2020高考文科数学复习-概率统计含答案

合集下载

高考文科数学(3卷):答案详细解析(最新,word版)

高考文科数学(3卷):答案详细解析(最新,word版)

2020年普通高等学校招生全国统一考试文科数学(III 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(集合)已知集合{}1235711=,,,,,A ,{}315|=<<B x x ,则A ∩B 中元素的个数为 A .2B .3C .4D .5【解析】∵{5,7,11}=A B ,∴A ∩B 中元素的个数为3. 【答案】B2.(复数)若)(11+=-z i i ,则z = A .1–iB .1+iC .–iD .i【解析】∵)(11+=-z i i ,∴1212--===-+i iz i i ,∴=z i . 【答案】D3.(概率统计)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为 A .0.01B .0.1C .1D .10【解析】原数据的方差20.01=s ,由方差的性质可知,新数据的方差为21001000.011=⨯=s .【答案】C4.(函数)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()1--=+t I K t e ,其中K 为最大确诊病例数.当*()0.95=I t K时,标志着已初步遏制疫情,则*t 约为(ln19≈3) A .60B .63C .66D .69【解析】**0.23(53)()0.951--==+t K I t K e,化简得*0.23(53)19-=te ,两边取对数得,*0.23(53)In19-=t ,解得*In1935353660.230.23=+=+≈t . 【答案】C5.(三角函数)已知πsin sin 13θθ++=(),则πsin =6θ+() A .12B .33C .23D .22【解析】∵π13sin sin cos 322θθθ+=+(), ∴π3331sin sin sin 3cos 1322θθθθθθ⎫++==+=+=⎪⎪⎭(), 31πcos sin 26θθθ+=+(), π316θ+=(),故π3sin 63θ+==().【答案】B6.(解析几何)在平面内,A ,B 是两个定点,C 是动点,若1⋅=AC BC ,则点C 的轨迹为 A .圆B .椭圆C .抛物线D .直线【解析】以AB 所在直线为x 轴,中垂线为y 轴,建立平面直角坐标系,设(,0)-A a ,(,0)B a ,(,)C x y ,则(,)=+AC x a y ,(,)=-BC x a y ,2221⋅=-+=AC BC x a y ,即2221+=+x y a ,故点C 的轨迹为圆.【答案】A7.(解析几何)设O 为坐标原点,直线x =2与抛物线C :()220=>y px p 交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)【解析】解法一:如图A7所示,由题意可知,(2,2)D p ,(2,2)-E p ,(2,2)=OD p ,(2,2)=-OE p ,⊥OD ⊥OE ,⊥⊥OD OE , 即22220⨯-=p p ,解得1=p ,⊥C 的焦点坐标为1(,0)2. 解法二:4=DE p 44==+OD OE p⊥OD ⊥OE ,⊥222+=OD OE DE ,即2(44)16+=p p ,解得1=p ,⊥C 的焦点坐标为1(,0)2.图A7【答案】B8.(解析几何)点(0)1-,到直线()1=+y k x 距离的最大值为 A .1B .2C .3D .2【解析】解法一:点(0)1-,到直线()1=+y k x 的距离211+=+k d k ,则有222222(1)122=12111+++==+≤+++k k k kd k k k ,故2≤d . 解法二:已知点()01-,A ,直线()1=+yk x 过定点()10-,B ,由几何性质可知,当直线()1=+y k x 垂直直线AB 时,点()01-,A 到直线()1=+y k x 距离最大,最大值为线段AB 的长度,即max 2=d 【答案】B9.(立体几何)如图为某几何体的三视图,则该几何体的表面积是A .642+B .442+C .623+D .423+【解析】由三视图可知,该几何体为一个四面体,如图A8所示. 其表面积(2332226234=⨯+⨯=+S图A9【答案】C10.(函数)设3log 2a =,5log 3b =,23c =,则 A .a <c <bB .a <b <cC .b <c <aD .c <a <b【解析】∵233332log 3=log 93==c ,33log 2log 8==a a <c .∵233552log 5log 253===c 355log 3log 27==b c <b .故a <c <b.【答案】A11.(三角函数)在ABC ∆中,2cos 3C =,4=AC ,3=BC ,则tan B = A 5B .25C .45D .85【解析】解法一:由余弦定理得,2222cos 9=+-⋅⋅=AB AC BC AC BC C ,即3=AB ,∴22299161cos 22339+-+-===⋅⨯⨯AB BC AC B AB BC , ∵(0,π)∈B ,∴245sin 1cos =-=B B ,sin tan 45cos ==BB B. 解法二:3=AB ,所以△ABC 是以B 为顶角的等腰三角形.过B 作BD ⊥AC ,易得tan 25=B 22tan2tan 451tan 2==-BB B . 【答案】C12.(三角函数)已知函数1()sin sin f x x x=+,则 A .f (x )的最小值为2B .f (x )的图像关于y 轴对称C .f (x )的图像关于直线π=x 对称D .f (x )的图像关于直线π2=x 对称 【解析】A :1sin 1(sin 0)-≤≤≠x x ,当1sin 0-≤<x ,()0<f x ,故A 错误.B :1()sin ()sin -=--=-f x x f x x,f (x )为奇函数,故B 错误. C :1(2π)sin ()()sin -=--=-≠f x x f x f x x,故C 错误.D :11(π)sin(π)sin ()sin(π)sin -=-+=+=-f x x x f x x x,故D 正确.【答案】D二、填空题:本题共4小题,每小题5分,共20分。

2020届高考文数二轮复习常考题型大通关(全国卷):第19题+统计概率+Word版含答案

2020届高考文数二轮复习常考题型大通关(全国卷):第19题+统计概率+Word版含答案

常考题型大通关:第19题统计概率1、2018年10月17日是我国第5个扶贫日,也是第26个国际消除贫困日。

射洪某企业员工共500人参加“精准扶贫”活动,按年龄分组:第一组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)下表是年龄的频数分布表,求正整数a,b的值;(2)根据频率分布直方图,估算该企业员工的平均年龄及年龄的中位数;(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.2、某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.(1)请先求出频率分布表中①、②、③、④位置相应的数据,再在答题纸上完成下列频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?3、随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查40人,并将调查情况进行整理后制成下表:年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,60]频数 5 10 10 5 10赞成人数 4 6 8 4 91.完成被调查人员年龄的频率分布直方图,并求被调查人员中持赞成态度人员的平均年龄约为多少岁?15,25,45,55的被调查人员中各随机选取1人进行调查.请写出所有的基2.若从年龄在[)[)本亊件,并求选取2人中恰有1人持不赞成态度的概率.4、某中学为弘扬优良传统,展示80年来的办学成果,特举办“建校80周年教育成果展示月”活动。

现在需要招募活动开幕式的志愿者,在众多候选人中选取100名志愿者,为了在志愿者.组号分组频数频率160,165 5 0.05第1组[)第2组[165,170)0.35第3组[170,175)第4组[175,180)20 0.20第5组[180,185)10合计100 1.001.请补充频率分布表中空白位置相应数据,再完成下列频率分布直方图;2.为选拔出主持人,决定在第3、4、5组中用分层抽样抽取6人上台,求第3、4、5组每组各抽取多少人?3.在2的前提下,主持人会在上台的6人中随机抽取2人表演诗歌朗诵,求第3组至少有一人被抽取的概率?5、某中学组织了一次高三学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.1.若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?2.在1中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.6、某乡镇根据中央文件精神,在2014年通过精准识别确定建档立卡的贫困户共有473户,结合当地实际情况采取多项精准扶贫措施,从2015年至2018年该乡镇每年脱贫户数见下表:年份2015 2016 2017 2018 年份代码x 1 2 3 4脱贫户数y55 69 71 85(1)根据2015-2018年的数据,求出y关于x的线性回归方程$$y bx a=+$;(2)利用(1)中求出的线性回归方程,试判断到2020年底该乡镇的473户贫困户能否全部脱贫.附:$$1221,ni iiniix y nxyb a y bxx nx==-==--∑∑$$7、某农科所对冬季昼夜温差大小与某反季节大豆新品种种子发芽数之间的关系进行分析研究,他们分别记录了12月1日至12月5日每天昼夜温差大小与实验室每天每100颗种子中的发芽数,得到如下数据:该农科所确定的研究方案是:先从这5组数据中随机选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验。

文科数学专题概率与统计(学案)高考二轮复习资料含答案

文科数学专题概率与统计(学案)高考二轮复习资料含答案

文科数学专题概率与统计(学案)高考二轮复习资料含答案1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.3.以客观题形式考查古典概型与几何概型、互斥事件与对立事件的概率计算.4.与统计结合在大题中考查古典概型与几何概型.(1)在频率分布直方图中:频率①各小矩形的面积表示相应各组的频率,各小矩形的高=;②各小矩形面积之和等于1;③中位数组距左右两侧的直方图面积相等,因此可以估计其近似值.(2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,从总体中逐个抽取少在起始部分抽样时采按事先确定的规则在各用简单随机抽样总体中的个体数较多分层抽样时采用简单总体由差异明显的随机抽样或系统抽样几部分组成即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推).3.样本的数字特征(1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据).(2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.(3)平均数与方差-1样本数据的平均数某=(某1+某2++某n).n1-2-2-22方差=[(某1-某)+(某2-某)++(某n-某)].n注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量某和y具有线性相关关系.(2)用最小二乘法求回归直线的方程^^^设线性回归方程为y=b某+a,则^b=-某-某^-^-a=y-b某ni=1nii=1--某i-某yi-y=--某iyi-n某yi=1nn22i-n某某2-i=1.--注意:回归直线一定经过样本的中心点(某,y),据此性质可以解决有关的计算问题.5.回归分析n某i-某yi-yi=1--r=n,叫做相关系数.某i-某2yi-y2i=1i=1-n-相关系数用来衡量变量某与y之间的线性相关程度;|r|≤1,且|r|越接近于1,相关程度越高,|r|越接近于0,相关程度越低.6.独立性检验假设有两个分类变量某和Y,它们的取值分别为{某1,某2}和{y1,y2},其样本频数列联表(称为2某2列联表)为某1某2总计2y1aca+c2y2bdb+d总计a+bc+da+b+c+da+b+c+dad-bc则K=,a+bc+da+cb+d若K>3.841,则有95%的把握说两个事件有关;若K>6.635,则有99%的把握说两个事件有关;若K<2.706,则没有充分理由认为两个事件有关.7.随机事件的概率随机事件的概率范围:0≤P(A)≤1;必然事件的概率为1,不可能事件的概率为0.8.古典概型①计算一次试验中基本事件的总数n;②求事件A包含的基本事件的个数m;③利用公式P(A)=计算.9.一般地,如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率的和,即P(A+B)=P(A)+P(B).-10.对立事件:在每一次试验中,相互对立的事件A和A不会同时发生,但一定有一个发生,因此有222mnP(A)=1-P(A).11.互斥事件与对立事件的关系-对立必互斥,互斥未必对立.12.几何概型一般地,在几何区域D内随机地取一点,记事件“该点落在其内部区域d内”为事件A,则事件A发生的概率P(A)=考点一几何概型例1.【2022课标1,】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是d的测度.D的测度141C.2A.【答案】Bπ8πD.4B.【变式探究】(2022·江苏卷)记函数f(某)=6+某-某的定义域为D.在区间[-4,5]上随机取一个数某,则某∈D的概率是________.5【答案】93--252【解析】由6+某-某≥0,解得-2≤某≤3,则D=[-2,3],则所求概率为=.5--49【变式探究】从区间[0,1]随机抽取2n个数某1,某2,,某n,y1,y2,,yn,构成n个数对(某1,y1),(某2,y2),,(某n,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4n2m2nB.mC.4mn2mD.n【答案】Cmπ4m4m【解析】由题意知,=,故π=,即圆周率π的近似值为.n4nn考点二古典概型例2.(2022·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.【答案】D3102511015【2022山东】从分别标有1,2,,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A)5475(B)(C)(D)18999【答案】C【解析】标有1,2,,9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡112C5C45,选C.片上的数奇偶性不同的概率是989【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.51011B.C.D.1212121【变式探究】(2022·天津卷)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.【答案】C【解析】从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共424种,所以所求概率P==.105故选C.考点三概率与其他知识的交汇例3、(2022·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数[10,15)2[15,20)16[20,25)36[25,30)25[30,35)7[35,40)44 5352515以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.【变式探究】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下表:消费次数收费比例第1次1第2次0.95第3次0.90第4次0.85第5次及以上0.80该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如下表:消费次数频数第1次60第2次20第3次10第4次5第5次及以上5假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.40【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为100=0.4.(2)该会员第1次消费时,公司获得的利润为200-150=50(元).50+40第2次消费时,公司获得的利润为200某0.95-150=40(元),所以,公司获得的平均利润为=245(元)。

文科高考数学重难点05 概率与统计(解析版)

文科高考数学重难点05  概率与统计(解析版)

重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2021·广西钦州一中高三开学考试(文))点在边长为2的正方形内运动,P ABCD 则动点到顶点的距离的概率为( )P A 2PA <A .B .C .D .14124ππ【答案】C 【解析】分析:先根据题意得出PA 等于2 的临界值情况,再根据几何概型求解即可.详解:由题可知当PA=2时是以A 为圆心2为半径的四分之一圆,所以概率为P=,故选C21444r ππ=2.(2020·全国高三其他模拟(文))从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效(cm)(kg)ˆ0.8585yx =-果的相关指数,则下列说法正确的是( )20.6R =A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有60%是由身高引起的C .身高为的女学生的体重一定为170cm 59.5kgD .这些女学生的身高每增加,其体重约增加0.85cm 1kg 【答案】B【分析】因为回归方程为,且刻画回归效果的相关指数,所以,ˆ0.8585y x =-20.6R =这些女学生的体重和身高具有线性相关关系,A 错误;这些女学生的体重差异有60%是由身高引起的,B 正确;时,,预测身高为的女学生体重为,C 错170x =ˆ0.851708559.5y=⨯-=170cm 59.5kg 误;这些女学生的身高每增加,其体重约增加,D 错误.0.85cm 0.850.850.7225(kg)⨯=故选:B3.(2020·石嘴山市第三中学高三其他模拟(文))网络是一种先进的高频传输技5G 术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手5G 5G 机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数5G x y 据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预y x0.042y x a =+测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精5G 确到月)()A .2020年6月B .2020年7月C .2020年8月D .2020年9月【答案】C【分析】:,1(12345)35x =⨯++++=1(0.020.050.10.150.18)0.15y =⨯++++=点在直线上()3,0.1ˆˆ0.042y x a =+,ˆ0.10.0423a=⨯+ˆ0.026a =-ˆ0.0420.026yx =-令ˆ0.0420.0260.5y x =->13x ≥因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C4.(2020·河南新乡市·高三一模(文))年的“金九银十”变成“铜九铁十”,全2020国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区年2019月至年月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月11202011份代码分别对应年月年月)113:2019112020:11根据散点图选择和两个模型进行拟合,经过数据处理得到的两y a =+ln y c d x =+个回归方程分别为,并得到以下一些0.9369y =+0.95540.0306ln y x =+统计量的值:是()A .当月在售二手房均价与月份代码呈正相关关系y xB .根据年月在售二手房均价约为万元/0.9369y =+20212 1.0509平方米C .曲线的图形经过点0.9369y =+0.95540.0306ln y x =+()x yD .回归曲线的拟合效果好于的拟合效0.95540.0306ln y x =+ 0.9369y =+果【答案】C【分析】对于A ,散点从左下到右上分布,所以当月在售二手房均价与月份代码呈正y x 相关关系,故A 正确;对于B ,令,由,16x =0.9369 1.0509y =+=所以可以预测年月在售二手房均价约为万元/平方米,故B 正确;20212 1.0509对于C ,非线性回归曲线不一定经过,故C 错误;()x y 对于D ,越大,拟合效果越好,故D 正确.2R 故选:C.5.(2020·全国高三专题练习(文))现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理【答案】D【分析】:由条形图知女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选:D.6.(2021·全国高三专题练习(文))下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中为直角三角形,四边形为它的内接正方形,已知ABC :DEFC ,,在内任取一点,则此点取自正方形内的概率为(2BC =4AC =ABC :DEFC)A .B .C .D .12592949【答案】D【分析】解:,,4tan 22AC B BC === tan 2EFB FB ∴==,解得,22()2(2)EF FB BC EF EF ==-=-43EF =,,1142422ACB S AC BC ∴==⨯⨯=::4416339DEFC S =⨯=根据几何概型.164949P ==故选:D .7.(2021·江西新余市·高三期末(文))2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数.素数对称为孪生素数.从15以p 2p +(,2)p p +内的素数中任取2个构成素数对,其中是孪生素数的概率为()A .B .C .D .13141516【答案】C【分析】以内的素数有,,,,,,共个,任取两个构成素数对,则152********有:,,,,,,,,,,()2,3()2,5()2,7()2,11()2,13()3,5()3,7()3,11()3,13()5,7,,,,,共中取法,而是孪生素数的有,()5,11()5,13()7,11()7,13()11,1315()3,5,,其概率为.()5,7()11,1331155p ==故选:C.8.(2021·安徽阜阳市·高三期末(文))如图,根据已知的散点图,得到y 关于x 的线性回归方程为,则( )ˆ0.2y bx =+ˆb =A .1.5B .1.8C .2D .1.6【答案】D【分析】因为,所以,解得12345235783,555x y ++++++++====530.2b =+ .1.6b = 故选:D .9.(2021·全国高三专题练习(文))在上随机取一个数,则事件“直线与[]1,1-k y kx =圆相交”发生的概率为( )22(x 13)25y -+=A .B .12513C .D .51234【答案】C【分析】直线与圆相交y kx =22(x 13)25y -+=555,1212d k ⎛⎫⇒∈- ⎪⎝⎭直线斜率时与圆相交,故所求概率.55,1212k ⎛⎫∈- ⎪⎝⎭10512212P ==故答案选C10.(2021·全国高三专题练习(文))给出下列说法:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆy bx a =+(,)x y ②两个变量相关性越强,则相关系数就越接近1;||r ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少ˆ20.5y x =-x ˆy0.5个单位.其中说法正确的是( )A .①②④B .②③④C .①③④D .②④【答案】B【分析】对于①中,回归直线恒过样本点的中心,但不一定过一个样本ˆˆˆy bx a =+(x y 点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1,||r 所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增ˆ20.5y x =-x 加一个单位时,预报变量平均减少0.5个单位,所以是正确的.ˆy 故选:B.11.(2020·江西吉安市·高三其他模拟(文))给出一组样本数据:1,4,,3,它们出m 现的频率分别为0.1,0.1,0.4,0.4,且样本数据的平均值为2.5,从1,4,,3中任取m 两个数,则这两个数的和为5的概率为()A .B .C .D .12231314【答案】C【分析】由题意得,样本平均值为,解得,10.140.10.430.4 2.5m ⨯+⨯+⨯+⨯=2m =即这组样本数据为1,4,2,3,从中任取两个有,,,,,共6种情况,()1,4()1,2()1,3()4,2()4,3()2,3其中和为5的有,两种情况,()1,4()2,3∴所求概率为,2163P ==故选:C.12.(2020·全国高三专题练习(理))物流业景气指数反映物流业经济发展的总体LPI 变化情况,以作为经济强弱的分界点,高于时,反映物流业经济扩张;低于50%50%时,则反映物流业经济收缩。

广东省广州市2020届高三数学概率统计专题(文科A卷)

广东省广州市2020届高三数学概率统计专题(文科A卷)

2020届高三数学专题——概率与统计测试卷A (文科)一、选择题(共10题,每小题均只有一个正确答案,每小题5分,共50分) 1.设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形。

黄金矩形常应用于工艺品设计中。

下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( ) A. 甲批次的总体平均数与标准值更接近 B. 乙批次的总体平均数与标准值更接近 C. 两个批次总体平均数与标准值接近程度相同 D. 两个批次总体平均数与标准值接近程度不能确定2.对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 3. 期末考试后,班长算出了全班40名同学的数学成绩的平均分为M ,如果把M 当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N ,那么M :N 为( ) A .40:41 B .1:1 C .41:40 D .2:14.设a 是甲抛掷一枚骰子得到的点数,则方程220x ax ++=有两个不相等的实数根的概率第6题图 为( ) A .23 B . 13 C . 12 D . 1255.甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x 、y ,则满足复数i x y +的实部大于虚部的概率是( )A .16 B .512C .712D .136.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90B.75C. 60D.457.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”。

高三数学《概率统计(文科)》练习

高三数学《概率统计(文科)》练习

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。

高考数学压轴专题2020-2021备战高考《计数原理与概率统计》知识点总复习含答案解析

高考数学压轴专题2020-2021备战高考《计数原理与概率统计》知识点总复习含答案解析

新数学《计数原理与概率统计》试卷含答案一、选择题1.若实数22a=-,则1019228101010222a C a C a -+-+L 等于( )A .32B .-32C .1 024D .512【答案】A 【解析】 由题意可得:()()10192221010101010222222232.a C a C a a -+-+=-=--=L本题选择A 选项.2.甲、乙两类水果的质量(单位:kg )分别服从正态分布()()221122,,,N N μδμδ,其正态分布的密度曲线如图所示,则下列说法错误的是( )A .甲类水果的平均质量10.4kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从正态分布的参数2 1.99δ= 【答案】D 【解析】由图象可知,甲类水果的平均质量μ1=0.4kg ,乙类水果的平均质量μ2=0.8kg ,故A ,B ,C ,正确;乙类水果的质量服从的正态分布的参数σ2 1.99,故D 不正确.故选D .3.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种C .42种D .25种【答案】C 【解析】 【分析】给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数.【详解】甲可有3种安排方法, 若甲先安排第1社区,则第2社区可安排1个、第3社区安排3个,共1343C C ⋅;第2社区2个、第3社区安排2个,共2242C C ⋅;第2社区3个,第3社区安排1个,共1141C C ⋅;故所有安排总数为1322114342413()42C C C C C C ⨯⋅+⋅+⋅=.故选:C. 【点睛】本题考查分类与分步计数原理、组合数的计算,考查分类讨论思想,考查逻辑推理能力和运算求解能力.4.下列等式不正确的是( )A .111m mnn m C C n ++=+ B .12111m m m n n n A A n A +-+--= C .11m m n n A nA --=D .1(1)k k kn n n nC k C kC +=++【答案】A 【解析】 【分析】根据排列和组合公式求解即可. 【详解】根据组合公式得11!1(1)!1!()!1(1)!()!1mm n n n m n m C C m n m n m n m n +++++==⨯=-++-+,则A 错误;根据排列公式得122111(1)!!!(1)!(11)()!()!()!()!m m m n n n n n n n A A n n n A n m n m n m n m +-+-+--=-=+-=⋅=----,则B 正确;根据排列公式得11!(1)!()!()!mm n n n n A n nA n m n m ---==⋅=--,则C 正确;根据组合公式得()()1!!(1)(1)(1)!1!!1!k nn n k C k k n k k n k ++=+⋅=+-+-+⎡⎤⎡⎤⎣⎦⎣⎦[]!!()!()!!(1)!k kn n n n nC kC n k k n k k n k -⋅=--+-=即1(1)k k k n n n nC k C kC +=++,则D 正确;故选:A 【点睛】本题主要考查了排列和组合公式的应用,属于中档题.5.若随机变量X 的分布列为( )且()1E X =,则随机变量X 的方差()D X 等于( ) A .13B .0C .1D .23【答案】D 【解析】分析:先根据已知求出a,b 的值,再利用方差公式求随机变量X 的方差()D X .详解:由题得1113,,130213a b a b a b ⎧++=⎪⎪∴==⎨⎪⨯++=⎪⎩ 所以2221112()(01)(11)(21).3333D X =-⋅+-⋅+-⋅= 故答案为D.点睛:(1)本题主要考查分布列的性质和方差的计算,意在考查学生对这些知识的掌握水平.(2) 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,那么D ξ=211()x E p ξ-⋅+222()x E p ξ-⋅+…+2()n n x E p ξ-⋅,称为随机变量ξ的均方差,简称为方差,式中的E ξ是随机变量ξ的期望.6.把15个相同的小球放到三个编号为123,,的盒子中,且每个盒子内的小球数要多于盒子的编号数,则共有多少种放法( ) A .18 B .28C .38D .42【答案】B 【解析】 【分析】根据题意,先在1号盒子里放1个球,在2号盒子里放2个球,在3号盒子里放3. 个球,则原问题可以转化为将剩下的9个小球,放入3个盒子,每个盒子至少放1个的问题,由挡板法分析可得答案. 【详解】根据题意,15个相同的小球放到三个编号为123,,的盒子中,且每个盒子内的小球数要多于盒子的编号数,先在1号盒子里放1个球,在2号盒子里放2个球,在3号盒子里放3个球, 则原问题可以转化为将剩下的9个小球,放入3个盒子,每个盒子至少放1个的问题, 将剩下的9个球排成一排,有8个空位,在8个空位中任选2个,插入挡板,有2887282C ⨯==种不同的放法, 即有28个不同的符合题意的放法; 故选B . 【点睛】本题考查排列、组合的应用,关键是将原问题转化为将3个球放入3个盒子的问题,属于基础题.7.如图所示,线段BD 是正方形ABCD 的一条对角线,现以BD 为一条边,作正方形BEFD ,记正方形ABCD 与BEFD 的公共部分为Ω(如图中阴影部分所示),则往五边形ABEFD 中投掷一点,该点落在Ω内的概率为( )A .16B .15C .14D .13【答案】B 【解析】 【分析】五边形ABEFD 的面积52S =,阴影Ω的面积为12,得到概率. 【详解】不妨设1AB =,故五边形ABEFD 的面积15222S =+=,阴影Ω的面积为12,故所求概率为1121522P ==+, 故选:B . 【点睛】本题考查了几何概型,意在考查学生的计算能力和应用能力.8.下列命题:①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.其中正确命题的个数是()A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据互斥之间和对立事件的概念,及互斥事件和对立事件的关系和概率的计算,即可作出判断,得到答案.【详解】由题意①中,根据对立事件与互斥事件的关系,可得是正确;②中,当A与B是互斥事件时,才有P(A∪B)=P(A)+P(B),对于任意两个事件A,B满足P(A∪B)=P(A)+P(B)-P(AB),所以是不正确的;③也不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A={摸到红球或黄球},事件B={摸到黄球或黑球},显然事件A与B不互斥,但P(A)+P(B)=+=1.【点睛】本题主要考查了互斥事件和对立事件的基本概念、互斥事件与对立时间的关系及其应用,其中熟记互斥事件和对立事件的概念和关系是解答的关键,着重考查了推理与论证能力,属于基础题.9.若1路、2路公交车均途经泉港一中校门口,其中1路公交车每10分钟一趟,2路公交车每20分钟一趟,某生去坐这2趟公交车回家,则等车不超过5分钟的概率是()A.18B.35C.58D.78【答案】C【解析】【分析】设1路车到达时间为x和2路到达时间为y.(x,y)可以看做平面中的点,利用几何概型即可得到结果.【详解】设1路车到达时间为x和2路到达时间为y.(x,y)可以看做平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|0≤x≤10且0≤y≤20},这是一个长方形区域,面积为S=10×20=200A表示某生等车时间不超过5分钟,所构成的区域为a={(x,y)|0≤x≤5或0≤y≤5},即图中的阴影部分,面积为S′=125,代入几何概型概率公式,可得P (A )'12552008S S === 故选C【点睛】解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.10.已知()812x +展开式的二项式系数的最大值为a ,系数的最大值为b ,则ba的值( ) A .1265B .1285C .1253D .26【答案】B 【解析】 【分析】根据二项式系数的性质求得a ,系数的最大值为b 求得b ,从而求得ba的值. 【详解】由题意可得4870a C ==,又展开式的通项公式为182r rr r T C x +=,设第1r +项的系数最大,则11881188·2?2·2?2r r r r r r r r C C C C ++--⎧⎨⎩……,即56r r ⎧⎨⎩…„, 求得=5r 或6,此时,872b =⨯,∴1285b a =, 故选:B .【点睛】本题主要考查二项式系数的性质,第n 项的二项式系数与第n 项的系数之间的关系,属于中档题.11.概率论起源于博弈游戏.17世纪,曾有一个“赌金分配“的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定,各出赌金48枚金币,先赢3局者可获得全部赌金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.向这96枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率“的知识,合理地给出了赌金分配方案.该分配方案是( ) A .甲48枚,乙48枚 B .甲64枚,乙32枚 C .甲72枚,乙24枚 D .甲80枚,乙16枚【答案】C 【解析】 【分析】根据题意,计算甲乙两人获得96枚金币的概率,据此分析可得答案. 【详解】根据题意,甲、乙两人每局获胜的概率均为12, 假设两人继续进行比赛,甲获取96枚金币的概率111132224P =+⨯=, 乙获取96枚金币的概率2111224P =⨯=, 则甲应该获得396724⨯=枚金币;乙应该获得196244⨯=枚金币; 故选:C . 【点睛】本题主要考查概率在实际问题中的应用,涉及到独立事件的概率,考查学生的逻辑推理能力、数学运算能力,是一道中档题.12.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 约等于9,据此模型预报广告费用为6 万元时,销售额为( )A .54万元B .55万元C .56万元D .57万元【答案】D 【解析】试题分析:由表格可算出1(1245)34x =+++=,1(10263549)304y =+++=,根据点(),x y 在回归直线ˆˆˆy bx a =+上,ˆ9b=,代入算出ˆ3a =,所以ˆ93y x =+,当6x =时,ˆ57y =,故选D.考点:回归直线恒过样本点的中心(),x y .13.已知()929012913x a a x a x a x -=++++L ,则019a a a +++…等于( ) A .92 B .94 C .93 D .1【答案】B 【解析】 【分析】求出二项式()913x -展开式的通项为()193rrr T C x +=⋅-,可知当r 为奇数时,0r a <,当r 为偶数时,0r a >,然后代入1x =-即可得出019a a a ++⋯+的值.【详解】二项式()913x -展开式的通项()193rr r T C x +=⋅-,当r 为奇数时,0r a <,当r 为偶数时,0r a >,因此,()990191314a a a ⎡⎤++⋯+=-⨯-=⎣⎦.故选:B. 【点睛】本题考查利用赋值法求各项系数绝对值之和,要结合二项式定理判断各项系数的符号,考查推理能力与计算能力,属于中等题.14.若二项式2nx ⎫⎪⎭的展开式中各项的系数和为243,则该展开式中含x 项的系数为( ) A .1 B .5 C .10 D .20 【答案】C 【解析】 【分析】对2nx ⎫⎪⎭令1x =,结合展开式中各项的系数和为243列方程,由此求得n 的值,再利用二项式展开式的通项公式,求得含x 项的系数.【详解】对2n x ⎫⎪⎭令1x =得()123243n n +==,解得5n =.二项式52x ⎫⎪⎭展开式的通项公式为()515312225522rr rr rr C x xC x---⎛⎫⋅⋅=⋅⋅ ⎪⎝⎭,令53122r -=,解得1r =,故展开式中含x 项的系数为115210C ⋅=.故选:C. 【点睛】本小题主要考查二项式展开式各项系数之和,考查求二项式展开式指定项的系数,属于基础题.15.高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为123100,,,,x x x x L ,它们的平均数为x ,方差为2s ;其中扫码支付使用的人数分别为132x +,232x +,332x +,L ,10032x +,它们的平均数为x ',方差为2s ',则x ',2s '分别为( )A .32x +,232s +B .3x ,23sC .32x +,29sD .32x +,292s +【答案】C 【解析】 【分析】由样本数据的平均数和方差的公式,化简、运算,即可求解,得到答案. 【详解】由平均数的计算公式,可得数据12100,,,x x x L 的平均数为1231001()100x x x x x =++++L 数据1210032,32,,32x x x +++L 的平均数为:121001210011[(32)(32)(32)][3()2100]32100100x x x x x x x ++++++=++++⨯=+L L , 数据12100,,,x x x L 的方差为2222121001[()()()]100s x x x x x x =-+-++-L , 数据1210032,32,,32x x x +++L 的方差为:222121001{[(32)(32)[(32(32)][(32)(32)]}100x x x x x x +-+++-++++-+L 2222121001[9()9()9()]9100x x x x x x s =-+-++-=L 故选C. 【点睛】本题主要考查了样本数据的平均数和方差的计算与应用,其中解答中熟记样本数据的平均数和方差的计算公式,合理化简与计算是解答的关键,着重考查了推理与运算能力,属于基础题.16.有一散点图如图所示,在5个(,)x y 数据中去掉(3,10)D 后,下列说法正确的是( )A .残差平方和变小B .相关系数r 变小C .相关指数2R 变小D .解释变量x 与预报变量y 的相关性变弱【答案】A 【解析】 【分析】由散点图可知,去掉(3,10)D 后,y 与x 的线性相关性加强,由相关系数r ,相关指数2R 及残差平方和与相关性的关系得出选项. 【详解】∵从散点图可分析得出:只有D 点偏离直线远,去掉D 点,变量x 与变量y 的线性相关性变强, ∴相关系数变大,相关指数变大,残差的平方和变小,故选A. 【点睛】该题考查的是有关三点图的问题,涉及到的知识点有利用散点图分析数据,判断相关系数,相关指数,残差的平方和的变化情况,属于简单题目.17.二项式51(2)x x的展开式中含3x 项的系数是 A .80 B .48 C .−40 D .−80【答案】D 【解析】512x x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()()55521551C 212C rr r r r r r r T x x x ---+⎛⎫=-=- ⎪⎝⎭n n n n , 令523r -=,1r =,所求系数为145C 280-=-n ,故选D .18.设2012(12)n n n x a a x a x a x L -=++++,若340a a +=,则5a =( )A .256B .-128C .64D .-32【答案】D【解析】【分析】 由题意利用二项展开式的通项公式求得n 的值,从而求得5a 的值.【详解】∵()201212nn n x a a x a x a x -=++++L ,∵334434220n n a a C C +=⋅-+⋅-=()(), 5n ∴=,则5555232a C (),=⋅-=- 故选D .【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.19.我国在北宋1084年第一次印刷出版了《算经十书》,即贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》、《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.这些书中涉及的很多方面都达到古代数学的高峰,其中一些“算法”如开立方和开四次方也是当时世界数学的高峰.某图书馆中正好有这十本书现在小明同学从这十本书中任借两本阅读,那么他取到的书的书名中有“算”字的概率为( )A .518B .12C .59D .79【答案】D【解析】【分析】现在小明同学从这十本书中任借两本阅读,基本事件总数210C 45n ==,他取到的书的书名中有“算”字包含的基本事件总数211555C C C 35m =+=,由此能求出他取到的书的书名中有“算”字的概率.【详解】解: 小明同学从这十本书中任借两本阅读,基本事件总数210C 45n ==,他取到的书的书名中有“算”字包含的基本事件总数211555C C C 35m =+=,那么他取到的书的书名中有“算”字的概率为357459m p n ===. 故选:D .【点睛】 本题考查排列组合与古典概型的综合应用,难度一般.注意此题中的书名中有“算”字包含两种情况:仅有一本书的书名中有“算”、两本书的书名中都有“算”,分类需要谨慎.20.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .118【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有21045C =种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为31=4515,选C. 点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.。

高中数学经典概率与统计(解析版)

高中数学经典概率与统计(解析版)

概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。

高考数学概率统计大题综合试题含答案解析

高考数学概率统计大题综合试题含答案解析

概率统计大题综合知识点总结1.数字样本特征(1)众数:在一组数据中出现次数最多的数(2)中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数(3)平均数:x =x 1+x 2+⋯⋯+x nn ,反映样本的平均水平(4)方差:s 2=(x 1−x )2+(x 2−x )2+⋯⋯(x n −x )2n反映样本的波动程度,稳定程度和离散程度;s 2越大,样本波动越大,越不稳定;s 2越小,样本波动越小,越稳定;(5)标准差:σ=s 2,标准差等于方差的算术平方根,数学意义和方差一样(6)极差:等于样本的最大值−最小值2.求随机变量X 的分布列的步骤:(1)理解X 的意义,写出X 可能取得全部值;(2)求X 取每个值的概率;(3)写出X 的分布列;(4)根据分布列的性质对结果进行检验.还可判断随机变量满足常见分布列:两点分布,二项分布,超几何分布,正态分布.3.求随机变量的期望和方差的基本方法:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求aX +b a ,b ∈R 的期望与方差,利用期望和方差的性质E aX +b =aE X +b ,D aX +b =a 2D X 进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算,若ξ~B (n ,p ),则Eξ=np ,Dξ=np (1-p ).4.求解概率最大问题的关键是能够通过P ξ=k ≥P ξ=k +1P ξ=k ≥Pξ=k -1构造出不等关系,结合组合数公式求解结果5.线性回归分析解题方法:(1)计算x ,y,ni =1x i 2 ,ni =1x i y i 的值;(2)计算回归系数a ,b ;(3)写出回归直线方程y =b x +a.线性回归直线方程为:y =b x +a ,b=ni =1x i −x y i −yni =1x i −x2=ni =1x i y i −nx yni =1x i 2−nx2,a =y −b x其中x ,y为样本中心,回归直线必过该点(4)线性相关系数(衡量两个变量之间线性相关关系的强弱)r=ni=1x i−xy i−yni=1x i−x2ni=1y i−y2=ni=1x i y i−nx yni=1x i2−nx 2ni=1y i2−ny 2r>0,正相关;r<0,负相关r ≤1,且r 越接近于1,线性相关性越强;r 越接近于0,线性相关性越弱,几乎不存在线性相关性6.独立性检验解题方法:(1)依题意完成列联表;(2)用公式求解;(3)对比观测值即可得到所求结论的可能性独立性检验计算公式:K2=n ad-bc2a+bc+da+cb+d模拟训练一、解答题1.(2023·福建三明·统考三模)在二十大报告中,体育、健康等关键词被多次提及,促进群众体育和竞技体育全面发展,加快建设体育强国是全面建设社会主义现代化国家的一个重要目标.某校为丰富学生的课外活动,加强学生体质健康,拟举行羽毛球团体赛,赛制采取3局2胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且是否上场是随机的,每局比赛结果互不影响.经过小组赛后,最终甲、乙两队进入最后的决赛,根据前期比赛的数据统计,甲队种子选手M对乙队每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队最终2:1获胜且种子选手M上场的概率;(2)已知甲队2:1获得最终胜利,求种子选手M上场的概率.2.(2023·湖北武汉·统考模拟预测)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.(1)若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,ξ表示选取的人中来自该中学的人数,求ξ的分布列和数学期望;(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动.规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利,假设每轮答题结果互不影响.已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为p1,p2,且p1+p2=43,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?3.(2023·福建宁德·校考二模)某科研团以为了考察某种药物预防疾病的效果,进行动物实验,得到如下列联表.患病未患病总计服用药物1045末服用药物50总计30(1)请将上面的列联表补充完整.(2)认为“药物对预防疾病有效”犯错误的概率是多少?(3)为了进一步研究,现按分层抽样的方法从未患病动物中抽取10只,设其中未服用药物的动物数为ξ,求ξ的分布列与期望.下面的临界值表供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k 2.0722706 3.841 5.024 6.6357.87910.828(参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)4.(2023·江苏常州·校考一模)设X,Y是一个二维离散型随机变量,它们的一切可能取的值为a i,b j,其中i,j∈N*,令p ij=P X=a i,Y=b j,称p ij i,j∈N*是二维离散型随机变量X,Y的联合分布列,与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式;X,Yb1b2b3⋅⋅⋅a1p11p12p13⋅⋅⋅a2p21p22p23⋅⋅⋅a3p31p32p33⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅现有n n∈N*个球等可能的放入编号为1,2,3的三个盒子中,记落入第1号盒子中的球的个数为X,落入第2号盒子中的球的个数为Y.(1)当n=2时,求X,Y的联合分布列,并写成分布表的形式;(2)设p k=nm=0P X=k,Y=m,k∈N且k≤n,求nk=0kp k的值.(参考公式:若X~B n,p,则nk=0kC k np k1-pn-k=np)5.(2023·江苏南京·南京市第九中学校考模拟预测)某种疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了若干名该疾病的患者进行调查,发现女性患者人数是男性患者的2倍,男性患A型疾病的人数占男性患者的56,女性患A型疾病的人数占女性患者的13.A型病B型病合计男女合计(1)填写2×2列联表,若本次调查得出“在犯错误的概率不超过0.005的前提下认为‘所患疾病的类型'与‘性别'有关”的结论,求被调查的男性患者至少有多少人?(2)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为m m>0元.该团队研发的疫苗每次接种后产生抗体的概率为p0<p<1,如果一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期.若p=23,试验人数为1000人,试估计该试验用于接种疫苗的总费用.K2=n ad-bc2a+bc+da+cb+d,P K2≥k00.100.050.010.0050.001k0 2.706 3.841 6.6357.87910.8286.(2023·安徽蚌埠·统考三模)某校为了丰富学生课余生活,组建了足球社团.为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各100名进行调查,部分数据如表所示:喜欢足球不喜欢足球合计男生40女生30合计(1)根据所给数据完成上表,依据α=0.001的独立性检验,能否认为该校学生喜欢足球与性别有关?(2)社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范点球射门.已知这两名男生进球的概率均为23,这名女生进球的概率为12,每人射门一次,假设各人射门相互独立,求3人进球总次数X的分布列和数学期望.附:χ2=n ad-bc2a+bc+da+cb+dα0.10.050.010.0050.001 xα 2.706 3.841 6.6357.87910.8287.(2023·海南海口·海南华侨中学校考模拟预测)在以视觉为主导的社交媒体时代,人们常借助具有美颜功能的产品对自我形象进行美化.移动端的美颜拍摄类APP 主要有两类:A 类是以自拍人像、美颜美妆为核心功能的APP ;B 类是图片编辑、精修等图片美化类APP .某机构为调查市民对上述A ,B 两类APP 的使用情况,随机调查了部分市民.已知被调查的市民中使用过A 类APP 的占60%,使用过B 类APP 的占50%,设个人对美颜拍摄类APP 类型的选择及各人的选择之间相互独立.(1)从样本人群中任选1人,求该人使用过美颜拍摄类APP 的概率;(2)从样本人群中任选5人,记X 为5人中使用过美颜拍摄类APP 的人数,设X 的数学期望为E X ,求P X =E X ;(3)在单独使用过A ,B 两类APP 的样本人群中,按类型分甲、乙两组,并在各组中随机抽取8人,甲组对A 类APP ,乙组对B 类APP 分别评分如下:甲组评分9486929687939082乙组评分8583859175908380记甲、乙两组评分的平均数分别为x 1 ,x 2 ,标准差分别为s 1,s 2,试判断哪组评价更合理.(设V i=s ix i (i =1,2),V i 越小,则认为对应组评价更合理.)参考数据:0.1925≈0.439,0.2325≈0.482.8.(2023·广东·统考模拟预测)某工厂车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是14,且一台机器的故障由一个维修工处理.已知此厂共有甲、乙、丙3名维修工,现有两种配备方案,方案一:由甲、乙、丙三人维护,每人负责2台机器;方案二:由甲乙两人共同维护6台机器,丙负责其他工作.(1)对于方案一,设X 为甲维护的机器某一时刻发生故障的台数,求X 的分布列与数学期望E (X );(2)在两种方案下,分别计算某一时刻机器发生故障时不能得到及时维修的概率,并以此为依据来判断,哪种方案能使工厂的生产效率更高?9.(2023·福建福州·福建省福州第一中学校考模拟预测)相关统计数据显示,中国经常参与体育锻炼的人数比例为37.2%,城乡居民达到《国民体质测定标准》合格以上的人数比例达到90%以上.某健身连锁机构对其会员的年龄等级和一个月内到健身房健身次数进行了统计,制作成如下两个统计图.图1为会员年龄分布图(年龄为整数),其中将会员按年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或40岁及以上)两类;图2为会员一个月内到健身房次数分布扇形图,其中将一个月内到健身房锻炼16次及以上的会员称为“健身达人”,15次及以下的会员称为“健身爱好者”,且已知在“健身达人”中有56是“年轻人”.(1)现从该健身连锁机构会员中随机抽取一个容量为100的样本,根据图表数据,补全2×2列联表,并依据小概率值α=0.05的独立性检验,是否可以认为“健身达人”与年龄有关?年轻人非年轻人合计健身达人健身爱好者合计(2)该健身机构在今年年底将针对全部的150名会员举办消费返利活动,预设有如下两种方案.方案1:按分层抽样从健身爱好者和健身达人中总共抽取20位“幸运之星”给予奖励.其中,健身爱好者和健身达人中的“幸运之星”每人分别奖励500元和800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得100元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位健身爱好者均可参加1次摸奖游戏;每位健身达人均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.附:χ2=n(ad-bc)2a+bc+da+cb+d.α0.100.050.0250.0100.0050.001χα 2.706 3.841 5.024 6.6357.87910.82810.(2023·云南昭通·校联考模拟预测)为了检测某种抗病毒疫苗的免疫效果,需要进行临床人体试验.研究人员将疫苗注射到200名志愿者体内,一段时间后测量志愿者的某项指标值,按0,20 ,20,40 ,40,60 ,60,80 ,80,100 分组,绘制频率分布直方图如图所示.试验发现志愿者体内产生抗体的共有160人,其中该项指标值不小于60的有110人.假设志愿者注射疫苗后是否产生抗体相互独立.(1)填写下面的2×2列联表,并根据列联表及小概率值α=0.05的独立性检验,判断能否认为注射疫苗后志愿者产生抗体与指标值不小于60有关.抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40名志愿者进行第二次注射疫苗,结果又有m 名志愿者产生抗体.(i )用频率估计概率,已知一名志愿者注射2次疫苗后产生抗体的概率p =0.9,求m 的值;(ⅱ)以(i )中的概率p 作为人体注射2次疫苗后产生抗体的概率,再进行另一组人体接种试验,记110名志愿者注射2次疫苗后产生抗体的数量为随机变量X ,求P X =k 最大时的k 的值.参考公式:χ2=n ad -bc 2a +b c +d a +c b +d(其中n =a +b +c +d 为样本容量).α0.500.400.250.150.1000.0500.025x α0.4550.7081.3232.0722.7063.8415.02411.(2023·湖南长沙·长沙市实验中学校考二模)首批全国文明典范城市将于2023年评选,每三年评选一次,2021年长沙市入选为全国文明典范城市试点城市,目前我市正全力争创首批全国文明典范城市,某学校号召师生利用周末从事创建志愿活动.高一(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宣传员、文明监督员三项可供选择,每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为12;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为12,每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不影响,求:(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.12.(2023·江苏南京·南京市第一中学校考模拟预测)为了宣传航空科普知识,某校组织了航空知识竞赛活动.活动规定初赛需要从8道备选题中随机抽取4道题目进行作答.假设在8道备选题中,小明正确完成每道题的概率都是34且每道题正确完成与否互不影响,小宇能正确完成其中6道题且另外2道题不能完成.(1)求小明至少正确完成其中3道题的概率;(2)设随机变量X表示小宇正确完成题目的个数,求X的分布列及数学期望;(3)现规定至少完成其中3道题才能进入决赛,请你根据所学概率知识,判断小明和小宇两人中选择谁去参加市级比赛(活动规则不变)会更好,并说明理由.13.(2023·广东·校联考模拟预测)某商场在五一假期间开展了一项有奖闯关活动,并对每一关根据难度进行赋分,竞猜活动共五关,规定:上一关不通过则不进入下一关,本关第一次未通过有再挑战一次的机会,两次均未通过,则闯关失败,且各关能否通过相互独立,已知甲、乙、丙三人都参加了该项闯关活动.(1)若甲第一关通过的概率为23,第二关通过的概率为56,求甲可以进入第三关的概率;(2)已知该闯关活动累计得分服从正态分布,且满分为450分,现要根据得分给共2500名参加者中得分前400名发放奖励.①假设该闯关活动平均分数为171分,351分以上共有57人,已知甲的得分为270分,问甲能否获得奖励,请说明理由;②丙得知他的分数为430分,而乙告诉丙:“这次闯关活动平均分数为201分,351分以上共有57人”,请结合统计学知识帮助丙辨别乙所说信息的真伪.附:若随机变量Z∼Nμ,σ2,则Pμ-σ≤X≤μ+σ≈0.6827;Pμ-2σ≤X≤μ+2σ≈0.9545;Pμ-3σ≤X≤μ+3σ≈0.9973.14.(2023·广东韶关·统考模拟预测)研究表明,如果温差本大,人们不注意保暖,可能会导致自身受到风寒刺激,增加感冒患病概率,特别是对于几童以及年老体弱的人群,要多加防范某中学数学建模社团成员研究了昼夜温差大小与某小学学生患感冒就诊人数多少之间的关系,他们记录了某六天的温差,并到校医室查阅了这六天中每天学生新增感冒就诊的人数,得到数据如下:日期第一天第二天第三天第四天第五天第六天昼夜温差x (°C )47891412新增感就诊人数y (位)y 1y 2y 3y 4y 5y 6参考数据:6iy 2i=3463,6iy i -y 2=289(1)已知第一天新增感冒就的学生中有4位男生,从第一天多增的感冒就诊的学生中随机取2位,其中男生人数记为X ,若抽取的2人中至少有一位女生的概率为56,求随机变量X 的分布列和数学期望;(2)已知两个变量x 与y 之间的样本相关系数r =1617,请用最小二乘法求出y 关于x 的经验回归方程y =b x +a ,据此估计昼夜温差为15°C 时,该校新增感冒就诊的学生人数. 参考数据:r =n ix i -x y i -y n i =1x i -x 2 ⋅ni =1y i -y2,b =ni x i -x y i -yni =1x i -x 2 15.(2023·重庆·统考模拟预测)某地区由于农产品出现了滞销的情况,从而农民的收入减少,很多人开始在某直播平台销售农产品并取得了不错的销售量.有统计数据显示2022年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示,若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,且“经常使用直播销售用户”中有34是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,依据小概率值α=0.05的χ2独立性检验,能否认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2023年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售、根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不是不赚,且这三种情况发生的概率分别为35,15,15;方案二:线上直播销售,根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为12,310,15.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.050.0250.0100.0050.001xα 2.072 2.706 3.841 5.024 6.6357.87910.828其中χ2=n ad-bc2a+bc+da+cb+d,n=a+b+c+d.16.(2023·河北衡水·衡水市第二中学校考三模)某医疗科研小组为研究某市市民患有疾病A 与是否具有生活习惯B 的关系,从该市市民中随机抽查了100人,得到如下数据:疾病A 生活习惯B 具有不具有患病2515未患病2040(1)依据α=0.01的独立性检验,能否认为该市市民患有疾病A 与是否具有生活习惯B 有关?(2)从该市市民中任选一人,M 表示事件“选到的人不具有生活习惯B ”,N 表示事件“选到的人患有疾病A ”,试利用该调查数据,给出P N M的估计值;(3)从该市市民中任选3人,记这3人中具有生活习惯B ,且末患有疾病A 的人数为X ,试利用该调查数据,给出X 的数学期望的估计值.附:χ2=n (ad -bc )2a +b c +d a +c b +d,其中n =a +b +c +d .α0.100.050.0100.001 x α2.7063.8416.63510.82817.(2023·江苏扬州·统考模拟预测)随着网络技术的迅速发展,各种购物群成为网络销售的新渠道.在凤梨销售旺季,某凤梨基地随机抽查了100个购物群的销售情况,各购物群销售凤梨的数量情况如下:凤梨数量(盒)100,200 200,300 300,400 400,500 500,600购物群数量(个)12m2032m(1)求实数m的值,并用组中值估计这100个购物群销售风梨总量的平均数(盒);(2)假设所有购物群销售凤梨的数量X服从正态分布Nμ,σ2,其中μ为(1)中的平均数,σ2=12100.若该凤梨基地参与销售的购物群约有1000个,销售风梨的数量在266,596(单位:盒)内的群为“一级群”,销售数量小于266盒的购物群为“二级群”,销售数量大于等于596盒的购物群为“优质群”.该凤梨基地对每个“优质群”奖励1000元,每个“一级群”奖励200元,“二级群”不奖励,则该风梨基地大约需要准备多少资金?(群的个数按四舍五入取整数)附:若X服从正态分布X~Nμ,σ2,则P(μ-σ<X<μ+σ)≈0.683,P(μ-2σ<X<μ+2σ)≈0.954,P(μ-3σ<X<μ+3σ)≈0.997.18.(2023·浙江·校联考模拟预测)某校有一个露天的篮球场和一个室内乒乓球馆为学生提供锻炼场所,甲、乙两位学生每天上下午都各花半小时进行体育锻炼,近50天天气不下雨的情况下,选择体育锻炼情况统计如下:上下午体育锻炼项目的情况(上午,下午)(篮球,篮球)(篮球,乒乓球)(乒乓球,篮球)(乒乓球,乒乓球)甲20天15天5天10天乙10天10天5天25天假设甲、乙选择上下午锻炼的项目相互独立,用频率估计概率.(1)分别估计一天中甲上午和下午都选择篮球的概率,以及甲上午选择篮球的条件下,下午仍旧选择篮球的概率;(2)记X 为甲、乙在一天中选择体育锻炼项目的个数,求X 的分布列和数学期望E (X );(3)假设A 表示事件“室外温度低于10度”,B 表示事件“某学生去打乒乓球”,P (A )>0,一般来说在室外温度低于10度的情况下学生去打乒乓球的概率会比室外温度不低于10度的情况下去打乒乓球的概率要大,证明:P (A |B )>P (A |B).19.(2023·广东深圳·统考二模)某校体育节组织定点投篮比赛,每位参赛选手共有3次投篮机会.统计数据显示,每位选手投篮投进与否满足:若第k 次投进的概率为p (0<p <1),当第k 次投进时,第k +1次也投进的概率保持p 不变;当第k 次没能投进时,第k +1次能投进的概率降为p2.(1)若选手甲第1次投进的概率为p (0<p <1),求选手甲至少投进一次的概率;(2)设选手乙第1次投进的概率为23,每投进1球得1分,投不进得0分,求选手乙得分X 的分布列与数学期望.20.(2023·湖北武汉·华中师大一附中校考模拟预测)2021年春节前,受疫情影响,各地鼓励外来务工人员选择就地过年.某市统计了该市4个地区的外来务工人数与就地过年人数(单位:万),得到如下表格:A 区B 区C 区D 区外来务工人数x /万3456就地过年人数y /万2.5344.5(1)请用相关系数说明y 与x 之间的关系可用线性回归模型拟合,并求y 关于x 的线性回归方程y =a +bx 和A 区的残差(2)假设该市政府对外来务工人员中选择就地过年的每人发放1000元补贴.①若该市E 区有2万名外来务工人员,根据(1)的结论估计该市政府需要给E 区就地过年的人员发放的补贴总金额;②若A 区的外来务工人员中甲、乙选择就地过年的概率分别为p ,2p -1,其中12<p <1,该市政府对甲、乙两人的补贴总金额的期望不超过1400元,求p 的取值范围.参考公式:相关系数r =ni =1x i y i -nx yn i =1x 2i -nx 2ni =1y 2i -ny2,回归方程y =a +bx 中斜率和截距的最小二乘估计公式分别为b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .21.(2023·山西运城·山西省运城中学校校考二模)甲、乙两人进行象棋比赛,赛前每人发3枚筹码.一局后负的一方,需将自己的一枚筹码给对方;若平局,双方的筹码不动,当一方无筹码时,比赛结束,另一方最终获胜.由以往两人的比赛结果可知,在一局中甲胜的概率为0.3、乙胜的概率为0.2.(1)第一局比赛后,甲的筹码个数记为X,求X的分布列和期望;(2)求四局比赛后,比赛结束的概率;(3)若P i i=0,1,⋯,6表示“在甲所得筹码为i枚时,最终甲获胜的概率”,则P0=0,P6=1.证明:P i+1-P ii=0,1,2,⋯,5为等比数列.22.(2023·湖北襄阳·襄阳四中校考三模)为倡导公益环保理念,培养学生社会实践能力,某中学开展了旧物义卖活动,所得善款将用于捐赠“圆梦困境学生”计划.活动共计50多个班级参与,1000余件物品待出售.摄影社从中选取了20件物品,用于拍照宣传,这些物品中,最引人注目的当属优秀毕业生们的笔记本,已知高三1,2,3班分别有12,13,14的同学有购买意向.假设三个班的人数比例为6:7:8.(1)现从三个班中随机抽取一位同学:(i)求该同学有购买意向的概率;(ii)如果该同学有购买意向,求此人来自2班的概率;(2)对于优秀毕业生的笔记本,设计了一种有趣的“掷骰子叫价确定购买资格”的竞买方式:统一以0元为初始叫价,通过掷骰子确定新叫价,若点数大于2,则在已叫价格基础上增加1元更新叫价,若点数小于3,则在已叫价格基础上增加2元更新叫价;重复上述过程,能叫到10元,即获得以10元为价格的购买资格,未出现叫价为10元的情况则失去购买资格,并结束叫价.若甲同学已抢先选中了其中一本笔记本,试估计其获得该笔记本购买资格的概率(精确到0.01).23.(2023·广东茂名·统考二模)春节过后,文化和旅游业逐渐复苏,有意跨省游、出境游的旅客逐渐增多.某旅游景区为吸引更多游客,计划在社交媒体平台和短视频平台同时投放宣传广告并进行线上售票,通过近。

概率与统计(选择题、填空题)—高考真题文科数学分项汇编(解析版)

概率与统计(选择题、填空题)—高考真题文科数学分项汇编(解析版)

其中恰有 2只做过测试的取法有{a,b, A},{a,b,B},{a,c, A},{a,c,B}, {b,c, A},{b,c,B},共 6种, 所以恰有 2只做过测试的概率为 6 3,故选 B.
10 5
【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用 列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度
1 【答案】 9 【解析】根据题意可得基本事件数总为66 36个.
5
点数和为 5的基本事件有1,4,4,1,2,3,3,2共
4个.
∴出现向上的点数和为
5的概率为
P
4 36
1求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.
12.【2020年高考天津】从一批零件中抽取 80个,测量其直径(单位:mm),将所得数据分为 9组:
则n 61,符合题意;若815 610n,则n 80.9,不合题意.故选 C.
7.【2019年高考全国Ⅱ卷文数】生物实验室有 5只兔子,其中只有 3只测量过某项指标,若从这 5只兔子
中随机取出 3只,则恰有 2只测量过该指标的概率为
2 A. 3
3 B. 5
3
2 C. 5
【答案】B
1 D. 5
【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式
即可求解.
【解析】设其中做过测试的 3只兔子为a,b,c,剩余的 2只为 A,B, 则从这 5只中任取 3只的所有取法有{a,b,c},{a,b, A},{a,b,B},{a,c, A},{a,c,B},{a, A,B},{b,c, A},
{b,c,B},{b, A,B},{c, A,B},共 10种.

2020高考数学(文)专项复习《概率统计》含答案解析

2020高考数学(文)专项复习《概率统计》含答案解析

概率统计统计是研究如何合理收集、整理、分析数据的学科,为人们制定决策提供依据.概率是研究随机现象规律的学科,为人们认识客观世界提供重要的思维模式和解决问题的方法. 统计一章介绍随机抽样、样本估计总体、线性回归的基本方法,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用.概率一章介绍随机现象与概率的意义、古典概型及几何概型等内容,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识.§10-1 概率(一)【知识要点】1.事件与基本事件空间:随机事件:当我们在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能发生也可能不发生的结果称为随机事件,随机事件简称为事件.基本事件与基本事件空间:在一次试验中我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描述,这样的事件称为基本事件.所有基本事件构成的集合叫做基本事件空间,常用 表示.2.频率与概率频率:在相同的条件S 下,重复n 次试验,观察某个事件A 是否出现,称n 次试验中事件A 的出现次数m 为事件A 出现的频数,称事件A 出现的比例nm 为事件A 出现的频率. 概率:一般的,在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记做P (A ).显然有0≤P (A )≤1.不可能事件的概率为0,必然事件的概率为1,随机事件的概率在(0,1)之间.3.互斥事件的概率加法公式事件的并:由事件A 或B 至少有一个发生构成的事件C 称为事件A 与B 的并,记做C =A ∪B .互斥事件:不可能同时发生的两个事件称为互斥事件.互斥事件加法公式:如果事件A 、B 互斥,则事件A ∪B 发生的概率等于这两个事件分别发生的概率和,即P (A ∪B )=P (A )+P (B ).如果A 1,A 2,…,A n 两两互斥,那么事件A 1∪A 2∪…∪A n 发生的概率,等于这n 个事件分别发生的概率和,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A ,满足P (A )=1-P (A ).概率的一般加法公式(选学):事件A 和B 同时发生构成的事件D ,称为事件A 与B 的交(积),记作D =A ∩B .在古典概型中,P (A ∪B )=P (A )+P (B )-P (A ∩B ).4.古典概型古典概型:一次试验有下面两个特征:(1)有限性,在一次试验中可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是均等的,则称这个试验为古典概型.古典概型的性质:对于古典概型,如果试验的n 个基本事件为A 1,A 2,…,A n ,则有P (A 1∪A 2∪…∪A n )=1且⋅=nA P i 1)( 概率的古典定义:在古典概型中,如果试验的基本事件总数为n (Ω ),随机事件A 包含的基本事件数为n (A),则p (A)=试验的基本事件总数包含的基本事件数事件A ,即⋅=)()()(Ωn A n A P 5.几何概型几何概型:一次试验具有这样的特征:事件A 理解为区域Ω的一个子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,这样的试验称为几何概型.几何概型的特点:(1)无限性:一次试验中可能出现的结果有无穷多个;(2)等可能性,每个基本事件发生的可能性相等.几何概型中事件A 的概率定义:ΩA A P μμ=)(,其中μ Ω 表示区域Ω 的几何度量,μ A 表示子区域A 的几何度量.随机数:就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会均等.计算机随机模拟法(蒙特卡罗方法)是利用模型来研究某种现象的性质的一种有效方法,可以节约大量的人力物力.【复习要求】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率.4.了解随机数的意义,了解几何概型的意义.【例题分析】例1 国家射击队的某队员射击一次,命中7-10环的概率如下表:求该队员射击一次,(1)射中9环或10环的概率;(2)至少命中8环的概率;(3)命中不足8环的概率.【分析】射击运动员一次射击只能命中1个环数,命中不同的环数是互斥事件,射中9环或10环的概率等于射中9环与射中10环的概率和.命中不足8环所包含的事件较多,而其对立事件为“至少命中8环”,可先求其对立事件的概率,再通过P (A )=1-P (A )求解.解:设事件“射击一次,命中k 环”为事件A k (k ∈N ,k ≤10),则事件A k 彼此互斥.(1)记“射击一次,射中9环或10环”为事件A ,则P (A )=P (A 10)+P (A 9)=0.60.(2)记“射击一次,至少命中8环”为事件B ,则P (B )=P (A 10)+P (A 9)+P (A 8)=0.78.(3)“射击一次,命中不足8环”为事件B 的对立事件,则P (B )=1-P (B )=0.22.【评析】解决概率问题时,要先分清所求事件由哪些事件组成,分析是否是互斥事件,再决定用哪个公式.当用互斥事件的概率加法公式解题时,要学会不重不漏的将事件拆为几个互斥事件,要善于用对立事件解题.例2 现有8名奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求A 1被选中的概率;(Ⅱ)求B 1和C 1不全被选中的概率.【分析】本题是一个古典概型的问题,可以直接用概率公式)()()(Ωn A n A P =求解. 解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而⋅==31186)(M P (Ⅱ)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件N 表示“B 1,C 1全被选中”这一事件, 由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成, 所以61183)(==N P ,由对立事件的概率公式得⋅=-=-=65611)(1)(N P N P 【评析】古典概型解决概率问题时,选定基本事件空间并计算其所含基本事件的个数是重要的一步.本题中选定“从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果”为基本事件空间,计算时采用列举法,也可以利用乘法计数原理计算3×3×2=18.本题第一问还可以选定“从通晓日语的3人中选出1人的可能结果”为基本事件空间,共有3个基本事件,选出A 1只有一种可能,故所求概率为⋅31例3 (1)两根相距6米的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2米的概率是______.(2)甲乙两人约定在6点到7点之间在某处会面,并约好先到者等候另一人一刻钟,过时即可离去.则两人能会面的概率是______.(3)正方体内有一个内切球,则在正方体内任取一点,这个点在球内的概率为______.【分析】这三个题都可转化为几何概率问题求解.分别转化为线段长度、图形面积、几何体体积问题求解.解:(1)本题可转化为:“在长为6m 的线段上随机取点,恰好落在2m 到4m 间的概率为多少?” 易求得⋅=31P (2)本题可转化为面积问题:即“阴影部分面积占总面积的多少?”, 解得⋅=167)(A P (3)本题可转化为体积问题:即“内切球的体积与正方体体积之比是多少?”.解得⋅=6πP 【评析】几何概型也是一种概率模型,它具有等可能性和无限性两个特点.解题的关键是要建立模型,将实际问题转化为几何概率问题.基本步骤是:把基本事件空间转化为与之对应的区域Ω;把随机事件A 转化为与之对应的区域A ;利用概率公式)()()(ΩA A P μμ=计算.常用的几何度量包括:长度、面积、体积.例4 设有关于x 的一元二次方程x 2+2ax +b 2=0.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(Ⅱ)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.【分析】本题第一问是古典概型问题,第二问由于a 、b 在实数区间选取,可以转化为几何概型问题求解.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(Ⅰ)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为⋅==43129)(A P (Ⅱ)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }. 所以所求的概率为⋅=⨯⨯-⨯=3223221232 【评析】几何概型与古典概型的每个基本事件发生的可能性是均等的,只是几何概型的基本事件有无限个,而古典概型的基本事件有有限个.在具体问题中,不能因为古典概型的基本事件的个数多而误认为是几何概型.练习10-1一、选择题1.下列随机事件的频率和概率的关系中哪个是正确的( )A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定2.从装有2个黑球2个白球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A .至少有一个白球,都是白球B .至少有一个白球,至少有一个红球C .恰有一个白球,恰有两个白球D .至少有一个白球,都是红球3.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )A .751B .752C .753D .754 二、填空题4.甲、乙二人掷同一枚骰子各一次.如果谁掷的点数大谁就取胜,则甲取胜的概率为______.5.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中概率为______.三、解答题6.已知集合A ={-4.-2,0,1,3,5},在平面直角坐标系中点M (x ,y )的坐标满足x ∈A ,y ∈A .计算:(1)点M 恰在第二象限的概率;(2)点M 不在x 轴上的概率;(3)点M 恰好落在区域⎪⎩⎪⎨⎧>>>-+0008y x y x 上的概率.§10-2 统 计【知识要点】1.随机抽样总体、个体、样本:把所考察对象的某一个数值指标的全体构成的集合看成总体,构成总体的每一个元素称为个体,从总体中抽出若干个体所组成的集合叫做样本.随机抽样:抽样时,保证每一个个体都可能被抽到,且每个个体被抽到的机会均等,满足这样条件的抽样为随机抽样.简单随机抽样:从元素个数为N 的总体中,不放回的抽取容量为n 的样本,如果每一次抽样时,总体中的各个个体有相同的可能性被抽到,这种抽样方法叫简单随机抽样.系统抽样:当总体个数很大时,可将总体分成均匀的若干部分,然后按照预先制定的规则从每一部分抽取一个个体得到所需要的样本,这种抽样的方式叫做系统抽样.分层抽样:当总体由有明显差异的几部分组成时,将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.三种抽样方法的比较常用频率分布表、频率分布直方图、频率分布折线图、茎叶图等统计图表来表示样本数据,观察样本数据的特征,从而估计总体的分布情况.频率分布(表)直方图的画法步骤:(1)计算极差(用样本数据的最大值减去最小值)(2)决定组数与组距(组数×组距=极差)(3)决定分点(4)列频率分布表(5)绘制频率分布直方图易见直方图中各个小长方形面积等于相应各组的频率,所有小长方形面积之和等于1. 频率分布折线图:连结频率分布直方图各个长方形上边的中点,就得到频率分布折线图. 总体密度曲线:随着样本容量的增加,分组的组距不断缩小,相应的频率分布折线图就会越来越接近于一条光滑曲线,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.茎叶图:茎指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少时,茎叶图表示数据的效果较好.它的突出优点是:统计图中没有原始数据的损失,所有的数据信息都可以从茎叶图中得到;茎叶图可随时记录,方便表示.3.用样本的数字特征估计总体的数字特征样本数据的平均数:如果有n 个数x 1,x 2,…,x n ,那么nx x x x n +++=Λ21叫做这n 个数的平均数.标准差:样本数据到平均数的一种平均距离,一般用s 表示,其中nx x x x x x s n 22221)()()(-++-+-=Λ.方差:标准差的平方s 2叫做方差.⋅-++-+-=n x x xx x x s Zn )()()(22212¬Λ 4.两个变量间的关系散点图:两个变量的关系可通过它们所对应的点在平面上表现出来,这些点对应的图形叫做散点图.线性相关:若两个变量的散点图中所有点看上去都在一条直线附近波动,则这两个变量可近似看成具有线性相关关系.回归直线方程:从散点图上看,如果这些点从整体上看大致分布在通过散点图中心一条直线附近,则这条直线叫做这些数据点的回归直线方程,记作yˆ=bx +a ,其中b 叫回归系数.最小二乘法:假设我们已经得到两个具有线性相关关系的变量的一组数组),(11y x ,),(22y x ,…,),(33y x ,求得,)()()(ˆ2211211x n x y x n y x x x y y x x b in i i i n i ini i in i --=---=∑∑∑∑====⋅⋅⋅ x b y a ˆˆ-=,这时离差211)(2i i bx a y n Q --==最小,所求回归直线方程是a x b y ˆˆˆ+=.这种求回归直线的方法称为最小二乘法.【复习要求】1.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.2.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.3.理解样本数据标准差的意义和作用,会计算样本数据平均数、标准差,并给出合理解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.【例题分析】例1 某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是______,若用分层抽样方法,则40岁以下年龄段应抽取______人.【分析】由已知系统抽样的组距为5,所以相邻组间的号码相差5;由饼形图可知200名职工中,50岁以上人数:40-50岁人数:40岁以下人数=2∶3∶5,总样本为40人,分层抽样抽取每层人数比例为2∶3∶5.解:37;20【评析】系统抽样的特征是等距,也就是只要在一组内选定号码,其余各组的号码随之选定,所选相邻号码的间隔为组距.分层抽样的特征是按比例抽取,也就是每一层所选人数占总选出人数的比例与每层人数占总人数的比例相等.抽样是统计分析的重要部分,最常用的抽样方法是简单随机抽样、系统抽样和分层抽样,抽样时每个个体被抽到的可能性相等.简单随机抽样常用抽签法和随机数表法.例2 对某电子元件进行寿命追踪调查,情况如下:寿命(h) [100,200) [200,300) [300,400) [400,500) [500,600)个数(个) 20 30 80 40 30(2)画出频率分布直方图;(3)估计电子元件寿命在[100,400)以内的概率;(4)估计电子元件寿命在400h以上的概率.【分析】按要求列表、绘图,并用样本的分布估计总体的分布.解:(1)频率分布表(2)(画图);(3)P=0.10+0.15+0.40=0.65;(4)P=1-0.65=0.35.寿命(h) 频数频率[100,200) 20 0.10[200,300) 30 0.15[300,400) 80 0.40[400,500) 40 0.20[500,600) 30 0.15合计200 1.00【评析】频率分布表和频率分布直方图是用统计的方法对样本数据加以概括和总结.列频数分布表时,要区分频数和频率的意义,画频率分布直方图时要注意横、纵坐标代表的意义和单位.频率分布指的是一个样本数据在各拿小范围内所占比例的大小,常用样本数据落在某个范围的频率估计总体落在这个范围的概率.频率分布直方图中众数是最高矩形中点的横坐标,中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标.例3 (海南)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①___________________________________________________________________________________________________________________________________________________;②___________________________________________________________________________________________________________________________________________________.【分析】抽样数据比较分散,很难观察数据的分布特征,通过茎叶图展现了样本数据的分布.通过茎叶图可观察出平均数、众数、中位数,数据分布的对称性等等,由于茎叶图保留了原始数据,还可计算平均数、方差、标准差.解:(可任选两个作答)(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度;(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散(或乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中);(3)甲品种棉花的纤维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm;(4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近),甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀;【评析】茎叶图是统计图表的一种,它具有统计图表的一般功能:通过样本的数据分布推断总体的分布,通过样本的数字特征估计总体的数字特征.本题中的统计结论,是指用样本的特征估计总体特征得到的结论.例4图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1、A2、…、A m(如A2表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是______.图1 图2【分析】条形图的横坐标是身高,纵坐标为每个身高区间内的人数.条形图没有提供具体的数据信息.程序框图的算法含义是统计[160,180)内学生人数,即求A 4+A 5+A 6+A 7的和.解:i <8或i ≤7.【评析】设计算法利用计算机完成数据的统计工作,是实际统计工作中经常应用的.除了可以完成计数工作外,还可排序、求最值,利用公式进行各种计算等等.将算法和统计一起考查是新课程的一个特色.例5 甲乙两位运动员在相同的条件下分别射击10次,记录各次命中环数如下: 甲:8,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,8,7(1)分别计算他们射击环数的平均数及标准差;(2)判断他们设计水平谁高,谁的射击情况更稳定?【分析】平均数、标准差分别反映了两个选手的射击水平和稳定程度,平均数越高说明选手射击水平越高,标准差越小说明选手发挥越稳定.解:(1)甲的平均数为7.1,标准差为1.758;乙的平均数为7.1,标准差为1.136;(2)从平均值上看,两人的水平相当;从标准差上看,乙的情况更稳定.【评析】平均数反映的是平均水平的高低,方差和标准差反映的是数据的离散程度.如果样本数据中每个数都增加数a ,则它的平均数也增加a ,但是它的标准差不变,因为数据的离散程度没有变化.由于方差与原始数据的单位不同,而且可能夸大了偏离程度,实际解决问题中常采用标准差.例6 假定关于某设备的使用年限x 和所支出费用y (万元),有如下的统计资料 使用年限x2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0(1)请画出上表数据的散点图;(2)根据上表数据,用最小二乘法求出线性回归方程a x by ˆˆ+=; (3)估计使用10年时,维修费用是多少?【分析】利用描点法画出散点图,用公式x by axn x yx n yx bi n i ii ni ˆˆ,ˆ2211=-=--=∑∑=⋅⋅求得回归直线方程,取x =10求得结果. 解:(1)散点图如图(2)y =0.08+1.23x (3)12.38【评析】判断两个变量有无相关关系时,散点图直观简便,这是一道应用问题,通过回归直线方程分析使用年限和维修费用的关系.例7 某工厂有工人1000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人),现用分层抽样方法(按A 类、B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).(Ⅰ)求甲、乙两工人都被抽到的概率,其中甲为A 类工人,乙为B 类工人; (Ⅱ)从A 类工人中的抽查结果和从B 类工人中的抽查结果分别如下表1和表2. 生产能力分组 [100,110) [110,120) [120,130) [130,140) [140,150)人数 48x 5 3表2生产能力分组[110,120)[120,130)[130,140)[140,150)人数6y3618(i )先确定x ,y ,再在答题纸上完成下列频率分布直方图.就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)图1 A 类工人生产能力的频率分布直方图图2 B 类工人生产能力的频率分布直方图(ii )分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).【分析】(1)相互独立事件同时发生的概率用乘法公式(2)画出直方图,从图中分析数据信息.解:(Ⅰ)甲乙被抽到的概率都是101,而且事件“甲工人被抽到”与“乙工人被抽到”相互独立,所以甲、乙两工人都被抽到的概率⋅=⨯=1001101101pA 类工人中和B 类工人中分别抽查25名和75名.(Ⅱ)(i)由4+8+x +5+3=25,得x =5;6+y +36+18=75,得y =15.频率分布直方图如下图1 A 类工人生产能力的频率分布直方图图2 B 类工人生产能力的频率分布直方图从直方图可以判断:B 类工人中个体间的差异程度更小.,123145253135255125255115258105254)ii (=⨯+⨯+⨯⋅+⨯+⨯=A x ,8.133145751813575361257515115756=⨯+⨯+⨯+⨯=B x1.1318.1331007512310025=⨯+⨯=x . A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1.【评析】本题是一道综合应用题,通过语言叙述和图表给出信息.频率分布直方图反映了数据分布的情况,数据的差异大小及数据的方差大小.练习10-3一、选择题1.(08重庆)某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( ) A .简单随机抽样法 B .抽签法 C .随机数表法 D .分层抽样法2.从容量为N 的总体中抽取容量为n 的样本,若采用系统抽样法,则抽样间隔为( ) A .nN B .n C .][nN D .1][+nN3.(08山东)下图是根据《山东统计年整2007》中的资料做成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为( )A .304.6B .303.6C .302.6D .301.6 4.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表甲的成绩乙的成绩丙的成绩环数 7 8 9 10 环数 7 8 9 10 环数 7 8 9 10 频数 55 5 5频数 6446频数 46641,2,3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ) A .s 3>s 1>s 2 B .s 2>s 1>s 3 C .s 1>s 2>s 3 D .s 2>s 3>s 1二、填空题 5.要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,将它们编号为001,002,……800,利用随机数表抽取样本,从第7行第1个数开始,依次向右,再到下一行,继续从左到右.请问选出的第七袋牛奶的标号是______. (为了便于说明,下面摘取了随机数表的第6行至第10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28。

2020高考—概率(选择+填空+答案)

2020高考—概率(选择+填空+答案)

2020年高考——概率统计1.(20全国Ⅰ文4)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为A .15B .25C .12D .452.(20全国Ⅰ文 5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+3.(20全国Ⅰ理8)25()()x x y xy ++的展开式中x 3y 3的系数为A .5B .10C .15D .204.(20全国Ⅱ文4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名B .18名C .24名D .32名5.(20全国Ⅲ文3)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为 A .0.01B .0.1C .1D .106.(20全国Ⅲ理3)在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A .14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====7.(20新高考Ⅰ3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有 A .120种B .90种C .60种D .30种8.(20新高考Ⅰ5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62%B .56%C .46%D .42%9.(20天津4)从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A .10B .18C .20D .3610.(20北京3)在5(2)x -的展开式中,2x 的系数为( ).A .5-B .5C .10-D .1011.(20全国Ⅱ理14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.12.(20全国Ⅲ理14)262()x x+的展开式中常数项是__________(用数字作答).13.(20天津11)在522()x x+的展开式中,2x 的系数是_________.14.(20天津13)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.15.(20浙江12)二项展开式23450123545(2)1x a a x a x a x a x a x ++++++=,则4a =_______,135a a a ++=________.16.(20浙江16)盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______.17.(20江苏3)已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是 ▲ . 18.(20江苏4)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 ▲ . 参考答案:1.A 2.D 3.C 4.B 5.C 6.B 7.C 8.C 9.B 10.C 11.36 12.240 13.10 14.16;2315.80,122 16.1,1317.2 18.19。

2020年高考数学(文数)解答题强化专练——概率与统计含答案

2020年高考数学(文数)解答题强化专练——概率与统计含答案

(文数)解答题强化专练——概率与统计一、解答题(本大题共10小题,共120.0分)1.党中央、国务院历来高度重视青少年的健康成长.“少年强则国强”,青少年身心健康、体魄强健、意志坚强、充满活力,是一个民族旺盛生命力的体现,是社会文明进步的标志,是国家综合实力的重要方面.全面实施《国家学生体质健康标准》,把健康素质作为评价学生全面健康发展的重要指标,是新时代的要求.《国家学生体质健康标准》有一项指标是学生体质指数(BMI),其计算公式为:,当BMI>23.5时认为“超重”,应加强锻炼以改善BMI.某高中高一、高二年级学生共2000人,人数分布如表(a).为了解这2000名学生的BMI指数情况,从中随机抽取容量为160的一个样本.性别男生女生合计年级高一年级5506501200高二年级425375800合计97510252000表()(1)为了使抽取的160个学生更具代表性,宜采取分层抽样,试给出一个合理的分层抽样方案,并确定每层应抽取出的学生人数;2160BMI值,统计出“超重”的学生人数分布如表(b).性别男生女生年级高一年级46高二年级24表(b)(i)试估计这2000名学生中“超重”的学生数;(ii)对于该校的2000名学生,应用独立性检验的知识,可分析出性别变量比年级变量与“是否超重”关联性更强.应用卡方检验,可依次得到K2的观察值k1,k2,是判断k1和k2的大小关系.(只需写出结论)2.“公平正义”是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试”作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位?某单位准备通过考试(按照高分优先录取的原则)录用300名,其中275个高薪职位和25个普薪职位.实际报名人数为2000名,考试满分为400分.考试后对部分考生考试成绩进行抽样分析,得到频率分布直方图如下:试结合此频率分布直方图估计:(1)此次考试的中位数是多少分(保留为整数)?(2)若考生甲的成绩为280分,能否被录取?若能被录取,能否获得高薪职位?(分数精确到个位,概率精确到千分位)3.纪念币是一个国家为纪念国际或本国的政治、历史,文化等方面的重大事件、杰出人物、名胜古迹、珍稀动植物、体育赛事等而发行的法定货币.我国在1984年首次发行纪念币,目前已发行了115套纪念币,这些纪念币深受邮币爱好者的喜爱与收藏.2019年发行的第115套纪念币“双遗产之泰山币”是目前为止发行的第一套异形币,因为这套纪念币的多种特质,更加受到爱好者追捧.某机构为调查我国公民对纪念币的喜爱态度,随机选了某城市某小区的50位居民调查,调查结果统计如下:喜爱不喜爱合计年龄不大于40岁24年龄大于40岁20合计2250(Ⅰ)根据已有数据,把表格数据填写完整,判断能否在犯错误的概率不超过1%的前提下认为不同年龄与纪念币的喜爱无关?(Ⅱ)已知在被调查的年龄不大于40岁的喜爱者中有5名男性,其中3位是学生,现从这5名男性中随机抽取2人,求至多有1位学生的概率.附:,n=a+b+c+d.P(K2≥k)0.1000.0500.0250.010k 2.706 3.841 5.024 6.6354.某市一水电站的年发电量y(单位:亿千瓦时)与该市的年降雨量x(单位:毫米)有如下统计数据:2013年2014年2015年2016年2017年降雨量x (毫米) 1 500 1 400 1 900 1 600 2 100发电量y (亿千瓦7.4 7.0 9.2 7.9 10.0时)(1)若从统计的5年中任取2年,求这2年的发电量都高于7.5 亿千瓦时的概率;(2)由表中数据求得线性回归方程为=0.004x+,该水电站计划2019年的发电量不低于8.6 亿千瓦时,现由气象部门获悉2019年的降雨量约为1 800 毫米,请你预测2019年能否完成发电任务?5.2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X(单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数和中位数a(a的值精确到0.01);(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为[6.5,7,5),[7.5,8.5)的学生中抽取9名参加座谈会.(i)你认为9个名额应该怎么分配?并说明理由;(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有95%的把握认为学生阅读时间不足(每周阅读时8.5阅读时间不足8.5小时阅读时间超过8.5小时理工类专业4060非理工类专业附:.临界值表:P(K2≥k0)0.150.100.050.0250.0100.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.8286.2017年3月郑州市被国务院确定为全国46个生活垃圾分类处理试点城市之一,此后由郑州市城市管理局起草公开征求意见,经专家论证,多次组织修改完善,数易其稿,最终形成《郑州市城市生活垃圾分类管理办法》(以下简称《办法》).《办法》已于2019年9月26日被郑州市人民政府第35次常务会议审议通过,并于2019年12月1日开始施行.《办法》中将郑州市生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾4类为了获悉高中学生对垃圾分类的了解情况,某中学设计了一份调查问卷,500名学生参加测试,从中随机抽取了100名学生问卷,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如图频率分布直方图:(Ⅰ)从总体的500名学生中随机抽取一人,估计其分数不低于60的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的学生人数;(Ⅲ)学校环保志愿者协会决定组织同学们利用课余时间分批参加“垃圾分类,我在实践”活动,以增强学生的环保意识.首次活动从样本中问卷成绩低于40分的学生中随机抽取2人参加,已知样本中分数小于40的5名学生中,男生3人,女生2人,求抽取的2人中男女同学各1人的概率是多少?7.某汽车公司生产新能源汽车,2019年3-9月份销售量(单位:万辆)数据如表所示:月份x3456789销售量y(万辆) 3.008 2.401 2.189 2.656 1.665 1.672 1.368(1)某企业响应国家号召,购买了6辆该公司生产的新能源汽车,其中四月份生产的4辆,五月份生产的2辆,6辆汽车随机地分配给A,B两个部门使用,其中A 部门用车4辆,B部门用车2辆.现了解该汽车公司今年四月份生产的所有新能源汽车均存在安全隐患,需要召回.求该企业B部门2辆车中至多有1辆车被召回的概率;(2)经分析可知,上述数据近似分布在一条直线附近.设y关于x的线性回归方程为,根据表中数据可计算出,试求出的值,并估计该厂10月份的销售量.8.某商家在某一天统计前5名顾客扫微信红包所得金额分别为5.9元,5.7元,4.7元,3.3元,2.1元,商家从这5名顾客中随机抽取3人赠送礼品.(Ⅰ)求获得礼品的3人中恰好有2人的红包超过5元的概率;(Ⅱ)商家统计一周内每天使用微信支付的人数x与每天的净利润y(单位:元),得到如表:x12162225262930y60100210240150270330根据表中数据用最小二乘法求y与x的回归方程=(,的计算结果精确到小数点后第二位)并估计使用微信支付的人数增加到36人时,商家当天的净利润为多少(计算结果精确到小数点后第二位)?参考数据及公式:①=22.86,=194.29;=268.86;=3484.29,②回归方程:=(其中=,=-)9.某医学院欲研究昼夜温差大小与患感冒人数多少之间的关系,该院派出研究小组分别到气象局与某医院,抄录了1到6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到数据资料见表:月份123456昼夜温差(℃)1011131286就诊人数(个)232630271713该研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻的两个月的概率;(2)已知选取的是1月与6月的两组数据.(i)请根据2到5月份的数据,求就诊人数y关于昼夜温差x的线性回归方程:(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该研究小组所得的线性回归方程是否理想?(参考公式==,=-)10.某学校有40名高中生参加足球特长生初选,第一轮测身高和体重,第二轮足球基础知识问答,测试员把成绩(单位:分)分组如下:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100),得到频率分布直方图如图所示.(1)根据频率分布直方图估计成绩的平均值(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从成绩在第3,4,5组的高中生中6名组成一个小组,若6人中随2人担任小组负责人,求这2人来自3,4组各1人的概率.答案和解析1.【答案】解:(1)考虑到BMI应与年龄或性别均有关,最合理的分层应为以下四层:高一男生、高一女生、高二男生、高二女生;则高一男生抽取×160=44(人),高一女生抽取×160=52(人),高二男生抽取×160=34(人),高二女生抽取×160=30(人);(2)(i)160人中,“超重”人数为4+6+2+4=16(人),“超重”发生的频率为0.1,用样本的频率估计总体的频率,估计这2000名学生中“超重”的学生数为2000×0.1=200(人);(ii)应用独立性检验的知识,分析出性别变量与年级变量哪一个与“是否超重”的关联性更强,得出K2的观察值k1,k2,则k1和k2的大小关系为k1>k2.【解析】(1)考虑到BMI与年龄或性别均有关,最合理的分层为高一男生、女生,高二男生、女生;分别求出每层所抽取的人数即可;(2)(i)计算样本中“超重”的人数和频率,用样本的频率估计总体的频率,计算即可;(ii)应用独立性检验的知识分析出性别变量与年级变量哪一个与“是否超重”的关联性更强,得出K2的观察值k1应大于k2.本题考查了分层抽样原理与独立性检验的问题,也考查了用样本估计总体的问题,是基础题.2.【答案】解:(1)设(0.002+0.0029+x)×100=0.5,解得:x=0.0001.∴可得其中位数为:200+×(300-200)≈202.(2)300~400分的人数为:0.001×100×2000=200.280~300分的人数为:0.0041×100×2000×=164.而164+200>300.∴考生甲的成绩为280分,不能被录取.【解析】(1)设(0.002+0.0029+x)×100=0.5,解得:x.可得其中位数.(2)300~400分的人数为:0.001×100×2000=200.280~300分的人数为:0.0041×100×2000×=164.进而判断出结论.本题考查了频率分布直方图的性质及其应用,考查了推理能力与计算能力,属于中档题.喜爱不喜爱合计年龄不大于40岁a b24年龄大于40岁20c d 合计e225024+d=50,则d=26,a+20=e=28,则a=8,a+b=24,则b=16,b+c=22,则c=6;故列联表为:喜爱不喜爱合计年龄不大于40岁81624年龄大于40岁20626合计282250则有≈9.623>6.635.故能在犯错误的概率不超过1%的条件下认为不同年龄与纪念币的喜爱无关.(2)根据题意,记不大于40岁的5位喜爱者中的3位学生记为a,b,c,非学生记为A,B,则从5人中任取2人,共有(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B)10种结果.其中至多有1位学生的有7种,∴至多有1位学生的概率.【解析】(1)根据题意,由列联表的结构分析可得其他数据,即可完善列联表,进而计算K2的值,据此分析可得答案;(2)根据题意,记不大于40岁的5位喜爱者中的3位学生记为a,b,c,非学生记为A,B;由列举法分析“从这5名男性中随机抽取2人”和“至多有1位学生”的情况数目,由古典概型公式计算可得答案.本题考查独立性检验的应用,涉及古典概型的计算,属于基础题.4.【答案】解:(1)从统计的5年发电量中任取2年,基本事件为:(7.4,7.0},{7.4,9.2},{7.4,7.9},{7.4,10.0},{7.0,9.2},{7.0,7.9},{7.0,10.0},{9.2,7.9},{9.2,10.0},{7.9,10.0},共10个;其中这2年的发电量都高于7.5亿千瓦时的基本事件为:{9.2,7.9},{9.2,10.0},{7.9,10.0},共3个.所以这2年的发电量都高于7.5亿千瓦时的概率为.(2)因为.,又直线过点,所以,解得,所以.当x=1800时,.所以预测该水电站2019年能完成发电任务.【解析】本题考查回归直线方程,概率中的基本事件,属于中档题.(1)确定从统计的5年发电量中任取2年的基本事件、2年发电量都低于8.0(亿千瓦时)的基本事件,即可求出这2年的发电量都低于8.0(亿千瓦时)的概率;(2)先求出线性回归方程,再令x=1800,即可得出结论.5.【答案】解:(1)该组数据的平均数因为0.03+0.1+0.2+0.35=0.68>0.5,所以中位数a∈[8.5,9.5),由0.03+0.1+0.2+(a-8.5)×0.35=0.5,解得;(2)(i)每周阅读时间为[6,5,7.5)的学生中抽取3名,每周阅读时间为[7.5,8.5)的学生中抽取6名.理由:每周阅读时间为[6,5,7.5)与每周阅读时间为[7.5,8.5)是差异明显的两层,为保持样本结构与总体结构的一致性,提高样本的代表性,宜采用分层抽样的方法抽取样本;因为两者频率分别为0.1,0.2,所以按照1:2进行名额分配.(ii)由频率分布直方图可知,阅读时间不足8.5小时的学生共有200×(0.03+0.1+0.2)=66人,超过8.5小时的共有200-66=134人.于是列联表为:阅读时间不足8.5小时阅读时间超过8.5小时理工类专业4060非理工类专业2674K2的观测值,所以有95%的把握认为学生阅读时间不足与“是否理工类专业”有关.【解析】本题主要考查独立性检验的应用,根据数据计算出K2的观测值是解决本题的关键.考查学生的计算能力.(1)根据平均数,中位数的定义进行求解即可,(2)完成列联表,计算K2的观测值,结合独立性检验的性质进行判断即可.6.【答案】解:(Ⅰ)根据频率分布直方图可知,样本中分数高于60的频率为:(0.02+0.04+0.02)×10=0.8,所以样本中分数高于60的概率为0.8.故从总体的500名学生中随机抽取一人,其分数高于60的概率估计为0.8.(Ⅱ)根据题意,样本中分数不小于50的频率为:(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5,所以总体中分数在区间[40,50)内的人数估计为500×=25,(Ⅲ)设3名男生分别为A,B,C,2名女生分别为1,2,则从这5名同学中选取2人的结果为:{A,B},{A,C},{A,1},{A,2},{B,C},{B,1},{B,2},{C,1},{C,2},{1,2}共10种情况.其中2人中男女同学各1人包含结果为:{A,1},{A,2},{B,1},{B,2},{C,1},{C,2},共6种,设事件A={抽取的2人中男女同学各1人},则P(A)=,所以,抽取的2人中男女同学各1人的概率是.【解析】(1)由直方图求出分数高于60的频率,计算出分数高于60的概率,(2)先计算出分数不小于50的频率,再算出分数在区间[40,50)内的人数,再估算出总体中分数在区间[40,50)内的人数.(3)先计算出从这5名同学中选取2人的事件,再算出抽取的2人中男女同学各1人的事件,再求抽取的2人中男女同学各1人的概率.本题考查频率直方图,通过频率估算整体,以及求频率,属于基础题.7.【答案】解:(1)设某企业购买的6辆新能源汽车,4月份生产的4辆车为C1,C2,C3,C4;5月份生产的2辆车为D1,D2,6辆汽车随机地分配给A,B两个部门.B部门2辆车可能为(C1,C2),(C1,C3),(C1,C4),(C1,D1),(C1,D2),(C2,C3),(C2,C4),(C2,D1),(C2,D2),(C3,C4),(C3,D1),(C3,D2),(C4,D1,(C4,D2),(D1,D2)共15种情况;其中,至多有1辆车是四月份生产的情况有:(C1,D1),(C1,D2),(C2,D1),(C2,D2),(C3,D1),(C3,D2),(C4,D1),(C4,D2),(D1,D2)共9种,所以该企业B部门2辆车中至多有1辆车被召回的概率为;(2)由题意得,.因为线性回归方程过样本中心点,所以,解得.当x=10时,,即该厂10月份销售量估计为1.151万辆.【解析】(1)用列举法,求出个数,根据概率公式求出即可;(2)求出线性回归方程过样本中心点,代入求出a,再代入x=10即可.考查古典概型求概率,线性回归方程的性质及其应用,中档题.8.【答案】解:(Ⅰ)记“5名顾客扫微信红包所得金额超过5元的2人”为A1,A2,“不超过5元的3人”为B1,B2,B3,“获得礼品的3人中恰好有2人的红包超过5元”为事件M,则所有的基本事件有:A1A2B1,A1A2B2,A1A2B3,A1B1B2,A1B1B3,A1B2B3,A2B1B2,A2B1B3,A2B2B3,B1B2B3共10种,其中事件M包含的基本事件有共3种,为A1A2B1,A1A2B2,A1A2B3,∴P(M)=;(Ⅱ)∵==,∴=-=194.29-12.9622.86=-101.98.∴y与x的回归方程为=12.96x-101.98,当x=36时,.故估计使用微信支付的人数增加到36人时,商家当天的净利润约为364.58元.【解析】(Ⅰ)利用古典概型的概率公式求获得礼品的3人中恰好有2人的红包超过5元的概率;(Ⅱ)利用最小二乘法求y与x的回归方程为=12.96x-101.98,把x=36代入方程,即可得解.本题考查古典概型的概率的计算,考查线性回归方程的求法,考查利用回归方程进行预测,意在考查学生对这些知识的理解掌握水平和分析推理计算能力,是中档题.9.【答案】解:(1)设选取的2组数据恰好是相邻两个月为事件A,因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的,其中选取的2组数据恰好是相邻两个月的情况有5种,所以P(A)=,(2)=(11+13+12+8)=11,=(26+30+27+17)=25,===,=-=25-=,得到y关于x的回归直线方程为y=(2)当x=10时,y=同样,当x=6时,y=,估计数据与所选出的检验数据的误差均不超过2人,∴该小组所得线性回归方程是理想的.【解析】(1)本题是一个古典概型,试验发生包含的事件是从6组数据中选取2组数据共有15种情况,满足条件的事件是抽到相邻两个月的数据的情况有5种,根据古典概型的概率公式得到结果.(2)根据所给的数据,求出x,y的平均数,根据求线性回归方程系数的方法,求出系数a,b,写出线性回归方程;(3)将x的值代入回归方程检验即可.考查古典概型求概率,求线性回归方程和应用,考查运算能力,中档题.10.【答案】解:(1)因为(0.01+0.07+0.06+x+0.02)×5=1,所以x=0.04,所以成绩的平均值为+0.10×=87.25;(2)第3组学生人数为0.06×5×40=12,第4 组学生人数为0.04×5×40=8,第5组学生人数为0.02×5×40=4,所以抽取的6人中第3,4,5组的人数分别为3,2,1.第3组的3人分别记为A1,A2,A3,第4 组的2人分别记为B1,B2,第5 组的1 人记为C,则从中选出2人的基本事件为共15个,记“从这6人中随机选出2人担任小组负责人,这2人来自第3,4组各1人”为事件M,则事件M包含的基本事件为(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),共6个,所以P(M)=.【解析】(1)根据频率分布直方图求出x的值,再利用同一组中的数据用该组区间的中点值作代表估计平均数即可;(2)先求出抽取的6人中第3,4,5组的人数,再利用古典概型的概率公式求解即可.本题考查由频数分布直方图,以及古典概型,属于基础题.。

高考文科数学(2卷):答案详细解析(最新)

高考文科数学(2卷):答案详细解析(最新)

2020年普通高等学校招生全国统一考试文科数学(II 卷)答案详解一、选择题1.(集合)已知集合A ={}3,x x x Z <∈,B ={}1,x x x Z >∈,则A B =A.∅B.{}3,2,2,3-- C.{}2,0,2- D.{}2,2-【解析】∵{}2,1,0,1,2A x =--,∴{2,2}A B =- .【答案】D2.(复数)41i -=()A.-4 B.4C.-4iD.4i【解析】[]224221(1)244i i i i ⎡⎤=-=-=-⎣⎦-=().【答案】A3.(概率统计)如图,将钢琴上的12个键依次记为1a ,2a ,…,12a .设112i j k ≤<<≤.若3k j -=且4j i -=,则称i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.15【解析】原位大三和弦:1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===;共5个.原位小三和弦:1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===;共5个.总计10个.【答案】C4.(概率统计)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。

志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名【解析】该超市某日积压500份订单未配货,次日新订单不超过1600份的概率为0.95,共2100份,其中1200份不需要志愿者,志愿者只需负责900份,故需要900÷50=18名志愿者.【答案】B5.(平面向量)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A.2a b+ B.2a b+ C.2a b- D.2a b -【解析】解法一(待定系数法):设()ma nb b +⊥,则有21()02ma nb b ma b nb m n +⋅=⋅+=+=,即2m n =-,故选D.解法二:2o(2)2211cos6010a b b a b b -⋅=⋅-=⨯⨯⨯-= ,故选D.特殊法:如图A5所示,画单位圆,作出四个选项的向量,只有2a b -与b 垂直.图A5【答案】D6.(数列)记n S 为等比数列{n a }的前n 项和.若5a -3a =12,6a -4a =24,则nnS a =A .21n -B .122n-- C.122n --D .121n --【解析】设{}n a 的公比为q ,∵6453()1224a a a a q q -=-==,∴2q =,∵22253311(1)(1)1212a a a q a q q a -=-=-==,∴11a =,∴111111(1)2111=22222n n n n n n n n a q S q a a q -------==-=-.【答案】B7.(算法框图)执行右面的程序框图,若输入的k =0,a =0,则输出的k 为A.2B.3C.4D.5【解析】①输入00k a ==,,得211a a =+=,11k k =+=,10a >否,继续;②输入11k a ==,,得213a a =+=,12k k =+=,10a >否,继续;③输入23k a ==,,得217a a =+=,13k k =+=,10a >否,继续;④输入37k a ==,,得2115a a =+=,14k k =+=,10a >是,程序退出循环,此时4k =.【答案】C8.(解析几何)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A.5B.5C.5D.5【解析】如图A8所示,设圆的方程为222()()x a y b r -+-=,∵圆过点(2,1)且与两坐标轴都相切,∴222(2)(1)a b r a b r ==⎧⎨-+-=⎩,解得1a b r ===或5a b r ===,即圆心坐标为(1,1)或(5,5),圆心到直线230x y --=5或=5.图A8【答案】B9.(解析几何)设O 为坐标原点,直线x a =与双曲线C :22221x y a b-=(a >0,b >0)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为A .4B .8C .16D .32【解析】如图A9所示,双曲线C :22221x y a b-=(a >0,b >0)的渐近线为b y x a =±,由题意可知,(,)D a b ,(,)E a b -,∴1282ODE S a b ab ∆=⋅==,∴焦距2248c ==≥⨯=,当且仅当a =等号成立.故C 的焦距的最小值为8.图A9【答案】B10.(函数)设函数331()f x x x =-,则()f x A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【解析】∵333311()()()()f x x x f x x x-=--=-+=--,∴()f x 是奇函数,243()3f x x x'=+,当x >0,()0f x '>,∴()f x 在(0,+∞)单调递减.【答案】A11.(立体几何)已知△ABC 是面积为4的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为A B .32C .1D .32【解析】由题意可知244ABC S AB ∆==,∴3AB =,如图A11所示,设球O 的半径为R ,则24π16πR =,∴2R =,设O 在△ABC 上的射影为O 1,则O 1是△ABC 的外接圆的圆心,故1232O A =⨯=,∴O 到平面ABC 的距离11OO ==.图A11【答案】C12.(函数)若2233x y x y ---<-,则A.ln(1)0y x -+> B.ln(1)0y x -+<C.ln ||0x y -> D.ln ||0x y -<【解析】2233xyxy---<-可化为2323xxyy---<-,设1()2323xxxxf x -⎛⎫=-=- ⎪⎝⎭,由指数函数的性质易知()f x 在R 上单调递增,∵2323x x y y ---<-,∴x y <,∴0y x ->,∴11y x -+>,∴In(1)0y x -+>.【答案】A二、填空题:本题共4小题,每小题5分,共20分。

专题09 概率统计(解析版)

专题09 概率统计(解析版)

高三数学百所名校好题分项解析汇编之衡水中学专版(2020版)专题09 概率统计一、选择题1.【2020届河北省衡水中学高三上学期五调考试】现有四名高三学生准备高考后到长三角城市群(包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”)旅游,假设每名学生均从上海市、江苏省、浙江省、安徽省这四个地方中随机选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.716【答案】B【解析】四名学生从四个地方任选一个共有4444256⨯⨯⨯=种选法,恰有一个地方未被选中,即有两位学生选了同一个地方,另外两名学生各去一个地方,考虑先分堆在排序共有23446432144C A⨯=⨯⨯⨯=种,所以恰有一个地方未被选中的概率为1449 25616=.故选:B2.【河北省衡水中学2018届高三毕业班模拟演练一】如图的折线图是某公司2017年1月至12月份的收入与支出数据.若从这12个月份中任意选3个月的数据进行分析,则这3个月中至少有一个月利润(利润=收入-支出)不低于40万的概率为()A.B.C.D.【答案】D【解析】由图知,7月,8月,11月的利润不低于40万元,故所求概率为,故选D.3.【河北衡水金卷2019届高三12月第三次联合质量测评数学(理)试题】如图所示,分别以正方形ABCD两邻边AB、AD为直径向正方形内做两个半圆,交于点O.若向正方形内投掷一颗质地均匀的小球(小球落到每点的可能性均相同),则该球落在阴影部分的概率为A.B.C.D.【答案】C【解析】法一:设正方形的边长为2.则这两个半圆的并集所在区域的面积为,所以该质点落入这两个半圆的并集所在区城内的概率为.故选C.法二:设正方形的边长为2.过O作OF垂直于AB,OE垂直于AD.则这两个半圆的并集所在区域的面积为,所以该质点落入这两个半圆的并集所在区域的概率为,故选C.4. 【河北省衡水中学2018—2019学年高三年级上学期四调考试数学(理)试题】如图,一只蚂蚁从点出发沿着水平面的线条爬行到点,再由点沿着置于水平面的长方体的棱爬行至顶点,则它可以爬行的不同的最短路径有()条A.40 B.60 C.80 D.120【答案】B【解析】试题分析:蚂蚁从到需要走五段路,其中三纵二竖,共有条路径,从到共有条路径,根据分步计数乘法原理可知,蚂蚁从到可以爬行的不同的最短路径有条,故选B.5. 【河北省衡水中学2018—2019学年高三年级上学期四调考试数学(理)试题】某县教育局招聘了8名小学教师,其中3名语文教师,3名数学教师,2名全科教师,需要分配到两个学校任教,其中每个学校都需要2名语文教师和2名数学教师,则分配方案种数为( ) A .72 B .56 C .57 D .63 【答案】A【解析】先将两个全科老师分给语文和数学各一个,有种,然后将新的4个语文老师分给两个学校种,同样的方法将新的4个数学老师分给两个学校种,所以共有=72种分配方法。

2020年高考文科数学(1卷):答案详细解析(最新)

2020年高考文科数学(1卷):答案详细解析(最新)

打开导航窗口(书签),可以直接找到各个题目.
第 8 页 共 27 页
2020 年高考文科数学(全国 1 卷)答案详解及试题
(一)必考题:共 60 分
17.(12 分)(概率统计)
某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为 A,B,C,
D 四个等级,加工业务约定:对于 A 级品、B 级品、C 级品,厂家每件分别收取
第 6 页 共 27 页
2020 年高考文科数学(全国 1 卷)答案详解及试题
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。 2x y 2 0
13(. 线性规划)若 x,y 满足约束条件 x y 1 0 ,则 z=x+7y 的最大值为_____. y 1 0
【解析】由约束条件,作出可行域如图 A13 所示.
【答案】 y 2x
16. (数列)数列an 满足 an2 1n an 3n 1 ,前 16 项和为 540,则 a1 =____.
打开导航窗口(书签),可以直接找到各个题目.
第 7 页 共 27 页
2020 年高考文科数学(全国 1 卷)答案详解及试题
【解析】当 n 为偶数时,有 an2 an 3n 1,故
A. 1 16
B. 1 9
C. 1 8
D. 1 6
【解析】∵ a log3
4 log3 4a
2 ,∴ 4a
32
9 ,∴ 4a
1 4a
1. 9
【答案】B
9.(算法框图)执行右面的程序框图,则输出的 n
A. 17
B. 19
C. 21
D. 23
打开导航窗口(书签),可以直接找到各个题目.
第 4 页 共 27 页

(完整版)2020年高考文科数学《概率与统计》题型归纳与训练,推荐文档

(完整版)2020年高考文科数学《概率与统计》题型归纳与训练,推荐文档

1 52 5258 259 2020 年高考文科数学《概率与统计》题型归纳与训练【题型归纳】 题型一 古典概型 例 1从甲、乙等5 名学生中随机选出2 人,则甲被选中的概率为().A.B.C.D.【答案】 【解析】 法有:可设这 5 名学生分别是甲、乙、丙、丁、戊,从中随机选出 2 人的方(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊), (丙,丁),(丙,戊),(丁,戊),共有10 种选法,其中只有前 4 种是甲被选中,所以所求概率为 42.故选 B.10 5例 2 将 2 本不同的数学书和 1 本语文书在书架上随机排成一行,则 2 本数学书相邻的概率为 .【答案】 【解析】根据题意显然这是一个古典概型,其基本事件有:数 1,数 2,语; 数 1,语,数 2;数 2,数 1,语; 数 2,语,数 1;语,数 2,数 1; 语,数 1,数 2 共B2314π 81 2⎧⎪∆ = 4 p 2 - 4(3 p - 2) ≥ 0⎨ x + x = -2 p < 0 1 2 ⎩ ⎪ x x= 3 p - 2 > 0 1 2有 6 种,其中 2 本数学书相邻的有 4 种,则其概率为:.【易错点】列举不全面或重复,就是不准确 【思维点拨】直接列举,找出符合要求的事件个数. 题型二 几何概型 例 1如图所示,正方形ABCD 内的图形来自中国古代的太极 AD图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概BC率是( ).A.B.C.D.【答案】【解析】不妨设正方形边长为a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为.故选 B.例 2 在区间[0, 5] 上随机地选择一个数的概率为.,则方程 x 2 +2 px +3 p - 2 = 0 有两个负根【答案】【解析】方程 x 2+2 px +3 p - 2 = 0 有两个负根的充要条件是 即Bπ 4p 23p = 4 = 6 2 31 ⎛ a ⎫2 ⨯⨯ ⎪2⎝ 2 ⎭ = 8a 2400或 p ≥ 2 ,又因为 p ∈[0, 5] ,所以使方程 x 2 +2 px +3 p - 2 = 0 有两个负根的 p【易错点】“有两个负根”这个条件不会转化.【思维点拨】“有两个负根”转化为函数图像与 x 轴负半轴有两个交点.从而得到参数 p 的范围.在利用几何概型的计算公式计算即可. 题型三 抽样与样本数据特征 例 1某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200 ,, 300 ,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60 件进行检验,则应从丙种型号的产品中抽取件.【答案】18【解析】按照分层抽样的概念应从丙种型号的产品中抽取300 ⨯ 60 1000= 18 (件).例 2已知样本数据x 1 , x 2 , ⋅⋅⋅ , x n 的均值 x = 5 ,则样本数据2x 1 +1 , 2x 2 +1 , ⋅⋅⋅ , 2x n +1 的均值为 .【答案】11 【解析】因为样本数据x 1 , x 2 , ⋅⋅⋅ , x n 的均值x = 5 ,又样本数据2x 1 +1 ,2x 2 +1, ⋅⋅⋅ , 2x n +1的和为2(x 1 + x 2 + + x n )+ n ,所以样本数据的均值为2x +1 =11.例 3 某电子商务公司对10000 名网络购物者 2018 年度的消费情况进行统计,3 2.发现消费金额(单位:万元)都在区间[0.3,0.9] 内,其频率分布直方图如图所示. (1)直方图中的a = .(2)在这些购物者中,消费金额在区间[0.5,0.9] 内的购物者的人数为.a/万万【答案】a = 3 人数为0.6 ⨯10000 = 6000【解析】由频率分布直方图及频率和等于1,可得0.2 ⨯ 0.1+ 0.8⨯ 0.1+1.5⨯ 0.1+ 2 ⨯ 0.1+ 2.5⨯ 0.1+a ⨯ 0.1 = 1 ,解之得a = 3 .于是消费金额在区间[0.5,0.9]内频率为0.2 ⨯0.1+ 0.8⨯0.1+ 2 ⨯0.1+ 3⨯0.1 = 0.6 ,所以消费金额在区间[0.5,0.9]内的购物者的人数为0.6⨯10000=6000.例4 某城市100户居民的月平均用电量(单位:度),以[160,180),[180, 200),[200, 220),[220, 240),[240, 260),[260, 280),[280, 300]分组的频率分布直方图如图所示.2220 + 240 = 230得 x = 0.0075 .又(0.002 + 0.0095 + 0.011+ 0.0125)⨯ 20 = 0.7 > 0.5 ,160 180 200 220 240 260 280 300 万万万万万万/万(1) 求直方图中 x 的值;(2) 求月平均用电量的众数和中位数;(3)在月平均用电量为[220, 240), [240, 260), [260, 280), [280, 300]的四组用户中, 用分层抽样的方法抽取11户居民,则从月平均用电量在[220, 240)的用户中应抽 取多少户?【答案】见解析【解析】(1)由(0.002 + 0.0095 + 0.011+ 0.0125 + x + 0.005 + 0.0025)⨯ 20 = 1 ,(2)由图可知,月平均用电量的众数是.因为(0.002 + 0.0095 + 0.011)⨯ 20 = 0.45 < 0.5 ,所以月平均用电量的中位数在[220, 240)内.设中位数为a ,由(0.002 +0.0095 +0.011)⨯20 +0.0125⨯(a -220)=0.5 ,得a = 224 ,所以月平均用电量的中位数是224 .(3)月平均用电量为[220,240)的用户有0.0125⨯ 20 ⨯100 = 25 (户);月平均用电量为[240,260)的用户有0.0075⨯20⨯100=15(户);月平均用电量为[260,280)的用户有0.005⨯20⨯100=10(户);月平均用电量为[280, 300]的用户有0.0025⨯ 20 ⨯100 = 5 (户).所以从月平均用电量在[220,240)的用户中应抽取25⨯1 = 5 (户).5【易错点】没有读懂题意,计算错误.不会用函数思想处理问题【思维点拨】根据题意分情况写出函数解析式;2 牵涉到策略问题,一般可以转化为比较两个指标的大小.题型四回归与分析例1 下图是我国2008 年至2014 年生活垃圾无害化处理量(单位:亿吨)的折线图∑ i =1nn(t - t ) (y - y)2 ∑ 2i ii =1∑ i =17( y - y )2i nn万万 1.80 万万 1.60 万万万 1.40 万万 1.20 万万1.00y0.80234567年份代码t(1) 由折线图看出,可用线性回归模型拟合 y 与t 的关系,请用相关系数加以说明(2) 建立 y 关于t 的回归方程(系数精确到0.01 ),预测2016 年我国生活垃圾无害化处理量.参考数据: 7 y = 9.32 , 7 t y = 40.17 ,= 0.55 , ≈ 2.646 .∑ii =1∑i ii =1n∑(t i - t )( y i - y )参考公式:相关系数r =i =1回归方程 y = a+ b t 中斜率和截距的最小二乘估计公式分别为:∑(t i - t )( y i - y )b= i =1 a = y - bt .∑(ti- t )2i =1【答案】见解析72【解析】(1)由折线图中数据和附注中参考数据得t = 4 , ∑(t i - t ) = 28 ,i =1 7∑ i =17 7(t - t ) ⋅ ( y - y )2∑ 2iii =1 ∑ i =17 (t - t ) 2ii =1 ∑ i =17( y - y )2i7 ∑ 7(t - t ) 2 i i =1i= 0.55 ,∑7(t - t )(y - y )= ∑7t y - t ∑7y = 40.17 - 4 ⨯ 9.32 = 2.89 ≈2.89≈ . , r0.99 i ii ii0.55⨯ 2 ⨯ 2.646i =1i =1i =1因为 y 与t 的相关系数近似为0.99 ,说明 y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合 y 与t 的关系.7777 ∑(t i - t )( y i - y )7∑t i y i - ∑t i ⋅∑ y i(1)变量 y 与t 的相关系数r =i =1=i =1i =1,7 ⨯⋅777又∑t i = 28 , ∑ y i = 9.32 , ∑t i y i = 40.17 2= 5.292 ,i =1i =1i =1= 0.55 ,所以r = 7 ⨯ 40.17 - 28⨯ 9.32 ≈ 0.997 ⨯ 5.292 ⨯ 0.55,故可用线性回归模型拟合变量 y 与t 的关系.t y - 7t ⋅ y117∑7i i40.17 - 7 ⨯ 4 ⨯ 7 ⨯ 9.32(2) t = 4 , y =∑y ,所以b ˆ= i =1 == 0.10 ,7 i =1 i∑7 i =1t 2 -7t 2 28a ˆ = y -b ˆx = 1⨯ 9.32 - 0.10 ⨯ 4 ≈ 0.93 ,所以线性回归方程为 y ˆ = 0.1t + 0.93 .7当t = 9 时, y ˆ= 0.1⨯ 9 + 0.93 = 1.83 .因此,我们可以预测 2016 年我国生活垃圾无害化处理1.83 亿吨.【易错点】没有读懂题意,计算错误.∑(72y - y i) i =1∑ i =17( y - y )2i【思维点拨】将题目的已知条件分析透彻,利用好题目中给的公式与数据.题型五独立性检验例1 甲、乙、丙、丁四位同学各自对A、B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:则哪位同学的试验结果体现A、B 两变量更强的线性相关性?( ) A.甲B.乙C.丙D.丁【答案】D【解析】D 因为r>0 且丁最接近1,残差平方和最小,所以丁相关性最高【易错点】不理解相关系数和残差平方和与相关性的关系【思维点拨】相关系数r 的绝对值越趋向于1,相关性越强.残差平方和m 越小相关性越强【巩固训练】题型一古典概型151 141 1211. 将一颗质地均匀的骰子(一种各个面上分别标有1,2, 3, 4,5, 6 个点的正方体玩具)先后抛掷2 次,则出现向上的点数之和小于10 的概率是 .【答案】 56【解析】将先后两次点数记为(x , y ),则基本事件共有6 ⨯ 6 = 36 (个), 其中点数之和大于等于10有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6 种, 则点数之和小于10 共有30 种,所以概率为30 = 5. 36 62. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 = 7 + 23 .在不超过30 的素数中,随机选取两个不同的数,其和等于 30 的概率是( ).A.B .C .D .【答案】C【解析】不超过 30 的素数有 2、3、5、7、11、13、17、19、23、29,共 10 个, 随机选取两数有45 (种)情况,其中两数相加和为 30 的有 7 和 23,11 和19,13 和 17,共 3 故选C .3. 袋中有形状、大小都相同的 4 只球,其中1 只白球,1 只红球, 2 只黄球,从中一次随机摸出【答案】 只球,则这 2 只球颜色不同的概率为 .【解析】1 只白球设为 a ,1 只红球设为 b , 2 只黄球设c 为 , d ,2 P = 56181则摸球的所有情况为(a,b),(a, c),(a, d ),(b,c),(b,d ),(c, d ),共6 件,满足题意的事件为(a,b),(a, c),(a, d ),(b,c),(b,d ),共5.题型二几何概型1.某公司的班车在7:00,8:00,8:30 发车,学.小明在7:50 至8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是().A.F(1) 13B. 12F(1)C.F(2) 23D. 34【答案】B【解析】如图所示,画出时间轴.7:30 7:40 7:50 8:00 8:10 8:20 8:30B小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10 分钟.根据几何概型,所求概率P =10 +10 =1 .故选B.40 22.从区间[0,1]随机抽取2n 个数x1,x2 ,…,x n ,y1 ,y2 ,…,y n ,构成n 个数对(x1, y1),(x2 , y2),…,(xn ,yn),其中两数的平方和小于1 的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为().p 2 =p3p 1 =p3p 1 =p2AB4n 2n 4mA.mB. mC.2mnn D. 【答案】C【解析】由题意得:(x i△△△△y i)(i =1 2 ⋅⋅⋅n)在如图所示方格中,而平方和小于1 的π4 =m π =4m点均在如图所示的阴影中,由几何概型概率计算公式知1 n ,所以C.n .故选3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,A C ,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,,p3,则A.B.C.D.【答案】A【解析】概率为几何概型,总区域面积一定,只需比较Ⅰ,Ⅱ,Ⅲ区域面积即可.设直角三角形ABC 的三个角 A ,B ,C 所对的边长分别为a ,b ,c ,则区域Ⅰ的面积为S1=1ab ,2p 2p 1 =p2+p3△ABC⎝ ⎭ ⎝ ⎭ ⎝ ⎭2区域Ⅱ的面积为 1 ⎛ 1 ⎫2 1 ⎛ 1 ⎫2 1 1 ⎛ 1 ⎫21S 2 = 2 π 2 c ⎪ + 2 π 2 b ⎪ + 2 ab - 2 π 2 a ⎪ = 2 ab ,2 区域Ⅲ的面积为 S = 1 π⎛ 1 c ⎫ + 1 π⎛ 1 b ⎫ - 1 ab = 1 πa 2 - 1 ab .3 2 2⎪ 2 2 ⎪ 28 2 ⎝ ⎭ ⎝ ⎭显然 p 1 = p 2 .故选 A .题型三 抽样与样本的数据特征1. 已知一组数据4 ,6 , 5 , 8 ,7 , 6 ,那么这组数据的平均数为 .【答案】10【解析】平均数x = 1 (4 + 6 + 5 + 8 + 7 + 6)= 6 . 62. 某电子商务公司对 10000 名网络购物者 2014 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3, 0.9] 内,其频率分布直方图如图所示.(Ⅰ)直方图中的a =;(Ⅱ)在这些购物者中,消费金额在区间[0.5, 0.9] 内的购物者的人数为.【答案】3;6000【解析】频率和等于 1 可得0.2 ⨯ 0.1 + 0.8 ⨯ 0.1 + 1.5 ⨯ 0.1 + 2 ⨯ 0.1 + 2.5 ⨯ 0.1 + a ⨯ 0.1 = 1 , 解之得a = 3 .于是消费金额在区间[0.5, 0.9] 内频率为0.2 ⨯ 0.1 + 0.8 ⨯ 0.1 + 2 ⨯ 0.1 + 3 ⨯ 0.1 = 0.6 , 所以消费金额在区间[0.5, 0.9] 内的购物者的人数为: 0.6 ⨯10000 = 6000 ,故应填3;6000.3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100 位居民每人的月均用水量(单位:吨),将数据按照[0, 0.5),[0.5,1),⋅⋅⋅,[4, 4.5)分成9 组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30 万居民,估计全市居民中月均用水量不低于3 吨的人数,请说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.【答案】见解析【解析】(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08⨯0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08 ,0.20 ,0.26 ,0.06 ,0.04 ,0.02 .由0.04+0.08+0.5⨯a + 0.20 + 0.26 + 0.5⨯a + 0.06 + 0.04 + 0.02 = 1 ,解得 a = 0.30 .(2)由(1),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30 万居民中月均用水量不低于 3 吨的人数为300000⨯ 0.12 = 36000 .(3)因为前 6 组的频率之和为0.04 - 0.08 - 0.15 - 0.20 - 0.26 - 0.15=0.88 > 0.85 ,而前5 组的频率之和为0.04+0.08+0.15 -0.20 -0.26=0.73 < 0.85 ,所以2.5 …x < 3.由0.3⨯(x - 2.5)= 0.85 - 0.73 ,解得x = 2.9 .题型四回归与分析1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5 户家庭,得到如下统计数据表:区一户收入为15 万元家庭年支出为()A.11.4 万元B.11.8 万元C.12.0 万元D.12.2 万元【答案】B所以回归直线方程为yˆ=0.76x+0.4.当社区一户收入为15 万元,家庭年支出为(万元).故选B.0.4 = 11.8yˆ=0.76⨯15+y ∑2. 为了研究某班学生的脚长x (单位:厘米)和身高 y (单位:厘米)的关系,从该班随机抽取10 名学生,根据测量数据的散点图可以看出 与x 之间有线性相关关系,设其回归直线方程为 y ˆ= b ˆx + a ˆ.已知∑x i i =110= 225 , y i = 1600 , b ˆ= 4 .该i =1班某学生的脚长为 24,据此估计其身高为( ).A . 160B . 163C . 166D .170【答案】C 【解析】 故选 C .x = 22.5 , y = 160 ,所以a= 160 - 4⨯ 22.5 = 70 , x = 24 时, y = 4 ⨯ 24 + 70 = 166 .3. 某公司为确定下一年投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售量 y (单位: )和年利润 z (单位:千元)的影响,对近 8 年的年宣传费x i和年销售量计量的值.y i (i = 1, 2,⋅⋅⋅,8)数据作了初步处理,得到下面的散点图及一些统万万万万/万万10 t(u 2,v 2 ) (u 1,v 1 ) y = c + d x x = 49表中,,(1) 根据散点图判断, y = a + bx 与y = c + d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由)?(2) 根据(1)的判断结果及表中数据,建立 y 关于x 的回归方程;(3) 已知这种产品的年利润z 与x , y 的关系式为 z = 0.2y - x,根据(2)的结果回答下列问题:(ⅰ)年宣传费 时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据 ,⋅ ⋅ ⋅ , (u n , v n ),其回归直线v =+ u 的斜率,和截距的最小二乘估计分别为【答案】见解析【解析】(1)由散点图变化情况可知选择 较为适宜.w i = x iˆ =i =1∑(u i - u )(v i - v ) n∑ i =1n(u - u )2i.x yw∑( )2x- x ii =1∑( )( - ) w - w y y i ii =1∑8( )2w- w ii =1 ∑( - )( -) 8x x y yiii =146.6563 6.8289.8 1.6 1469 108.81 8w = ∑w i8 i =1563 - 68⨯ 6.8 = 100.6 c = y - d = ∑(w - w1.6)∑8(w - w )(y - yii) 108.8(2)由题意知d =i =1= = 68 .又82i一定过点(, y ),i =1所以 ,所以 y 与x 的回归方程为 y = 100.6 + 68 x .(3)(ⅰ)由(2)知,当 x = 49 时,y = 100.6 + 68⨯ 49 = 576.6(t ),(千元),所以当年宣传费为 x = 49 时,年销售量为576.6(t ),利润预估为66.32 千元.(ⅱ)由(2)知, z = 0.2 y - x = 0.2 (100.6 + 68 x )- x =-(x - 6.8)2+ 6.82 + 20.12 ,所以当 x = 6.8 时,年利润的预估值最大,即 x = 6.82 = 46.24 (千元). 题型五 独立性检验1. 某医疗研究所为了检验某种血清预防感冒的作用,把 500 名使用血清的人与另外 500 名未使用血清的人一年中的感冒记录作比较,提出假设 H :“这种血清不能起到预防感冒的作用”,利用 2×2 列联表计算的 K 2≈3.918,则下列表述中正确的是( )A. 有 95℅的把握认为“这种血清能起到预防感冒的作用”B. 若有人未使用该血清,那么他一年中有 95℅的可能性得感冒y = c + d x 66.32 z = 0.2 ⨯ 576.6 - 49 = 20.12 = 13.6 x - x +a a +bc c + dkg C. 这种血清预防感冒的有效率为 95℅D. 这种血清预防感冒的有效率为 5℅【答案】A【解析】由题可知,在假设成立情况下,P (K 2≥ 3.841) 的概率约为 0.05,即在 犯错的概率不错过 0.05 的前提下认为“血清起预防感冒的作用”,即有 95℅的把握认为“这种血清能起到预防感冒的作用”.这里的 95℅是我们判断 不成立的概率量度而非预测血清与感冒的几率的量度,故 B 错误.C ,D 也犯有 B 中的错误.故选 A2. 观察下面频率等高条形图,其中两个分类变量x ,y 之间关系最强的是( )A .B .C .D .【答案】D【解析】在频率等高条形图中, 与 相差很大时,我们认为两个分类变量有关系,四个选项中,即等高的条形图中 x 1, x 2 所占比例相差越大,则分类变量 x , y 关系越强,故选D .3. 淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位: )的频率分布直方图如图所示.H H万万万万万万万万万万/k g万万万万(1)设两种养殖方法的箱产量相互独立,记 A 表示事件:旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg ,估计 A 的概率;(2)填写下面列联表,并根据列联表判断是否有99% 的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01 ).附:21. 【答案】见解析【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B ,“新养殖法的箱产量不低于50kg ”为事件C ,由题图并以频率作为概率得,, P (A )= P (B )P (C )= 0.4092 .(2)由计算可得 的观测值为 k 2 = 200 ⨯ (62 ⨯ 66 - 38 ⨯ 34)2100 ⨯100 ⨯ 96 ⨯104 = 15.705 ,因为15.705 > 6.635 ,所以P (K 2 ≥ 6.635)≈ 0.001 ,从而有99% 以上的把握认为箱产量与养殖方法有关.(3)1 ÷ 5 = 0.2 , 0.1 - (0.004 + 0.020 + 0.044)= 0.032 , 50 + 2.35 = 52.35 ,所以中位数为52.35 .0.032 ÷ 0.068 = 8 17 , 8 ⨯ 5 ≈ 2.35 , = 0.66 P (C )= 0.068 ⨯ 5 + 0.046 ⨯ 5 + 0.010 ⨯ 5 + 0.008 ⨯ 5K 2 = 0.62 P (B )= 0.040 ⨯ 5 + 0.034 ⨯ 5 + 0.024 ⨯ 5 + 0.014 ⨯ 5 + 0.012 ⨯ 5 17K 2= n (ad - bc )2 (a + b )(c + d )(a + c )(b + d )22“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

2020年全国统一高考数学试卷(文科)(全国卷一)(含详细解析)

2020年全国统一高考数学试卷(文科)(全国卷一)(含详细解析)

c 保密★启用前2020年全国统一高考数学试卷(文科)(全国卷一)您题号—总分得分注意事项:1.答题前垃写好自己的姓名、班级、考号等信息2.请将答案正确填写在答超卡上o:n o评卷人得分1.己知集合/!={x\xA.{—4,1}一、单选题3—4<0},8={-4,1,3,5},则』口=()B.(1,5}C.{3,5}D.{1,3}2.若z= l+2i+i3,则回=()A.0B.1C.41D.23.埃及胡夫金字塔是古代世界建筑志迹之一,它的形状可视为-个正四棱锥,以该四校锥的高为边长的正方形面积等于该四梭推一个侧面三角形的面积,鲫其侧面三角形底边上的高与底面正方形的边长的比值为()oO A旦R岂 C.旦 D.旦4242的概率为()5.某校一个课外学习小组为研充某作物种了•的发芽率.p 和温度工(单位:°C )的关系. 在20个不同的温度条件下进行种子发芽实验,由实验数据(.t r.Z )(/ = 1.2.-.2O )得到下 面的散点图;由此散点图•在10。

至40也之间・卜.面四个回归方程类型中最适宜作为发芽率*和温度X 的问归方程类型的是()A. ,= 〃 +版B. y = a + hx 2C. y-a + be l D・ y = a + b\nx6.已知圆xf 尸-6“0,过点(1, 2)的直线被该圆所截得的弦的忙度的最小值为A. 1C. 3B. 2D. 47 .设函数f (x ) = COS (5 +兰)在[-兀,71]的图像大致如卜图,则用)的最小止周期为()610n A. B.Inc. 8. A. 9.4丸设g4=2,则4"= <)1 B.1. 169执行下面的程序框图,则输出的〃=()D.C.A.3兀D.417 B.19 C.21 D.2310.设{虬}是等比数列,旦0+七+%=】•%+江/久=2.则%+"%=(A.12B.24C.30D.32y11.设%足是双仙线C:x2-^-=l的两个焦点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1、2019年2月,国家教育部就“文理分科是否取消”等教改问题征集民意之际,某新闻单位从900名家长中抽取15人,1500名学生中抽取25人,300名教师中抽取5人召开座谈会,这种抽样方法是( )A .简单随机抽样B .抽签法 C2、某雷达测速区规定:凡车速大于或等于70km/h 视为“超速”点对200图,则从图中可以看得出将被处罚的汽车大约有( ) A .30辆 B .40辆 C .60辆 D .80辆3、在0,1,2,3,…,9这十个数字中,任取四个不同的数字,那么“这四个数字之和大于5”这一事件是( )A .必然事件B .不可能事件C .随机事件D .不确定是何事件4、某战士在打靶中,连续射击两次,事件“至少有一次中靶”的对立事件是( ) A .必然事件 B .不可能事件 C .随机事件 D .不确定是何事件5、已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:(2)12(2)4f f ≤⎧⎨-≤⎩为事件为A ,则事件A 发生的概率为( ) A .14 B . 58 C . 12 D . 38二、填空题6、容量为100的样本数据,依次分为8组,如下表:则第三组的频率是 .7、某班有学生48人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别为6,30,42的同学都在样本中,那么样本中另一位同学的座位号应该是 .8、若数据123,,,,n x x x x L 的平均数x =5,方差22σ=,则数据12331,31,31,,31n x x x x ++++L 的平均数为 ,方差为 .9、若以连续抛掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆2216x y += 内的概率为 .10、在一个直径为6的球内随机取一点,则这个点到球面的最近距离大于2的概率为 .三、解答题11、潮州统计局就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)1500,1000[)。

0.0005300035000.00030.0004200015000.00020.0001400025001000月收入(元)频率/组距(1)求居民月收入在)3500,3000[的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中分层抽样方法抽出100人作进一步分析,则月收入在)3000,2500[的这段应抽多少人?12、某校从高三年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)估计这次考试的及格率(60分及以上为及格) 和平均分;(2)从成绩是80分以上(包括80分)的学生中选两人,求他们在不同分数段的概率.13、已知,x y 之间的一组数据如下表:(1)分别从集合A={}8,7,6,3,1,{}5,4,3,2,1=B 中各取一个数,x y ,求10x y +≥的概率; (2)对于表中数据,甲、乙两同学给出的拟合直线分别为113y x =+与1122y x =+,试根据残差平方和:21ˆ()ni i i y y=-∑的大小,判断哪条直线拟合程度更好. 14、某公司欲招聘员工,从1000名报名者中筛选200名参加笔试,按笔试成绩择优取50名面试,再从面试对象中聘用20名员工. (1)求每个报名者能被聘用的概率;(2)随机调查了24名笔试者的成绩如下表所示:请你预测面试入围分数线大约是多少?(3) 公司从聘用的四男,,,a b c d 和二女,e f 中选派两人参加某项培训,则选派结果为一男一女的概率是多少?15、将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)两数中至少有一个奇数的概率;16、甲、乙两人玩一种游戏:5个球上分别标有数字1、2、3、4、5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢,(1)求甲赢且编号的和为6的事件发生的概率;(2)这种游戏规则公平吗?试说明理由.17、已知向量()a,(),x y=b.=-1,2(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足1g a b=-的概率;(2)若,x y∈[]1,6,求满足0>g a b的概率.参考答案一、选择题 1、D ; 2、B ; 3、A ; 4、C ; 5、C ; 二、填空题 6、0.21; 7、18; 8、16,18; 9、29; 10、127. 三、解答题11、解:(1)月收入在)3500,3000[的频率为15.0)30003500(0003.0=-⨯ . (2)1.0)10001500(0002.0=-⨯Θ,2.0)15002000(0004.0=-⨯,25.0)20002500(0005.0=-⨯,5.055.025.02.01.0>=++所以,样本数据的中位数240040020000005.0)2.01.0(5.02000=+=+-+(元); (3)居民月收入在)3000,2500[的频率为25.0)25003000(0005.0=-⨯, 所以10000人中月收入在)3000,2500[的人数为25001000025.0=⨯(人), 再从10000人用分层抽样方法抽出100人,则月收入在)3000,2500[的这段应 抽取25100002500100=⨯人. 12、解:(1)依题意,60及以上的分数所在的第三、四、五、六组,频率和为80.010)005.0025.0030.0020.0(=⨯+++,所以,抽样学生成绩的合格率是80%. 利用组中值估算抽样学生的平均分:123456455565758595f f f f f f ⋅+⋅+⋅+⋅+⋅+⋅05.09525.0853.0752.06515.05505.045⨯+⨯+⨯+⨯+⨯+⨯=72=.估计这次考试的平均分是72分(2)[80,90) ,[90,100]”的人数是15,3.所以从成绩是80分以上(包括80分)的学生中选两人,则基本事件总数153n =,事件“不同分数段”所包含的基本事件数45m =,故所求概率为:45515317P == ,答:略 13解:(1)分别从集合A,B 中各取一个数组成数对(),x y ,共有25对,其中 满足10≥+y x 的有()()()()()()()()()6,4,6,5,7,3,7,4,7,5,8,2,8,3,8,4,8,5,共9对 故使10≥+y x 的概率为:925p =. (2)用131+=x y 作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:222221410117(1)(22)(33)(4)(5)3333S =-+-+-+-+-=.用2121+=x y 作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:222222791(11)(22)(3)(44)(5)222S =-+-+-+-+-=.12S S <Θ,故用直线2121+=x y 拟合程度更好. 14、解:(1)设事件A 为“每个报名者能被聘用”,由题意:201()100050P A == (2)设24名笔试者中有x 人参加面试,则5020024x=,得6x =,参照题中所给表 可预测面试入围分数大约是80分(3)设事件B 为“选派结果为一男一女”则基本事件有:,,,,,,,,,,,,,,ab ac ad ae af bc bd be bf cd ce cf de df ef ,则基本事件总数15n =,事件B 所包含的基本事件数8m =,所以8()15P B =.15、解: 将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件(1)记“两数之和为5”为事件A ,则事件A 中含有4个基本事件, 所以P (A )=41369=; 答:两数之和为5的概率为19. (2)记“两数中至少有一个奇数”为事件B ,则事件B 与“两数均为偶数”为对立事件,所以P (B )=931364-=;答:两数中至少有一个奇数的概率34. 16、解:(1)设“甲胜且数字之和为6”为事件A ,事件A 包含的基本事件为(1,5),(2,4),(3,3),(4,2),(5,1),共5个,又甲、乙二人取出的数字共有5525⨯=种等可能的结果,所以51()255P A ==. (2)这种游戏规则不公平。

设“甲胜”为事件B ,“乙胜”为事件C ,则甲胜即两数字之和为偶数所包含的基本事件数为:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5)共13个,所以甲胜的概率13()25P B =,从而乙胜的概率为12()1()25P C P B =-=,由于()()P C P B ≠,所以这种游戏规则不公平.17、解(1)设(),x y 表示一个基本事件,则抛掷两次骰子的所有基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),……,(6,5),(6,6),共36个.用A 表示事件“1=-g a b ”,即21x y -=-.则A 包含的基本事件有(1,1),(3,2),(5,3),共3个. ∴()313612P A ==. y x =1x =6y =6 x -2y =0答:事件“1=-g a b ”的概率为112. (2)用B 表示事件“0>g a b ”,即20x y ->.试验的全部结果所构成的区域为(){},16,16x y x y ≤≤≤≤, 构成事件B 的区域为(){},16,16,20x y x y x y ≤≤≤≤->, 如图所示.所以所求的概率为()142425525P B ⨯⨯==⨯. 答:事件“0>g a b ”的概率为425.。

相关文档
最新文档