污水处理厂工艺总平面布置图
水污染课程设计----污水处理厂AAO工艺设计(含全套图纸)
《水污染控制工程》课程设计学院:专业:XX:学号:指导老师:目录引言41设计任务及设计资料5 1.1设计任务与内容51.2设计原始资料51.2.1城市气象资料51.2.2地质资料51.2.3设计规模51.2.4进出水水质62、设计说明书6 2.1去除率的计算62.1.1溶解性BOD的去除率65的去除率:72.1.2 CODr2.1.3.SS的去除率:72.1.4.总氮的去除率:72.1.5.磷酸盐的去除率82.2城市污水处理工艺选择82.3、污水厂总平面图的布置92.4、处理构筑物设计流量(二级)92.5、污水处理构筑物设计92.5.1.中格栅和提升泵房(两者合建在一起)9 2.5.2、沉沙池102.5.3、厌氧池112.5.4、缺氧池112.5.5、好氧曝气池112.5.6、二沉池122.6、污泥处理构筑物的设计计算122.6.1污泥泵房122.6.2污泥浓缩池122.7、污水厂平面,高程布置132.7.1平面布置132.7.2管线布置132.7.3 高程布置143 污水厂设计计算书14 3.1污水处理构筑物设计计算143.1.1泵前中格栅143.1.2污水提升泵房163.1.3、泵后细格栅173.1.3、沉砂池183.1.4、厌氧池203.1.5、缺氧池计算203.1.6、好氧曝气池的设计计算213.1.8、二沉池283.2 污泥处理部分构筑物计算313.2.1污泥浓缩池设计计算:313.3、高程计算363.3.1污水处理部分高程计算:363.3.2高程图见CAD图363.3.3污水处理厂工艺流程图与总平面布置图36参考文献37XX市污水处理厂A/A/O工艺设计作者:闫赛红,指导教师:孙丰霞(XX农业大学资源与环境学院)【摘要】随着社会进步,人们对于城市污水的处理的要求愈加严格。
除了基本的去除污水中BOD和SS的要求外,通常还要求脱氮除磷,以保护水体环境。
本设计即采用了众多脱氮除磷工艺中较为经济合理的AAO工艺对进入污水厂的污水进行处理。
天津东郊污水处理厂设计实例
天津东郊污水处理厂设计实例天津东郊污水处理厂于1989年8月开工,1993年4月建成,污水厂占地29.5hm 2,工程总造价20159万元。
1. 水质水量设计处理能力为40万m 3/d ,最高日流量(不脱氮)48万m 3/d 。
进水BOD 5280mg/L ,出水40mg/L ;进水SS240mg/L ,出水60mg/L 。
2. 处理工艺流程图1 天津东郊污水处理厂工艺流程图图2 天津东郊污水处理厂总平面布置图该厂污水处理系统分4个系列,4个圆形初沉池排成一行,4个曝气池组成田字型,8座二沉池设在厂区南侧,临近北塘排水河,使处理出水可就近排入河道。
污泥处理区设在厂的西北角,5个消化池组成梅花型,污泥处理的控制室设在5个消化池的中央。
北侧设有两个沼气贮罐、污泥脱水机房和沼气发电机房等。
3、主要处理构筑物及设备参数(1)进水格栅格栅是污水处理厂的第一道预处理设施。
该厂设6台垂直格栅,由计算机程序控制。
高水位时格栅清污机将连续工作,运送格栅拦截的浮渣的皮带运输机与格栅清污机联锁运行,在所有格栅停止工作后,皮带运输机仍将继续运行一段时间。
6台垂直格栅每台宽2m,栅条净宽25mm。
(2)进水泵房设6台HLWB-10型立式涡壳混流泵,5用1备。
水泵参数:流量1.32m3/s,扬程13.2m,电机功率260kw。
泵房设有6个控制水位,控制5台泵的运行。
为避免个别水泵负荷偏高而反复启动,水泵将依次循环投入运行。
当某台泵因故障停止工作时,另一台泵将自动投入运行。
(3)曲面格栅8台曲面格栅设在沉砂池的端部。
每台格栅宽度1.2m,栅条曲率半径2.0m,栅条净距10mm。
每台格栅的清污动作根据水位模拟信号由计算机控制。
当水位差处于正常值时,清污工作将按设定时间动作;当前后水位差超过设定值时,清污工作将连续进行。
如果清污工作连续操作时间过长,计算机将发出报警信号。
曲面格栅刮出的浮渣落在皮带运输机上,皮带运输机的运行与格栅清污机联锁,清污工作停止后,运输机仍将运行一段时间。
一体化污水提升泵站工艺施工平面图剖面图
20000m3d城市污水处理厂综合设计(含11个CAD作图图纸)--优秀毕业设计{修}
本设计污水处理厂综合设计包括15个图纸,十分全面,具体详见报告后附图。
本报告附图全面详细。
图纸内容如下:A2O池,初沉池,幅流式二沉池,隔栅,工艺简单图,工艺流程图(高程图),回转耙式格栅除污机图,平面布置图,污泥浓缩池,厌氧消化池,钟式沉砂池等。
全为CAD制图。
下载后复制放大或打印可看清!题目20000m3/d城市污水处理厂综合设计专业: 环境工程年级: 2005级学号: 3105001286姓名: 莫笑伟指导教师:2008年12 月摘要我国水体污染主要来自两方面,一是工业发展超标排放工业废水,二是城市化中由于城市污水排放和集中处理设施严重缺乏,大量生活污水未经处理直接进入水体造成环境污染。
工业废水近年来经过治理虽有所减少,但城市生活污水有增无减,占水质污染的51%以上。
我国水体污染主要来自两方面,一是工业发展超标排放工业废水,二是城市化中由于城市污水排放和集中处理设施严重缺乏,大量生活污水未经处理直接进入水体造成环境污染。
工业废水近年来经过治理虽有所减少,但城市生活污水有增无减,占水质污染的51%以上。
本设计要求处理水量为20000m3/d的城市生活污水,设计方案针对已运行稳定有效的A2/O活性污泥法工艺处理城市生活污水。
A2O工艺由于不同环境条件,不同功能的微)能生物群落的有机配合,加之厌氧、缺氧条件下,部分不可生物降解的有机物(CODNB被开环或断链,使得N、P、有机碳被同时去除,并提高对COD的去除效果。
它可以同NB--时完成有机物的去除,硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NH3N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。
厌氧池和好氧池联合完成除磷功能。
关键词:城市生活污水,活性污泥,A2/O目录摘要 (III)目录 (IV)第一章设计概述 ······································································- 7 -1设计任务 ······································································- 7 - 2设计原则 ······································································- 7 - 3设计依据 ······································································- 8 - 第二章工艺流程及说明 ·····························································- 8 -1工艺方案分析 ································································- 8 - 2工艺流程 ······································································- 9 - 3流程各结构介绍 ·····························································- 9 -3.1格栅······························································································· - 9 -3.2沉砂池··························································································- 10 -3.3初沉池··························································································- 10 -3.4生物化反应池··············································································- 10 -3.5二沉池··························································································- 12 -3.6浓缩池··························································································- 12 - 第三章构筑物设计计算 ··························································· - 12 -1格栅 ·········································································· - 12 -1.1设计说明······················································································- 12 -1.2设计计算······················································································- 13 -2沉砂池 ······································································· - 16 -2.1设计说明······················································································- 16 - 3初沉池 ······································································· - 17 -3.1设计说明······················································································- 17 -3.2设计计算······················································································- 17 - 4生化池 ······································································· - 19 -4.1设计说明······················································································- 19 -4.2设计计算······················································································- 19 - 5二沉池 ······································································· - 26 -5.1设计说明······················································································- 26 -5.2设计计算······················································································- 26 - 6液氯消毒 ···································································· - 29 -6.1设计说明······················································································- 29 -6.2设计计算······················································································- 29 - 7污泥浓缩池 ································································· - 30 -7.1设计说明······················································································- 30 -7.2设计计算······················································································- 30 -8 污泥消化池 ································································· - 31 -8.1设计说明······················································································- 31 -8.2设计计算······················································································- 32 - 9浓缩污泥提升泵房 ························································ - 38 -9.1设计选型······················································································- 38 -9.2提升泵房······················································································- 38 -9.3污泥回流泵站··············································································- 38 -10污泥脱水间 ······························································· - 39 -10.1设计说明······················································································- 39 -11鼓风机房 ·································································· - 39 - 12恶臭处理系统 ···························································· - 39 -12.1设计说明······················································································- 39 -12.2设计计算······················································································- 39 -12.3风机选型······················································································- 40 - 第四章污水处理厂总体布置 ····················································· - 41 -1总平面布置 ································································· - 41 -1.1总平面布置原则··········································································- 41 -1.2总平面布置结果··········································································- 41 -2高程布置································································································- 42 -2.1高程布置原则··············································································- 42 - 第五章参考文献 ···································································· - 42 -第一章设计概述1设计任务本次课程设计的主要任务是完成某城市污水厂的A2/O工艺设计处理生活污水,处理水量为20000m3/d,按近期规划人口10万人计算(自定)。
20000m3d城市污水处理厂综合设计(含11个CAD作图图纸)--优秀毕业设计
本设计污水处理厂综合设计包括15个图纸,十分全面,具体详见报告后附图。
本报告附图全面详细。
图纸内容如下:A2O池,初沉池,幅流式二沉池,隔栅,工艺简单图,工艺流程图(高程图),回转耙式格栅除污机图,平面布置图,污泥浓缩池,厌氧消化池,钟式沉砂池等。
全为CAD制图。
下载后复制放大或打印可看清!题目20000m3/d城市污水处理厂综合设计专业: 环境工程年级: 2005级学号: 3105001286姓名: 莫笑伟指导教师:2008年12 月摘要我国水体污染主要来自两方面,一是工业发展超标排放工业废水,二是城市化中由于城市污水排放和集中处理设施严重缺乏,大量生活污水未经处理直接进入水体造成环境污染。
工业废水近年来经过治理虽有所减少,但城市生活污水有增无减,占水质污染的51%以上。
我国水体污染主要来自两方面,一是工业发展超标排放工业废水,二是城市化中由于城市污水排放和集中处理设施严重缺乏,大量生活污水未经处理直接进入水体造成环境污染。
工业废水近年来经过治理虽有所减少,但城市生活污水有增无减,占水质污染的51%以上。
本设计要求处理水量为20000m3/d的城市生活污水,设计方案针对已运行稳定有效的A2/O活性污泥法工艺处理城市生活污水。
A2O工艺由于不同环境条件,不同功能的微)能生物群落的有机配合,加之厌氧、缺氧条件下,部分不可生物降解的有机物(CODNB被开环或断链,使得N、P、有机碳被同时去除,并提高对COD的去除效果。
它可以同NB--时完成有机物的去除,硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NH3N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。
厌氧池和好氧池联合完成除磷功能。
关键词:城市生活污水,活性污泥,A2/O目录摘要 (III)目录 (IV)第一章设计概述 ······································································- 7 -1设计任务 ······································································- 7 - 2设计原则 ······································································- 7 - 3设计依据 ······································································- 8 - 第二章工艺流程及说明 ·····························································- 8 -1工艺方案分析 ································································- 8 - 2工艺流程 ······································································- 9 - 3流程各结构介绍 ·····························································- 9 -3.1格栅······························································································· - 9 -3.2沉砂池··························································································- 10 -3.3初沉池··························································································- 10 -3.4生物化反应池··············································································- 10 -3.5二沉池··························································································- 12 -3.6浓缩池··························································································- 12 - 第三章构筑物设计计算 ··························································· - 12 -1格栅 ·········································································· - 12 -1.1设计说明······················································································- 12 -1.2设计计算······················································································- 13 -2沉砂池 ······································································· - 16 -2.1设计说明······················································································- 16 - 3初沉池 ······································································· - 17 -3.1设计说明······················································································- 17 -3.2设计计算······················································································- 17 - 4生化池 ······································································· - 19 -4.1设计说明······················································································- 19 -4.2设计计算······················································································- 19 - 5二沉池 ······································································· - 26 -5.1设计说明······················································································- 26 -5.2设计计算······················································································- 26 - 6液氯消毒 ···································································· - 29 -6.1设计说明······················································································- 29 -6.2设计计算······················································································- 29 - 7污泥浓缩池 ································································· - 30 -7.1设计说明······················································································- 30 -7.2设计计算······················································································- 30 -8 污泥消化池 ································································· - 31 -8.1设计说明······················································································- 31 -8.2设计计算······················································································- 32 - 9浓缩污泥提升泵房 ························································ - 38 -9.1设计选型······················································································- 38 -9.2提升泵房······················································································- 38 -9.3污泥回流泵站··············································································- 38 -10污泥脱水间 ······························································· - 39 -10.1设计说明······················································································- 39 -11鼓风机房 ·································································· - 39 - 12恶臭处理系统 ···························································· - 39 -12.1设计说明······················································································- 39 -12.2设计计算······················································································- 39 -12.3风机选型······················································································- 40 - 第四章污水处理厂总体布置 ····················································· - 41 -1总平面布置 ································································· - 41 -1.1总平面布置原则··········································································- 41 -1.2总平面布置结果··········································································- 41 -2高程布置································································································- 42 -2.1高程布置原则··············································································- 42 - 第五章参考文献 ···································································· - 42 -第一章设计概述1设计任务本次课程设计的主要任务是完成某城市污水厂的A2/O工艺设计处理生活污水,处理水量为20000m3/d,按近期规划人口10万人计算(自定)。
自来水厂污水处理二泵房成套cad设计图
水污染课程设计污水处理厂AAO工艺设计含全套图纸
《水污染控制工程》课程设计学院:专业:姓名:学号:指导老师:目录引言 (4)1设计任务及设计资料 (5)1.1设计任务与内容 (5)1.2设计原始资料 (5)1.2。
1城市气象资料 (5)1.2.2地质资料 (5)1.2.3设计规模 (5)1.2。
4进出水水质 (6)2、设计说明书 (6)2.1去除率的计算 (6)2。
1.1溶解性BOD的去除率 (6)5的去除率: (7)2.1.2 CODr2.1。
3.SS的去除率: (7)2。
1.4.总氮的去除率: (7)2。
1.5。
磷酸盐的去除率 (8)2.2城市污水处理工艺选择 (8)2.3、污水厂总平面图的布置 (9)2.4、处理构筑物设计流量(二级) (9)2。
5、污水处理构筑物设计 (9)2.5。
1。
中格栅和提升泵房(两者合建在一起) (9)2。
5。
2、沉沙池 (10)2.5.3、厌氧池 (11)2.5。
4、缺氧池 (11)2。
5。
5、好氧曝气池 (11)2.5.6、二沉池 (12)2.6、污泥处理构筑物的设计计算 (12)2。
6。
1污泥泵房 (12)2。
6.2污泥浓缩池 (12)2。
7、污水厂平面,高程布置 (13)2.7.1平面布置 (13)2。
7.2管线布置 (13)2。
7.3 高程布置 (14)3 污水厂设计计算书 (14)3。
1污水处理构筑物设计计算 (14)3。
1.1泵前中格栅 (14)3.1.2污水提升泵房 (16)3.1.3、泵后细格栅 (17)3.1.3、沉砂池 (18)3.1.4、厌氧池 (20)3。
1。
5、缺氧池计算 (20)3。
1.6、好氧曝气池的设计计算 (21)3.1。
8、二沉池 (28)3。
2 污泥处理部分构筑物计算 (31)3。
2。
1污泥浓缩池设计计算: (31)3.3、高程计算 (36)3.3.1污水处理部分高程计算: (36)3.3。
2高程图见CAD图 (36)3。
3。
3污水处理厂工艺流程图与总平面布置图 (36)参考文献 (37)泰安市污水处理厂A/A/O工艺设计作者:闫赛红,指导教师:孙丰霞(山东农业大学资源与环境学院)【摘要】随着社会进步,人们对于城市污水的处理的要求愈加严格。
某生活污水处理工艺流程和平面布置图
水污染课程设计----污水处理厂AAO工艺设计(含全套图纸)
《水污染控制工程》课程设计学院:专业:XX:学号:指导老师:目录引言41设计任务及设计资料5 1.1设计任务与内容51.2设计原始资料51.2.1城市气象资料51.2.2地质资料51.2.3设计规模51.2.4进出水水质62、设计说明书6 2.1去除率的计算62.1.1溶解性BOD的去除率65的去除率:72.1.2 CODr2.1.3.SS的去除率:72.1.4.总氮的去除率:72.1.5.磷酸盐的去除率82.2城市污水处理工艺选择82.3、污水厂总平面图的布置92.4、处理构筑物设计流量(二级)92.5、污水处理构筑物设计92.5.1.中格栅和提升泵房(两者合建在一起)9 2.5.2、沉沙池102.5.3、厌氧池112.5.4、缺氧池112.5.5、好氧曝气池112.5.6、二沉池122.6、污泥处理构筑物的设计计算122.6.1污泥泵房122.6.2污泥浓缩池122.7、污水厂平面,高程布置132.7.1平面布置132.7.2管线布置132.7.3 高程布置143 污水厂设计计算书14 3.1污水处理构筑物设计计算143.1.1泵前中格栅143.1.2污水提升泵房163.1.3、泵后细格栅173.1.3、沉砂池183.1.4、厌氧池203.1.5、缺氧池计算203.1.6、好氧曝气池的设计计算213.1.8、二沉池283.2 污泥处理部分构筑物计算313.2.1污泥浓缩池设计计算:313.3、高程计算363.3.1污水处理部分高程计算:363.3.2高程图见CAD图363.3.3污水处理厂工艺流程图与总平面布置图36参考文献37XX市污水处理厂A/A/O工艺设计作者:闫赛红,指导教师:孙丰霞(XX农业大学资源与环境学院)【摘要】随着社会进步,人们对于城市污水的处理的要求愈加严格。
除了基本的去除污水中BOD和SS的要求外,通常还要求脱氮除磷,以保护水体环境。
本设计即采用了众多脱氮除磷工艺中较为经济合理的AAO工艺对进入污水厂的污水进行处理。
污水处理厂水池结构施工设计CAD平面布置图纸
污水处理站施工现场总平面布置方案
污水处理站施工现场总平面布置方案第一节平面布置原则1、根据设计图纸及施工现场情况,结合本工程的现场特点,施工总体布置在满足施工作业和生产管理的前提下,本着少占施工占地、减少污染、保护绿地和环境,文明大方的原则,进行临时设施布置。
2、根据工程项目,施工方案和周围环境,本着“节约成本,施工必须,适当集中”的原则,进行临时设施布设。
3、尽可能地利用场内交通条件,减少对现状交通干扰及对周围环境的影响。
4、本着经济合理的原则,按照安全生产、文明施工的要求,对施工现场进行布置。
第二节平面总体布置1、现场办公平面布置现场总平面布置图1.1 项目部布置根据现场勘查,项目部设置在厂区东侧空地处,拟搭建4125㎡项目部办公区及临舍区。
项目部办公室实例图1.2 施工作业部布置项目部下设钢筋混凝土主体工程作业部、道路排水施工作业部、绿化工程作业部。
其中,泵站工程作业部设置在项目部南侧,拟搭建100㎡彩钢板房办公;道路排水施工作业部泵站工程作业部南侧,拟搭建100㎡彩钢板房办公;2、临时设施、材料加工场地平面布置2.1 材料堆放场、机械停放场及工人宿舍布置¸ù¾Ý现场勘察,临设选址处有足够的闲置用地,计划在施工区作业部附近设置一处750㎡材料堆放场、750㎡机械停放场和1000㎡钢筋模板加工场,工人宿舍设置在作业部附近,现场平均人数150人,拟搭设20间40㎡彩色钢板房以供居住。
钢筋模板加工棚实例图机械停放场实例图2.2 施工围挡布置根据施工招标文件要求,并结合施工现场条件和特点,进场后,在施工区采用标准统一硬质围挡搭设施工围挡,将市政施工区与周围环境分离,减少周边环境与施工区的交叉干扰,防止安全事故的发生。
围挡色彩标志整齐美观,围挡支撑牢固可靠,底部用铆钉铆固,在围挡外侧上设置夜间警示灯、贴反光膜。
施工中的现场围挡实例图3、临时道路布置为了方便施工人员和施工车辆来往,优化施工环境,提高工作效率,根据现场勘查,计划在工程沿线周边修建施工便道供材料及施工进出场使用;施工便道,厂区内施工便道宽7米,结构为20cm厚的8%灰土上覆20cm厚C20混凝土路面。