SPI串口通信协议

合集下载

spi通信协议

spi通信协议

spi通信协议SPI(Serial Peripheral Interface)串行外设接口是一种同步的、全双工的通信协议,常用于单片机和外部设备之间的通信。

SPI协议定义了一种主从模式的通信方式,其中一个设备充当主设备,负责发起通信,而其他设备则充当从设备,负责接收和处理通信数据。

SPI通信协议由四根线组成:时钟线(CLK)、片选线(SS)、主设备发出数据(MOSI)和主设备接收数据(MISO)。

在SPI通信中,主设备通过时钟线提供时钟脉冲,通过片选线选择和控制不同的从设备。

在通信开始时,主设备将片选线拉低,选择需要通信的从设备。

然后,主设备在每个时钟脉冲中,通过MOSI线发送数据给从设备,同时从设备通过MISO线将数据发送回主设备。

SPI通信协议的通信方式为全双工,即主设备和从设备可以同时发送和接收数据。

在通信过程中,主设备和从设备通过时钟的同步来保持数据的一致性。

主设备在上升沿将数据发送到MOSI线上,而从设备在下降沿将数据从MISO线上读取。

通过时钟的同步,主从设备可以准确地发送和接收数据。

在SPI通信中,数据的传输是串行的,即每个数据位都按顺序传输。

通信的起始位和终止位可以由主设备和从设备约定。

通常情况下,通信的起始位由主设备发起,并在时钟上升沿进行传输。

终止位可以由主设备或从设备发起,并在时钟下降沿进行传输。

SPI通信协议的速度可以通过调整时钟频率来控制。

时钟频率越高,数据传输的速度越快。

然而,时钟频率的增加也会增加信号的噪声和功耗。

因此,在选择时钟频率时,需要权衡速度和可靠性的要求。

SPI通信协议还支持多个从设备的通信。

每个从设备都有一个独立的片选线,主设备可以通过选择不同的片选线来与不同的从设备进行通信。

这种多从设备的通信方式使SPI协议更加灵活,可以同时与多个外部设备进行数据交换。

综上所述,SPI通信协议是一种常用的串行通信协议,使用主从模式进行数据交换。

它具有简单、可靠、高速的特点,适用于单片机和外部设备之间的通信。

SPI协议解析高速串行通信的协议标准

SPI协议解析高速串行通信的协议标准

SPI协议解析高速串行通信的协议标准SPI(Serial Peripheral Interface)是一种高速串行通信协议,被广泛应用于各种数字设备的通信接口传输中。

本文将对SPI协议进行详细解析,介绍其协议标准,以及相关的特性和应用。

I. 介绍SPI协议是一种同步协议,常用于微控制器和外部外设之间的通信。

它通过四根信号线(时钟线、数据线、主从选择线、片选线)实现全双工通信,并且支持多主机和多从机的通信方式。

SPI协议具有高速传输、简单易用、灵活性强等特点,被广泛用于各种应用领域。

II. 协议标准SPI协议的通信规范主要包括以下几个方面:1. 时钟极性与相位SPI协议定义了两种类型的时钟极性和相位设置,分别为CPOL和CPHA。

CPOL用于控制时钟信号的极性,可以是低电平为开始(CPOL=0),或高电平为开始(CPOL=1)。

CPHA用于控制数据采样的时机,可以是时钟信号的上升沿采样(CPHA=0),或下降沿采样(CPHA=1)。

根据不同的设备要求,可以通过组合CPOL和CPHA来实现精确的时序控制。

2. 数据传输顺序SPI协议支持全双工传输,数据通信可以是单向的,也可以是双向的。

数据传输的顺序由设备的主从模式决定,主机先发送数据,然后从机进行响应。

在全双工通信中,数据可以同时双向传输,主机和从机同时发送和接收数据。

3. 主从设备选择SPI协议使用一根主从选择线(SS)来选择通信的主机或从机。

当某个从机被选中时,通过使能该从机的片选线,使其进入工作状态,其他从机则处于非工作状态。

主机可以通过控制主从选择线来选择不同的从机进行通信。

4. 数据帧格式SPI协议的数据传输是以数据帧的形式进行的。

每个数据帧由一个字节(8位)的数据组成,包括发送的数据和接收的数据。

数据帧可以是单向的,也可以是双向的。

5. 传输速率SPI协议支持各种传输速率,可以根据需要进行调整。

传输速率由时钟信号频率决定,可以通过调整时钟频率来达到不同的传输速率。

SPI协议及工作原理分析

SPI协议及工作原理分析

SPI协议及工作原理分析SPI(Serial Peripheral Interface)是一种基于同步串行通讯方式的通信协议,主要用于在嵌入式系统中连接多种外设,如存储器、传感器、显示器等。

SPI通过定义一系列的信号线路和操作规则,实现了不同设备之间的数据交换。

1.主设备与从设备之间通过多根信号线进行通信。

这些信号线包括:SCLK(串行时钟),MOSI(主设备输出,从设备输入),MISO(主设备输入,从设备输出),SS(片选信号)。

2.主设备为每一个从设备分配一个片选信号,以确定需要与哪个从设备进行通信。

3.通信开始时,主设备先拉低需要与之通信的从设备的片选信号。

然后,主设备向从设备发送数据,并通过MOSI线传输;从设备则通过MISO线将应答数据送回给主设备。

4.通过SCLK线,主设备生成的时钟信号驱动数据的传输。

时钟由主设备控制并为SCLK线提供。

5.一次传输的数据长度是8位,主设备从高位(MSB)开始发送,从设备也从高位开始接收。

传输结束后,主设备将片选信号拉高,与从设备断开连接。

1.高速传输:SPI协议在硬件层面上实现了双向全双工通信,可以同时发送和接收数据,因此传输速度相对较快。

2.灵活性:SPI协议可以支持多主设备和多从设备之间的通信。

每个设备都有独立的片选信号,可以选择与主设备进行通信。

3.简单实现:SPI协议的硬件实现相对简单,只需使用少量的引脚,并且不需要复杂的协议控制器。

4.低成本:SPI协议的硬件成本相对较低,适用于一些对成本敏感的应用场景。

5.可靠性:SPI协议通过硬件的时钟同步,可以提供可靠的数据传输,能够减少数据传输错误和丢失。

总结起来,SPI协议是一种简单、高效、灵活的通信协议,适用于各种嵌入式系统中不同设备的数据交换。

它通过定义一系列的信号线和操作规则,实现了主设备与从设备之间的同步串行通信。

SPI协议的设计使得数据传输效率比较高,并能够实现多个设备之间的并行通信,因此得到了广泛应用。

SPI、I2C、UART三种串行总线协议的区别

SPI、I2C、UART三种串行总线协议的区别

SPI、I2C、UART三种串行总线协议的区别串口进行通信的方式有两种:同步通信方式和异步通信方式1 串行通信的概念所谓“串行通信”是指外设和计算机间使用一根数据信号线(另外需要地线,可能还需要控制线),数据在一根数据信号线上一位一位地进行传输,每一位数据都占据一个固定的时间长度。

这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,当然,其传输速度比并行传输慢。

由于CPU与接口之间按并行方式传输,接口与外设之间按串行方式传输,因此,在串行接口中,必须要有“接收移位寄存器”(串→并)和“发送移位寄存器”(并→串)。

在数据输入过程中,数据1位1位地从外设进入接口的“接收移位寄存器”,当“接收移位寄存器”中已接收完1个字符的各位后,数据就从“接收移位寄存器”进入“数据输入寄存器”。

CPU从“数据输入寄存器”中读取接收到的字符。

(并行读取,即D7~D0同时被读至累加器中)。

“接收移位寄存器”的移位速度由“接收时钟”确定。

在数据输出过程中,CPU把要输出的字符(并行地)送入“数据输出寄存器”,“数据输出寄存器”的内容传输到“发送移位寄存器”,然后由“发送移位寄存器”移位,把数据1位1位地送到外设。

“发送移位寄存器”的移位速度由“发送时钟”确定。

接口中的“控制寄存器”用来容纳CPU送给此接口的各种控制信息,这些控制信息决定接口的工作方式。

“状态寄存器”的各位称为“状态位”,每一个状态位都可以用来指示数据传输过程中的状态或某种错误。

例如,用状态寄存器的D5位为“1”表示“数据输出寄存器”空,用D0位表示“数据输入寄存器满”,用D2位表示“奇偶检验错”等。

能够完成上述“串<- ->并”转换功能的电路,通常称为“通用异步收发器”(UART:Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251,16550.******第一个区别当然是名字:SPI(Serial Peripheral Interface:串行外设接口);I2C(INTER IC BUS:意为IC之间总线)UART(Universal Asynchronous Receiver Transmitter:通用异步收发器) 第二,区别在电气信号线上:SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。

spi通讯协议

spi通讯协议

spi通讯协议SPI(Serial Peripheral Interface)是一种同步串行通信协议,常用于连接微控制器和外部设备,如传感器、存储器、显示器等。

它采用主从结构,通过时钟信号和数据线进行双向通信,具有高速传输、简单灵活的特点,广泛应用于各种嵌入式系统。

SPI通信协议使用四根线进行通信:CLK(时钟线)、MOSI (主输出从输入线)、MISO(主输入从输出线)和SS(从选择线)。

时钟线由主设备产生,用于同步数据传输。

MOSI和MISO线负责数据传输,MOSI线由主设备输出数据,MISO线由从设备输出数据。

SS线由主设备控制,用于选择特定的从设备进行通信。

SPI通信协议是一种全双工通信方式,数据可以同时在MOSI和MISO线上传输。

通信过程中,主设备通过产生时钟信号控制数据传输的时序,每个时钟周期传输一个比特位。

主设备将数据送入MOSI线上,并将其与时钟信号同步,从设备通过MISO线上的数据响应主设备。

SPI通信协议中可以有多个从设备存在,但每个从设备都需要一个单独的片选信号控制。

主设备通过拉低某个从设备的片选信号(SS线),来选择特定的从设备进行通信。

通信结束后,主设备释放片选信号,并选择其他从设备进行通信。

这样可以实现多个从设备与一个主设备之间的并行通信。

SPI通信协议的速度可以根据实际需求进行调整,由主设备产生的时钟信号决定了数据传输的速率。

时钟信号的频率可以在主设备中设置,通常可以选择几十kHz至几十MHz的范围。

通信速度越快,数据传输的速率越高,但同时也会增加功耗和干扰的风险。

SPI通信协议具有以下优点:首先,它具有高速传输的优势,可以满足大部分实时性要求较高的应用场景。

其次,SPI通信协议的硬件实现比较简单,可以使用几个GPIO口实现。

最后,SPI通信协议支持全双工通信,可以同时进行数据的发送和接收,提高通信效率。

综上所述,SPI通信协议是一种快速、灵活且简单的串行通信协议,广泛应用于各种嵌入式系统。

UARTIICSPI通信协议

UARTIICSPI通信协议

UARTIICSPI通信协议UART(Universal Asynchronous Receiver Transmitter)是一种异步串行通信协议,它使用简单的电气和物理接口。

UART通信是双向的,即可以同时发送和接收数据。

在UART通信中,发送和接收数据的设备之间没有共享的时钟信号,所以数据传输的速率由设备的时钟精度和波特率决定。

UART通信只使用两根线来传输数据,分别是数据线(TX、RX)和地线。

UART通信广泛应用于各种串口设备,如计算机、微控制器、传感器等。

UART通信的简洁性和广泛适用性是它最大的优点,但它也有一些缺点,比如传输速率相对较低。

I2C(Inter-Integrated Circuit)是一种串行通信协议,用于连接微控制器和外围设备。

I2C通信是双向的,可以同时发送和接收数据。

在I2C通信中,数据传输通过两根线来完成,分别是串行数据线(SDA)和串行时钟线(SCL)。

I2C通信需要主设备和从设备之间的时钟同步,因此从设备无需使用独立的时钟源。

I2C通信具有多主机和多从机的能力,可以连接多个设备。

I2C通信广泛应用于各种外围设备,如传感器、存储器、显示屏等。

I2C通信的主要优点是使用的线数较少,可以连接多个设备,但传输速率较慢。

SPI(Serial Peripheral Interface)是一种串行通信协议,用于连接微控制器和外围设备。

SPI通信是全双工的,可以同时发送和接收数据。

在SPI通信中,数据传输通过四根线来完成,分别是主设备输出线(MOSI)、主设备输入线(MISO)、串行时钟线(SCK)和片选线(CS)。

SPI通信中的主设备通过片选线来选择从设备。

SPI通信可以实现高速数据传输,适用于要求实时性的应用。

SPI通信广泛应用于各种存储设备、显示器件和传感器等。

SPI通信的主要优点是传输速率较快,但需要的线数较多。

总的来说,UART、I2C和SPI是三种常用的串行通信协议,各自具有不同的特点和优缺点。

SPII2CUART三种串行总线协议及其区别

SPII2CUART三种串行总线协议及其区别

SPII2CUART三种串行总线协议及其区别SPI(Serial Peripheral Interface)是一种常见的串行总线协议,主要用于单片机和外部设备之间的通信。

SPI协议需要同时使用多个信号线,包括时钟信号、主从选择信号、数据输入信号和数据输出信号。

SPI协议是一种全双工的通信方式,数据可以双向传输。

SPI通信协议的特点包括以下几点:1.时钟信号:SPI协议中的设备之间使用了共享的时钟信号,时钟信号用于同步数据传输。

时钟信号由主设备控制,并且时钟频率可以根据需要调整。

SPI协议没有固定的时钟频率限制,可以根据实际需求进行调整。

2.主从选择信号:SPI协议中的从设备需要通过主从选择信号进行选择。

主设备通过拉低从设备的主从选择信号来选择与之通信的从设备。

可同时与多个从设备通信。

3.数据传输:SPI协议是一种由主设备控制的同步通信协议,数据在时钟的边沿上升移位。

主设备在时钟的上升沿将数据发送给从设备,从设备在时钟的下降沿将数据发送给主设备。

SPI协议的优势在于速度快、可靠性高,适合于需要高速传输的应用,如存储器、显示器驱动等。

I2C(Inter-Integrated Circuit)是一种常见的串行总线协议,主要用于集成电路之间的通信。

I2C协议仅需要两根信号线:序列时钟线(SCL)和串行数据线(SDA)。

I2C协议是一种半双工通信方式,数据只能单向传输。

I2C通信协议的特点包括以下几点:1.序列时钟线(SCL):SCL是在主设备和从设备之间共享的信号线,用于同步数据传输。

主设备通过拉高和拉低SCL来控制数据传输的时钟频率。

2.串行数据线(SDA):SDA负责数据的传输。

数据在SCL的上升沿或下降沿变化时,主设备或从设备将数据写入或读取出来。

3.地址寻址:I2C协议使用7位或10位的地址寻址,从设备可以根据地址进行选择。

I2C协议的优势在于可以连接多个设备,节省了引脚,适用于多设备之间的通信,如传感器、温度传感器、压力传感器等。

STM32的SPI通信总结(含DMA)

STM32的SPI通信总结(含DMA)

STM32---SPI(DMA)通信的总结(库函数操作)本文主要由7项内容介绍SPI并会在最后附上测试源码供参考:1.SPI的通信协议2.SPI通信初始化(以STM32为从机,LPC1114为主机介绍)3.SPI的读写函数4.SPI的中断配置5.SPI的SMA操作6.测试源码7.易出现的问题及原因和解决方法一、SPI的通信协议SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。

SPI 接口一般由4根线组成,CS片选信号(有的单片机上也称为NSS),SCLK时钟信号线,MISO数据线(主机输入从机输出),MOSI数据线(主机输出从机输入),CS 决定了唯一的与主设备通信的从设备,如没有CS 信号,则只能存在一个从设备,主设备通过产生移位时钟信号来发起通讯。

通讯时主机的数据由MISO输入,由MOSI 输出,输入的数据在时钟的上升或下降沿被采样,输出数据在紧接着的下降或上升沿被发出(具体由SPI的时钟相位和极性的设置而决定)。

二、以STM32为例介绍SPI通信1.STM32f103 带有3个SPI模块其特性如下:2SPI 初始化初始化SPI 主要是对SPI要使用到的引脚以及SPI通信协议中时钟相位和极性进行设置,其实STM32的工程师已经帮我们做好了这些工作,调用库函数,根据自己的需要来修改其中的参量来完成自己的配置即可,主要的配置是如下几项:引脚的配置SPI1的SCLK, MISO ,MOSI分别是PA5,PA6,PA7引脚,这几个引脚的模式都配置成GPIO_Mode_AF_PP 复用推挽输出(关于GPIO的8种工作模式如不清楚请自己百度,在此不解释),如果是单主单从, CS引脚可以不配置,都设置成软件模式即可。

通信参数的设置1.SPI_Direction_2Lines_FullDuplex把SPI设置成全双工通信;2.在SPI_Mode 里设置你的模式(主机或者从机),3.SPI_DataSize是来设置数据传输的帧格式的SPI_DataSize_8b是指8位数据帧格式,也可以设置为SPI_DataSize_16b,即16位帧格式4.SPI_CPOL和SPI_CPHA是两个很重要的参数,是设置SPI通信时钟的极性和相位的,一共有四种模式在库函数中CPOL有两个值SPI_CPOL_High(=1)和SPI_CPOL_Low ( =0). CPHA有两个值SPI_CPHA_1Edge (=0) 和SPI_CPHA_2Edge(=1)CPOL表示时钟在空闲状态的极性是高电平还是低电平,而CPHA则表示数据是在什么时刻被采样的,手册中如下:我的程序中主、从机的这两位设置的相同都是设置成1,即空闲时时钟是高电平,数据在第二个时钟沿被采样,实验显示数据收发都正常。

UARTIICSPI通信协议

UARTIICSPI通信协议

UARTIICSPI通信协议一、UART通信协议UART(通用异步收发传输)是一种简单的串行通信协议,用于在电子设备中进行数据传输。

它由一个数据线和一个时钟线组成,数据通过数据线一位一位地传输,时钟线用于同步数据的传输。

UART的特点:1.异步通信:数据以不定时的方式传输,发送端和接收端通过开始位和停止位来识别数据的起始和终止。

2.支持多种波特率:波特率是指每秒传输的位数,UART可以根据需要选择合适的波特率进行数据传输。

3.简单实现:UART协议的实现相对简单,适用于资源有限的嵌入式系统。

UART的应用:UART广泛应用于各种电子设备中,如计算机、嵌入式系统、通信设备等。

常见的应用包括串口通信、数据采集、数据传输等。

二、IIC通信协议IIC(Inter-Integrated Circuit)是由飞利浦公司推出的一种串行通信协议,用于在电子设备中进行数据传输。

它采用双线制,包括一根数据线(SDA)和一根时钟线(SCL)。

IIC的特点:1.主从结构:IIC通信中有一个主设备和一个或多个从设备,主设备负责发起和控制通信,而从设备负责接收和响应。

2.多设备共享:多个从设备可以共享同一条总线,通过设备地址来区分不同的从设备。

3.双向数据传输:SDA线既可以作为数据线,也可以作为应答线,从设备通过拉低SDA线来发送应答信号。

IIC的应用:IIC广泛应用于数字电路芯片之间的数据交换,如存储器芯片、传感器、模拟到数字转换器等。

它也常用于连接微控制器和外围设备,如显示器、触摸屏、温度传感器等。

SPI(Serial Peripheral Interface)是一种串行通信协议,用于在电子设备中进行数据传输。

它通常包括一个主设备和一个或多个从设备之间的通信。

SPI的特点:1.同步通信:SPI通信是基于时钟同步的,主设备通过时钟线控制数据的传输速度和时序。

2.多设备共享:多个从设备可以共享同一条总线,每个从设备都有一个片选信号,通过片选信号来选择特定的从设备。

SPI协议串行外设接口协议的特点与使用

SPI协议串行外设接口协议的特点与使用

SPI协议串行外设接口协议的特点与使用SPI(Serial Peripheral Interface)协议是一种串行外设接口协议,广泛应用于数字通信、嵌入式系统和电子设备等领域。

本文将重点介绍SPI协议的特点和使用方法。

一、SPI协议的特点SPI协议具有以下几个特点:1. 高速全双工传输:SPI协议支持全双工通信,主设备和从设备可以同时进行收发数据,提供了高效的数据传输能力。

2. 多设备串联:SPI协议支持多个从设备与一个主设备之间的串联连接。

每个从设备都有一个片选信号,主设备通过控制片选信号来选择与之通信的从设备,从而支持与多个从设备的通信。

3. 硬件实现简单:SPI协议的实现只需要少量的硬件资源,常用的器件如微控制器、存储器、传感器等晶片都具备SPI接口,这使得SPI 协议应用非常广泛。

4. 高灵活性的传输模式:SPI协议支持多种传输模式,可以通过调整时钟极性(CPOL)和时钟相位(CPHA)来配置传输模式。

这使得SPI协议可以适应不同的连接设备和通信要求。

5. 简单可靠的通信协议:SPI协议的通信方式相对简单,在时序控制方面具有可靠性和稳定性,能够保证数据的可靠传输。

二、SPI协议的使用方法在使用SPI协议时,需要注意以下几个步骤:1. 确定SPI主从模式:在SPI通信中,需要确定主设备和从设备的角色。

主设备负责发起通信,并控制片选信号选择与之通信的从设备;从设备则根据主设备的指令响应数据。

2. 配置时钟频率和传输模式:根据从设备的要求或通信距离,可以设置合适的时钟频率和传输模式。

时钟频率决定了SPI通信的速度,而传输模式则决定了数据采样和发送的时机。

3. 设置数据格式:SPI协议支持多种数据格式,包括位数、数据字节序等。

根据具体设备的要求,设置合适的数据格式以确保正确的数据传输。

4. 控制片选信号:SPI协议通过片选信号来选择与之通信的从设备。

在通信过程中,主设备通过控制片选信号来选择某个从设备进行通信,其他从设备则保持不选中状态。

单片机的通信协议

单片机的通信协议

单片机的通信协议一、概述通信协议是指在通信过程中,设备间遵循的规则和约定。

单片机作为一种微型计算机,常常用于嵌入式系统中。

在嵌入式系统中,单片机之间的通信协议起着至关重要的作用。

本文将针对单片机的通信协议进行全面、详细、完整和深入地探讨。

二、常见的通信协议在单片机中,常见的通信协议有以下几种:1. 串口通信协议(UART)串口通信协议是一种简单且广泛使用的通信协议,它是通过串行通信口进行数据传输的。

串口通信协议常用于单片机与电脑、传感器等外部设备之间的通信。

串口通信协议灵活、易于实现,但传输速度较慢。

2. I2C通信协议I2C通信协议是一种双线制的串行通信协议,它适用于多个设备之间的通信。

I2C 通信协议具有高效、可靠的特点,常用于单片机与外围设备之间的短距离通信。

3. SPI通信协议SPI通信协议是一种高速的全双工通信协议,它适用于单片机与外围设备之间的通信。

SPI通信协议传输速度快、稳定性好,常用于对实时性要求较高的通信场景。

4. CAN通信协议CAN通信协议是一种广泛应用于工业控制领域的通信协议,它适用于多设备之间的分布式通信。

CAN通信协议具有高可靠性、高抗干扰能力的特点,常用于单片机与控制设备之间的通信。

三、通信协议的优势和劣势不同的通信协议具有各自的优势和劣势,下面分别进行介绍:1. 串口通信协议(UART)•优势:–简单易实现,成本低廉。

–支持多种数据格式,灵活性高。

•劣势:–传输速度相对较慢。

–通信距离有限。

2. I2C通信协议•优势:–双线制结构,可同时支持多个设备。

–传输速度较快,适用于短距离通信。

•劣势:–距离限制较为严格。

–存在主从设备冲突问题。

3. SPI通信协议•优势:–高速的全双工通信。

–稳定性好,实时性强。

•劣势:–连接设备数目较少。

–通信距离有限。

4. CAN通信协议•优势:–高可靠性,抗干扰能力强。

–支持分布式通信,适用于复杂系统。

•劣势:–成本较高。

–传输速度相对较慢。

SPI通信协议详解(四)

SPI通信协议详解(四)

SPI通信协议详解(四)1.SPI协议简介板卡内不同芯⽚间通讯最常⽤的三种串⾏协议:UART、I2C、SPI,之前写过串⼝协议及其FPGA实现,今天我们来介绍SPI协议,SPI是Serial Perripheral Interface的简称,是由Motorola公司推出的⼀种⾼速、全双⼯的总线协议。

与IIC类似,SPI也是采⽤主从⽅式⼯作,主机通常为FPGA、MCU或DSP等可编程控制器,从机通常为EPROM、Flash,AD/DA,⾳视频处理芯⽚等设备。

⼀般由SCLK、CS、MOSI,MISO四根线组成,有的地⽅可能是:SCK、SS、SDI、SDO等名称,都是⼀样的含义,当有多个从机存在时,通过CS来选择要控制的从机设备。

和标准SPI类似的协议,还有TI的SSP协议,区别主要在⽚选信号的时序上。

2.4线还是3线?当我们谈到SPI时,默认情况下都是指标准的4线制Motorola SPI协议,即SCLK,MOSI,MISO和CS共4根数据线,标准4线制的好处是可以实现数据的全双⼯传输。

当只有⼀个主机和⼀个从机设备时,只需要⼀个CS,多个从机需要多个CS,各数据线的介绍:SCLK,时钟信号,时钟频率即SPI速率,和SPI模式有关MOSI,主机输出,从机输⼊MISO,主机输⼊,从机输出CS,从机设备选择,低电平有效3线制SPI,根据不同的应⽤场景,主要有以下2种类型:只有3根线:SCLK,CS和DI或DO,适⽤于单⼯通讯,主机只发送或接收数据。

只有3根线:SCLK,SDIO和CS,这⾥的SDIO作为双向端⼝,适⽤于半双⼯通讯,⽐如ADI的多款ADC芯⽚都⽀持双向传输。

在使⽤FPGA操作双向端⼝时,作为输⼊时要设置为⾼阻态z。

还有标准SPI协议的升级版,Dual SPI、Quad SPI和QPI等,这些协议不在本⼩节3线/4线制讨论的范围内,⽂章后⾯会提到。

3.4种⼯作模式既然是进⾏数据传输,双⽅就要明确从机在什么时刻去采样主机发出的数据,主机在什么时刻去读取从机发来的数据。

spi通信协议

spi通信协议

spi通信协议SPI通信协议。

SPI(Serial Peripheral Interface)是一种用于串行通信的同步协议,通常用于连接微控制器和外围设备,比如存储器芯片、传感器、显示屏等。

SPI通信协议具有高速传输、简单灵活、可靠稳定等特点,因此在各种嵌入式系统中得到广泛应用。

SPI通信协议由四根信号线组成,时钟线(SCK)、主端输出从端输入线(MOSI)、主端输入从端输出线(MISO)和片选线(SS)。

其中,时钟线由主设备控制,用于同步数据传输;MOSI和MISO分别用于主设备向从设备发送数据和从设备向主设备发送数据;片选线用于选择从设备,可以有多个从设备,通过片选线来选择具体的从设备进行通信。

SPI通信协议的工作方式是通过时钟线的上升沿或下降沿来触发数据的传输,主设备向MOSI线发送数据,从设备通过MISO线返回数据。

通信过程中,主设备和从设备通过时钟线同步,保证数据的可靠传输。

SPI通信协议支持全双工和半双工通信,可以实现双向数据传输,同时具有较高的传输速度。

在实际应用中,SPI通信协议常用于各种外围设备和微控制器之间的通信。

比如,存储器芯片可以通过SPI接口与微控制器进行数据交换,传感器可以通过SPI 接口向微控制器发送采集的数据,显示屏可以通过SPI接口接收微控制器发送的显示数据。

SPI通信协议的简单灵活、高速传输以及可靠稳定的特点,使得它在嵌入式系统中得到广泛应用。

需要注意的是,在使用SPI通信协议时,需要根据具体的外围设备和微控制器的规格来配置时钟频率、数据格式、传输模式等参数,以保证通信的稳定可靠。

此外,由于SPI通信协议没有定义数据包的格式和校验机制,因此在实际应用中需要通过软件协议来确保数据的正确传输和解析。

总的来说,SPI通信协议是一种简单灵活、高速传输、可靠稳定的串行通信协议,适用于各种外围设备和微控制器之间的数据交换。

在嵌入式系统中,SPI通信协议发挥着重要作用,为各种设备之间的通信提供了可靠的技术支持。

SPI通讯协议介绍

SPI通讯协议介绍

SPI通讯协议介绍SPI interfaceSPI接口介绍SPI 是由美国摩托罗拉公司推出的一种同步串行传输规范,常作为单片机外设芯片串行扩展接口。

SPI有4个引脚:SS(从器件选择线)、SDO(串行数据输出线)、SDI(串行数据输入线)和SCK(同步串行时钟线)。

SPI可以用全双工通信方式同时发送和接收8(16)位数据,过程如下:主机启动发送过程,送出时钟脉冲信号,主移位寄存器的数据通过SDO移入到从移位寄存器,同时从移位寄存器中的数据通过SDI移人到主移位寄存器中。

8(16)个时钟脉冲过后,时钟停顿,主移位寄存器中的8(16)位数据全部移人到从移位寄存器中,随即又被自动装入从接收缓冲器中,从机接收缓冲器满标志位(BF)和中断标志位(SSPIF)置“1”。

同理,从移位寄存器中的8位数据全部移入到主寄存器中,随即又被自动装入到主接收缓冲器中.主接收缓冲器满标志位(BF)和中断标志位(SSPIF)置“1”。

主CPU检测到主接收缓冲器的满标志位或者中断标志位置1后,就可以读取接收缓冲器中的数据。

同样,从CPU检测到从接收缓冲器满标志位或中断标志位置1后,就可以读取接收缓冲器中的数据,这样就完成了一次相互通信过程。

这里设置dsPIC30F6014为主控制器,ISD4002为从器件,通过SPI口完成通信控制的过程。

SPI总线协议SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck 的控制下,两个双向移位寄存器进行数据交换。

假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。

那么第一个上升沿来的时候数据将会是sdo=1;寄存器=0101010x。

下降沿到来的时候,sdi上的电平将所存到寄存器中去,那么这时寄存器=0101010sdi,这样在 8个时钟脉冲以后,两个寄存器的内容互相交换一次。

这样就完成里一个spi时序。

UART、IIC、SPI通信协议

UART、IIC、SPI通信协议
AT24C02的芯片地址如图,1010为固定,A0,A1 ,A2正好与芯片的1,2,3引角对应,为当前电路中 的地址选择线,三根线可选择8个芯片同时连接在电路 中,当要与哪个芯片通信时传送相应的地址即可与该 芯片建立连接,TX-1B实验板上三根地址线都为0。最 后一位R/W为告诉从机下一字节数据是要读还是写, 0为写入,1为读出。
数据通信格式
6
2021/5/27








多字节数据传输
7
2021/5/27
注:异步通信是按字符传输的,接收设备在收到起始 信号之后只要在一个字符的传输时间内能和发送设备 保持同步就能正确接收。下一个字符起始位的到来又 使同步重新校准(依靠检测起始位来实现发送与接收 方的时钟自同步的)
UART工作原理
12
2021/5/27
IIC通信协议
• IIC总线进行数据传送时,时钟信号为高电平期 间,数据线上的数据必须保持稳定,只有在时钟 线上的信号为低电平期间,数据线上的高电平或 低电平状态才允许变化。
• 起始信号:SCL线为高电平期间,SDA线由高电平 向低电平的变化表示起始信号。
• 终止信号 :SCL线为高电平期间,SDA线由低电平 向高电平的变化表示终止信号。
下降沿(线路电位由高电位变为低电位)时说明 线路有数据传输,按照约定的波特率从低位到高 位接收数据,数据接收完毕后,接着接收并比较 奇偶校验位是否正确,如果正确则通知后续设备 准备接收数据或存入缓存。
10
2021/5/27
10位串行字符收发时序图
11
2021/5/27
IIC
• IIC为串行外设接口, IIC总线是双向、两线(SCL、 SDA)、串行、多主控(multi-master)接口标准, 具有总线仲裁机制,通常两线需要接上拉电阻, 非常适合在器件之间进行近距离、非经常性的数 据通信。

校招面试题目分享(四)

校招面试题目分享(四)

面试问题:简述SPI通信协议参考回答:SPI通信协议是一种同步的串行通信协议,主要用于在微控制器、传感器、存储器等器件之间进行数据传输。

SPI通信协议的基本结构包括一个主设备和一个或多个从设备,主设备通过一个主通信线向从设备发送时钟信号,从而同步数据传输。

在SPI通信协议中,主设备控制通信的流程。

数据传输时,主设备向从设备发送一个字节,同时从设备也向主设备发送一个字节。

通信的过程中,主设备通过选择线(Slave Select)来选择需要进行通信的从设备。

当通信结束后,主设备将选择线拉高,表示通信结束。

SPI通信协议的主要特点包括:1、通信速度快:由于SPI通信协议是同步通信,因此传输速度较快。

2、简单可靠:SPI通信协议结构简单,数据传输可靠。

3、支持全双工通信:SPI通信协议支持全双工通信,主设备和从设备可以同时发送和接收数据。

4、支持多从设备:SPI通信协议支持多从设备,一个主设备可以同时与多个从设备进行通信。

SPI通信协议在嵌入式系统中广泛应用,特别是在需要高速数据传输和与多个设备通信的场合。

面试问题:简述串口通信协议参考回答:串口通信协议是一种在串行通信中用于定义数据传输格式和规则的协议。

串口通信协议常用于连接计算机与外部设备,如传感器、控制器、调制解调器等。

常见的串口通信协议有RS-232、RS-485、UART等。

这些协议定义了数据传输的电气特性、数据帧格式、传输速率、校验方式等。

在数据传输时,通信双方按照约定的协议进行通信。

数据被分为一个个固定长度的数据帧,每个数据帧包含一个起始位、数据位、校验位和停止位等。

接收方按照协议规定的方式解析数据帧,获取传输的数据。

串口通信协议具有简单、可靠、稳定的特点,但传输速率相对较慢,通常用于对数据传输速率要求不高的场合。

面试问题:简述CAN通信协议参考回答:CAN(Controller Area Network)是一种串行通信协议,主要用于在电子设备之间进行高速通信。

SPI与I2C通讯协议

SPI与I2C通讯协议

1.SPI通信协议SPI通讯协议为串行同步接口通讯协议。

SPI总线可进行全双工数据传输,SPI接口较快,传输速度高达5Mbps。

SPI连接多个从设备时,只要给每个从设备配一片选信号。

如下图,加译码器(或者不同的I/O口)选中设备,即可由一个主设备、多个从设备组成。

①SPI通信时有四种信号:SDI(数据输入)、SDO(数据输出)、SCK(时钟)、CS(从设备使能信号)。

②数据传输方向:MOSI(主出/从入)、MISO(主入/从出)。

③SPI通信时可以实现全双工,数据传输过程时先传输最高位,先将CS引脚拉低,选中从设备,然后通过SCLK输出时钟,在MOSI引脚上输出数据,同时在MISO上获得数据。

④SPI通信时主设备控制时钟,没有数据交换时时钟线要么是高电平要么是低电平,并不像UART或者IIC通信有专门的通信周期,通信起始信号,通信结束信号。

2.I2C通信协议I2C通信协议用于串行外设接口、近距离传输的器件中。

总线在传送数据过程中共有三种类型信号,分别是:开始信号、结束信号和应答信号。

①由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。

数据可以双向传送,高速I2C总线一般可达400kbps以上。

用I2C通信的芯片最常用的是EEPROM芯片。

②两线制:SCL(时钟)、SDA(数据)。

③起始信号:SCL为高电平期间,SDA由高变低后开始传送数据;④终止信号:SCL为高电平期间,SDA由低变高后结束传送数据。

⑤应答信号:接收数据的设备在接收到8bit数据后,向发送数据的设备发出应答信号(低电平脉冲),表示已收到数据。

数据传输时序图总结两种总线的异同点:①I2C总线不是全双工,两根线SCL与SDA。

SPI总线实现全双工,四根线SCK、CS、MOSI、MISO。

②I2C总线是多主机总线,通过SDA上的地址信息来锁定从设备。

SPI总线只有一个主设备,主设备通过CS片选来确定从设备。

③I2C总线传输速度在100kbps~4Mbps。

单片机中的SPI通信协议详解

单片机中的SPI通信协议详解

单片机中的SPI通信协议详解SPI(Serial Peripheral Interface)是一种同步串行通信协议,采用主从式结构,用于在嵌入式系统中实现设备之间的通信。

在单片机中,SPI通信协议被广泛应用于与外设的数据交换和设备控制。

1. SPI通信协议概述SPI通信协议由四根信号线组成,包括主设备输出(MOSI)、主设备输入(MISO)、时钟信号(SCLK)和片选信号(SS)。

其中,MOSI用于主设备向从设备传输数据,MISO用于从设备向主设备传输数据,SCLK用于同步主从设备的时钟,SS用于选择从设备。

2. SPI通信协议的传输方式SPI通信协议有两种传输模式,分别是全双工模式和半双工模式。

(1)全双工模式:主设备和从设备可以同时进行数据的发送和接收。

主设备通过MOSI将数据发送至从设备的MISO,同时从设备通过MISO将数据发送至主设备的MOSI。

这种模式下,同步时钟信号由主设备提供。

(2)半双工模式:主设备和从设备在同一时间段内只能进行数据的发送或接收。

主设备通过MOSI将数据发送至从设备的MISO,然后通过MISO将数据发送至主设备的MISO。

然后从设备向主设备发送数据的过程相同。

3. SPI通信协议的时序图SPI通信协议的时序图如下所示:```CPOL = 0 CPOL = 1------------------- -------------------| | | || Idle State | | Idle State || | | |------------------- -------------------| | | || | | |_______| |__________________| |_________Master | Slave | MasterData Send/Rec | Data Rec/Send | Data Send/Rec```其中,CPOL(Clock Polarity)和CPHA(Clock Phase)是SPI通信协议中的两个重要参数。

SPI通信的总结

SPI通信的总结

STM32---SPI通信的总结(库函数操作)本文主要由7项内容介绍SPI并会在最后附上测试源码供参考:1.SPI的通信协议2.SPI通信初始化(以STM32为从机,LPC1114为主机介绍)3.SPI的读写函数4.SPI的中断配置5.SPI的SMA操作6.测试源码7.易出现的问题及原因和解决方法一、SPI的通信协议SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。

SPI 接口一般由4根线组成,CS片选信号(有的单片机上也称为NSS),SCLK时钟信号线,MISO数据线(主机输入从机输出),MOSI数据线(主机输出从机输入),CS 决定了唯一的与主设备通信的从设备,如没有CS 信号,则只能存在一个从设备,主设备通过产生移位时钟信号来发起通讯。

通讯时主机的数据由MISO输入,由MOSI 输出,输入的数据在时钟的上升或下降沿被采样,输出数据在紧接着的下降或上升沿被发出(具体由SPI的时钟相位和极性的设置而决定)。

二、以STM32为例介绍SPI通信1.STM32f103 带有3个SPI模块其特性如下:2SPI 初始化初始化SPI 主要是对SPI要使用到的引脚以及SPI通信协议中时钟相位和极性进行设置,其实STM32的工程师已经帮我们做好了这写工作,调用库函数,根据自己的需要来修改其中的参量来完成自己的配置即可,主要的配置是如下几项:●引脚的配置SPI1的SCLK, MISO ,MOSI分别是PA5,PA6,PA7引脚,这几个引脚的模式都配置成GPIO_Mode_AF_PP 复用推挽输出(关于GPIO 的8种工作模式如不清楚请自己百度,在此不解释),如果是单主单从,CS引脚可以不配置,都设置成软件模式即可。

●通信参数的设置1.SPI_Direction_2Lines_FullDuplex把SPI设置成全双工通信;2.在SPI_Mode 里设置你的模式(主机或者从机),3.SPI_DataSize是来设置数据传输的帧格式的SPI_DataSize_8b是指8位数据帧格式,也可以设置为SPI_DataSize_16b,即16位帧格式4.SPI_CPOL和SPI_CPHA是两个很重要的参数,是设置SPI通信时钟的极性和相位的,一共有四种模式在库函数中CPOL有两个值SPI_CPOL_High(=1)和SPI_CPOL_Low ( =0). CPHA有两个值SPI_CPHA_1Edge (=0) 和SPI_CPHA_2Edge(=1)CPOL表示时钟在空闲状态的极性是高电平还是低电平,而CPHA则表示数据是在什么时刻被采样的,手册中如下:我的程序中主、从机的这两位设置的相同都是设置成1,即空闲时时钟是高电平,数据再第二个时钟沿被采样,实验显示数据收发都正常。

SPI串口通信协议

SPI串口通信协议
(3)SCLK –时钟信号,由主设备产生
(4)CS –从设备使能信号,由主设备控制
其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。
接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。
要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。
SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。
假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。
那么第一个上升沿来的时候数据将会是sdo=1;寄存器=0101010x。下降沿到来的时候,sdi上的电平将所存到寄存器中去,那么这时寄存器=0101010sdi,这样在8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成里一个spi时序。
SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。
(1)SDO –主设备数据输出,从设备数据输入
(2)SDI –主设备数据输入,从设备数据输出
数据方向和通信速度
SPI传输串行数据时首先传输最高位。波特率可以高达5Mbps,具体速度大小取决于SPI硬件。例如,Xicor公司的SPI串行器件传输速度能达到5MHz。
1.3 SPI
SPI总线包括1根串行同步时钟信号线以及2根数据线。
SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果CPOL="0",串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。SPI主模块和与之通信的外设音时钟相位和极性应该一致。SPI接口时序如图3、图4所示。
SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。SPI接口由SDI(串行数据输入),SDO(串行数据输出),SCK(串行移位时钟),CS(从使能信号)四种信号构成,CS决定了唯一的与主设备通信的从设备,如没有CS信号,则只能存在一个从设备,主设备通过产生移位时钟来发起通讯。通讯时,数据由SDO输出,SDI输入,数据在时钟的上升或下降沿由SDO输出,在紧接着的下降或上升沿由SDI读入,这样经过8/16次时钟的改变,完成8/16位数据的传输。
1.4
下面是SPI读写协议的移位过程,每个CLK都是按照四种模式要求的边沿触发方式,来移位的。下表就是每一个CLK,主机SBUFF传输数据的移位过程。
表1.
这样就完成了两个寄存器8位的交换,上面的上表示上升沿、下表示下降沿,sdi、sdo相对于主机而言的。其中ss引脚作为主机的时候,从机可以把它拉底被动选为从机,作为从机的是时候,可以作为片选脚用。根据以上分析,一个完整的传送周期是16位,即两个字节,因为,首先主机要发送命令过去,然后从机根据主机的名准备数据,主机在下一个8位时钟周期才把数据读回来。
SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。
SPI
1 SPI
SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。
SPI:高速同步串行口。3~4线接口,收发独立、可同步进行.
(3)SCLK –时钟信号,由主设备产生
(4)CS –从设备使能信号,由主设备控制
其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。
接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。
SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200.
SPI的片选可以扩充选择16个外设,这时PCS输出=NPCS,说NPCS0~3接4-16译码器,这个译码器是需要外接4-16译码器,译码器的输入为NPCS0~3,输出用于16个外设的选择。同步外设接口(SPI)是由摩托罗拉公司开发的全双工同步串行总线,该总线大量用在与EEPROM、ADC、FRAM和显示驱动器之类的慢速外设器件通信。
在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。
以AT91RM9200为例说明串口通信的全过程。
AT91RM9200的SPI接口主要由4个引脚构成:SPICLK、MOSI、MISO及/SS,其中SPICLK是整个SPI总线的公用时钟,MOSI、MISO作为主机,从机的输入输出的标志,MOSI是主机的输出,从机的输入,MISO是主机的输入,从机的输出。/SS是从机的标志管脚,在互相通信的两个SPI总线的器件,/SS管脚的电平低的是从机,相反/SS管脚的电平高的是主机。在一个SPI通信系统中,必须有主机。SPI总线可以配置成单主单从,单主多从,互为主从。
要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。
1.2 SPI
该总线通信基于主-从配置。它有以下4个信号:
MOSI:主出/从入
MISO:主入/从出
SCK:串行时钟
SS:从属选择
芯片上“从属选择”(slave-select)的引脚数决定了可连到总线上的器件数量。
在SPI传输中,数据是同步进行发送和接收的。数据传输的时钟基于来自主处理器的时钟脉冲,摩托罗拉没有定义任何通用SPI的时钟规范。然而,最常用的时钟设置基于时钟极性(CPOL)和时钟相位(CPHA)两个参数,CPOL定义SPI串行时钟的活动状态,而CPHA定义相对于SO-数据位的时钟相位。CPOL和CPHA的设置决定了数据取样的时钟沿。
相关文档
最新文档