑=1, 设a ⃑与b ⃗⃑的夹角为θ,则cosθ=a ⃗⃑⋅b ⃗⃑|a ⃗⃑||b ⃗⃑|=12, 因为θ∈[0°,180°],所以θ=60°,故选:B.6、已知非零平面向量a ⃗,b ⃗⃗,c ⃗,下列结论中正确的是( )(1)若a ⃗⋅c ⃗=b ⃗⃗⋅c ⃗,则a ⃗=b ⃗⃗;(2)若|a ⃗+b ⃗⃗|=|a ⃗|+|b ⃗⃗|,则a ⃗//b⃗⃗ (3)若|a ⃗+b ⃗⃗|=|a ⃗−b ⃗⃗|,则a ⃗⊥b ⃗⃗(4)若(a ⃗+b ⃗⃗)⋅(a ⃗−b ⃗⃗)=0,则a ⃗=b ⃗⃗或a ⃗=−b⃗⃗ A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4)答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果.已知非零平面向量a ⃗,b ⃗⃗,c ⃗,(1)若a ⃗⋅c ⃗=b ⃗⃗⋅c ⃗,则(a ⃗−b ⃗⃗)⋅c ⃗=0,所以a ⃗=b ⃗⃗或(a ⃗−b ⃗⃗)⊥c ⃗,即(1)错;(2)若|a ⃗+b ⃗⃗|=|a ⃗|+|b ⃗⃗|,则a ⃗与b ⃗⃗同向,所以a ⃗//b⃗⃗,即(2)正确;(3)若|a ⃗+b ⃗⃗|=|a ⃗−b ⃗⃗|,则|a ⃗|2+|b ⃗⃗|2+2a ⃗⋅b ⃗⃗=|a ⃗|2+|b ⃗⃗|2−2a ⃗⋅b ⃗⃗,所以2a ⃗⋅b ⃗⃗=0,则a ⃗⊥b⃗⃗;即(3)正确; (4)若(a ⃗+b ⃗⃗)⋅(a ⃗−b ⃗⃗)=0,则|a ⃗|2−|b ⃗⃗|2=0,所以|a ⃗|=|b⃗⃗|,不能得出向量共线,故(4)错; 故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.7、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,C =30∘,c =10.如果△ABC 有两解,则a 的取值范围是( )A .[10,20]B .[10,10√3]C .(10,10√3)D .(10,20)答案:D分析:作出图形,根据题意可得出关于a 的不等式,由此可解得a 的取值范围.如下图所示:因为△ABC 有两解,所以asinC =12a <c =10<a ,解得10<a <20.故选:D.8、如图,四边形ABCD 是平行四边形,则12AC ⃗⃗⃗⃗⃗⃑+12BD ⃗⃗⃗⃗⃗⃗⃑=( )A .AB ⃗⃗⃗⃗⃗⃑B .CD ⃗⃗⃗⃗⃗⃑C .CB ⃗⃗⃗⃗⃗⃑D .AD ⃗⃗⃗⃗⃗⃑答案:D分析:由平面向量的加减法法则进行计算.由题意得AC ⃗⃗⃗⃗⃗⃑=AB ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑,BD ⃗⃗⃗⃗⃗⃗⃑=AD ⃗⃗⃗⃗⃗⃑−AB⃗⃗⃗⃗⃗⃑,所以12AC ⃗⃗⃗⃗⃗⃑+12BD ⃗⃗⃗⃗⃗⃗⃑=12(AB ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑)=AD ⃗⃗⃗⃗⃗⃑. 故选:D.9、向量a ⃗,b ⃗⃗满足a ⃗=(1,√3),|b ⃗⃗|=1,|a ⃗+b ⃗⃗|=√3,则b ⃗⃗在a ⃗方向上的投影为( )A .-1B .−12C .12D .1 答案:B解析:根据题条件,先求出a ⃗⋅b⃗⃗,再由向量数量积的几何意义,即可求出结果. 因为向量a ⃗,b ⃗⃗满足a ⃗=(1,√3),|b ⃗⃗|=1,|a ⃗+b⃗⃗|=√3, 所以|a ⃗|2+2a ⃗⋅b ⃗⃗+|b ⃗⃗|2=3,即4+2a ⃗⋅b ⃗⃗+1=3,则a ⃗⋅b⃗⃗=−1, 所以b ⃗⃗在a ⃗方向上的投影为|b →|cos <a →,b →>=a →⋅b→|a →|=−12. 故选:B.10、如图,正六边形ABCDEF 的边长为2,动点M 从顶点B 出发,沿正六边形的边逆时针运动到顶点F ,若FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑的最大值和最小值分别是m ,n ,则m +n =( )A .9B .10C .11D .12答案:D分析:连接AC ,根据正六边形的特征可得FD ⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑,从而可得FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=|AC ⃗⃗⃗⃗⃗⃑||AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩,再根据当M 在BC 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐增大,当M 从D 移动到F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐减小,即可求得m ,n ,从而得出答案.解:连接AC ,在正六边形ABCDEF 中,FD ⃗⃗⃗⃗⃗⃑=AC⃗⃗⃗⃗⃗⃑,∴FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=|AC ⃗⃗⃗⃗⃗⃑||AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩,∵正六边形ABCDEF 的边长为2,∴|AC⃗⃗⃗⃗⃗⃑|=2√3, 因为当M 在BC 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐增大,当M 从D 移动到F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐减小,所以当M 在CD 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩取得最大值,为2√3,当M 移动到点F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩取得最小值,为0.∴m =2√3×2√3=12,n =2√3×0=0,∴m +n =12.故选:D.小提示:填空题11、已知△ABC 中,AB =2,AC =1,AB ⃗⃗⃗⃗⃗⃑⋅AC ⃗⃗⃗⃗⃗⃑=1,O 为△ABC 所在平面内一点,且OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑,则AO⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑的值为___________ 答案:−1分析:在OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑中,将OB ⃗⃗⃗⃗⃗⃑=OA ⃗⃗⃗⃗⃗⃑+AB ⃗⃗⃗⃗⃗⃑,OC ⃗⃗⃗⃗⃗⃑=OA ⃗⃗⃗⃗⃗⃑+AC ⃗⃗⃗⃗⃗⃑代入,用AB ⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑表示AO ⃗⃗⃗⃗⃗⃑,可得AO⃗⃗⃗⃗⃗⃑=13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑,故AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑=(13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑)⋅(AC ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑),展开根据已知条件代入数据计算即可. ∵OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑,∴OA ⃗⃗⃗⃗⃗⃑+2(OA ⃗⃗⃗⃗⃗⃑+AB ⃗⃗⃗⃗⃗⃑)+3(OA ⃗⃗⃗⃗⃗⃑+AC ⃗⃗⃗⃗⃗⃑)=0⃗⃑,∴AO ⃗⃗⃗⃗⃗⃑=13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑, ∴AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑=(13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑)⋅(AC ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑)=12AC ⃗⃗⃗⃗⃗⃑2−13AB ⃗⃗⃗⃗⃗⃑2−16AB ⃗⃗⃗⃗⃗⃑⋅AC ⃗⃗⃗⃗⃗⃑=−1.所以答案是:−1.小提示:关键点点睛:解答本题的关键点在于将AO ⃗⃗⃗⃗⃗⃑用AB⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑线性表示,将AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑转化为AB ⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑之间的数量积运算问题来求解.12、若OA →=a →,OB →=b →,则∠AOB 平分线上的向量OM →可以表示为________.答案:λ(a →|a →|+b →|b →|),λ∈R分析:根据题意,以OA →|OA →|,OB →|OB →|为邻边作平行四边形OACB 则四边形为菱形,根据平面向量加法的平行四边形法则得OC →=OA→|OA →|+OB →|OB →|=a →|a →|+b →|b →|,由OM →,OC →共线,最后根据向量共线定理得OM →=λOC →,从而得出答案.解:∵ OA →=a →,OB →=b →,∴ OA→|OA →|=a→|a →|,OB →|OB →|=b →|b →|,∴以OA →|OA →|,OB →|OB →|为邻边作平行四边形OACB 则为菱形,∴OC 平分∠AOB ,∴根据向量加法的平行四边形法则可得:OC →=OA→|OA →|+OB→|OB →|=a →|a →|+b→|b →|,∵ OM →,OC →共线,∴由共线定理可得存在唯一的实数λ使得:OM →=λOC →=λ(a →|a →|+b →|b →|).所以答案是:λ(a →|a →|+b →|b →|),λ∈R .小提示:本题考查平面向量加法的平行四边形法则和向量共线定理,解题的关键是利用菱形的对角线平分对角这一重要性质.13、点A (−1,0),B(5,−4),AP⃗⃗⃗⃗⃗⃑=PB ⃗⃗⃗⃗⃗⃑,点P 的坐标为______. 答案:(2,−2)分析:设P(x,y),由已知条件,利用向量的坐标运算求解即可.由已知得,设P (x,y ),由已知得(x,y )−(−1,0)=(5,−4)−(x,y ),∴(x,y )=(2,−2),所以答案是:(2,−2).小提示:本题考查平面向量的坐标运算,属基础题.关键掌握向量的坐标等于终点的坐标减去起点的坐标.14、已知向量a ⃑、b ⃗⃗、c ⃑,且|a ⃑|=3,|b ⃗⃗|=5,|c ⃑|=1,a ⃑⋅b ⃗⃗=0,则|a ⃑+b ⃗⃗−c ⃑|的最小值为______.答案:√34−1##−1+√34分析:根据题意,建立直角坐标系,写出a ⃗、b ⃗⃗、a ⃗+b ⃗⃗坐标,求出c ⃑终点轨迹,数形结合即可求解.不妨设a ⃗=(3,0),b ⃗⃗=(0,5),a ⃗+b⃗⃗=(3,5), |c ⃑|=1,则c ⃑起点在原点,终点轨迹为单位圆x 2+y 2=1,∴当a ⃗+b ⃗⃗与c ⃑同向时,|a ⃑+b ⃗⃗−c ⃑|最小,为√32+52−1= √34−1.所以答案是:√34−1.15、已知a ⃑、b ⃗⃑是平面内两个互相垂直的单位向量,若c ⃑满足(a ⃑−c ⃑)⋅(b ⃗⃑−c ⃑)=0,则|c ⃑|的最大值为___________.答案:√2分析:首先根据数量积公式展开,再化简|c⃑|=√2cosα,利用三角函数的有界性求最值.(a⃗−c⃗)⋅(b⃗⃗−c⃗)=0⇔a⃑⋅b⃗⃑−(a⃑+b⃗⃑)⋅c⃑+c⃑2=0,∴|c⃗|2=(a⃗+b⃗⃗)⋅c⃗=|a⃗+b⃗⃗||c⃗|cosα=√2|c⃑|cosα,即|c⃑|=√2cosα,|c⃑|max=√2.所以答案是:√2解答题16、已知四边形ABCD是由△ABC与△ACD拼接而成的,且在△ABC中,2AB−BC=AC2+AB2−BC2AB.(1)求角B的大小;(2)若∠BAD=π3,∠ADC=5π6,AD=1,BC=2.求AB的长.答案:(1)B=π3 (2)AB=3分析:(1)由余弦定理结合2AB−BC=AC 2+AB2−BC2AB,即可求出角B的大小.(2)设AC=x,∠CAB=α,在△ABC中,由正弦定理可得√3=x sinα①,在△ADC中,由正弦定理可得x= 12sin(α−π6)②,联立①②,可得tanα=√32,在△ABC中,由正弦定理可求出AC,再由余弦定理即可求出AB的长.(1)∵2AB−BC=AC 2+AB2−BC2AB,∴整理可得,BC2+AB2﹣AC2=BC•AB,∴在△ABC中,由余弦定理可得cos B=BC2+AB2−AC22AB⋅BC =12,0<B<π,∴B=π3.(2)∵B=π3,∠BAD=π3,∠ADC=5π6,AD=1,BC=2,∴设AC=x,∠CAB=α,则在△ABC中,由正弦定理BCsin∠CAB =ACsinB,可得2sinα=xsinπ3,可得√3=x sinα,①在△ADC中,由正弦定理ACsinD =ADsin(π−∠D−∠DAC),可得xsin5π6=1sin[π6−(π3−α)],可得x=12sin(α−π6),②,∴联立①②,可得sinα=2√3sin(α−π6),可得tanα=√32,可得cosα=√11+tan2α=2√77,sinα=√217,∴在△ABC中,由正弦定理BCsinα=ACsinB,可得AC=2×sinπ3√217=√7,∵由余弦定理AC2=BC2+AB2﹣2AB•BC•cos B,可得7=4+AB2﹣2×2×AB×12,可得AB2﹣2AB﹣3=0,∴解得AB=3,(负值舍去).17、在锐角△ABC中,已知m⃗⃗⃑=(2sin(A+C),√3),n⃗⃑=(cos2B,2cos2B2−1),且m⃗⃗⃑//n⃗⃑.(1)求角B的大小;(2)若AC=1,求△ABC面积的最大值.答案:(1)π6(2)2+√34分析:(1)根据向量平行,结合二倍角正弦公式、降幂公式,化简整理,结合角B的范围,可求得答案;(2)根据(1)得角B,代入余弦定理,结合基本不等式,可得ac最大值,代入面积公式,即可得答案. (1)因为m⃗⃗⃑//n⃗⃑,所以2sin(A+C)(2cos2B2−1)=√3cos2B,因为A+B+C=π,所以sin(A+C)=sin(π−B)=sinB,所以2sinBcosB=sin2B=√3cos2B,所以tan2B=sin2Bcos2B=√3,因为锐角三角形,B∈(0,π2),所以2B∈(0,π),所以2B=π3,B=π6.(2)设角A、B、C所对的边为a,b,c,则AC=b=1,由余弦定理得cosB=a 2+c2−b22ac=√32,所以a2+c2−1=√3ac,即a2+c2=√3ac+1,又a2+c2≥2ac,所以√3ac+1≥2ac,解得ac≤2+√3,当且仅当a=c时等号成立,所以△ABC面积的最大值S max=12acsinB=12×(2+√3)×12=2+√34.18、已知向量a⃑=(1,1),b⃗⃑=(0,−2),在下列条件下分别求k的值:(1)a⃑+b⃗⃑与ka⃑−b⃗⃑平行;(2)a⃑+b⃗⃑与ka⃑−b⃗⃑的夹角为2π3.答案:(1)−1(2)−1±√3分析:(1)首先求出a⃑+b⃗⃑与ka⃑−b⃗⃑,再根据向量平行的坐标表示得到方程,解得即可;(2)首先利用向量数量积的坐标运算求出(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗),再根据平面向量数量积的定义得到方程,解得即可;(1)解:因为a⃑=(1,1),b⃗⃑=(0,−2),所以a⃗+b⃗⃗=(1,−1),ka⃗−b⃗⃗=(k,k+2),又a⃗+b⃗⃗与ka⃗−b⃗⃗平行,所以−k=k+2,解得k=−1;(2)解:因为a⃗+b⃗⃗=(1,−1),ka⃗−b⃗⃗=(k,k+2),所以(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗)=1×k+(−1)×(k+2)=−2,因为a⃗+b⃗⃗与ka⃗−b⃗⃗夹角为2π3,所以(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗)=|a⃗+b⃗⃗||a⃗−b⃗⃗|cos2π3,即−2=−√2×√k2+(k+2)2×12,解得k=−1±√3.19、在△ABC中,a,b,c分别是角A,B,C的对边,B=π3,a=3.(1)若A=π4,求b.(2)若______,求c的值及△ABC的面积.请从①b=√13,②sinC=2sinA,这两个条件中任选一个,将问题(2)补充完整,并作答.答案:(1)3√62;(2)选①c=4,S△ABC=3√3;选②c=6,S△ABC=9√32分析:(1)根据正弦定理计算即可得出结果;(2)利用余弦定理或正弦定理求出c的值,再结合三角形的面积公式计算即可.(1)B=π3,a=3,A=π4,由正弦定理,得bsinB=asinA,所以b=asinA ×sinB=√22√32=3√62;(2)选①:由余弦定理,得b2=a2+c2−2accosB,即13=c2+9−2×3c×12,整理,得c2−3c−4=0,由c>0,得c=4,所以S△ABC=12acsinB=12×3×4×√32=3√3;选②:因为sinC=2sinA,由正弦定理,得c=2a,所以c=6,所以S△ABC=12acsinB=12×6×3×√32=9√32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(a) B(t) 是标准布朗运动,所以对于 t 0, B(t) − B(0) = B(t) N (0, t)
. 则 EB(t) = 0, V B(t) = t, cov(B(t), B(s)) = s, ∀t > s o.
(b) (a) 中已证明 B(t) 是正态过程,服从 N (0, t) 的正态过程。

(3)EW (t) = E(B(at)/ a) = EB(at)/ a = 0


E(W (t)W (s)) = E(B(at)/ a)(B(as)/ a)
1 = E(B(at)B(as)
a 1 = × as = s a
所以 W (t) 是标准布朗运动。 (4)EW (t) = E(tB(1/t)) = tE(1/t) = 0
所以 W (t) 是标准的布朗运动。
6.2 设 B(t) 是标准布朗运动,a 是正常数,证明一下的随机过程 W (t) 都是标准布朗运动。 (1)W (t) = −B(t),t ≥ 0; (2)W (t) = B(t + a√) − B(a), t ≥ 0; (3)W (t) = B(at)/ a,t ≥ 0; (4)W (0) = 0,W (t) = tB(1/t),t ≥ 0; (5) 对于正数 T,W (t) = B(T − t) − B(T ) 是时间段 [0, T ] 中的标准布朗运 动。 证明:因为 B(t) 是标准布朗运动,所以满足定理 2.1 的条件。我们只需要 验证 EW (t) = 0, EW (t)W (s) = s, t ≥ s ≥ 0 成立即可。
(c) 由 B(t) 是标准布朗运动得 B(0)=0,由题意知 B(1) = 0,所以 B(t) 是布朗桥。
6.6 对于布朗桥 X(t),0 t 1, 验证
W (t) = (t + 1)X(t/(1 + t)), t 0
是标准布朗运动。 解:X(t) 为布朗桥,则存在一个标准布朗运动 B(t),使得
(1)EW (t) = E(−B(t)) = −EB(t) = 0
1
第六章 布朗运动
第六章 布朗运动
EW (t)W (s) = E(−B(t))(−B(s)) = EB(t)B(s) = s 所以 W (t) 是标准布朗运动。
(2)EW (t) = E(B(t + a) − B(a)) = EB(t + a) − EB(a) = 0
标准布朗运动,且服从正态分布 N (0, t). 由 EX(t) = 0 与 EY (t) = 0, 可得 EW (t) = EX(t)cosθ + EY (t)sinθ = 0.
E(W (t)W (s)) = E(X(t)cosθ + Y (t)sinθ)(X(s)cosθ + Y (s)sinθ) = (cosθ)2EX(t)X(s) + (sinθ)2)E(Y (t)Y (s) + sinθcosθ)(EX(t)Y (s) + EY (t)X = ((cosθ)2 + (sinθ)2)s =s
(t))
=
E (eB (t) )
=
e1 2
t12
=
e1 2
t
(2)E(Y
(t))2
=
E (e2B (t) )
=
e1 2
t22
=
e2t
V ar(Y (t)) = E(Y (t))2 − (E(Y (t)))2 = e2t − et
6.5对标准布朗运动 B(t),在条件 B(1) = 0 下,
(a) 计算 B(t),0 t 1 的数学期望和协方差函数; (b) 验证 B(t),0 t 1 是正态过程; (c) 验证 B(t),0 t 1 是布朗桥。
所以 W (t) 是标准布朗运动。
2
第六章 布朗运动
第六章 布朗运动
6.3 定义标准布朗运动 B(t) 的镜面反射:Z(t) = |B(t)|,t ≥ 0。计
算 EZ(t),V ar(Z(t))。 解:
(1)
∫ ∞ |x| EZ(t) = E|B(t)| = √
e−
x2 2t
dx
∫∞ x =2 √
第六章习题解
习题 6.1 用 (X(t), Y (t)) 表示二维标准布朗运动,用定理 2.1 证明对 任何常数 θ,
W (t) = X(t)cosθ + Y (t)sinθ, t ≥ 0
是标准的布朗运动。 证明:因为 (X(t), Y (t)) 为二维标准布朗运动,所以 X(t) 于 Y (t) 都是
dx
0 2πt
=t
V ar(Z(t)) = EZ(t)2 − (EZ(t))2 √2 2t
=t− π
2t =t−
π
6.4 用标准布朗运动 B(t) 定义几何布朗运动
Y (t) = exp(B(t)),t ≥ 0
3
第六章 布朗运动
第六章 布朗运动
计算 EY (t),V ar(Y (t))。
解:
(1)E(Y
E(W (t)W (s)) = E(tB(1/t))(sB(1/s)) = tsE(B(1/t)B(1/s)) = ts × 1/t = s
所以 W (t) 是标准布朗运动。 (5)EW (t) = E(B(T − t) − B(T )) = EB(T − t) − EB(T ) = 0
E(W (t)W (s)) = E(B(T − t) − B(T ))(B(T − s) − B(T )) = E(B(T − t)B(T − s) − E(B(T − t)B(T )) − E(B(T )B(T − s) + B(T )B(T ) = (T − t) − (T − t) − (T − s) + T = s
E(W (t)W (s)) = E(B(t + a) − B(a))(B(s + a) − B(a)) = E(B(t + a)B(s + a) − E(B(t + a)B(a)) − E(B(a)B(s + a)) + E(B(a)B(a)) = s+a−a−a+a=s
所以 W (t) 是标准布朗运动√。
−∞ 2πt
e−
x2 2t
dx
0∫
2πt ∞1
= −2t √
e de −
x2 2t

x2 2t
0 √2πt
2t
2t
=√ =
2πt
π
(2)
∫ EZ(t)2 = E|B(t)|2 =

√|x|2
e−Байду номын сангаас
x2 2t
dx
=
∫ −2t

x √
−∞ 2πt
de−
x2 2t
∫ = 2t
0 ∞
2πt
1 √
e−
x2 2t
相关文档
最新文档