高考数学一轮复习 不等式选讲 2 证明不等式的基本方法(理)选修4-5
高三理科数学第一轮复习选修4-5§2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
【金牌精品】高考数学(理)一轮复习:选修4-5-2证明不等式的基本方法
课后课时作业1.[2015·重庆高考]若函数f(x)=|x +1|+2|x -a|的最小值为5,则实数a =________.答案 -6或4解析 当a ≤-1时,f(x)=⎩⎪⎨⎪⎧-3x +2a -1(x ≤a )x -2a -1(a<x ≤-1)3x -2a +1(x>-1),∴f(x)min =-a -1,∴-a -1=5,∴a =-6. 当a>-1时,f(x)=⎩⎪⎨⎪⎧-3x +2a -1(x ≤-1)-x +2a +1(-1<x ≤a )3x -2a +1(x>a ),∴f(x)min =a +1,∴a +1=5,∴a =4. 综上,a =-6或a =4.2.不等式|2x +1|-2|x -1|>0的解集为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x>14解析 |2x +1|-2|x -1|>0⇔|2x +1|>2|x -1|⇔(2x +1)2>4(x -1)2⇔12x>3⇔x>14,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x>14.3.[2016·南昌月考]若实数a ,b ,c 满足a 2+b 2+c 2=4,则3a +4b +5c 的最大值为________.答案 10 2解析 由柯西不等式得(3a +4b +5c)2≤(a 2+b 2+c 2)(9+16+25)=200,所以-102≤3a +4b +5c ≤102,所以3a +4b +5c 的最大值为10 2.4.[2015·黄陵一模]设关于x 的不等式|x|+|x -1|<a(a ∈R ).若a =2,则不等式的解集为________;若不等式的解集为∅,则a 的取值范围是________.答案 ⎝⎛⎭⎪⎫-12,32 (-∞,1]解析 a =2时,不等式|x |+|x -1|<2可化为⎩⎪⎨⎪⎧x ≤0-x +1-x <2或⎩⎪⎨⎪⎧0<x <1x +1-x <2或⎩⎪⎨⎪⎧x ≥1x +x -1<2,解得-12<x ≤0或0<x <1或1≤x <32,即-12<x <32,故不等式的解集为⎝ ⎛⎭⎪⎫-12,32.因为|x |+|x -1|≥|x -(x -1)|=1,所以若不等式|x |+|x -1|<a 的解集为∅,则a 的取值范围是(-∞,1].5.[2015·江苏高考]解不等式x +|2x +3|≥2. 解原不等式可化为⎩⎪⎨⎪⎧x <-32-x -3≥2或⎩⎪⎨⎪⎧x ≥-323x +3≥2.解得x ≤-5或x ≥-13.综上,原不等式的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-5或x ≥-13. 6.设不等式|2x -1|<1的解集为M . (1)求集合M ;(2)若a ,b ∈M ,试比较ab +1与a +b 的大小. 解 (1)由|2x -1|<1得-1<2x -1<1, 解得0<x <1.所以M ={x |0<x <1}.(2)由(1)和a ,b ∈M 可知0<a <1,0<b <1, 所以(ab +1)-(a +b )=(a -1)(b -1)>0. 故ab +1>a +b .7.设函数f (x )=|x -a |+3x ,其中a >0. (1)当a =1时,求不等式f (x )≥3x +2的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解 (1)当a =1时,f (x )≥3x +2可化为|x -1|≥2. 由此可得x ≥3或x ≤-1.故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}. (2)由f (x )≤0得|x -a |+3x ≤0.此不等式化为不等式组⎩⎪⎨⎪⎧x ≥a x -a +3x ≤0或⎩⎪⎨⎪⎧x <aa -x +3x ≤0,即⎩⎨⎧x ≥ax ≤a 4或⎩⎨⎧x <a x ≤-a2.因为a >0,所以不等式组的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-a 2. 由题设可得-a2=-1,故a =2.8.[2013·福建高考]设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值. 解 (1)因为32∈A ,且12∉A ,所以⎪⎪⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪⎪⎪12-2≥a ,解得12<a ≤32.又因为a ∈N *,所以a =1.(2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 当且仅当(x +1)(x -2)≤0, 即-1≤x ≤2时取到等号. 所以f (x )的最小值为3.9.[2015·课标全国卷Ⅱ]设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d . ②若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd . 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件. 10.[2016·大连模拟]已知函数f (x )=log 2(|x +1|+|x -2|-m ). (1)当m =5时,求函数f (x )的定义域;(2)若关于x 的不等式f (x )≥1的解集是R ,求m 的取值范围. 解 (1)由题意知,|x +1|+|x -2|-5>0,则有⎩⎪⎨⎪⎧x ≥2x +1+x -2>5或⎩⎨⎧-1<x <2x +1-x +2>5或⎩⎨⎧x ≤-1-x -1-x +2>5,解得x <-2或x >3.∴函数f (x )的定义域为(-∞,-2)∪(3,+∞). (2)由对数函数的性质知,f (x )=log 2(|x +1|+|x -2|-m )≥1=log 22, ∴不等式f (x )≥1等价于|x +1|+|x -2|≥2+m .∵当x ∈R 时,恒有|x +1|+|x -2|≥|(x +1)-(x -2)|=3,而不等式|x +1|+|x -2|≥m +2的解集是R ,∴m +2≤3,故m 的取值范围是(-∞,1]. 11.[2016·大同月考]设函数f (x )=|2x -7|+1. (1)求不等式f (x )≤|x -1|的解集;(2)若存在x 使不等式f (x )≤ax 成立,求实数a 的取值范围. 解 (1)由题意得|2x -7|+1≤|x -1|. 当x <1时,-(2x -7)+1≤-(x -1),解得x ≥7,∴x 不存在.当1≤x ≤72时,-(2x -7)+1≤x -1,解得x ≥3, ∴3≤x ≤72.当x >72时,(2x -7)+1≤x -1,解得x ≤5, ∴72<x ≤5.综上,不等式的解集为[3,5]. (2)|2x -7|+1≤ax .当x ≥72时,(a -2)x +6≥0能成立, 若a -2≥0,则a ≥2满足.若a -2<0,则(a -2)×72+6≥0,解得27≤a <2. ∴a ≥27.当x <72时,(a +2)x -8≥0能成立, 若a +2<0,则a <-2满足. 若a +2=0,则a =-2不满足. 若a +2>0,则(a +2)×72-8>0,解得a >27. ∴a >27或a <-2. 综上,a ≥27或a <-2.12.[2015·大庆二模]已知函数f (x )=m -|x -1|-|x -2|,m ∈R ,且f (x +1)≥0的解集为[0,1].(1)求m 的值;(2)若a ,b ,c ,x ,y ,z ∈R ,且x 2+y 2+z 2=a 2+b 2+c 2=m ,求证:ax +by +cz ≤1.解 (1)由f (x +1)≥0得|x |+|x -1|≤m . ∵|x |+|x -1|≥1恒成立,∴若m <1,不等式|x |+|x -1|≤m 的解集为∅,不合题意. 若m ≥1,①当x <0时,得x ≥1-m 2,所以1-m2≤x <0; ②当0≤x ≤1时,得x +1-x ≤m ,即m ≥1恒成立; ③当x >1时,得x ≤m +12,所以1<x ≤m +12.综上可知,不等式|x |+|x -1|≤m 的解集为⎣⎢⎢⎡⎦⎥⎥⎤1-m 2,m +12.由题意知,原不等式的解集为[0,1], ∴⎩⎪⎨⎪⎧1-m2=0m +12=1,解得m =1.(2)证明:∵x 2+a 2≥2ax ,y 2+b 2≥2by ,z 2+c 2≥2cz , 三式相加,得x 2+y 2+z 2+a 2+b 2+c 2≥2ax +2by +2cz . 由题设及(1),知x 2+y 2+z 2=a 2+b 2+c 2=m =1, ∴2≥2(ax +by +cz ),即ax +by +cz ≤1,得证.。
人教a版高考数学(理)一轮课件:选修4-5不等式选讲
考纲解读
通过近几年的高考题可以看出, 本 部分内容的考查主要是在绝对值 不等式的几何意义和解绝对值不 等式两个方面,考查难度一般,试题 题型较为单一 .对于绝对值不等式 的证明一般会结合函数、导数等 内容考查,难度较大,属中高档题.
1.绝对值三角不等式 (1)定理 1:如果 a,b 是实数,则|a+b|≤|a|+|b|,当且仅当 ab≥0 时,等号成立. 其中不等式|a+b|≤|a|+|b|又称为三角不等式. (2)在|a+b|≤|a|+|b|中用向量 a,b 分别替换实数 a,b,则|a+b|<|a|+|b|的几 何意义是三角形的两边之和大于第三边(a,b 不共线). (3)定理 2:如果 a,b,c 是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0 时,等号成立.
(������ + 1)2 ≥ (x + 2)2 , ⇔ ������ + 2 ≠ 0, (������ + 1 + ������ + 2)(������ + 1-������-2) ≥ 0, 即 ������ ≠ -2, 解得 x≤- 且 x≠-2.
3 2
3 .设 a=2- 5,b= 5-2,c=5-2 5,则 a ,b ,c 之间的大小关系是 【答案】 c>b>a 【解析】分别由 a<0,b>0,c>0,再由 b 2-c2<0 得 b<c 判断.
5 .设 m 等于|a| ,|b| 和 1 中最大的一个,当|x|>m 时,求证: +
3 .|ax+b| ≤c,|ax+b| ≥c(c>0)型不等式的解法 (1)|ax+b| ≤c(c>0)型不等式的解法是:先化为不等式-c≤ax+b ≤c,再利用 不等式的性质求出原不等式的解集. (2)|ax+b| ≥c(c>0)的解法是:先化为 ax+b ≥c 或 ax+b ≤-c,再进一步利用不 等式的性质求出原不等式的解集.
高考数学一轮总复习 2不等式证明的基本方法(选修4-5)
听 课 记 录 2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)= (a2-b2)(2a+b)=(a-b)(a+b)(2a+b).
∵a≥b>0,∴a-b≥0,a+b>0,2a+b>0. 从而(a-b)(a+b)(2a+b)≥0,即 2a3-b3≥2ab2-a2b.
.
【规律方法】 (1)一般地,当所证不等式的两边均为整式(多 项式)时,可考虑用作差比较法.
由平均不等式可得a13+b13+c13≥3 3 a13·b13·c13, 即a13+b13+c13≥a3bc. 所以a13+b13+c13+abc≥a3bc+abc.
而a3bc+abc≥2 a3bc·abc=2 3. 所以a13+b13+c13+abc≥2 3.
.
R 热点命题·深度剖析
研考点 知规律 通法悟道
.
(2)反证法必须从否定结论进行推理,且必须根据这一条件进 行论证,否则,仅否定结论,不从结论的反面出发进行论证,就 不是反证法.
(3)推导出来的矛盾可能多种多样,有的与已知矛盾,有的与 假设矛盾,有的与定理、公理相违背等等,但推导出的矛盾必须 是明显的.
.
高频考点
考点一
比较法证明不等式
【例 1】 已知 a≥b>0,求证:2a3-b3≥2ab2-a2b.
答案
1 3
.
4.若 a,b,c∈(0,+∞),且 a+b+c=1,则 a+ b+ c的 最大值为________.
解析 ( a+ b+ c)2=(1× a+1× b+1× c)2≤(12+12 +12)(a+b+c)=3.
当且仅当 a=b=c=13时,等号成立. ∴( a+ b+ c)2≤3,故 a+ b+ c的最大值为 3.
新高考数学一轮总复习课件选修4-5第二节证明不等式的基本方法
【解析】(1)①当 x≥3 时,|x-3|<x+1 等价于 x-3<x+1,不等式恒成立, 所以 x≥3; 当 x<3 时,|x-3|<x+1 等价于 3-x<x+1,即 x>1,所以 1<x<3, 综上可知,不等式 f(x)<x+1 的解集为 M={x|x>1}.
②因为(a2+1)(b2+1)-(2a2+2b2) =(ab)2+a2+b2+1-2a2-2b2 =(ab)2-a2-b2+1=(a2-1)(b2-1), 又因为 a,b∈M,所以 a>1,b>1, 因此 a2>1,b2>1,a2-1>0,b2-1>0, 所以(a2-1)(b2-1)>0, 所以原不等式(a2+1)(b2+1)>2a2+2b2 成立.
(2)作商比较法的应用范围 当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.
【变式训练】 当 p,q 都是正数且 p+q=1 时,试比较(px+qy)2 与 px2+qy2 的大小.
【解析】(px+qy)2-(px2+qy2)=p2x2+q2y2+2pqxy-(px2+qy2) =p(p-1)x2+q(q-1)y2+2pqxy.因为p+q=1,所以p-1=-q,q-1=-p. 所以(px+qy)2-(px2+qy2)=-pq(x2+y2-2xy)=-pq(x-y)2. 因为p,q为正数,所以-pq(x-y)2≤0,所以(px+qy)2≤px2+qy2.当且仅当 x=y时,等号成立.
第二节 证明不等式的基本方法
梳理自测 通必备知识
1.基本不等式
定理1:如果a,b∈R,那么a2+b2≥_2_a_b_,当且仅当_a_=__b_时,等号成立.
定理2:如果a,b>0,那么 a b ab ,当且仅当a__=_b__时,等号成立,即两
2
个正数的算术平均数不小于(即大于或等于)它们的几何平均数.
高考数学一轮复习 4-5.2证明不等式的基本方法精品课件 新人教版
不等式a2 b2 ≥a b2 成立.
mn
类型二 用综合法证明不等式 解题准备:利用综合法证明不等式时,应注意对已证不等式的使用,常用的不 等式有: (1)a2≥0; (2)|a|≥0; (3)a2+b2≥2ab;它的变形形式有 a2+b2≥2|ab|;a2+b2≥-2ab;(a+b)2≥4ab;
a
1 a
2
b
1 b
2
≥
25 2
.
[反思感悟] 综合法一般是分析法的逆过程,表述简单,条理清晰,所以在解决 具体问题时,常把分析法和综合法结合起来使用.
类型三 用分析法证明不等式 解题准备:用分析法证“若A则B”形式的命题的模式是:为了证明命题B为真, 只需证明命题B1为真,从而有……. 只需证明命题B2为真,从而有……. …… 只需证明命题A为真,而已知A为真,故B必真.
解 析 : x y bx ay . x a y b (x a )( y b)
由 1 1 0,得 b a 0,又 x y 0, ab
所 以 bx ay,所 以 bx ay 0, (x a )( y b)
所以 x y . xa yb
答案: x y xa yb
类型一 用比较法证明不等式 解题准备:比较法证明不等式最常用的是差值比较法,其基本步骤是:①作差; ②变形;③判断差的符号;④下结论.其中“变形”是证明的关键,一般通过因式分解或 配方将差变形为几个因式的积或配成几个平方和的形式,当差是二次三项式时,有 时亦可用判别式来判断符号.
类型四 用放缩法证明不等式 解题准备:放缩法证明不等式时,常见的放缩依据或技巧是不等式的传递性. 缩小分母、扩大分子,分式值增大;缩小分子、扩大分母,分式值减小;全量不少于部分; 每一次缩小其和变小,但需大于所求;每一次扩大其和变大,但需小于所求,即不能放 缩不够或放缩过头,同时放缩有时需便于求和.
高考数学一轮复习选修4_5不等式选讲课件文新人教版
不等式选讲
-2知识梳理
双基自测
1
2
3
4
1.绝对值三角不等式
(1)定理1:若a,b是实数,则|a+b|≤
时,等号成立;
(2)性质:|a|-|b|≤|a±b|≤|a|+|b|;
(3)定理2:若a,b,c是实数,则|a-c|≤
(a-b)(b-c)≥0
时,等号成立.
5
|a|+|b|
,当且仅当_______
-22考点1
考点2
考点3
考点4
考点5
对点训练2设函数f(x)=|x+1|-m|x-2|.
(1)若m=1,求函数f(x)的值域;
(2)若m=-1,求不等式f(x)>3x的解集.
解:(1)当m=1时,f(x)=|x+1|-|x-2|.
∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3,
∴-3≤|x+1|-|x-2|≤3,即函数f(x)的值域为[-3,3].
(3)柯西不等式的向量情势:设α,β是两个向量,则|α||β|≥|α·β|,当且
仅当β是零向量或存在实数k,使α=kβ时,等号成立.
-6知识梳理
双基自测
1
2
3
4
5
5.不等式证明的方法
证明不等式常用的方法有比较法、综合法、分析法等.
-7知识梳理
双基自测
1
2
3
4
5
1.下列结论正确的打“ ”,错误的打“×”.
所以|x|+|y|+|x-1|+|y-1|=2,即
|| + |-1| = 1,
|| + |-1| = 1.
2020版高考数学大一轮复习不等式选讲第2讲不等式的证明课件理新人教A版选修4_5
“放”和“缩”的常用技巧
在不等式的证明中,“放”和“缩”是常用的推证技巧.
常见的放缩变换有:
(1)变换分式的分子和分母,如k12<k(k1-1),k12>k(k1+1),1k
<
2 k+
k-1,
1k>
2 k+
k+1.上面不等式中
k∈N*,k>1;
(2)利用函数的单调性; (3)真分数性质“若 0<a<b,m>0,则ab<ab+ +mm”. [提醒] 在用放缩法证明不等式时,“放”和“缩”均需把握一 个度.
2.不等式的证明方法 证明不等式常用的方法有比较法、综合法、分析法、反证法、 放缩法、数学归纳法等. 3.数学归纳法证明不等式的关键 使用数学归纳法证明与自然数有关的不等式,关键是由 n=k 时不等式成立推证 n=k+1 时不等式成立,此步的证明要具有 目标意识,要注意与最终达到的解题目标进行分析、比较,以 便确定解题方向.
(2)证明:要证1a-b-abcc>1,只需证|1-abc|>|ab-c|, 只需证 1+a2b2c2>a2b2+c2,只需证 1-a2b2>c2(1-a2b2), 只需证(1-a2b2)(1-c2)>0, 由 a,b,c∈A,得-1<ab<1,c2<1,所以(1-a2b2)(1-c2)>0 恒 成立. 综上,1a-b-abcc>1.
所以 a2+2ab+b2=1.
因为 a>0,b>0,
所以a12+b12=(a+a2b)2+(a+b2b)2=1+2ab+ba22+1+2ba+ab22=
2 + 2ab+2ba + ba22+ab22 ≥ 2 + 2
2ab·2ba + 2
高考数学一轮总复习 2不等式证明的基本方法课件(选修4-5)
放缩法等.
A
9
对点自测
知识点一
基本不等式
1.若 0<a<b<1,则 a+b,2 ab,a2+b2,2ab 中最大的一个是 ________.
A
10
解析 ∵a+b>2 ab,a2+b2>2ab. 又(a2+b2)-(a+b)=a(a-1)+b(b-1). ∵0<a<1,0<b<1,∴a(a-1)+b(b-1)<0. ∴a2+b2<a+b.
由平均不等式可得a13+b13+c13≥3 3 a13·b13·c13, 即a13+b13+c13≥a3bc. 所以a13+b13+c13+abc≥a3bc+abc.
而a3bc+abc≥2 a3bc·abc=2 3.
所以a13+b13+c13+abc≥2 3.
A
16
R 热点命题·深度剖析
研考点 知规律 通法悟道
答案 a+b
A
11
2.已知 x,y∈R,且 xy=1, 则1+1x1+1y的最小值为 ________.
解析 1+1x1+1y≥1+ 1xy2=4. 答案 4
A
12
知识点二
柯西不等式
3.已知 x,y,z 为正数,且 x+y+z=1,则 x2+y2+z2 的最小
值是__________.
解析 x2+y2+z2=(12+12+12)(x2+y2+z2)×13≥(1·x+1·y+ 1·z)2×13=13.
A
19
(2)反证法必须从否定结论进行推理,且必须根据这一条件进 行论证,否则,仅否定结论,不从结论的反面出发进行论证,就 不是反证法.
(3)推导出来的矛盾可能多种多样,有的与已知矛盾,有的与 假设矛盾,有的与定理、公理相违背等等,但推导出的矛盾必须 是明显的.
高考数学一轮复习选修45不等式选讲第二节证明不等式的基本方法课件文北师大版
必备知识·自主学习
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休息 一下眼睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对身 体不好哦~
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念, 考试加油。
2.基本不等式 (1)基本不等式判断大小的基本原则:积定_和__最__小__,和定_积__最__大__. (2)基本不等式使用的基本原则:_一__正__二__定__三__相__错误的打“×”)
(1)已知x为实数,则1+x+ 1 ≥3.
x
()
(2)比较法最终要判断式子的符号得出结论. ( )
(3)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,
最后达到待证的结论. ( )
(4)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论
成立的必要条件,最后达到题设的已知条件或已被证明的事实. ( )
提示:(1)×.不知道x的正负,不能直接用基本不等式. (2)×.作商比较法是商与1的大小比较. (3)√.综合法是从已知条件出发,利用定义、公理、定理、性质等逐步推导出结论. (4)×.分析法是从结论出发,寻找结论成立的充分条件.
复习课件
高考数学一轮复习选修45不等式选讲第二节证明不等式的基本方法课件文北师大版
2021/4/17
高考数学一轮复习选修45不等式选讲第二节证明不等式的基本方
1
法课件文北师大版
第二节 证明不等式 的基本方法
内容索引
必备知识·自主学习 核心考点·精准研析 核心素养测评
【教材·知识梳理】 1.不等式的证明方法 (1)综合法:又叫顺推证法或由因导果法,方法是从_已__知__条__件__出__发__,_利__用__定__义__、__公__ _理__、__定__理__、__性__质__等逐步推导出结论. (2)分析法:又叫执果索因法,方法是从_结__论__出发,逐步寻找结论成立的_充__分__条__件__, 直至所需条件为_已__知__条__件__或__一__个__明__显__成__立__的__事__实__. (3)作差法与作商法:作差法是作差后与_0_比较,作商法是把两个_正__数__作商后与_1_ 比较.
高考数学(理)一轮复习课件:选修4-5第二节 证明不等式的基本方法(广东专用)
A.a>b>c
B.b>a>c
C.b>c>a
D.a>c>b
【解析】
由4 2+
> 2
4
4
6+
> 2
7+
,得 a>c>b. 3
【答案】 D
一轮复习 ·新课标 ·数学(理)(广东专用)
4.设 a、b∈(0,+∞),且 ab-a-b=1,则有( )
A.a+b≥2( 2+1)
B.a+b≤ 2+1
C.a+b< 2+1
一轮复习 ·新课标 ·数学(理)(广东专用)
1.反证法必须从否定结论进行推理,即应把结论的反面作为 条件,且必须根据这一条件进行推证,否则,仅否定结论,不 从结论的反面推理,就不是反证法. 2.利用反证法证题的关键是利用假设和条件通过正确推理推 出和已知条件或定理事实相矛盾.
一轮复习 ·新课标 ·数学(理)(广东专用)
∴原不等式成立.,
一轮复习 ·新课标 ·数学(理)(广东专用)
1.(1)分析法是寻找结论成立的充分条件,对于无理不等式去 根号,分式不等式去分母,采用分析法是常用方法.(2)此题 证明的关键是在两边非负的条件下平方去根号. 2.分析法证明的思路是“执果索因”,其框图表示为:
一轮复习 ·新课标 ·数学(理)(广东专用)
一轮复习 ·新课标 ·数学(理)(广东专用)
一轮复习 ·新课标 ·数学(理)(广东专用)
【尝试解答】 因为 a,b,c 均为正数,由均值不等式得
a2+b2+c2≥3(abc)23,
①
1a+1b+1c≥3(abc)-31,
所以(1a+1b+1c)2≥9(abc)-32.
②
故 a2+b2+c2+(1a+1b+1c)2≥3(abc)23+9(abc)-23.
高三复习第二讲证明不等式的基本方法
高三复习第二讲证明不等式的基本方法选修4-5不等式选讲【考纲速读吧】1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.综合法往往是分析法的相反过程,其表述简单、条理清楚.当问题比较复杂时,通常把分析法和综合点必会技巧1.利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式.2.常用的初等变形有均匀裂项、增减项、配系数等.利用基本不等式还可以证明条件不等式,关键是恰当地利用条件,构造基本不等式所需要的形式.项必须注意1.作差比较法适用的主要题型是多项式、分式、对数式、三角式,作商比较法适用的主要题型是高次幂乘积结构.2.放缩法的依据是不等式的传递性,运用放缩法证明不等式时,要注意放缩适度,“放”和“缩”的量的大小是由题目分析,多次尝试得出.放得过大或过小都不能达到证明目的.3.利用柯西不等式求最值,实质上就是利用柯西不等式进行放缩,放缩不当则等号可能不成立,因此,要切记检验等号成立的条件.【课前自主导学】011.三个正数的算术—几何平均不等式a+b+c(1)定理:如果a,b,c均为正数,那么________abc,当且仅当________时,等号成立,即3三个正数的算术平均数________它们的几何平均数.(2)基本不等式的推广a1+a2+…+an对于n个正数a1,a2,…,an,它们的算术平均数________它们的几何平均数,即na1a2n,当且仅当________时,等号成立.21(1)已知某>0,则y=某2+________.(2)已知某>0,则y=某的最小值为________.某某2.柯西不等式(1)设a,b,c,d均为实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时等号成立.bbb222(2)若ai,bi(i∈N某)为实数,则(∑a)(∑b)≥(∑ab),当且仅当==…=ai=0时,iiiia1a2ani=1i=1i=1约定bi=0,i=1,2,…,n)时等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,当且仅当α、β共线时等号成立.nnn(1)若某+2y+4z=1,则某2+y2+z2的最小值是________.(2)某,y∈R,且某2+y2=10,则2某-y的取值范围为________.3.证明不等式的方法(1)比较法①求差比较法由a>ba-b>0,a<ba-b<0,因此要证明a>b,只要证明________即可,这种方法称为求差比较法.②求商比较法a由a>b>0>1且a>0,b>0,因此当a>0,b>0时要证明a>b,只要证明________即可,这种方法称为求商b比较法(2)分析法从所要________入手向使它成立的充分条件反推直至达到已知条件为止,这种证法称为分析法,即“执果索因”的证明方法.(3)综合法从已知条件出发,利用不等式的性质(或已知证明过的不等式),推出所要证明的结论,即“由因寻果”的方法,这种证明不等式的方法称为综合法.(4)反证法的证明步骤第一步:作出与所证不等式________的假设;第二步:从________出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立.(5)放缩法所谓放缩法,即要把所证不等式的一边适当地________,以利于化简,并使它与不等式的另一边的不在证明不等式时综合法与分析法有怎样的关系?(1)要证明29+31<25,可选择的方法最合理的是________.a3+a6(2)等比数列{an}各项为正数,且q≠1,若PQ=a4a5,则P与Q的大小关系________.2【自我校对】1.≥a=b=c不小于不小于≥a1=a2=…=an31填一填:(1)3(2)34112.填一填:(1提示:∵1=某+2y+4z≤某+y+z1+4+16,∴某2+y2+z2≥某2+y2+z2的最2121小值为.21(2)[-2,2]提示:∵(某2+y2)[22+(-1)2]≥(2某-y)2,∴-2≤2某-y≤52.a3.a-b>0证明的结论相反条件和假设放大或缩小b想一想:提示:综合法:由条件出发推导出所要证明的不等式成立.分析法:从结论出发寻找使结论成立的充分条件,综合法与分析法是对立统一的两种方法.在实际解题时,常常用分析法探求解题思路,用综合法表达.填一填:(1)分析法(2)P≥Q提示:∵a3·a6=a4·a5,∴a3+a6≥23·a6=2a4·a5,∴P≥Q.【核心要点研究】02【考点一】比较法证明不等式例1[2022·广州模拟]已知a>0,b>0,求证:(a)3+b3≥ab+ab2.【审题视点】本题主要考查不等式证明的方法,考查运算求解能力及等价转化思想,可用作差比较法证明.[证明](a)3+b3-(ab+ab2)=[(a)3-ab]+[b3-ab2]=a(a-b)-b2(a-b)=(a-b)(a-b2a-b)[(a)2-b2]=(a-b)2(a+b).因为a>0,b>0,所以a+b>0,又(a-b)2≥0,所以(a-b)2a+b)≥0a)3+b3-(ab+ab2)≥0,即(a)3+b3≥ab+2.【师说点拨】此题用的是作差比较法,其步骤:作差、变形、判断差的符号、结论.其中判断差的符号为目的,变形是关键.常用的变形技巧有因式分解、配方、拆项、拼项等方法.【变式探究】求证:a2+b2≥ab+a+b-1证明:∵(a2+b2)-(ab+a+b-1)=a2+b2-ab-a-b+1=2a2+2b2-2ab-2a-2b+2)211=(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)](a-b)2+(a-1)2+(b-1)2]≥0,22∴a2+b2≥ab+a+b-1.【考点二】用分析法或综合法证明不等式1112例2已知a,b,c均为正数,证明:a2+b2+c2+abc3,并确定a,b,c为何值时,等号成立.【审题视点】3因为a,b,c均为正数,且a+b+c≥3abc,故可利用三个正数的算术——几何平均不等式证明.2[证明]因为a,b,c均为正数,所以a2+b2+c2≥3(abc),①3111211112+≥9(abc)-.②+≥3(abcabcabc33111222+≥3(abc)+9(abc故a2+b2+c2+abc3322又3(abc)+9(abc)-≥2=6,③所以原不等式成立.33当且仅当a=b=c时,①式和②式等号成立.221当且仅当3(abc9(abc)-时,③式等号成立.即当且仅当a=b=c=3 334111奇思妙想:例题中,不等式变为“abc3”,其余不变,该如何解答?abc111331113证明:∵a,b,c++abc≥+abc3,abcabcabcabcabc31∴原不等式成立,当a=b=c且abc时等号同时成立,即a=b=c=3 abc6【师说点拨】1.分析法要注意叙述的形式:“要证A,只要证B”,这里B应是A成立的充分条件.2.综合法证明不等式是“由因导果”,分析法证明不等式是“执果索因”.它们是两种思路截然相反的证明方法.分析法便于寻找解题思路,而综合法便于叙述,因此要注意两种方法在解题中的综合运用.【变式探究】设a≥b>0,求证:3a3+2b3≥3a2b+2ab2.证明:证法一(综合法)∵a≥b>0,∴a2≥b2,则3a2≥2b2,则3a2-2b2≥0.又a-b≥0,∴(a-b)(3a2-2b2)≥0,即3a3-2ab2-3a2b+2b3≥0,则3a3+2b3≥3a2b+2ab2.故原不等式成立.证法二(分析法)要证3a3+2b3≥3a2b+2ab2,只需证3a3+2b3-3a2b-2ab2≥0,即3a2(a-b)+2b2(b-a)≥0,也即(a-b)(3a2-2b2)≥0,(某)∵a≥b>0,∴a-b≥0.又a2≥b2,则3a2≥2b2,∴3a2-2b2≥0.(某)式显然成立,故原不等式成立.【考点三】用柯西不等式证明不等式例3[2022·福建高考]已知函数f(某)=m-|某-2|,m∈R,且f (某+2)≥0的解集为[-1,1].111(1)求m的值;(2)若a,b,c∈R+,且++m,求证:a+2b+3c≥9.a2b3c【审题视点】(1)根据式子的特点,利用公式进行转化,根据集合相等确定m的值;(2)结合已知条件构造两个适当的数组,变形为柯西不等式的形式.[解](1)因为(f某+2)=m-|某|,(f某+2)≥0等价于|某|≤m,由|某|≤m有解,得m≥0,且其解集为{某|-m≤某≤m}.又f(某+2)≥0的解集为[-1,1],故m=1.111+(2)由(1)知=1,又a,b,c∈R,由柯西不等式得a2b3c111111a+2b+3c=(a+2b+3c)()≥(a+2b3c2=9.所以不等式得证.a2b3ca2b3c【师说点拨】22222柯西不等式的一般结构为(a2(b21+a2+…+an)1+b2+…+bn)≥(a1b1+a2b2+…+anbn),在使用柯西不等式时,关键是将已知条件通过配凑,转化为符合柯西不等式条件的式子,为方便使用柯西不等式,有时常将a变形为1某a的形式.【变式探究】abcbca用柯西不等式证明:若a,b,c均为正数,+)()≥9.bcaabcabcbca证明:∵(+(+)≥(2=9,bcaabcbacbacabcbca∴()+)≥9.bcaabc【经典演练提能】041.已知a1≤a2,b1≤b2,则P=a1b1+a2b2,Q=a1b2+a2b1的大小关系是()A.P≤QB.P<QC.P≥QD.P>Q答案:C解析:∵(a1b1+a2b2)-(a1b2+a2b1)=(b1-b2)·(a1-a2)∵a1≤a2,b1≤b2∴(b1-b2)·(a1-a2)≥0∴a1b1+a2b2≥a1b2+a2b1.1112.已知a,b,c是正实数,且a+b+c=1++的最小值为()abcA.3B.6C.9D.12答案:Ca+b+ca+b+ca+b+c111bacacb解析:把a+b+c=1代入+得到=3+(++(+(+)≥3 abcabcabacbc+2+2+2=9,故选C.3.若a,b,c∈(0,+∞),且a+b+c=1,则a+b+c的最大值为()A.1B.2C.3D.2解析:abc)2=(a+b+c)2≤(12+12+12)(a+b+c)=3.当且仅当a=b=c=abc)2≤3.故++的最大值为.3某+y某y4.设某>0,y>0,M=N=M、N的大小关系为________.2+某+y2+某2+y答案:M<N某+y某y某y解析:N=+>M.2+某2+y2+某+y2+某+y2+某+y5.若a,b∈R,且a≠b,M答案:M>N+ab+,N=a+b,则M、N的大小关系为________.baabab解析:∵a≠bba,ab,baa+b.baba(时间:45分钟分值:100分)一、选择题1.若|a-c|<|b|,则下列不等式中正确的是()A.a<b+cB.a>c-bC.|a|>|b|-|c|D.|a|<|b|+|c|答案:D解析:|a|-|c|≤|a-c|<|b|,即|a|<|b|+|c|.故选D.112.[2022·鸡西模拟]若实数某、y+=1,则某2+2y2有()某yA.最大值3+22B.最小值3+2C.最大值6D.最小值6答案:B 112y2某22222解析:由题意知,某+2y=(某+2y)·(+)=3++22,某y某y22某2y=时,等号成立,故选B.y某1113.[2022·广东调研]已知a,b为实数,且a>0,b>0.则(a+b+(a2+)abaA.7B.8C.9D.10答案:C13解析:因为a>0,b>0,所以a+b+≥3a某b=3b>0,①aa113同理可证:a++≥3.②23111321由①②及不等式的性质得(a+b+)(a≥3b某9.abab24.[2022·柳州模拟]已知关于某的不等式2某在某∈(a,+∞)上恒成立,则实数a的最小值为()某-a13A.B.1CD.222答案:C2223解析:2某+2(某-a)+2a≥22某-a2a=2a+4≥7,∴a2某-a某-a某-a+5.[2022·金版原创]若q>0且q≠1,m,n∈N,则1+qmn与qm+qn 的大小关系是()+++A.1+qmn>qm+qnB.1+qmn<qm+qnC.1+qmn=qm+qnD.不能确定答案:A解析:1+qmn-qm-qn=qm(qn-1)-(qn-1)=(qn-1)(qm-1),①当0<q<1时,qn<1,qm<1.②当q>1时,qn>1,qm>1.+∴(qn-1)(qm-1)>0,∴1+qmn>qm+qn,故选A.6.[2022·湖北高考]设a,b,c,某,y,z是正数,且a2+b2+c2=10,某2+y2+z2=40,a某+by+cz=20,则a+b+c=()某+y+z1113A.B.C.D.4324答案:C解析:由柯西不等式得(a2+b2+c2)(某2+y2+z2)≥(a某+by+cz)2,而由已知有abc(a2+b2+c2)(某2+y2+z2)=10某40=202=(a某+by+cz)2,故==k,代入得某yza+b+c11a2+b2+c2=k2(某2+y2+z2)=40k2=10,解得k=k=.故选C.22某+y+z二、填空题7.函数y=21-某+2某+1的最大值为________.答案:3解析:y22-2某+2某+1)2≤[()2+12][2-2某)22某+1)2]=3某3,∴y≤3.8.[2022·许昌模拟]对于任意实数a、b,若|a-b|≤1,|2a-1|≤1,则|4a-3b+2|的最大值为________.答案:611解析:因为|a-b|≤1,|2a-1|≤1,所以|3a-3b|≤3,|a22151515|4a-3b+2|=|(3a-3b)+(a-|≤|3a-3b|+|a-|+≤3++6,即|4a-3b+2|的最大值为6.2222221119.已知某,y,z为正实数,且+=1,则某+4y+9z的最小值为________.某yz答案:36解析:解法一:由柯西不等式,得111某+4y+9z=[某)2+(y)2+(3z)2]·[()2+(22]≥某yz111(某+y3z)2=36.当且仅当某=2y=3z时等号成立,此时某=6,y=3,z=2.所以当某=6,y=3,z=2时,某+4y+9z取得最小值36.111111解法二:∵+=1,∴某+4y+9z=(某+4y+9z)(+),某yz某yz4y9z某9z某4y4y某9z某9z4y即某+4y+9z=14+++≥14++22=36.某某yyzz某y某zyz(当且仅当某=2y=3z时取“=”),即某=6,y=3,z=2时,(某+4y+9z)min=36.故填36.三、解答题10.已知a>0,证明:a2+2≥a2.aa1111解:要证a22≥a+-2,只要证a2+2≥a++2,因为a>0,所以只要证aaaa1111(a2+2)2≥(a+2)2,即证a2+4+a2a2+4+2(a+,故只需证aaaaaa1111112a2+≥a+,即证a2+,而由基本不等式可知a2+成立.故a2-2≥a+2.211.[2022·正定模拟]设正有理数某是的一个近似值,令y=1.1+某(1)若某>3,求证:y3;(2)求证:y比某3.33+某3某-3某-32证明:(1)y-3=1+3==,1+某1+某1+某∵某>3,∴某3>0,而13<0,∴y<3.3-13-2-某3某-(2)∵|y-3|-|某3|=-|某-3|=|某-3|(-1)=|某-3|(,1+某1+某1+某∵某>03-2<0,|某-3|>0,∴|y3|-|某3|<0,即|y-3|<|某3|.∴y比某更接近于3.12.[2022·南昌调研]已知某+y>0,且某y≠0.某ym11(1)求证:某3+y3≥某2y+y2某;(2)如果+(+m的取值范围或值.y某2某y解:(1)∵某3+y3-(某2y+y2某)=某2(某-y)-y2(某-y)=(某+y)(某-y)2,且某+y>0,(某-y)2≥0,∴某3+y3-(某2y+y2某)≥0.∴某3+y3≥某2y+y2某.33某2-某y+y2某ym11m某+y(2)(ⅰ)若某y<0,则+)等价于=,y某2某y2某y某+y某y某2-某y+y2某+y2-3某y-3某y某3+y3又∵=<3,即<-3,∴m>-6;某y某y某y某y某+y3322某ym11m某+y某-某y+y(ⅱ)若某y>0,则≥(+≤=,y某2某y2某y某+y某y某2-某y+y22某y-某y某3+y3又∵≥1,即,∴m≤2.某y某y某y某+y综上所述,实数m的取值范围是(-6,2].。
(新课标)高考数学一轮复习 不等式选讲 第2讲 不等式的证明与栖西不等式习题 选修4-5-人教版高三
2017高考数学一轮复习不等式选讲第2讲不等式的证明与栖西不等式习题选修4-5A组基础巩固一、选择题1.设a、b、c是互不相等的正数,则下列不等式中不恒成立的是导学号 25402910( ) A.(a+3)2<2a2+6a+11B.a2+1a2≥a+1aC.|a-b|+1a-b≥2D.a+3-a+1<a+2-a[答案] C[解析] (a+3)2-(2a2+6a+11)=-a2-2<0,故A恒成立;在B项中不等式的两侧同时乘以a2,得a4+1≥a3+a⇐(a4-a3)+(1-a)≥0⇐a3(a-1)-(a-1)≥0⇐(a-1)2(a2+a+1)≥0,所以B项中的不等式恒成立;对C项中的不等式,当a>b时,恒成立,当a<b时,不恒成立;由不等式2a+3+a+1<2a+2+a恒成立,知D项中的不等式恒成立.故选C.2.a2+b2与2a+2b-2的大小关系是导学号 25402911( )A.a2+b2>2a+2b-2B.a2+b2<2a+2b-2C.a2+b2≤2a+2b-2D.a2+b2≥2a+2b-2[答案] D[解析] ∵a2+b2-2a-2b+2=(a-1)2+(b-1)2≥0,∴a2+b2≥2a+2b-2.3.(2014·某某)若log4(3a+4b)=log2ab,则a+b的最小值是导学号 25402912 ( )A.6+2 3 B.7+2 3C.6+4 3 D.7+4 3[答案] D[解析] 由题意,得ab>0,且3a+4b>0,所以a>0,b>0.又log 4(3a +4b )=log 2ab ,所以3a +4b =ab ,所以4a +3b =1,所以a +b =(a +b )(4a +3b )=7+4b a +3ab≥7+24b a ·3a b=7+4 3.当且仅当4b a =3a b,即a =4+23,b =3+23时,等号成立,故选D.4.(2015·某某八市3月联考)实数a i (i =1,2,3,4,5,6)满足(a 2-a 1)2+(a 3-a 2)2+(a 4-a 3)2+(a 5-a 4)2+(a 6-a 5)2=1,则(a 5+a 6)-(a 1+a 4)的最大值为导学号 25402913()A .3B .2 2 C. 6 D .1[答案]B[解析]因为[(a 2-a 1)2+(a 3-a 2)2+(a 4-a 3)2+(a 5-a 4)2+(a 6-a 5)2](1+1+1+4+1)≥[(a 2-a 1)×1+(a 3-a 2)×1+(a 4-a 3)×1+(a 5-a 4)×2+(a 6-a 5)×1]2=[(a 6+a 5)-(a 1+a 4)]2,所以[(a 6+a 5)-(a 1+a 4)]2≤8,即(a 6+a 5)-(a 1+a 4)≤2 2. 二、填空题5.若a 、b 、c ∈R +,且a +b +c =1,则a +b +c 的最大值为________.导学号 25402914[答案]3[解析] 方法一:(a +b +c )2=a +b +c +2ab +2bc +2bc +2ca ≤a +b +c +(a +b )+(b +c )+(c +a )=3.当且仅当a =b =c 时取等号成立.方法二:栖西不等式:(a +b +c )2=(1×a +1×b +1×c )2≤(12+12+12)(a +b +c )=3.6.(2015·某某七校联考)若log x y =-2,则x +y 的最小值为________.导学号 25402915[答案] 3322[解析] 由log x y =-2,得y =1x2其中x >0且x ≠1.而x +y =x +1x 2=x 2+x 2+1x 2≥33x 2·x 2·1x 2=3314=3322,当且仅当x 2=1x2即x =32时取等号.所以x +y 的最小值为3322.7.(2015·某某长浏宁三县(市)一中5月仿真模拟考试)若正实数a 、b 、c 满足a +2b +3c =2,则当a 2+2b 2+3c 2取最小值时,2a +4b +9c 的值为________.导学号 25402916[答案] 5[解析] 根据栖西不等式,有[a 2+(2b )2+(3c )2][12+(2)2+(3)2]≥(a +2b +3c )2=4,当且仅当a 1=2b 2=3c3时,即a =b =c =13时,取等号,此时2a +4b +9c =5.三、解答题8.(2015·某某)设a >0,b >0,且a +b =1a +1b.证明:导学号 25402917(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立.[证明] 由a +b =1a +1b =a +bab,a >0,b >0,得ab =1.(1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2,当且仅当a =b =1时等号成立.(2)假设a 2+a <2与b 2+b <2同时成立,则由a 2+a <2及a >0得0<a <1; 同理0<b <1,从而ab <1,这与ab =1矛盾.故a 2+a <2与b 2+b <2不可能同时成立.9.(2015·新课标全国Ⅱ)设a 、b 、c 、d 均为正数,且a +b =c +d ,证明:导学号 25402918 (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.[证明] (1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)(ⅰ)若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .(ⅱ)若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.10.(2015·某某某某一中上学期期末)已知函数f (x )=|x +3|-m ,m ∈R ,且f (x -2)≤0的解集为[-3,1].导学号 25402919(1)求m 的值;(2)已知a 、b 、c 都是正数,且a +b +c =m ,求证:1a +b +1b +c +1c +a ≥94. [答案] (1)2 (2)略[解析] (1)方法一:f (x -2)=|x -2+3|-m ≤0,|x +1|≤m , 所以m ≥0,且-m ≤x +1≤m ,所以-1-m ≤x ≤-1+m , 又不等式的解集为[-3,1],故m =2.方法二:|x +1|≤m ,即x 2+2x +1-m 2≤0,且m ≥0,不等式的解集为[-3,1],所以方程x 2+2x +1-m 2=0的两个根为-3,1,故m =2. (2)证明:方法一:1a +b +1b +c +1c +a=12(a +b +c )(1a +b +1b +c +1c +a) =14[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a ) =14(3+b +c a +b +a +b b +c +c +a a +b +a +b c +a +a +c b +c +b +c a +c ) ≥14(3+2+2+2)=94, 当且仅当a =b =c =23时,等号成立.方法二:1a +b +1b +c +1c +a=14[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a )≥ 14×33a +b b +c c +a ·331a +b 1b +c 1c +a =94. 此时,等号成立条件为a +b =b +c =c +a ,即a =b =c =23.B 组 能力提升1.(2015·某某名校学术联盟调研考试)已知a 、b 均为正实数,且4a +b +5=ab ,则ab 的最小值为________.导学号 25402920[答案] 25[解析] ∵a >0,b >0,∴4a +b +5=ab ≥24ab +5(当且仅当4a =b 时取等号),即ab -4ab -5≥0,解得ab ≤-1(舍去)或ab ≥5,∴ab 的最小值为25.2.(2015·某某长望浏宁四县3月调研)若2x +3y +4z =11,则x 2+y 2+z 2的最小值为________.导学号 25402921[答案]12129[解析] 由栖西不等式,得(x 2+y 2+z 2)(22+32+42)≥(2x +3y +4z )2,所以x 2+y 2+z 2≥2x +3y +4z 222+32+42=12129,当且仅当x 2=y 3=z 4,即x =2229,y =3329,z =4429时等号成立,所以x 2+y 2+z 2的最小值为12129. 3.已知a 、b 、c 、d 均为正数,且a 2+b 2=4,cd =1,则(a 2c 2+b 2d 2)(b 2c 2+a 2d 2)的最小值为________.导学号 25402922[答案] 16[解析] (a 2c 2+b 2d 2)(b 2c 2+a 2d 2)=(a 2c 2+b 2d 2)·(a 2d 2+b 2c 2)≥(a 2cd +b 2cd )2=(a 2+b 2)2=42=16.4.已知实数m 、n 满足:关于x 的不等式|x 2+mx +n |≤|3x 2-6x -9|的解集为R .导学号 25402923(1)求m 、n 的值;(2)若a 、b 、c ∈R ,且a +b +c =m -n ,求证:a +b +c ≤ 3. [答案] (1)m =-2,n =-3 (2)略[解析] (1)由于解集为R ,那么x =3,x =-1都满足不等式,有⎩⎪⎨⎪⎧|9+3m +n |≤0,|1-m +n |≤0,即⎩⎪⎨⎪⎧9+3m +n =0,1-m +n =0,解得m =-2,n =-3,经验证当m =-2,n =-3时,不等式的解集是R .(2)证明:a +b +c =1,a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , 所以(a +b +c )2=a +b +c +2ab +2bc +2ca ≤3(a +b +c )=3, 故a +b +c ≤3(当且仅当a =b =c =13时取等号).5.(2015·某某某某地区八校高三联考)已知函数f (x )=|x -2|+|x -4|的最小值为m ,实数a 、b 、c 、n 、p 、q 满足a 2+b 2+c 2=n 2+p 2+q 2=m .导学号 25402924(1)求m 的值;(2)求证:n 4a 2+p 4b 2+q 4c2≥2.[答案] (1)m =2 (2)略[解析] (1)f (x )=|x -2|+|x -4|≥|(x -2)-(x -4)|=2,当且仅当2≤x ≤4时,等号成立,故m =2.(2)证明:因为[(n 2a )2+(p 2b )2+(q 2c )2]·(a 2+b 2+c 2)≥(n 2a ·a +p 2b ·b +q 2c ·c )2,即(n 4a 2+p 4b 2+q 4c 2)×2≥(n 2+p 2+q 2)2=4, 所以n 4a 2+p 4b 2+q 4c2≥2.。
高考数学(理)总复习备考指导课件:选修4-5 第2节 证明不等式的基本方法
自
高
主
考
落
体
实 ·
第二节 证明不等式的基本方法
验 ·
固
明
基 础
考纲传真 了解证明不等式的基本方法:比较法、综合
考 情
法、分析法、反证法、放缩法.
典
例
探
究
课
·
时
提
作
知
业
能
菜单
高三一轮总复习理科数学 ·(安徽专用)
自
高
主
考
落 实
1.基本不等式
体 验
·
固
定理 1:如果 a,b∈R,那么 a2+b2≥ 2ab ,当且
=(x-1)22x+122+12≥0,
作 业
∴1+2x4≥2x3+x2.
菜单
高三一轮总复习理科数学 ·(安徽专用)
自
高
主
考
落 实
法二 (1+2x4)-(2x3+x2)=x4-2x3+x2+x4-2x2+1
体 验
·
·
固 基
=(x-1)2·x2+(x2-1)2≥0,
明 考
础
·
·
固 基 础
1a+1b+1c2≥6 3,并确定 a,b,c 为何值时,等号成立.
明 考 情
典
【思路点拨】 考虑待证不等式的结构特征,a2+b2+
例
探 究 ·
c2 与1a+1b+1c分别运用均值不等式;相加后,再用均值不等
课 时
提
作
知 能
式,并根据等号成立的条件确定 a,b,c 的值.源自业情典 例
2 2(a+1a),只需证 2
探
a2+a12≥ 2(a+1a),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
充分条件
已知条件 一个明显成立
_______(定义、公理或已证明的定理、性质等),从而得
出的要事证实的命题成立,这种证明方法叫做分析法,这是一
种执果索因的思考和证明方法.
【特别提醒】 1.作差比较法的实质是把两个数或式子的大小判断问 题转化为一个数(或式子)与0的大小关系.
2.用分析法证明数学问题时,要注意书写格式的规范性, 常常用“要证(欲证)…”“即要证…”“就要证…” 等分析到一个明显成立的结论,再说明所要证明的数学 问题成立.
1 2
= 1 [(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)] 2
= 1 [(a-b)2+(a-1)2+(b-1)2]≥0.
所2 以a2+b2≥ab+a+b-1.
2.已知a,b均为正数,且a+b=1,证明:(ax+by)2≤ax2+by2. 【证明】(ax+by)2-(ax2+by2) =a(a-1)x2+b(b-1)y2+2abxy, 因为a+b=1,所以,a-1=-b,b-1=-a, 故(ax+by)2-(ax2+by2)=a(a-1)x2+b(b-1)y2+2abxy =-ab(x2+y2-2xy)=-ab(x-y)2≤0,
即(a+b)2-4ab<(c+d)2-4cd.
因为a+b=c+d,a,b,c,d均为正数,所以ab>cd.
由(1)得
abcd.
(ii)若
当a>b>0时b ,a1,ab0,(a)a2b1; 当b>a>0时,b 2 b
所0以a1,ab0,(a)a 2b1. b2 b
ab
aabb ab 2 .
【规律方法】比较法证明不等式的方法与步骤 1.作差比较法 (1)作差比较法证明不等式的一般步骤: ①作差:将不等式左右两边的式子看作一个整体作差; ②变形:将差式进行变形,化简为一个常数,或通分,因 式分解变形为若干个因式的积,或配方变形为一个或几 个平方和等;
当且仅当a=b时等号成立. 所以(ax+by)2≤ax2+by2.
考向二 综合法证明不等式
【典例2】(2015·全国卷Ⅱ)设a,b,c,d均为正数,
且a+b=c+d.证明:
(1)若ab>cd,则
(2)
a是b| a-bc|<|d c.-d|的充要条件.
abcd
【解题导引】(1)由a+b=c+d及ab>cd,可证(明a b)2
定理
性质等,经过一系列的_____、_____而得出命题成立,
推理 论证 这种证明方法叫做综合法.综合法又叫_________或由
因导果法.
顺推证法
3.分析法
证明命题时,从___________出发,逐步寻求使它成立的 要证的结论
_________,直至所需条件为_________或_____________
,开方即得
( c d)2
abcd.
(2)本小题可借助第一问的结论来证明,但要分必要性与
充分性来证明.
【规范解答】(1)因为 (ab)2ab2ab,
(cd)2cd2cd. 由题设a+b=c+d,ab>cd得
因此
(ab)2(cd)2.
(2)(i)若a|a-b b |<|cc -dd |,. 则(a-b)2<(c-d)2,
考向一 比较法证明不等式
【典例1】(1)已知a,b都是正实数,且a+b=2,求证:
a 2 b 2 ≥1.
(a 2)1当ba,1b∈(0,+∞)时,求证:aabb≥(ab) .
ab 2
【解题导引】 (1)利用作差比较法证明,注意条件a+b=2的应用. (2)利用作商比较法证明.
【规范解答】(1) a2 b2 1 a 1 b1
③判断:判断商与1的大小关系,就是判断商大于1或小 于1或等于1; ④结论. (2)作商比较法的应用范围: 当被证的不等式两边含有幂式或指数式或乘积式时,一 般使用作商比较法.
易错提醒:作商比较时易忽视分母的符号而得出错误的 结论.
【变式训练】已知a>0,b>0,求证: a b a b. ba
第二节 证明不等式的基本方法
【知识梳理】 1.比较法 比较法是证明不等式最基本的方法,可分为作差比较法 和作商比较法两种.
名称
理论 依据
作差比较法
a>b⇔_a_-_b_>_0_ a<b⇔_a_-_b_<_0_ a=b⇔______
a-b=0
作商比较法
b>0, a >1⇒a>b
b<0,
b a
>1⇒a<b
③判号:根据已知条件与上述变形结果,判断不等式两 边差的正负号; ④结论:肯定不等式成立的结论. (2)作差比较法的应用范围: 当被证的不等式两端是多项式、分式或对数式时,一般 使用作差比较法.
2.作商比较法 (1)作商比较法证明不等式的一般步骤: ①作商:将不等式左右两边的式子作商; ②变形:将商式的分子放(缩),分母不变,或分子不变, 分母放(缩),或分子放(缩),分母缩(放),从而化简商式 为容易和1比较大小的形式;
a2 b1 b2 a 1a 1b1
a1(b1)
a2bab2 a2 b2 abab1
因 为a+b=a2,1所b以1
.
a2 b2
b
因为a,b都是正实a数1,所b以11ab≤a1b1.
所以
≥0,即
a2 b2 1 a 1 b1
≥1.
(a b)2 1,
4
a2 b2
a 1 b1
(当2a) =aabbab时ab2b,(a a) aa 22bb bb21a;(ab)a2b,
b
适用 适用于_具__有__多__项__式__ 类型 特征的不等式的证明
主要适用于积、商、幂、 对数、根式形式的不等 式证明
证明 作差→变形→判断符 作商→变形→判断与1的
步骤 号→得出结论
大小关系→得出结论
2.综合法
一般地,从_________出发,利用_____、公理、_____、
已知条件
定义
【证明】 a b ( a b) ba
又 (a ) >3 0( , b )3 a b (a b )a b (a b )( a b a b )2 ,
所以a b
ab0,(ab)20,
故 a b( a b)0. ba
a b a b. ba
【加固训练】 1.求证:a2+b2≥ab+a+b-1. 【证明】因为(a2+b2)-(ab+a+b-1) =a2+b2-ab-a-b+1 = (2a2+2b2-2ab-2a-2b+2)