直线与方程总复习及练习.doc
(完整版)直线与方程练习题及答案详解

直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
人教版必修二:直线与方程复习讲义及巩固练习

直线与方程知识梳理:1.倾斜角的定义(1)当直线l 与x 轴相交时,取x 轴作为基准,x 轴正方向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.(2)当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. 2.倾斜角的范围直线的倾斜角α的取值范围为0°≤α<180°. 3.直线的斜率直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α. 4.斜率与倾斜角的对应关系α=0° 0°<α<90°α=90° 90°<α<180°5.直线的斜率公式已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),则其斜率k =y 2-y 1x 2-x 1(x 1≠x 2).6.两条直线平行与斜率之间的关系设两条不重合的直线l 1,l 2,倾斜角分别为α1,α2,斜率存在时斜率分别为k 1,k 2.则对应关系如下:7.8.直线方程的五种形式(1)直线的点斜式方程: y -y 0=k(x -x 0). 由直线上一定点P 0(x 0,y 0)及斜率k 确定. (2)直线的斜截式方程:y =kx +b. 由直线的斜率k 和它在y 轴上的截距b 确定. (3)直线的两点式方程:y -y 1y 2-y 1=x -x 1x 2-x 1. 由直线上两点P 1(x 1,y 1),P 2(x 2,y 2)确定. (4)直线的截距式方程:x a +yb=1 . 由直线分别在x ,y 轴上的截距a ,b 确定.(5)直线的一般式方程: Ax +By +C =0. 当B≠0时,其斜率是-A B ,在y 轴上的截距是-CB 当B =0时,这条直线垂直于x 轴. 9.两条直线的位置关系已知直线l 1:y =k 1x +b 1与直线l 2:y =k 2x +b 2.(1) l 1∥l 2⇔k 1=k 2且b 1≠b 2. (2) l 1⊥l 2⇔k 1·k 2=-1. 10.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1)、(x 2,y 2),设P(x ,y)是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y22.11.两条直线的交点已知两直线l 1:A 1x +B 1y +C 1=0;l 2:A 2x +B 2y +C 2=0.若两直线方程组成的方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0有惟一解⎩⎪⎨⎪⎧x =x 0,y =y 0,则两直线相交,交点坐标为(x 0,y 0).12.两点间的距离公式(1)已知平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)则它们的距离|P 1P 2|=x 2-x 12+y 2-y 12.(2)两点间距离的特殊情况①原点O(0,0)与任一点P(x ,y)的距离|OP|=x 2+y 2. ②当P 1P 2∥x 轴(y 1=y 2)时,|P 1P 2|=|x 2-x 1|. ③当P 1P 2∥y 轴(x 1=x 2)时,|P 1P 2|=|y 2-y 1|. 13.点到直线的距离公式点P(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C|A 2+B 2. 14.两条平行直线间的距离公式两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0之间的距离d =|C 1-C 2|A 2+B2.巩固练习:1.如图,直线l 的倾斜角为( )A .45°B .135°C .0°D .不存在2.已知直线l的倾斜角为30°,则直线l的斜率为__________.3.已知A(2,3)、B(-1,4),则直线AB的斜率是________.4.已知三点A(a,2),B(3,7),C(-2,-9a)在同一条直线上,则实数a的值为_______.5.已知直线l1∥l2,直线l1的斜率k1=2,则直线l2的斜率k2=________.6.已知直线l1⊥l2,若直线l1的倾斜角为30°,则直线l2的斜率为________.7.直线l1的斜率为2,直线l2上有三点M(3,5),N(x,7),P(-1,y),若l1⊥l2,则x=________,y =________.8.若直线l1,l2的倾斜角分别为α1,α2,且l1⊥l2,则( )A.α1-α2=90° B.α2-α1=90° C.|α1-α2|=90° D.α1+α2=180°9.直线l过点A(-1,2),斜率为3,则直线l的方程为___________________.10.已知直线l的点斜式方程为y-1=x-1,那么直线l的斜率为________,倾斜角为________,在y 轴上的截距为________.11.(1)斜率为2,在y轴上的截距是5的直线方程为____________________;(2)倾斜角为150°,在y轴上的截距是-2的直线方程为_____________________;12.(1)经过点(1,1)且与直线y=2x+7平行的直线方程为_____________________;(2)经过点(-1,1)且与直线y=-2x+7垂直的直线方程为_________________.13.过P1(2,0),P2(0,3)两点的直线方程是_________________.14.直线2x+3y+1=0的斜率为________;在x轴上的截距为________;在y轴上的截距为________.15.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A.4x+2y=5 B.4x-2y=5 C.x+2y=5 D.x-2y=516.若直线ax+by+c=0经过第一、二、三象限,则( )A.ab>0,bc>0 B.ab>0,bc<0 C.ab<0,bc>0 D.ab<0,bc<017.在下列各种情况下,直线Ax+By+C=0(A,B不同时为零)的系数A,B,C之间各有什么关系:(1)直线与x轴平行时:_____________; (2)直线与y轴平行时:_________________;(3)直线过原点时:_________________; (4)直线过点(1,-1)时:_______________.18.直线x+2y-2=0与直线2x+y-3=0的交点坐标是______________.19.已知M(2,1),N(-1,5),则|MN|=_____________. 20.直线x -2y +1=0与2x +y -1=0的位置关系是( )A .平行B .相交且垂直C .相交但不垂直D .重合 21.原点到直线x +2y -5=0的距离为___________.22.两条平行线l 1:3x +4y -7=0和l 2:3x +4y -12=0的距离为________________. 23.若点(1,a)到直线y =x +1的距离是322,则实数a 为___________.24.已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是_________. 25.当a 为何值时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2 (1)平行; (2)垂直26.已知在△ABC 中,A ,B 的坐标分别为(-1,2),(4,3),AC 的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标; (2)求直线MN 的方程.。
直线与方程知识点与练习试题

直线与方程【知识点一:直线的方程】 (1)直线方程的几种形式(2)线段的中点坐标公式121122,(,),(,)P P x y x y 若点的坐标分别是,1212122(,)2x x x PP M x y y y y +⎧=⎪⎪⎨+⎪=⎪⎩且线段的中点的坐标为 【知识点二:直线平行与垂直】(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直;反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直.【知识点三 直线的交点坐标与距离】 (1)两条直线的交点设两条直线的方程是1111:0l A x B y C ++=, 2222:0l A x B y C ++=两条直线的交点坐标就是方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩的解。
①若方程组有唯一解,则这两条直线相交,此解就是交点的坐标; ②若方程组无解,则两条直线无公共点,此时两条直线平行. (2)几种距离两点间的距离:平面上的两点111222(,),(,)P x y P x y 间的距离公式12||PP =特别地,原点(0,0)O 与任一点(,)P x y的距离||OP =点到直线的距离:点00(,)o P x y 到直线0Ax By C ++=的距离d =两条平行线间的距离:两条平行线1200Ax By C Ax By C ++=++=与间的距离d =一、疑难辨析判断下列结论的正误.(正确的打“√”,错误的打“×”) 1.直线的倾斜角越大,其斜率越大.( )2.斜率公式k =y 2-y 1x 2-x 1,不适用于垂直于x 轴和平行于x 轴的直线.( )3.当直线的斜率不存在时,其倾斜角存在.( )4.过点P (x 1,y 1)的直线方程一定可设为y -y 1=k (x -x 1).( ) 5.直线方程的截距式x a +yb =1中,a ,b 均应大于0.( ) 二、选择题1.已知直线l 的斜率为-33,那么直线l 的倾斜角是( ) A .60° B .120° C .30° D .150°2直线l 经过原点O 和点P (-1,-1),则它的倾斜角是( )A .45°B .135°C .135°或225°D .0°3过点M (-2,m ),N(m ,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或44直线l 过点A (1,2)且不过第四象限,那么直线l 的斜率的取值范围为( )A .[0,2]B .(0,2)C .⎣⎡⎦⎤0,12D .⎝⎛⎭⎫0,12 5.中直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则 ( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 26经过点(1,3)且斜率不存在的直线方程为( )A .x =1B .x =3C .y =1D .y =3 7.已知点A (-3,4)和B (0,b ),且|AB |=5,则b 等于( )A .0或8B .0或-8C .0或6D .0或-6 8将方程3x -2y +1=0化成斜截式方程为( )A .y =23x +12B .y =32x +12C .y =32x +1D .y =23x +19直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0直线l 过点(-1,2)且与直线2x -3y +4=0平行,则l 的方程是10直线l 1:ax -y +b =0,l 2:bx +y -a =0(ab ≠0)的图象只可能是( )11已知A (2,0),B (3,3),直线l ∥AB ,则直线l 的斜率k =( )A .-3B .3C .-13D .1312已知直线l 1的斜率为0,且l 1⊥l 2,则l 2的倾斜角为( ) A .0° B .135° C .90° D .180°13点P(2,5)关于直线x+y=0的对称点的坐标是()A.(5,2) B.(2,5)C.(-5,-2) D.(-2,5)14.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线方程是()A.2x+y-8=0 B.2x-y-8=0C.2x+y+8=0 D.2x-y+8=0三填空题15已知l1⊥l2,直线l1的倾斜角为60°,则直线l2的倾斜角为________.16直线l的方程为y-m=(m-1)(x+1),若l在y轴上的截距为7,则m=________.17倾斜角为30°,且过点(0,2)的直线的斜截式方程为________.18已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.19.直线y=kx+2(k∈R)不过第三象限,则斜率k的取值范围是________.20.直角坐标平面上连接点(-2,5)和点M的线段的中点是(1,0),那么点M到原点的距离为________.21.方程mx+(m2+m)y+4=0表示一条直线,则实数m≠________.22.已知直线l1过点A(-2,3),B(4,m),直线l2过点M(1,0),N(0,m-4),若l1⊥l2,则常数m的值是____________.四、解答题23经过两条直线2x-3y+10=0和3x+4y-2=0的交点,且垂直于直线3x-2y+4=0的直线的方程为________.24.已知A(1,-1),B(2,2),C(3,0)三点,求点D的坐标,使直线CD⊥AB,且CB∥A D.限时训练1.(2,1),B (3,-1)两点连线的斜率为( )A .-2B .-12C .12D .22.直线y =2x +10,y =x +1,y =ax -2交于一点,则a 的值为( )A .12B .-12C .23D .-233.直线y =-2x -1的斜率与纵截距分别为( )A .-2,-1B .2,-1C .-2,1D .2,14若过两点P (6,m )和Q(m ,3)的直线与斜率为12的直线M N 平行,则m 的值为( )A .5B .4C .9D .05经过两条直线2x -3y +10=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线的方程为________.。
直线与方程知识点及典型例题.docx

第三章直线与方程知识点及典型例题1. 直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0 度。
因此,倾斜角的取值范围是0°≤α<180°2. 直线的斜率① 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即 k=tan 。
斜率反映直线与轴的倾斜程度。
当直线 l 与 x 轴平行或重合时 ,α=0°,k = tan0 =0;°当直线 l 与 x 轴垂直时 ,α= 90k°不,存在 .当0,90时, k0 ;当90 ,180时, k0;当90 时,k不存在。
例 .如右图,直线l 1的倾斜角 =30°,直线 l1⊥ l 2,求直线 l1和 l2的斜率 .y解: k1=tan30° =3∵ l1⊥ l2∴ k1· k2 =— 1l13∴ k2 =—32x1例:直线 x 3 y50 的倾斜角是()ol2°°°°②过两点 P1 (x1, y1)、P1(x1,y1) 的直线的斜率公式: k y2y1 ( x1x2 )x2x1注意下面四点:(1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与 P1、 P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
例 .设直线l1经过点A(m,1)、B(—3,4),直线l2经过点C(1,m)、D(—1,m+1),当 (1) l / / l2(2) l⊥l时分别求出 m 的值111※三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。
3. 直线方程① 点斜式:y y1k( x x1 )直线斜率k,且过点x1, y1注意:当直线的斜率为0°时, k=0,直线的方程是y=y1。
直线与方程复习题(含答案)

直线的倾斜角与斜率题组一直线的倾斜角1.已知直线l 过点(m,1),(m +1,tan α+1),则 ( ) A .α一定是直线l 的倾斜角 B .α一定不是直线l 的倾斜角 C .α不一定是直线l 的倾斜角 D .180°-α一定是直线l 的倾斜角 解析:设θ为直线l 的倾斜角, 则tan θ=tan α+1-1m +1-m=tan α,∴α=kπ+θ,k ∈Z ,当k ≠0时,θ≠α. 答案:C2.如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( )A .k sin α>0B .k cos α>0C .k sin α≤0D .k cos α≤0 解析:显然k <0,π2<α<π,∴cos α<0,∴k cos α>0. 答案:B题组二直线的斜率及应用3.若一个直角三角形的三条边所在直线的斜率分别为k 1,k 2,k 3,且k 1<k 2<k 3,则下列说法中一定正确的是( )A .k 1k 2=-1B .k 2k 3=-1C .k 1<0D .k 2≥0 解析:结合图形知,k 1<0. 答案:C4.(2008·浙江高考)已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________.解析:∵A 、B 、C 三点共线,∴k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,又a >0,∴a =1+ 2.答案:1+ 25.已知两点A (-1,-5),B (3,-2),若直线l 的倾斜角是直线AB 倾斜角的一半,则l 的斜率是________.解析:设直线AB 的倾斜角为2α,则直线l 的倾斜角为α,由于0°≤2α<180°,∴0° ≤α<90°,由tan2α=-2-(-5)3-(-1)=34,得tan α=13,即直线l 的斜率为13.答案:13题组三两条直线的平行与垂直6.(2009·陕西八校模拟)已知两条直线l 1:ax +by +c =0,直线l 2:mx +ny +p =0,则an =bm 是直线l 1∥l 2的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵l 1∥l 2⇒an -bm =0,且an -bm =0⇒/ l 1∥l 2,故an =bm 是直线l 1∥l 2的必要不充分条件. 答案:B7.(2009·福建质检)已知直线a 2x +y +2=0与直线bx -(a 2+1)y -1=0互相垂直,则|ab |的最小值为( )A .5B .4C .2D .1 解析:由题意知,a 2b -(a 2+1)=0且a ≠0, ∴a 2b =a 2+1,∴ab =a 2+1a =a +1a,∴|ab |=|a +1a |=|a |+1|a |≥2.(当且仅当a =±1时取“=”).答案:C8.(2010·合肥模拟)已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则ab为( )A.23 B .-23 C.13 D .-13 解析:曲线y =x 3在点P (1,1)处的切线斜率为3, 所以a b =-13.答案:D9.(2009·泰兴模拟)设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.解析:∵l 1⊥l 2,k 1=-12,∴k 2=2,又点(0,1)在直线l 1上,故点(-1,0)在直线l 2上, ∴直线l 2的方程为y =2(x +1),即2x -y +2=0. 答案:2x -y +2=0题组四直线的倾斜角和斜率的综合问题10.若关于x 的方程|x -1|-kx =0有且只有一个正实数根,则实数k 的取值范围是________.解析:数形结合.在同一坐标系内画出函数y =kx ,y =|x -1|的图象如图所示,显然k ≥1或k =0时满足题意.答案:k ≥1或k =011.(2009·青岛模拟)已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________. 解析:如图所示,k P A =6-3-1-2=-1, ∴直线P A 的倾斜角为3π4,k PB =6-2-1-(-5)=1,∴直线PB 的倾斜角为π4,从而直线l 的倾斜角的范围是[π4,3π4].答案:[π4,3π4]12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标. (1)∠MOP =∠OPN (O 是坐标原点). (2)∠MPN 是直角. 解:设P (x,0),(1)∵∠MOP =∠OPN ,∴OM ∥NP . ∴k OM =k NP .又k OM =2-02-0=1,k NP =0-(-2)x -5=2x -5(x ≠5),∴1=2x -5,∴x =7,即P 点坐标为(7,0).(2)∵∠MPN =90°,∴MP ⊥NP , ∴k MP ·k NP =-1. 又k MP =22-x (x ≠2),k NP =2x -5(x ≠5), ∴22-x ×2x -5=-1,解得x =1或x =6, 即P 点坐标为(1,0)或(6,0).直线方程题组一直线方程的求法1.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0解析:当x =1时,y =1,即所求直线过点(1,1),在直线x -2y +1=0中,令y =0,得x =-1,则(-1,0)关于直线x =1对称的点(3,0)在所求直线上,故所求方程为x +2y -3=0. 答案:D2.设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=0 解析:由于直线P A 的倾斜角为45°,且|P A |=|PB |, 故直线PB 的倾斜角为135°, 又当x =2时,y =3,即P (2,3),∴直线PB 的方程为y -3=-(x -2),即x +y -5=0. 答案:A3.(2009·安徽高考)直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是 ( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解析:由直线l 与直线2x -3y +4=0垂直,可知直线l 的斜率是-32,由点斜式可得直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.答案:A题组二直线方程中参数的确定4.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC =2CB ,则a 等于( )A .2B .1 C.45 D.53解析:设点C (x ,y ),由于AC =2CB , 所以(x -7,y -1)=2(1-x,4-y ),所以有⎩⎪⎨⎪⎧ x -7=2-2x y -1=8-2y ⇒⎩⎪⎨⎪⎧x =3y =3, 又点C 在直线y =12ax 上,所以有3=32a ,a =2.答案:A5.(2009·厦门模拟)若点(5,b )在两条平行直线6x -8y +1=0与3x -4y +5=0之间,则整数b 的值为( )A .5B .-5C .4D .-4 解析:过点(5,b )且与两直线平行的直线的方程为3x -4y +4b -15=0. 由题意知,18<4b -154<54,∴318<b <5,又b 是整数,∴b =4. 答案:C题组三直线方程的应用6.经过点P (1,4)的直线在两坐标轴上的截距都是正值,且截距之和最小,则直线的方程为 ( )A .x +2y -6=0B .2x +y -6=0C .x -2y +7=0D .x -2y -7=0解析:设直线的方程为x a +y b =1(a >0,b >0),则有1a +4b =1,∴a +b =(a +b )(1a +4b )=5+b a +4ab ≥5+4=9,当且仅当b a =4ab ,即a =3,b =6时取“=”.∴直线方程为2x +y -6=0. 答案:B7.已知A (3,0),B (0,4),动点P (x ,y )在线段AB 上移动,则xy 的最大值等于________. 解析:线段AB 的方程为x 3+y4=1(0≤x ≤3),∴1=x 3+y 4≥2xy12,∴xy ≤3. (当且仅当x =32,y =2时取“=”).答案:38.已知直线l 1:x +3y -5=0,l 2:3kx -y +1=0.若l 1,l 2与两坐标轴围成的四边形有一个外接圆,则k =________.解析:由题意知,l 1⊥l 2,∴3k -3=0,k =1. 答案:1题组四直线方程的综合问题9.(2009·上海春季高考)过点A (4,-1)和双曲线x 29-y 216=1右焦点的直线方程为________.解析:由于a 2=9,b 2=16,∴c 2=25,故右焦点为(5,0). 所求直线方程为y-1=x -54-5,即x -y -5=0.答案:x -y -5=010.函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +2n 的最小值为________.解析:由题意知,点A (-2,-1).∴2m +n =1,∴1m +2n =(1m +2n )(2m +n )=4+n m +4m n ≥4+4=8(当且仅当m =14,n =12时取“=”). 答案:811.过点M (0,1)作直线,使它被两直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,求此直线方程.解:法一:过点M 且与x 轴垂直的直线是y 轴,它和两已知直线的交点分别是⎝⎛⎭⎫0,103和(0,8),显然不满足中点是点M (0,1)的条件.故可设所求直线方程为y =kx +1,与两已知直线l 1,l 2分别交于A 、B 两点,联立方程组⎩⎪⎨⎪⎧y =kx +1,x -3y +10=0,① ⎩⎪⎨⎪⎧y =kx +1,2x +y -8=0,② 由①解得x A =73k -1,由②解得x B =7k +2, ∵点M 平分线段AB ,∴x A +x B =2x M ,即73k -1+7k +2=0.解得k =-14,故所求直线方程为x +4y -4=0.法二:设所求直线与已知直线l 1,l 2分别交于A 、B 两点. ∵点B 在直线l 2:2x +y -8=0上, 故可设B (t,8-2t ).又M (0,1)是AB 的中点, 由中点坐标公式得A (-t,2t -6). ∵A 点在直线l 1:x -3y +10=0上, ∴(-t )-3(2t -6)+10=0,解得t =4. ∴B (4,0),A (-4,2),故所求直线方程为x +4y -4=0. 12.已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程. 解:(1)法一:直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1).法二:设直线过定点(x 0,y 0),则kx 0-y 0+1+2k =0对任意k ∈R 恒成立,即(x 0+2)k -y 0+1=0恒成立, 所以x 0+2=0,-y 0+1=0,解得x 0=-2,y 0=1,故直线l 总过定点(-2,1).(2)直线l 的方程可化为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是k ≥0.(3)依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,∴A (-1+2k k ,0),B (0,1+2k ),又-1+2k k <0且1+2k >0,∴k >0,故S =12|OA ||OB |=12×1+2kk(1+2k ) =12(4k +1k +4)≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号,故S 的最小值为4,此时直线l 的方程为x -2y +4=0.直线的交点坐标与距离公式题组一两条直线的交点问题1.若直线l 1:y =kx +k +2与l 2:y =-2x +4的交点在第一象限,则实数k 的取值范围是( )A .k >-23 B .k <2C .-23<k <2D .k <-23或k >2解析:由⎩⎪⎨⎪⎧y =kx +k +2y =-2x +4得⎩⎪⎨⎪⎧x =2-kk +2y =6k +4k +2,由⎩⎪⎨⎪⎧2-kk +2>06k +4k +2>0得⎩⎪⎨⎪⎧-2<k <2,k <-2或k >-23,∴-23<k <2. 答案:C2.若y =a |x |的图象与直线y =x +a (a >0)有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1 解析:结合图象知,a 的取值范围是a >1.答案:B题组二有关直线的对称问题3.直线l :4x +3y -2=0关于点A (1,1)对称的直线方程为 ( ) A .4x +3y -4=0 B .4x +3y -12=0 C .4x -3y -4=0 D .4x -3y -12=0解析:在对称直线上任取一点P (x ,y ),则点P 关于点A 对称的点P ′(x ′,y ′)必在直线l 上.由⎩⎪⎨⎪⎧x ′+x =2y ′+y =2得P ′(2-x,2-y ), ∴4(2-x )+3(2-y )-2=0,即4x +3y -12=0. 答案:B4.(2010·临沂质检)已知A (3,1)、B (-1,2),若∠ACB 的平分线在y =x +1上, 则AC 所在直线方程是____________.解析:设点A 关于直线y =x +1对称的点A ′(x 0,y 0), 则⎩⎪⎨⎪⎧y 0-1x 0-3=-1y 0+12=x 0+32+1,解得⎩⎪⎨⎪⎧x 0=0y 0=4,即A ′(0,4).∴直线A ′B 的方程为2x -y +4=0.由⎩⎪⎨⎪⎧ 2x -y +4=0y =x +1得⎩⎪⎨⎪⎧x =-3y =-2,得C (-3,-2). ∴直线AC 的方程为x -2y -1=0. 答案:x -2y -1=0题组三有关距离问题5.点(1,cos θ)到直线x sin θ+y cos θ-1=0的距离是14(0°≤θ≤180°),那么θ= ( )A .150°B .30°或150°C .30°D .30°或210°解析:由题意知14=|sin θ+cos 2θ-1|sin 2θ+cos 2θ=|sin θ-sin 2θ|,又0≤sin θ≤1,∴sin 2θ-sin θ+14=0,(sin θ-12)2=0,∴sin θ=12,又0°≤θ≤180°,∴θ=30°或150°. 答案:B6.(2010·武汉模拟)已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于( )A.79 B .-13 C .-79或-13 D.79或13 解析:由题意知|6a +3+1|a 2+1=|-3a -4+1|a 2+1,解得a =-13或a =-79.答案:C7.(2010·孝昌模拟)若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则线段AB 的中点M 到原点的距离的最小值为 ( ) A .23 B .3 3 C .3 2 D .4 2解析:由题意知,M 点的轨迹为平行于直线l 1、l 2且到l 1、l 2距离相等的直线l ,其方程为x +y -6=0,∴M 到原点的距离的最小值为d =62=3 2. 答案:C题组四综 合 问 题 8.(2009·哈尔滨模拟)若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( ) A .(1,-2) B .(1,2) C .(-1,2) D .(-1,-2)解析:因为k ,-1,b 三个数成等差数列,所以k +b =-2, 即b =-k -2,于是直线方程化为y =kx -k -2, 即y +2=k (x -1),故直线必过定点(1,-2). 答案:A 9.点P (-1,3)到直线l :y =k (x -2)的距离的最大值等于( )A .2B .3C .3 2D .2 3 解析:直线l :y =k (x -2)的方程化为kx -y -2k =0, 所以点P (-1,3)到该直线的距离为 d =3|k +1|k 2+1=3k 2+2k +1k 2+1=31+2k k 2+1,由于2k k 2+1≤1,所以d ≤32, 即距离的最大值等于3 2.答案:C10.已知点A (3,1),在直线x -y =0和y =0上分别有点M 和N 使△AMN 的周长最短,求点M 、N 的坐标.解:A (3,1)关于y =x 的对称点A1(1,3),A (3,1)关于y =0的对称点A 2(3,-1),△AMN 的周长最小值为|A 1A 2|,|A 1A 2|=25,A 1A 2的方程:2x +y -5=0.A 1A 2与x -y =0的交点为M ,由⎩⎪⎨⎪⎧2x +y -5=0x -y =0⇒M (53,53), A 1A 2与y =0的交点N ,由⎩⎪⎨⎪⎧ 2x +y -5=0y =0⇒N (52,0). 11.已知n 条直线:l 1:x -y +C 1=0,C 1=2且l 2:x -y +C 2=0,l 3:x -y +C 3=0,…,l n :x -y +C n =0,其中C 1<C 2<C 3<…<C n ,这n 条平行直线中,每相邻两条之间的距离顺次为2,3,4,…,n .(1)求C n ;(2)求x -y +C n =0与x 轴、y 轴围成的图形的面积.解:(1)由已知条件可得l 1:x -y +2=0,则原点O 到l 1的距离d 1=1,由平行直线间的距离可得原点O 到l n 的距离d n 为1+2+…+n =n (n +1)2, ∵C n =2d n ,∴C n =2·n (n +1)2. (2)设直线l n :x -y +C n =0交x 轴于点M ,交y 轴于点N ,则△OMN 的面积S △OMN =12|OM |·|ON |=12(C n )2=n 2(n +1)24.。
直线与方程知识点归纳及对应习题

直线与方程一、直线倾斜角和斜率000180α≤<. k=tan α(α不为090)。
经过两点),(),,(222111y x P y x P (21x x ≠)的直线的斜率公式是1212x x y y k --=(21x x ≠) 练习:1、直线x +y -5=0的倾斜角为( )A. -30°B. 60°C. 120°D. 150°2、在下列四个命题中,正确的共有()①坐标平面内的任何一条直线均有倾斜角和斜率;②直线的倾斜角的取值范围是[0,π];③若一条直线的斜率为tanα,则此直线的倾斜角为α;④若一条直线的倾斜角为α,则此直线的斜率为tanα.A. 0个B. 1个C. 2个D. 3个二、直线的方程1、直线方程的几种形式点斜式:)(11x x k y y -=- (斜率存在) ; 两点式:121121x x x x y y y y --=--),(2121y y x x ≠≠其中 斜截式:b kx y += (斜率存在) ; 截距式:1=+by a x (0a ≠≠且b 0) 一般式:0=++C By Ax )不同时为其中0,(B A 练习:3、过点(-1,2)且在坐标轴上的截距相等的直线的一般式方程是______.4、 已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x-y-5=0,∠B 平分线BN 所在直线方程为x-2y-5=0.求:(1)顶点B 的坐标;(2)直线BC 的方程.5、已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在的直线方程为2x-y-5=0,AC 边上的高BH 所在直线的方程为x-2y-5=0.(1)求直线BC 的方程;(2)求直线BC 关于CM 的对称直线方程.2、 两条直线位置关系的判定:已知 0:11=++C By Ax l , 0:22=++C By Ax l ,则:(1)0212121=+⇔⊥B B A A l l(2)1212211221//(1)-00(0);l l A B A B BC B C B ⇔=-≠≠且斜率存在,即1221(2)0(0).AC A C B -≠=斜率存在,即(3)1l 与2l 相交01221≠-⇔B A B A练习:6、若直线l1:(m-2)x-y-1=0与直线l2:3x-my=0互相平行,则m 的值为( )A. 0或或3B. 0或3C. 0或D. 或37、已知直线ax+3y-1=0与直线3x-y+2=0互相垂直,则a=( )A. -3B. -1C. 1D. 38、已知两条直线l1(3+m )x+4y=5-3m ,l2 2x+(5+m )y=8.当m 分别为何值时,l1与l2:(1)相交?(2)平行?(3)垂直?3、几种直线系方程(1)过两条直线0:1111=++C y B x A l , 0:2222=++C y B x A l 的交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ(λ为参数),其中直线l 2不在直线系中. (2)平行于直线0n 0(n )Ax By C Ax By C ++=++=≠的直线可表示为(3)垂直于直线0m 0Ax By C Bx Ay ++=-+=的直线可表示为练习:9、过直线x+y-3=0和2x-y=0的交点,且与直线2x+y-5=0垂直的直线方程是()A. 4x+2y-3=0B. 4x-2y+3=0C. x+2y-3=0D. x-2y+3=010、已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M ,(1)求过点M 且到点P (0,4)的距离为2的直线l 的方程;(2)求过点M 且与直线l3:x+3y+1=0平行的直线l 的方程.三、直线的交点坐标与距离公式1.两条直线的交点2.几种距离平面上的两点),(),,(222111y x P y x P 间的距离公式21221221)()(y y x x P P-+-= 点),(00y x P 到直线0:=++C By Ax l 的距离2200B A CBy Ax d +++=(直线方程要化为一般式)两条平行线0:11=++C By Ax l , 0:22=++C By Ax l 间的距离2212B A C C d +-=(直线化为系数相同的一般式)练习:11、原点到直线y=-x+的距离为( ) A. 1 B. C. 2 D.12、直线3x+4y-12=0和6x+8y+6=0间的距离是______ .13、若直线l1:x-2y+1=0与l2:2x+ay-2=0平行,则l1与l2的距离为( ) A. B. C. D.3、 直线l 上一动点P 到两个定点A 、B 的距离“最值问题”:(1) 在直线l 上求一点P ,使PB PA +取得最小值:“同侧对称异侧连”(2)在直线l 上求一点P 使PB PA -取得最大值:“异侧对称同侧连” (3) 22PB PA +的最值:函数思想“转换成一元二次函数,找对称轴”。
第三章 直线与方程知识点归纳及练习题

1.直线的倾斜角与斜率(1)倾斜角与斜率从“形”和“数”两方面刻画了直线的倾斜程度,但倾斜角α是角度(0°≤α<180°),是倾斜度的直接体现;斜率k是实数(k∈(-∞,+∞)),是倾斜程度的间接反映.在解题的过程中,用斜率往往比用倾斜角更方便.(2)倾斜角与斜率的对应关系:当α=90°时,直线的斜率不存在;当α≠90°时,斜率k=tan α,且经过两点A(x1,y1),B(x2,y2)(x1≠x2)的直线的斜率k AB=y2-y1 x2-x1.(3)当α由0°→90°→180°(不含180°)变化时,k由0(含0)逐渐增大到+∞(不存在),然后由-∞(不存在)逐渐增大到0(不含0).2.解题时要根据题目条件灵活选择,注意其适用条件:点斜式和斜截式不能表示斜率不存在的直线,两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直和过原点的直线,一般式虽然可以表示任何直线,但要注意A2+B2≠0,必要时要对特殊情况进行讨论.3.由两直线的方程判断两条直线是否平行或垂直时,要注意条件的限制;同时已知平行或垂直关系求直线的方程或确定方程的系数关系时,要根据题目条件设出合理的直线方程.4.学习时要注意特殊情况下的距离公式,并注意利用它的几何意义,解题时往往将代数运算与几何图形直观分析相结合.5.直线系方程直线系方程是解析几何中直线方程的基本内容之一,它把具有某一共同性质的直线族表示成一个含参数的方程,然后根据直线所满足的其他条件确定出参数的值,进而求出直线方程.直线系方程的常见类型有:(1)过定点P (x 0,y 0)的直线系方程是:y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0),也就是平常所提到的直线的点斜式方程;(2)平行于已知直线Ax +By +C =0的直线系方程是:Ax +By +λ=0(λ是参数,λ≠C );(3)垂直于已知直线Ax +By +C =0的直线系方程是:Bx -Ay +λ=0(λ是参数);(4)过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ是参数,当λ=0时,方程变为A 1x +B 1y +C 1=0,恰好表示直线l 1;当λ≠0时,方程表示过直线l 1和l 2的交点,但不含直线l 2).6.“对称”问题的解题策略对称问题主要有两大类:一类是中心对称,一类是轴对称.(1)中心对称①两点关于点对称,设P 1(x 1,y 1),P (a ,b ),则P 1(x 1,y 1)关于P (a ,b )对称的点为P 2(2a -x 1,2b -y 1),即P 为线段P 1P 2的中点.特别地,P (x ,y )关于原点对称的点为P ′(-x ,-y ).②两直线关于点对称,设直线l 1,l 2关于点P 对称,这时其中一条直线上任一点关于点P 对称的点在另一条直线上,并且l 1∥l 2,P 到l 1,l 2的距离相等.(2)轴对称①两点关于直线对称,设P 1,P 2关于直线l 对称,则直线P 1P 2与l 垂直,且线段P 1P 2的中点在l 上,这类问题的关键是由“垂直”和“平分”列方程.②两直线关于直线对称,设l 1,l 2关于直线l 对称.当三条直线l 1,l 2,l 共点时,l 上任意一点到l 1,l 2的距离相等,并且l 1,l 2中一条直线上任意一点关于l 对称的点在另外一条直线上;当l 1∥l 2∥l 时,l 1与l 间的距离等于l 2与l 间的距离.题型一 直线的倾斜角和斜率倾斜角和斜率分别从“形”和“数”两个方面刻画了直线的倾斜程度.倾斜角α与斜率k 的对应关系和单调性是解题的易错点,应引起特别重视.(1)对应关系①α≠90°时,k =tan α.②α=90°时,斜率不存在.(2)单调性当α由0°→90°→180°(不含180°)变化时,k 由0(含0)逐渐增大到+∞,然后由-∞逐渐增大到0(不含0).经过A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)两点的直线的斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2),应注意其适用的条件x 1≠x 2,当x 1=x 2时,直线斜率不存在.例1 已知坐标平面内的三点A (-1,1),B (1,1),C (2,3+1).(1)求直线AB ,BC ,AC 的斜率和倾斜角;(2)若D 为△ABC 的边AB 上一动点,求直线CD 的斜率k 的取值范围.跟踪训练1 求经过A (m,3)、B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围.题型二 直线方程的五种形式直线方程的五种形式在使用时要根据题目的条件灵活选择,尤其在选用四种特殊形式的方程时,注意其适用条件,必要时要对特殊情况进行讨论.求直线方程的方法一般是待定系数法,在使用待定系数法求直线方程时,要注意直线方程形式的选择及适用范围,如点斜式、斜截式适合直线斜率存在的情形,容易遗漏斜率不存在的情形;两点式不含垂直于坐标轴的直线;截距式不含垂直于坐标轴和过原点的直线;一般式适用于平面直角坐标系中的任何直线.因此,要注意运用分类讨论的思想.在高考中,题型以选择题和填空题为主,与其他知识点综合时,一般以解答题的形式出现.例2 求与直线y =43x +53垂直,并且与两坐标轴围成的三角形的面积为24的直线l 的方程.跟踪训练2 过点P (-1,0),Q (0,2)分别作两条互相平行的直线,使它们在x 轴上截距之差的绝对值为1,求这两条直线的方程.题型三直线的位置关系两条直线的位置关系有相交(特例垂直)、平行、重合三种,主要考查两条直线的平行和垂直.通常借助直线的斜截式方程来判断两条直线的位置关系.解题时要注意分析斜率是否存在,用一般式方程来判断,可以避免讨论斜率不存在的情况.例3已知两条直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分别满足下列条件的a、b的值.(1)直线l1过点(-3,-1),并且直线l1与直线l2垂直;(2)直线l1与直线l2平行,并且坐标原点到l1、l2的距离相等.跟踪训练3(1)求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程;(2)已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1,l2之间的距离为 5.求直线l1的方程.题型四最值问题方法梳理1.构造函数求解最值:利用函数的定义域、奇偶性、周期性、单调性等性质特征及复合函数的结构特征求解函数的最值.2.结合直线方程的相关特征,保证在符合条件的范围内求解最值.3.结合图象,利用几何性质帮助解答.数学思想函数思想:通常情况下求解最值问题可以转化为对函数的研究,函数思想给我们一种最严谨的眼光来看待问题,是一种探求普遍真理的思想,本章中求最大距离、最大面积等问题时常常会用到函数思想.例4已知△ABC,A(1,1),B(m,m)(1<m<4),C(4,2).当m为何值时,△ABC的面积S最大?跟踪训练4 如图,一列载着危重病人的火车从O 地出发,沿北偏东α度(射线OA )方向行驶,其中sin α=1010.在距离O 地5a (a 为正常数)千米,北偏东β度的N 处住有一位医学专家,其中sin β=35,现120指挥中心紧急征调离O 地正东p 千米B 处的救护车,先到N 处载上医学专家,再全速赶往乘有危重病人的火车,并在C 处相遇.经计算,当两车行驶的路线与OB 所围成的三角形OBC 的面积S 最小时,抢救最及时.(1)在以O 为原点,正北方向为y 轴的直角坐标系中,求射线OA 所在的直线方程;(2)求S 关于p 的函数关系式S =f (p );(3)当p 为何值时,抢救最及时?题型五 分类讨论思想分类讨论思想其实质就是将整体问题化为部分问题来解决.在解题过程中,需选定一个标准,根据这个标准划分成几个能用不同形式解决的小问题,从而使问题得到解决.在本章中涉及到分类讨论的问题主要是由直线的斜率是否存在及直线的点斜式、斜截式、两点式、截距式的局限性引起的分类讨论问题.例5 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R )在两坐标轴上的截距相等,求直线l 的方程.题型六 数形结合思想根据数学问题的条件和结论的内在联系,将抽象的数学语言与直观的图形相结合,使抽象思维与形象思维相结合. 例6 已知直线l 过点P (-1,2),且与以A (-2,-3),B (3,0)为端点的线段相交,求直线l 的斜率的取值范围.1.在平面解析几何中,用代数知识解决几何问题时应首先挖掘出几何图形的几何条件,把它们进一步转化为代数方程之间的关系求解.2.关于对称问题,要充分利用“垂直平分”这个基本条件,“垂直”是指两个对称点的连线与已知直线垂直,“平分”是指:两对称点连成线段的中点在已知直线上,可通过这两个条件列方程组求解.3.涉及直线斜率问题时,应从斜率存在与不存在两方面考虑,防止漏掉情况.。
(完整word版)直线与直线方程复习

☞ 知识网络☞ 课堂学习题型1:直线的倾斜角与斜率考点1:直线的倾斜角例1、过点),2(a M -和)4,(a N 的直线的斜率等于1, 则a 的值为( )A 、1B 、4C 、1或3D 、1或4 变式1:已知点)3,1(A 、)33,1(-B ,则直线AB 的倾斜角是( )A 、︒60B 、︒30C 、︒120D 、︒150变式2:已知两点()2,3A ,()1,4-B ,求过点()1,0-C 的直线l 与线段AB 有公共点求直线l 的斜率k 的取值范围考点2:直线的斜率及应用斜率公式1212x x y y k --=与两点顺序无关,即两点的横纵坐标在公式中的前后次序相同;斜率变化分两段,2π是分界线,遇到斜率要特别谨慎 例1:已知R ∈θ,则直线013sin =+-y x θ的倾斜角的取值范围是( )A 、[]︒30,0B 、[)︒︒180,150C 、[][)︒︒︒180,15030,0D 、[]︒︒150,30例2、三点共线——若三点()2,2A 、()0,a B 、()b C ,0,()0≠ab 共线,则ba 11+的值等于变式2:若()3,2-A 、()2,3-B 、⎪⎭⎫⎝⎛m C ,21三点在同一直线上,则m 的值为( )A 、2-B 、2C 、21-D 、21 考点3:两条直线的平行和垂直对于斜率都存在且不重合的两条直线21l l 、,2121//k k l l =⇔,12121-=⋅⇔⊥k k l l .若有一条直线的斜率不存在,那么另一条直线的斜率是多少要特别注意例、已知点()2,2M ,()2,5-N ,点P 在x 轴上,分别求满足下列条件的P 点坐标。
(1)OPN MOP ∠=∠(O 是坐标原点);(2) MPN ∠是直角题型2:直线方程名称 方程的形式 已知条件局限性点斜式 ()00x x k y y -=-()11y x 、为直线上一定点,k 为斜率不包括垂直于x 轴的直线斜截式 b kx y +=k 为斜率,b 是直线在y 轴上截距两点式 121121x x x x y y y y --=--(21x x ≠且21y y ≠) ()11y x 、,()22y x 、是直线上两定点不包括垂直于x 轴和y 轴的直线截距式 1=+by a x b a 、是直线在轴上的非零截距一般式0=++C By Ax B A 、不同时为C B A 、、为系数;无限制,可表示任何位置的直线考点1:直线方程的求法例1、下列四个命题中的真命题是( )A 、经过定点()00y x P 、的直线都可以用方程()00x x k y y -=-表示B 、经过任意两个不同的点()111y x P 、和()222y x P 、的直线都可以用方程()()()()121121y y x x x x y y --=--表示C 、不经过原点的直线都可以用方程1=+bya x 表示D 、经过定点()b A ,0的直线都可以用方程b kx y +=表示 例2、若()()0134422=+⋅+-+⋅-y m m x m 表示直线,则( )A 、2±≠m 且1≠m ,3≠mB 、2±≠mC 、1≠m 且3≠mD 、m 可取任意实数 变式1:直线0632=--y x 在x 轴上的截距为a ,在y 轴上的截距为b ,则( )A 、2,3==b aB 、2,3-==b aC 、2,3=-=b aD 、2,3-=-=b a变式2:过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是 ;在两轴上的截距相等的直线方程变式3:过点)1,2(-P ,在x 轴和y 轴上的截距分别为b a 、,且满足b a 3=的直线方程是 考点2:用一般式方程判定直线的位置关系两条直线位置关系的判定,已知直线0:1111=++C y B x A l ,0:2222=++C y B x A l ,则(1) 0//122121=-⇔B A B A l l 且01221≠-C A C A (或01221≠-C B C B )或212121C C B B A A ≠=(222C B A 、、均0≠)(2) 0212121=+⇔⊥B B A A l l(3) 1l 与2l 重合01221=-⇔B A B A 且01221=-C A C A (或01221=-C B C B )或212121C C B B A A ==(222C B A 、、均0≠)(4) 1l 与2l 相交01221≠-⇔B A B A 或记2121B B A A ≠(22B A 、均0≠)例1、已知直线01=++ny mx 平行于直线0534=++y x ,且在y 轴上的截距为31,则n m 、的值分别为( )A 、4和3B 、4-和3C 、4-和3-D 、4和3- 变式1:直线02:1=++y kx l 和032:2=--y x l , 若21//l l ,则1l 在两坐标轴上的截距的和( )A 、1-B 、2-C 、2D 、6 例2、已知直线02=+-a y ax 与直线()012=++-a ay x a 互相垂直,则a 等于( )A 、1B 、0C 、1或0D 、1或1-变式2:两条直线0=-+n y mx 和01=++my x 互相平行的条件是( )A 、1=mB 、1±mC 、⎩⎨⎧-≠=11n m D 、⎩⎨⎧-≠-=11n m 或⎩⎨⎧≠=11n m变式3:两条直线03=++m y x 和03=+-n y x 的位置关系是( )A 、平行B 、垂直C 、相交但不垂直D 、与n m 、的取值有关 变式4:原点在直线l 上的射影是()1,2-P ,则直线l 的方程为( )A 、02=+y xB 、042=-+y xC 、052=+-y xD 、032=++y x 例3、三条直线01=+-y x 、042=-+y x 、02=+-y ax 共有两个交点,则a 的值为( )A 、1B 、2C 、1或2-D 、1-或2 变式5:直线()0523=+++-k y k x 与直线()0232=+-+y k kx 相交,则实数k 的值为( )A 、1≠k 或9≠kB 、1≠k 或9-≠kC 、1≠k 且9≠kD 、1≠k 且9-≠k 变式6:直线x y 3=绕原点逆时针旋转︒90,再向右平移1个单位,所得到的直线为 ( )A 、1133y x =-+ B 、113y x =-+ C 、33y x =- D 、113y x =+ 考点3:直线方程的应用1、直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线( )A 、 1133y x =-+B 、 113y x =-+ C 、 33y x =- D 、 113y x =+2、直线方程b kx y +=中,当[]4,3-∈x 时,[]13,8-∈y ,此直线方程▲直线l 过点()12,M 且分别与y 、x 轴正半轴交于B A ,两点,O 为坐标原点,(1)当AOB ∆的面积最小时,求直线l 的方程;(2)当MB MA ⋅取得最小时,求直线l 的方程;(3)当OB OA +最小时,求直线l 的方程。
直线与方程专题复习(教师)

直线与方程专题复习一、知识归类1.直线的倾斜角与斜率(1)直线的倾斜角与斜率是反映直线倾斜程度的两个量,它们的关系是 ()900≠α.(2)直线倾斜角的范围是 .(3)直线过))(,(),,(21222111x x y x P y x P ≠两点的斜率公式为:=k .2.两直线垂直与平行的判定(1)对于不重合的两条直线21,l l ,其斜率分别为21,k k ,,则有:⇔21//l l ;⇔⊥21l l .(2)当不重合的两条直线的斜率都不存在时,这两条直线 ;当一条直线斜率为0,另一条直线斜率不存在时,两条直线 .3.直线方程的几种形式4.几个距离公式(1)两点),(),,(222111y x P y x P 之间的距离公式是:=||21P P .(2)点),(00y x P 到直线0:=++c By Ax l 的距离公式是:=d .(3)两条平行线0:,0:21=++=++c By Ax l c By Ax l 间的距离公式是:=d .二、典型例题题型一:直线的倾斜角与斜率问题例1 已知坐标平面内三点)13,2(),1,1(),1,1(+-C B A .(1)求直线AC BC AB 、、的斜率和倾斜角.(2)若D 为ABC ∆的边AB 上一动点,求直线CD 斜率k 的变化范围.变式训练1、直线x cos α+3y +2=0的倾斜角的范围是( )A.⎣⎢⎡⎭⎪⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,5π6B.⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,πC.⎣⎢⎡⎦⎥⎤0,5π6D.⎣⎢⎡⎦⎥⎤π6,5π6 2、直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1本题小结:数形结合运动变化是解决数学问题的常用思想方法和观点.当直线绕定点由与x 轴平行(或重合)位置按逆时针方向旋转到与y 轴平行(或垂直)时,斜率由零逐渐增大到∞+(即斜率不存在);按顺时针方向旋转到与y 轴平行(或垂直)时,斜率由零逐渐减少到∞-(即斜率不存在).这种方法即可定性分析倾斜角与斜率的关系,也可以定量求解斜率和倾斜角的取值范围.题型二:直线的平行与垂直问题例2 已知直线l 的方程为01243=-+y x ,求下列直线l '的方程, l '满足(1)过点)3,1(-,且与l 平行; (2)过)3,1(-,且与l 垂直.变式训练1、已知直线x +a 2y +6=0与直线(a -2)x +3ay +2a =0平行,则a 的值为( )A .0或3或-1B .0或3C .3或-1D .0或-12、已知过点A (-2,m )和点B (m ,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3,若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8本题小结:与直线0=++C By Ax 平行的直线方程可设为01=++C By Ax ,再由其 他条件列方程求出1C ;与直线0=++C By Ax 垂直的直线方程可设为 02=+-C Ay Bx ,再由其他条件求出2C .题型三:直线的交点、距离问题例3 已知直线l 经过点A )4,2(,且被平行直线01:01:21=--=+-y x l y x l 与所截得的线段的中点M 在直线03=-+y x 上,求直线l 的方程.变式训练、已知点P (2,-1),试求过点P 且与原点的距离最大的直线l 的方程,并求出原点到直线的最大距离.本题小结:解此类题目常用的方法是待定系数法,然后由题意列出方程求参数;也可综合应用直线的有关知识,充分发挥几何图形的直观性,判断直线的特征,然后由已知条件写出直线的方程.题型四:直线方程的应用例4 已知直线0355:=+--a y ax l .(1)求证:不论a 为何值,直线l 总经过第一象限;(2)为使直线不经过第二象限,求a 的取值范围.变式训练、已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4).(1)证明直线l 过某定点,并求该定点的坐标.(2)当点P 到直线l 的距离最大时,求直线l 的方程(1)证明 直线l 的方程可化为a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3, ∴直线l 恒过定点(-2,3).(2)设直线l 恒过定点A (-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大. 又直线PA 的斜率k PA =4-33+2=15, ∴直线l 的斜率k l =-5.故直线l 的方程为y -3=-5(x +2),即5x +y +7=0.本题小结:含有一个参数的直线方程,一般是过定点的,这里对一般式灵活变形后发现问题是解决问题的关键,在变形后特点还不明显的情况,可研究直线过定点.【检测反馈】1.若直线过点),32,4(),2,1(+则此直线的倾斜角是( ).(A )030 (B )045(C )060 (D ) 0902.过点)1,1(E 和)0,1(-F 的直线与过点)0,2(k M -和点)4,0(k N 直线的位置关系是( ) (A )平行(B )重合(C )平行或重合(D )相交或重合3.过点)3,1(-且垂直于直线032=+-y x 的直线方程为( ).(A)012=-+y x (B) 052=-+y x (C) 052=-+y x (D) 072=+-y x4.已知点),1,3(),2,1(B A 则到B A ,两点距离相等的点的坐标满足的条件是( ).(A )524=+y x (B )524=-y x (C )52=+y x (D )52=-y x5.直线),0,0(0:,0:21b a b a a y bx l b y ax l ≠≠≠=+-=+-在同一直角坐标系中的图形大致是( ).6.直线l 被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是原点O ,则直线l 的方程为. 7.已知,0>a 若平面内三点),3(),,2(),,1(32a C a B a A -共线,则a = . 8.过点),4,1(A 且纵、横截距的绝对值相等的直线共有( ).(A )1条 (B) 2条 (C) 3条 (D) 4条9.已知直线l 过点)1,1(P ,且被平行直线01343=--y x 与0743=+-y x 截得的线段长为24,求直线l 的方程.﹡﹡10、在直线l :3x -y -1=0上求一点P ,使得P 到A (4,1)和B (0,4)的距离之差最大.解:设点B 关于l 的对称点为B ′,连接AB ′并延长交l 于P ,此时的P 满足|PA |-|PB |的值最大.设B ′的坐标为(a ,b ),则k BB ′·k l =-1,A 12即b -4a·3=-1. ∴a +3b -12=0.①又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且在直线l 上,∴3×a 2-b +42-1=0, 即3a -b -6=0.②①②联立,解得a =3,b =3,∴B ′(3,3). 于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0. 解⎩⎪⎨⎪⎧3x -y -1=0,2x +y -9=0,得⎩⎪⎨⎪⎧x =2,y =5, 即l 与AB ′的交点坐标为P (2,5).总结、反思:。
2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习一. 基础小题练透篇1.过点P (3 ,-23 )且倾斜角为135°的直线方程为( ) A .3x -y -43 =0 B .x -y -3 =0 C .x +y -3 =0 D .x +y +3 =02.直线l :x +3 y +1=0的倾斜角的大小为( ) A .30° B .60° C .120° D .150°3.[2023ꞏ河北示范性高中开学考]“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 4.[2023ꞏ广东韶关月考]过点M ()-1,-2 ,在两坐标轴上截距相等的直线方程为( ) A .x +y +3=0B .2x -y =0或x +y +3=0C .y =x -1D .x +y +3=0或y =x -15.[2023ꞏ湖北省质量检测]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|=( )A .23B .25C .2D .46.[2023ꞏ杭州市长河高级中学期中]已知直线l 过点P ()2,4 ,且在y 轴上的截距是在x 轴上的截距的两倍,则直线l 的方程为( )A .2x -y =0B .2x +y -8=0C .2x -y =0或x +2y -10=0D .2x -y =0或2x +y -8=07.经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.8.[2023ꞏ宁夏银川月考]已知直线3x +4y +3=0与直线6x +my -14=0平行,则它们之间的距离是________.二. 能力小题提升篇1.[2023ꞏ江苏泰州调研]已知直线l :x +()a -1 y +2=0,l 2:3 bx +y =0,且l 1⊥l 2,则a 2+b 2的最小值为( )A .14B .12C .22 D .13162.[2023ꞏ河北邢台市月考]下列四个命题中,正确的是( ) A .直线3x +y +2=0在y 轴上的截距为2 B .直线y =0的倾斜角和斜率均存在C .若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行D .若两直线的倾斜角相等,则它们的斜率也一定相等3.[2023ꞏ福建宁德质量检测]已知点A (-2,1)和点B 关于直线l :x +y -1=0对称,斜率为k 的直线m 过点A 交l 于点C .若△ABC 的面积为2,则实数k 的值为( )A .3或13 B .0C .13 D .34.[2023ꞏ云南大理检测]设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 面积的最大值是( )A .25B .5C .52 D .55.[2023ꞏ重庆黔江检测]在平面直角坐标系中,△ABC 的一个顶点是A (-3,1),∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,则直线BC 的方程为________.6.[2023ꞏ云南楚雄期中]已知平面上一点M (5,0),若直线l 上存在点P ,使|PM |=4,则称该直线为点M 的“相关直线”,下列直线中是点M 的“相关直线”的是________.(填序号)①y =x +1;②y =2;③4x -3y =0;④2x -y +1=0.三. 高考小题重现篇1.[2020ꞏ全国卷Ⅱ]若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A .55 B .255 C .355 D .4552.[2020ꞏ全国卷Ⅲ]点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B .2 C .3 D .2 3.[北京卷]在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .44.[2019ꞏ江苏卷]在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.四. 经典大题强化篇1.[2023ꞏ武汉调研]已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.2.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求:(1)点A 和点C 的坐标; (2)△ABC 的面积.参考答案一 基础小题练透篇1.答案:D答案解析:因为直线的倾斜角为135°,所以直线的斜率为k =tan 135°=-1, 所以直线方程为y +23 =-(x -3 ),即x +y +3 =0. 2.答案:D答案解析:由l :x +3 y +1=0可得y =-33 x -33 ,所以直线l 的斜率为k =-33 ,设直线l 的倾斜角为α,则tan α=-33,因为0°≤α<180°,所以α=150°. 3.答案:A答案解析:∵直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直,∴(2λ-3)(λ+1)-λ(λ+1)=0,∴λ=3或-1, 而“λ=3”是“λ=3或-1”的充分不必要条件,∴“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的充分不必要条件,故选A. 4.答案:B答案解析:当所求直线不过原点时,设所求直线的方程为x +y =a , 因为直线过点M ()-1,-2 ,代入可得a =-3,即x +y +3=0; 当所求直线过原点时,设直线方程为y =kx ,因为直线过点M ()-1,-2 ,代入可得k =2,即2x -y =0, 综上可得,所求直线的方程为2x -y =0或x +y +3=0. 故选B. 5.答案:B答案解析:设直线x +2y +1=0与直线3x -4y +c 2=0的交点为A ,则⎩⎪⎨⎪⎧x +2y +1=03x -4y +c 2=0 ,解得⎩⎪⎨⎪⎧x =-c 2+25y =c 2-310,故A (-c 2+25 ,c 2-310 ),同理设直线x +2y +1=0与直线3x -4y +c 1=0的交点为B ,则B (-c 1+25 ,c 1-310),设直线x +2y +3=0与直线3x -4y +c 1=0的交点为C ,则C (-c 1+65 ,c 1-910),设直线x +2y +3=0与直线3x -4y +c 2=0的交点为D ,则D (-c 2+65 ,c 2-910),由菱形的性质可知BD ⊥AC ,且BD ,AC 的斜率均存在,所以k BD ·k AC =-1,则c 1-310-c 2-910-c 1+25-⎝ ⎛⎭⎪⎫-c 2+65 ·c 2-310-c 1-910-c 2+25-⎝ ⎛⎭⎪⎫-c 1+65 =-1,即36-(c 2-c 1)24[]16-(c 2-c 1)2 =-1,解得|c 1-c 2|=25 .6.答案:D答案解析:若直线l 经过原点,满足条件,可得直线l 的方程为y =2x ,即2x -y =0;若直线l 不经过原点,可设直线l 的方程为x a +y2a=1()a ≠0 ,把点P ()2,4 代入可得2a +42a =1,解得a =4,∴直线l 的方程为x 4 +y8=1,即2x +y -8=0,综上可得直线l 的方程为2x -y =0或2x +y -8=0. 故选D.7.答案:4x -3y +9=0答案解析:方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =-53,y =79即交点为(-53 ,79),∵所求直线与直线3x +4y -7=0垂直,∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79 =43 (x +53),即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 可解得交点为(-53 ,79 ),代入4x -3y +m =0,得m =9,故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为(2x +3y +1)+λ(x -3y +4)=0,即(2+λ)x +(3-3λ)y +1+4λ=0 ① 又∵所求直线与直线3x +4y -7=0垂直,∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.8.答案:2答案解析:∵直线3x +4y +3=0与直线6x +my -14=0平行,∴m =8,6x +8y -14=0可化为3x +4y -7=0.∴它们之间的距离为|3-(-7)|32+42=2.二 能力小题提升篇1.答案:A答案解析:l 1⊥l 2,则3 b +a -1=0,∴a =1-3 b , 所以a 2+b 2=()1-3b 2+b 2=4b 2-23 b +1,二次函数的抛物线的对称轴为b =--232×4 =34,当b =34 时,a 2+b 2取最小值14. 故选A. 2.答案:B答案解析:对于直线3x +y +2=0,令x =0得y =-2,所以直线3x +y +2=0在y 轴上的截距为-2,故A 错误;直线y =0的倾斜角为0,斜率为0,存在,故B 正确;若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行或重合,所以C 错误;若两直线的倾斜角为90°,则它们的斜率不存在,所以D 错误.故选B. 3.答案:B答案解析:设点B (x ,y ),则⎩⎪⎨⎪⎧y -1x +2=1,x -22+y +12-1=0,解得⎩⎪⎨⎪⎧x =0,y =3, 则B (0,3).由已知可得直线m 的方程为y -1=k (x +2),与方程x +y -1=0联立, 解得x =-2k k +1,y =3k +1k +1 ,则C ⎝ ⎛⎭⎪⎫-2k k +1,3k +1k +1 . 由已知可得直线AB 的方程为y -1=x +2,即y =x +3,且|AB |=22 , 则点C 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪-2k k +1-3k +1k +1+32 =|2-2k |2|k +1|, 所以S △ABC =12 ×22 ·|2-2k |2|k +1|=2,即|1-k |=|k +1|(k ≠-1),解得k =0. 4.答案:C答案解析:动直线x +my =0,令y =0,解得x =0,因此此直线过定点A (0,0). 动直线mx -y -m +3=0,即m (x -1)+3-y =0,令x -1=0,3-y =0,解得x =1,y =3,因此此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12 ×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.设|PA |=a ,|PB |=b ,∵|AB |=12+32 =10 ,∴a 2+b 2=10.又a 2+b 2≥2ab ,∴ab ≤5,当且仅当a =b =5 时等号成立.∴S △PAB =12 |PA |·|PB |=12 ab ≤52.综上,△PAB 的面积最大值是52.5.答案:2x -y -5=0答案解析:因为∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,所以直线AB 与直线BC 关于直线x =0对称,直线AC 与直线BC 关于直线y =x 对称.则点A (-3,1)关于直线x =0对称的点A ′(3,1)在直线BC 上,点A (-3,1)关于直线y =x 对称的点A″(1,-3)也在直线BC上,所以由两点式得直线BC的方程为y+31+3=x-13-1,即y=2x-5.6.答案:②③答案解析:①点M到直线y=x+1的距离d=|5-0+1|12+(-1)2=32>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故①不是点M 的“相关直线”.②点M到直线y=2的距离d=|0-2|=2<4,即点M与该直线上的点的距离的最小值小于4,所以该直线上存在点P,使|PM|=4成立,故②是点M的“相关直线”.③点M到直线4x-3y=0的距离d=|4×5-3×0|42+(-3)2=4,即点M与该直线上的点的距离的最小值等于4,所以该直线上存在点P,使|PM|=4成立,故③是点M的“相关直线”.④点M到直线2x-y+1=0的距离d=|2×5-0+1|22+(-1)2=1155>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故④不是点M的“相关直线”.三 高考小题重现篇1.答案:B答案解析:设圆心为P(x0,y0),半径为r,∵圆与x轴,y轴都相切,∴|x0|=|y0|=r,又圆经过点(2,1),∴x0=y0=r且(2-x0)2+(1-y0)2=r2,∴(r-2)2+(r-1)2=r2,解得r=1或r=5.①r=1时,圆心P(1,1),则圆心到直线2x-y-3=0的距离d=|2-1-3|22+(-1)2=255;②r=5时,圆心P(5,5),则圆心到直线2x-y-3=0的距离d=|10-5-3|22+(-1)2=255.2.答案:B答案解析:方法一 点(0,-1)到直线y=k(x+1)的距离为d=|k·0-(-1)+k|k2+1=|k+1|k2+1,注意到k2+1≥2k,于是2(k2+1)≥k2+2k+1=|k+1|2,当且仅当k=1时取等号.即|k+1|≤k2+1·2,所以d=|k+1|k2+1≤2,故点(0,-1)到直线y=k(x+1)距离的最大值为2.方法二 由题意知,直线l:y=k(x+1)是过点P(-1,0)且斜率存在的直线,点Q(0,-1)到直线l的最大距离在直线l与直线PQ垂直时取得,此时k=1,最大距离为|PQ|=2.3.答案:C答案解析:由题意可得d=|cos θ-m sin θ-2|m2+1=|m sin θ-cos θ+2|m2+1=⎪⎪⎪⎪⎪⎪m2+1(mm2+1sin θ-1m2+1cos θ)+2m2+1=|m2+1sin (θ-φ)+2|m2+1(其中cos φ=mm2+1,sin φ=1m2+1),∵-1≤sin (θ-φ)≤1,∴|2-m 2+1|m 2+1 ≤d ≤m 2+1+2m 2+1 ,m 2+1+2m 2+1 =1+2m 2+1,∴当m =0时,d 取最大值3.4.答案:4答案解析:通解 设P ⎝ ⎛⎭⎪⎫x ,x +4x ,x >0,则点P 到直线x +y =0的距离d =|x +x +4x |2=2x +4x 2 ≥22x ·4x 2=4,当且仅当2x =4x,即x =2 时取等号,故点P 到直线x +y =0的距离的最小值是4.优解 由y =x +4x (x >0)得y ′=1-4x 2 ,令1-4x2 =-1,得x =2 ,则当点P 的坐标为(2 ,32 )时,点P 到直线x +y =0的距离最小,最小值为|2+32|2=4. 四 经典大题强化篇1.答案解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|(2+λ)2+(1-2λ)2 =3,即2λ2-5λ+2=0,∴λ=2或12.∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10 .2.答案解析:(1)由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0,解得点A (-1,0).又直线AB 的斜率为k AB =1,且x 轴是∠A 的平分线,故直线AC 的斜率为-1,所以AC 所在的直线方程为y =-(x +1). 已知BC 边上的高所在的直线方程为x -2y +1=0,故直线BC 的斜率为-2,故BC 所在的直线方程为y -2=-2(x -1).解方程组⎩⎪⎨⎪⎧y =-(x +1),y -2=-2(x -1), 得点C 的坐标为(5,-6).(2)因为B (1,2),C (5,-6),所以|BC |=(1-5)2+(2+6)2=45 ,点A(-1,0)到直线BC:y-2=-2(x-1)的距离为d=|2×(-1)-4|5=65,所以△ABC的面积为12×45×65=12.。
直线与方程知识点总结和练习

必修二第三章直线与方程的知识点倾斜角与斜率1. 当直线与x 轴相交时,我们把x 轴 方向与直线向 方向之间所成的角叫做直线l 的倾斜角. 直线的倾斜角α的范围是 .2. 斜率:①倾斜角为α,则 k= ( 条件: )②已知直线上两点1122(,),(,)P x y P x y ,则有k= ( 条件: ) 特别地是,当12x x =,12y y ≠时,直线与x 轴 ,斜率k 注意:当090α︒<<︒时,斜率 ,随着α的增大,斜率 ; 当90180α︒<<︒时,斜率 ,随着α的增大,斜率 。
两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)平行 (2)垂直2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴; 两条直线中一条斜率不存在,另一条斜率为0,则它们垂直。
直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为 .2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为 .3. 点斜式和斜截式不能表示 的直线.4. 注意:00y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为 ,2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为 .3. 两点式不能表示 的直线;截距式不能表示 的直线4. 线段12P P 中点坐标公式 直线的一般式方程1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程 ,斜率为 ,y 轴上截距为 .2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为 ;与直线0Ax By C ++=垂直的直线,可设所求方程为 . 3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)平行 (2)垂直 .两条直线的交点坐标1. 求交点:解方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. 两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为: .点到直线的距离及两平行线距离1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为 .2.两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式 ,对称问题1、关于点的对称:实质考察:2、关于线的对称:要点:一.选择题1.(安徽高考) 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y xB. 052=-+y xC. 052=-+y xD. 072=+-y x 3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. -8 C. 2 D. 104.(安徽高考)直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( )A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=0 5.设直线ax+by+c=0的倾斜角为θ,切sin cos 0θθ+=则a,b 满足 ( )A. a+b=1B. a-b=1C. a+b=0D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( )A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 ( )A (-2,1)B (2,1)C (1,-2)D (1,2)9. 已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或2 10、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( ) A 、K 1﹤K 2﹤K3 B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 211、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 12. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <0 13. 原点关于x - 2y + 1 = 0的对称点的坐标为( )A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54 D. ⎪⎭⎫ ⎝⎛54 ,52- 二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________.2.已知A(-4,-6),B(-3,-1),C(5,a)三点共线,则a 的值为3.经过两直线11x+3y -7=0和12x+y -19=0的交点,且与A (3,-2),B (-1,6)等距离的直线的方程是 。
(精品)直线与方程知识点+经典习题

直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k 斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1. ②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y ab+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:错误!各式的适用范围 错误!特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数) (二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中.(6)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否. (7)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的一组解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与方程总复习及练习
知识点:
1.倾斜角:X 轴正向与直线L 向上方向之间所成的角叫做直线的倾斜角。
001800<≤α
2. 斜率:αtan =k
1
212x x y y k --= 斜率k 与倾斜角 α之间的关系:
⎪⎪⎩⎪⎪⎨⎧<=⇒<<⇒⇒=>=⇒<<==⇒=0tan 18090)(tan 900tan 90000tan 0a k a k a a a k a k a 不存在不存在
3.两直线平行与垂直的判定:
①两直线平行的判定:
(1)1 ∥2 ⇔ k 1=k 2 且21b b ≠或两条直线的斜率都不存在。
(2)1 ∥2 ⇔12210A B A B -=且12210B C B C -≠
②两直线垂直的判定:
(1)1 ⊥2 ⇔ k 1·k 2=-1或一条直线斜率为0,另一条直线斜率不存在。
(2)1 ⊥2 ⇔12120A A B B +=
4.直线的方程:
(1)点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。
(2)斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。
(3)两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。
(4)截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+b
y a x ,它不包括垂直于坐标轴的直线和过原点的直线。
(5)一般式:任何直线均可写成0Ax By C ++=(A,B 不同时为0)的形式。
注意:设直线方程的一些常用技巧:(1)知直线纵截距b ,常设其方程为y kx b =+;
(2)知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线);(3)知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;(4)与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=;
(5)与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.
提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。
5. 点点、点线、线线的距离:
(1)点),(111y x P 到点),(222y x P 的距离221221)()(y y x x d -+-=
(2)点00(,)P x y 到直线0Ax By C ++=
的距离d =;
(3)两平行线1122:0,:0l Ax By C l Ax By C ++=++=
间的距离为d =。
6.过定点的直线系:
过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为
()()0222111=+++++C y B x A C y B x A λ(λ为参数)
,其中直线2l 不在直线系中。
例1.下列命题正确的有 :
①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应;
②倾斜角的范围是:0°≤α<180°,且当倾斜角增大时,斜率也增大;
③过两点A(1,2),B(m,-5)的直线可以用两点式表示;
④过点(1,1),且斜率为1的直线的方程为111
y x -=-; ⑤直线Ax+By+C=0(A,B 不同时为零),当A,B,C 中有一个为零时,这个方程不能化为截距式. ⑥若两直线平行,则它们的斜率必相等;
⑦若两直线垂直,则它们的斜率相乘必等于-1.
例 2.若直线062:1=++y ax l 与直线01)1(:2
2=-+-+a y a x l ,则12l l 与相交时,a=_________;21//l l 时,a=__________; 21l l ⊥时,a=________ .
例3.求满足下列条件的直线方程:
(1)经过点P(2,-1)且与直线2x+3y+12=0平行;(2)经过点Q(-1,3)且与直线x+2y-1=0垂直;(3)经过点R(-2,3)且在两坐标轴上截距相等;(4)经过点N(-1,3)且在x 轴的截距与它在y 轴上的截距的和为零.
例4.已知直线l 过点(1,2),且与x ,y 轴正半轴分别交于点A 、B
(1)求△AOB 面积为4时l 的方程;
(2)求l
在两轴上截距之和为+3l 的方程。
例5、已知△ABC 的两个顶点A(-10,2),B(6,4),
垂心是H(5,2),求顶点C 的坐标.
例6、求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程.
巩固练习:
1、在下列四个命题中,正确的共有( )
(1)坐标平面内的任何一条直线均有倾斜角和斜率
(2)直线的倾斜角的取值范围是[]π,0
(3)若一条直线的斜率为αtan ,则此直线的倾斜角为α
(4)若一条直线的倾斜角为α,则此直线的斜率为αtan
A .0个
B .1个
C .2个
D .3个
2、若直线0=++c by ax 在第一、二、三象限,则( )
A .0,0>>bc ab
B .0,0<>bc ab
C .0,0><bc ab
D .0,0<<bc ab
3、已知)3,4(),2,1(N M ,直线l 过点)1,2(-P 且与线段MN 相交,那么直线l 的斜率k 的
取值范围是( )
A .[]2,3-
B .⎥⎦
⎤⎢⎣⎡-21,31 C .(][)+∞⋃-∞-,23, D .⎪⎭⎫⎢⎣⎡+∞⋃⎥⎦⎤ ⎝⎛-∞-,2131, 4、已知直线01=-+by ax 在y 轴上的截距为1-,且它的倾斜角是直线033=--y x 的倾斜角的2倍,则( )
A .1,3==b a
B .1,3-==b a
C .1,3=-=b a
D .1,3-=-=b a
5、若直线l 与两条直线07,1=--=y x y 分别交于P 、Q 两点,线段PQ 的中点 坐标为)1,1(-,则l 的方程是( )
A .0523=--y x
B .0532=--y x
C .0132=++y x
D .0123=-+y x
6、点)3,1(-P 在直线l 上的射影为)1,1(-Q ,则直线l 的方程为
7、点(3,9)关于直线3100x y +-=对称的点的坐标是________________
8、点A (x ,y )满足x+y-3=0,[]21x ,∈,求x y 的最大值和最小值
9、 ①求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程;
②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是105
3的直线的方程.
10、直线l 经过点)3,4(-P 与x 轴、y 轴分别交于A 、B 两点,且|AP|:|PB|=3:5,求直线l 的方程
11、已知两点A (2,3)、B (4,1),直线l :x +2y -2=0,在直线l 上求一点P
(1)使|P A |+|PB |最小; (2)使|P A |-|PB |最大
12、求经过点()1,2A ,并且在2个坐标轴上的截距绝对值相等的直线方程。