初中数学 弧、弦、圆心角

合集下载

人教版九上数学第24章 圆 24.1.3 弧 弦 圆心角教案+学案

人教版九上数学第24章 圆 24.1.3 弧 弦 圆心角教案+学案

人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.3 弧、弦、圆心角教案【教材内容】1.圆心角的概念;2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等;3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.【教学目标】1.了解圆心角的概念;2.掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.【教学重点】通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.【教学难点】弧、弦、圆心角之间的相等关系是论证同圆或等圆中弧相等、角相等、线段相等的主要依据.【教学过程设计】一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究知识点一:圆心角 【类型一】圆心角的识别例1 如图所示的圆中,下列各角是圆心角的是( )A .∠ABCB .∠AOBC .∠OABD .∠OCB 解析:根据圆心角的概念,∠ABC 、∠OAB 、∠OCB 的顶点分别是B 、A 、C ,都不是圆心O ,因此都不是圆心角.只有B 中的∠AOB 的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.知识点二:圆心角的性质 【类型一】利用圆心角的性质求角例2 如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角例3 如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明例4 如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB .又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO .∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.知识点四:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 例5 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么? (2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?解析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到AB =CD 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=12AB ,CF=12CD ∴AE=CF 又∵OA=OC ∴Rt △OAE ≌Rt △OCF ∴OE=OF(2)如果OE=OF ,那么AB=CD ,AB =CD ,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CDD∴AE=12AB,CF=12CD∴AB=2AE,CD=2CF∴AB=CD∴AB=CD,∠AOB=∠COD方法归纳:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.三、教学小结师生一起总结本节学习知识要点:1.圆心角的概念;2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.【板书设计】24.1 圆的有关性质24.1.3 弧、弦、圆心角1.圆心角的识别2.圆心角的性质3.弧、弦、圆心角之间的关系4.运用弧、弦、圆心角的关系进行证明与计算【课堂检测】1.(1)在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.在同圆或等圆中,如果两条弧相等,那么它们所对的相等,•所对的弦也.(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的也相等.2. 如图,在⊙O中,AB=AC∠ACB=60 °,求证:∠AOB=∠BOC=∠AOC3. 如图,AB,CD是⊙O的两条弦。

人教版初三数学上册 弧、弦、圆心角、圆周角 讲义

人教版初三数学上册 弧、弦、圆心角、圆周角 讲义

弧、弦、圆心角、圆周角之间的关系解题技巧:1、顶点在圆心的角叫圆心角,顶点在圆周上的角叫圆周角2、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等(知道一组相等,就可以推出其它三组相等)3、圆周角定理:同弧所对圆周角是圆心角的一半4、直径所对圆周角等于90°,90°的圆周角所对的弦是直径例1、下列说法正确的是_________________①相等的圆周角所对的弧相等②相等的弦所对的弧相等③等弦对等弧④等弧对等弦例2、如图,点A、B、C在⊙O上,OC、OB是半径,∠COB=100°,则∠A的度数等于()A、20°B、40°C、50°D、100°例3、如图所示,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A、30°B、45°C、60°D、75°例4、如图,AB是⊙O的直径,BD=BC,∠A=25°,则∠BOD的度数为()A、12.5°B、30°C、40°D、50°例5、如图所示,AB是⊙的直径,AC=CD=BD,E是⊙O上一点,连接CE、DE,则∠CED的度数为()A、25°B、30°C、40°D、60°例6、如图,⊙O的直径是AB,∠C=35°,则∠DAB的度数是()A、60°B、55°C、50°D、45°例7、如图,经过原点的⊙P与x轴,y轴分别交于A(3,0)、B(0,4)两点,点C是OB上一点,且BC=2,则AC=____1、如图,AB和CD都是⊙O的直径,∠AOC=52°,则∠C的度数是()A、22°B、26°C、38°D、48°2、如图,AB为⊙O直径,∠ABC=25°,则∠D的度数为()A、70°B、75°C、60°D、65°3、如图,AB是⊙O的直径,若∠BDC=30°,则∠AOC的度数为()A、80°B、100°C、120°D、无法确定4、如图,⊙O中弦AB等于半径OA,点C在优弧AB上运动,则∠ACB的度数是()A、30°B、45°C、60°D、无法确定5、如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()A、60°B、45°C、30°D、22.5°6、如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAB的度数是()A、35°B、55°C、65°D、70°7、如图,AB是⊙O的直径,CD是⊙O的弦。

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的第三节“弧、弦、圆心角”是整个章节的重要组成部分。

本节内容主要介绍了弧、弦、圆心角的定义及其相互关系,旨在让学生理解和掌握圆的基本概念和性质,为后续学习圆的周长、面积等知识打下基础。

教材从生活实例出发,引出弧、弦、圆心角的概念,并通过观察、操作、猜想、证明等环节,让学生体会圆的性质。

教材注重培养学生的空间想象能力、逻辑思维能力和动手操作能力,使其能够运用所学知识解决实际问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和观察能力有一定的提高。

但是,对于弧、弦、圆心角的定义和相互关系,学生可能还存在一定的模糊认识。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生从生活实际出发,理解并掌握弧、弦、圆心角的性质。

三. 说教学目标1.知识与技能:理解和掌握弧、弦、圆心角的定义及其相互关系,能够运用所学知识解决实际问题。

2.过程与方法:通过观察、操作、猜想、证明等环节,培养学生的空间想象能力、逻辑思维能力和动手操作能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养其积极思考、合作探究的学习态度。

四. 说教学重难点1.教学重点:弧、弦、圆心角的定义及其相互关系。

2.教学难点:圆心角、弧、弦之间的数量关系。

五. 说教学方法与手段1.教学方法:采用问题驱动、观察猜想、证明验证的教学方法,引导学生主动探究,提高其思维能力。

2.教学手段:利用多媒体课件、实物模型等辅助教学,增强学生的直观感受。

六. 说教学过程1.导入:从生活实例出发,引出弧、弦、圆心角的概念,激发学生的学习兴趣。

2.新课讲解:讲解弧、弦、圆心角的定义,通过观察、操作、猜想、证明等环节,让学生理解并掌握其相互关系。

3.例题讲解:分析并解决典型例题,让学生运用所学知识解决实际问题。

4.课堂练习:布置针对性的练习题,巩固所学知识。

2022年人教版九年级数学上册第二十四章 圆教案 弧、弦、圆心角

2022年人教版九年级数学上册第二十四章 圆教案  弧、弦、圆心角

24.1 圆的有关性质24.1.3 弧、弦、圆心角一、教学目标【知识与技能】1.理解圆心角概念和圆的旋转不变性.2.掌握在同圆或等圆中,圆心角、弧、弦之间的关系,以及它们在解题过程中的应用.【过程与方法】通过学生动手或计算机演示使学生感受圆的旋转不变性,发展学生的观察分析能力.【情感态度与价值观】培养学生勇于探索的良好习惯,激发学生探究,发现数学问题的兴趣.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】圆心角、弧、弦之间的关系,并能运用此关系进行有关计算和证明.【教学难点】理解圆的旋转不变性和定理推论的应用.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课熊宝宝要过生日了!要把蛋糕平均分成四块,你会分吗?分成八块呢?(出示课件2)(二)探索新知探究一圆心角的概念教师问:圆是中心对称图形吗?它的对称中心在哪里?(出示课件4)学生思考并观察教师操作进而得出结论.操作1:将圆绕圆心旋转180°后,得到的图形与原图形重合吗?由此你得到什么结论呢?(出示课件5)结论:圆是中心对称图形.操作2:把圆绕圆心旋转任意一个角度呢?仍与原来的圆重合吗?(出示课件6)结论:圆是旋转对称图形,具有旋转不变性.出示课件6:教师问:观察在⊙O中,这些角有什么共同特点?(出示课件7)学生答:顶点在圆心上.由此得到:(出示课件8)1.圆心角:顶点在圆心的角,如∠AOB.2.圆心角∠AOB所对的弧AB⌒.3.圆心角∠AOB所对的弦为AB.练一练:判别下列各图中的角是不是圆心角,并说明理由.(出示课件9)生观察后独立解答:①顶点在圆内,但不是圆心,不是圆心角;②顶点在圆外,不是圆心角;③顶点在圆周上,不是圆心角;④是圆心角.探究二圆心角、弧、弦之间的关系如图,在⊙O中,将圆心角∠AOB绕圆心O旋转到∠A'OB'的位置,你能发现哪些等量关系?为什么?(出示课件10)学生观察后口答:∠AOB =∠A ′OB ′;得到:AB =A 'B '. 在⊙O 中,如果∠AOB= ∠COD,那么,AB 与CD,弦AB 与弦CD 有怎样的数量关系?(出示课件11)学生观察思考后,教师归纳:由圆的旋转不变性,可得:在⊙O 中,如果∠AOB=∠COD,那么,,弦AB=弦CD.如图,在等圆中,如果∠AOB =∠CO ′ D,你发现的等量关系是否依然成立?为什么?(出示课件12)学生观察思考后,教师归纳:通过平移和旋转将两个等圆变成同一个圆,可得,如果∠AOB=∠COD,那么,AB=CD,师生共同归纳:在同圆或等圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等.(出示课件13)''.AB A B ︵︵即出示课件14:教师问:定理“在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.”中,可否把条件“在同圆或等圆中”去掉?为什么?学生思考后口答:不可以,如图.师生共同归纳,进一步强化认知:(出示课件15)教师强调:弧、弦与圆心角关系定理的推论(出示课件16,17)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优弧和劣弧分别相等.关系结构图出示课件18:例1 如图,AB是⊙O 的直径,BC=CD=DE.∠COD=35°,求∠AOE 的度数.学生独立思考后,师生共同解决.解:,∴∠=∠=∠,BOC COD DOE=35=∴∠=-⨯75.180335AOE巩固练习:判断正误.(出示课件19)(1)等弦所对的弧相等.()(2)等弧所对的弦相等.()(3)圆心角相等,所对的弦相等.()生思考后口答:⑴×⑵×⑶×出示课件20:例2 如图,在⊙O中,,∠ACB=60°.求证:∠AOB=∠BOC=∠AOC.学生思考交流后,师生共同解答.证明:∴AB=AC,△ABC是等腰三角形.又∵∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠BOC=∠AOC.出示课件21,22:巩固练习:填一填.如图,AB、CD是⊙O的两条弦.(1)如果AB=CD,那么________,________.(2)如果,那么________,__________.(3)如果∠AOB=∠COD,那么__________,_________.(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?学生观察图形交流后,⑴⑵⑶问口答,⑷问板演:⑴;∠AOB=∠COD;⑵AB=CD;∠AOB=∠COD;⑶;AB=CD;⑷解:OE=OF.∴又= ,=AB CD AE CF.= ≌∴∆∆OA OC AOE COF,Rt Rt.∴=.OE OF(三)课堂练习(出示课件23-27)1.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则∠BOC的度数是()A.120°B.135°C.150°D.165°2.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等D.以上说法都不对3.弦长等于半径的弦所对的圆心角等于.4.在同圆中,圆心角∠AOB=2∠COD,则AB与CD的关系是()5.如图,已知AB 、CD 为⊙O 的两条弦,,求证:AB =CD.6.如图,在⊙O 中,2∠AOB=∠COD,那么成立吗?CD=2AB 也成立吗?请说明理由;如不是,那它们之间的关系又是什么?参考答案:1.C 解析:如图所示:连接BO,过点O 作OE ⊥AB 于点E,由题意可得:EO=12BO,AB ∥DC, 可得∠EBO=30°,故∠BOD=30°,则∠BOC=150°.2.D3.60°4.A5..AO BO CO DO 连接,,,证明:,∴∠=∠AOD BOC.∴∠∠∠∠+=+AOD BOD BOC BOD.即,∠=∠AOB COD∴=AB CD.6.解:成立,CD=2AB不成立.取的中点E,连接OE.那么∠AOB=∠COE=∠DOE,所以AB⌒=CE⌒=DE⌒.得CD⌒=2AB⌒.CE+DE=2AB,在△CDE中,CE+DE>CD,即CD<2AB.教师提醒:在同圆或等圆中,由弧相等可推出对应的弦相等;但当弧有倍数关系时,弦不具备此关系.(四)课堂小结通过这堂课的学习,你掌握了哪些基本概念和基本方法?(五)课前预习预习下节课(24.1.4)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.本节课学生通过观察、比较、操作、推理、归纳等活动,得出了圆的中心对称性、圆心角定理及推论,可以发展学生勇于探索的良好习惯,培养动手解决问题的能力.2.本节课中,教师应让学生掌握解题方法,即要证弦相等或弧相等或圆心角相等,可先证其中一组量对应相等.掌握这个解题方法有助于提升学生的抽象思维能力.。

人教版九年级上册数学教案:24.1.3弧,弦,圆心角

人教版九年级上册数学教案:24.1.3弧,弦,圆心角
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解弧、弦、圆心角的基本概念。弧是圆上的一段弯曲部分,弦是圆上两点间的线段,圆心角是由圆上两条半径所夹的角。它们在几何图形的研究中具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过一个圆的例子,展示弧、弦、圆心角在实际中的应用,以及它们如何帮助我们解决问题。
五、教学反思
在今天的教学过程中,我发现学生在学习弧、弦、圆心角的概念及其关系时,普遍对理论知识掌握得较好,但在实际应用方面还存在一定的困难。这可能是因为我在教学过程中,对实际案例的引入和讲解还不够充分,导致学生难以将理论知识与生活实际相结合。
在讲授新课的过程中,我发现有些学生对弧、弦、圆心角的定义理解不够深入。为了帮助学生更好地理解这些概念,我决定在今后的教学中,多使用一些直观的教具和动态演示,让学生能够更直观地感受这些几何元素之间的关系。
此外,在实践活动和小组讨论环节,学生们的参与度较高,表现积极。但我也注意到,部分学生在讨论过程中较为被动,可能是因为他们对问题的理解不够深入。针对这一问题,我计划在以后的教学中,多设计一些开放性问题,引导学生主动思考,提高他们的参与度和解决问题的能力。
在小组讨论环节,我发现学生们对于弧、弦、圆心角在实际生活中的应用有很好的想法,但在分享成果时,表达能力有待提高。为了提高学生的表达能力,我打算在今后的教学中,多给予他们发言的机会,并适时给予指导和鼓励。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“弧、弦、圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

九年级数学上册教学课件《弧、弦、圆心角》

九年级数学上册教学课件《弧、弦、圆心角》
24.1.3 弧、弦、圆心角
九年级上册
问题1:圆是中心对称图形吗?它的对称中心在哪里?问题2:把圆绕着圆心旋转一个任意角度,旋转之后的图形还能与原图形重合吗?
这节课我们利用圆的任意旋转不变性来探究圆的另一个重要定理.
(1)知道圆是中心对称图形,并且具有任意旋转不变性.(2)知道什么样的角是圆心角,探究并得出弧、弦、圆心角的关系定理.(3)初步学会运用弧、弦、圆心角定理解决一些简单的问题.
1.从课后习题中选取;2.完成练习册本课时的习题.
A
60°



3.如图,在⊙O中,点C是AB的中点,∠A=50°,则∠BOC= .
40°

4.如图,在⊙O中,AB=AC,∠C=75°,求∠A的度数.解:∵AB=AC,∴AB=AC.∴∠B=∠C=75°,∴∠A=180°-∠B -∠C=30°.




5.如图,在⊙O中,AD=BC,求证:AB=CD.证明:∵AD=BC.∴AD=BC.∴AD+AC=BC+AC,即CD=AB.∴AB=CD.
【教材P85练习 第2题】
解:∵ ,
∴∠BOC=∠COD=∠DOE.又=∠COD=35°,∴∠BOE=∠BOC+∠COD+ ∠DOE=105°,则∴∠AOE=180°-∠BOE=75°
1.四个元素: 圆心角、弦、弧、弦心距
2.四个相等关系:
① 圆心角② 弧 弦④ 弦心距



7.如图,在⊙O中,弦AB与CD相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.
拓展延伸
(1)证明:连接AD.∵AB=CD, ∴AB=CD. ∴AB-AD=CD-AD.即BD=AC. ∴BD=AC.在△ADB和△DAC中,∴△ADB≌△DAC(SSS).

人教版九年级数学上册24.1.3弧、弦、圆心角课件

人教版九年级数学上册24.1.3弧、弦、圆心角课件

的顺 的位序位置排置列关顺 关过,系序系点若,排,O列并并A作D,说说=O若明明BEC理理A,D由由=根A..BB据C于题,点意根E补据,全题交图意形补DC,全于探图点究形,AFB探, ,究 AB ,
C(D2的)位当置A关B 、系,CD并位说于明圆理心由O. 的异侧时,
连C交接D 的AOB位A于,置点关OB系G,,,并OC说,明理OD由..
D
F
C
∵ AD=BC ,
12
O
A
E
B
∴ 1 2 .
G
∴ 1 2,
解: AB交交∥∵AACBBDA于于D. =点点BGGC ,,,
证明:∵∵∵ ∴连OAA接E1DD==OBBAACC2B,,,,,OB , OC , OD ,
过点 O∴∴∴ ∵作O11E3OEA224BA,,,B,于点 E ,交交DDCC于于点点FF,, 交 AB 于点 G .
12
3 O4 E
G
B

∴∴ ∴3DDDFFF4OOO,≌≌ CCCFFFOOO
, , 90

已知 AB 是 O 的弦, C , D 是 O 上位于弦 AB
例3 已知 AB 是 O 的弦, C , D 是 O 上位于弦 AB
顺同 顺序侧序排的排两列同 列个,侧,点若的若,两AADD且个==点ABBCC,,,,且B根根,A据据,C题题,B意意,D作作四C图图,点,,在D探探圆四究究上点按在AABB逆圆,,时上CC针按DD逆时针
的顺 的CD位序位的置排置位列关顺 关C置D,系序系D关的若,排,3 系位列并并A,置D,说说4 =并关C若明明B说系C理理A明,,D由由=理根并..B由据说C∴∵题 .明,A意理根1B+补由据为全题 .2+图意O形∴ ∵ ∴补C的O,全直D探图113径+++究形1, 8,224A0++B探.,究CC3OOADDB,41,18800,,

初中数学人教版九年级上册《2.弧、弦、圆心角》课件

初中数学人教版九年级上册《2.弧、弦、圆心角》课件

A
O C
新知导入
弧、弦、圆心角之间的关系
练一练:在同圆中,下列四个命题:
①圆心角是顶点在圆心的角;
②两个圆心角相等,它们所对的弦也相等;
③两条弦相等,它们所对的弧也相等;
④等弧所对的圆心角相等.其中真命题有( B )
A.①②③④
B.①②④
C.②③④
D.②④
随堂练习
1.如图,AB是⊙O的直径,点D是⊙O上一点,且∠AOD=100°, 若点C为BD的中点,则∠COB的度数为( A ) A.40° B.60° C.80° D.120°
圆是中心对称图形,圆心就是它
A
B 的对称中心.
1 圆心角
旋转90°
旋转270°
旋转300°
归纳:把圆绕圆心旋转任何一个角度,所得的图形都 与原图形重合.
新知导入
圆心角
O r
A B
定义:顶点在圆心的角,叫圆心角, 如∠AOB .
圆பைடு நூலகம்角 ∠AOB 所对的弧为___A__B___. 圆心角 ∠AOB所对的弦为____A_B___.
在同圆或等圆中,如果两条弧相等, 那么它们所对应的圆心角相等,所 对的弦相等. 在同圆或等圆中,如果两条弦相等, 那么它们所对应的圆心角相等,所 对的优弧和劣弧分别相等.
24.1.3
谢谢大家
人教版 九年级数学上
24.1.3
弧、弦、圆心角
人教版 九年级数学上
知识要点
1.圆心角 2.弧、弦、圆心角之间的关系
新知导入
看一看:视察下图中图形的变化,试着发现它们的规律。
新知导入
看一看:视察下图中图形的变化,试着发现它们的规律。
新知导入
圆心角

初中数学人教版九年级上册《24.弧、弦、圆心角》课件

初中数学人教版九年级上册《24.弧、弦、圆心角》课件
数量关系呢?
C
B
D
·
O
A
知识点1
如图,在等圆中,如果∠AOB=∠CO ′ D,你发现的等量关系是否依然成
立?为什么?
B
A
O
D
C
O′
知识点1
弧、弦与圆心角的关系定理
在同一个圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦相等.
⌒ ⌒
②AB=CD
①∠AOB=∠COD
③AB=CD
C
B
D
O
角所对的弧相等,所对的弦也相等”
中,可否把条件“在同圆或等圆中”去掉?为什么?
B
D
O
C
A
知识点1
弧、弦与圆心角关系定理的推论
在同一个圆中,如果弧相等,那么它们所对的圆心角相等,所对的弦相等.
在同一个圆中,如果弦相等,那么它们所对的圆心角相等,所对的弧相等.
知识点1
3.理解圆心角、弧、弦之间关系定理中的“在同圆或等圆”条
件的意义.
1.将圆绕圆心旋转180°后,得到的图形与原图形重合吗?由此你得到什
么结论呢?
A
圆是中心对称图形,圆具有旋转不变性.
知识点1
2.把圆绕圆心旋转任意一个角度呢?仍与原来的圆重合吗?
·
O
圆是旋转对称图形,具有旋转对称性.
知识点1
观察在⊙O中,这些角有什么共同特点?

෢ ,
解:(1)因为=
所以AB=AC.
又∠ACB=60° ,
所以△ABC是等边三角形,
所以AB=BC=CA,
所以∠AOB=∠BOC=∠AOC.

෢ ,∠ACB=60°.
如图,在⊙O中, =

弧弦圆心角教案

弧弦圆心角教案

弧弦圆心角教案教案内容:一、教学内容本节课的教学内容来自人教版初中数学九年级上册第17章“圆”,具体是第1节“弧、弦、圆心角”。

本节课主要讲解弧、弦、圆心角的定义及它们之间的关系。

二、教学目标1. 理解弧、弦、圆心角的定义,掌握它们之间的关系。

2. 能够运用弧、弦、圆心角的知识解决实际问题。

3. 培养学生的观察能力、思考能力和动手操作能力。

三、教学难点与重点重点:弧、弦、圆心角的定义及它们之间的关系。

难点:如何运用弧、弦、圆心角的知识解决实际问题。

四、教具与学具准备教具:黑板、粉笔、圆规、直尺、量角器。

学具:每人一份弧、弦、圆心角的模型,一份练习题。

五、教学过程1. 情景引入:教师展示一个圆形,引导学生观察并思考:圆上有哪些特殊的点?特殊的线段?特殊的角?2. 讲解弧、弦、圆心角的定义:教师用粉笔在黑板上画出弧、弦、圆心角的模型,并讲解它们的定义。

3. 实践操作:学生分组讨论,用量角器、圆规等工具测量弧、弦、圆心角的大小,并记录下来。

4. 例题讲解:教师选择一道关于弧、弦、圆心角的例题,引导学生思考解题思路,并讲解解题步骤。

5. 随堂练习:学生独立完成练习题,教师巡回指导。

7. 作业布置:教师布置一道关于弧、弦、圆心角的作业,要求学生独立完成,并提交答案。

六、板书设计板书内容:弧、弦、圆心角的定义弧:圆上任意两点间的部分。

弦:圆上任意两点间的线段。

圆心角:以圆心为顶点的角。

七、作业设计作业题目:1. 请根据下列图形,计算圆心角∠ACB的大小。

答案:圆心角∠ACB的大小为90°。

八、课后反思及拓展延伸课后反思:1. 本节课学生对弧、弦、圆心角的定义及它们之间的关系有了初步的了解。

2. 学生在实践操作中掌握了测量弧、弦、圆心角的方法。

3. 学生在例题讲解和随堂练习中能够运用弧、弦、圆心角的知识解决问题。

拓展延伸:1. 研究弧、弦、圆心角在圆周角定理中的作用。

2. 探索弧、弦、圆心角在圆的内接四边形中的性质。

人教版数学九年级上册24.1.3 弧、弦、圆心角 教案

人教版数学九年级上册24.1.3 弧、弦、圆心角  教案

24.1.3弧、弦、圆心角●情景导入(1)观察图片,我们会发现圆绕着圆心旋转任意一个角度,所得的图形与原图形重合.(2)如图①,∠AOB的顶点在圆心上,我们把顶点在圆心的角叫做圆心角.(3)如图②,连接AB,圆心角∠AOB所对的弦为弦AB,所对的弧为AB,那么圆心角与它所对的弧、弦这三个量之间有什么关系呢?【教学与建议】教学:通过实验操作,探索圆的旋转不变性与“如果两个圆心角相等,那么它们所对的弧、弦是不是相等”,激发学生的学习兴趣.建议:尽量让学生自己动手操作,引导学生得出等量关系.●归纳导入(1)圆是中心对称图形吗?它的对称中心在哪里?【归纳】圆是中心对称图形,对称中心是O点.(2)如图,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,我们发现∠AOB__=__∠A′OB′,弦AB__=__A′B′,AB__=__A′B′.【教学与建议】教学:通过归纳中心对称图形的定义,引入圆这个中心对称图形和圆的旋转性质,得出圆心角、弧、弦之间的关系.建议:让学生操作试验,得出圆心角、弧、弦的等量关系.命题角度1利用弧、弦、圆心角之间的关系进行计算在同圆或等圆中,两个相等圆心角,它们所对的弧、弦、弦心距对应相等.【例1】(1)如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,错误的是(D)A.CE=DE B.BC=BDC.∠BAC=∠BAD D.AC>AD[第(1)题图][第(2)题图](2)如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M,N,BA,DC的延长线交于点P.连接OP.下列四个说法中:①AB=CD;②OM=ON;③PB=PD;④∠BPO=∠DPO,其中正确的是__①②③④__.(填序号)命题角度2利用弧、弦、圆心角之间的关系进行证明在同圆或等圆中,利用弧、弦、圆心角之间的关系定理证明圆心角、弧、弦相等.【例2】(1)如图,AB为⊙O的直径,C,D是⊙O上的两点,且BD∥OC.求证:AC=CD.证明:∵OB=OD,∴∠D=∠B.∵BD∥OC,∴∠D=∠COD,∠AOC=∠B,∴∠AOC=∠COD,∴AC=CD.(2)如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.证明:如图,连接OC.∵OD∥BC,∴∠1=∠B,∠2=∠3.又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.高效课堂教学设计1.能识别圆心角.2.探索并掌握弧、弦、圆心角的关系,了解圆的中心对称性和旋转不变性.3.能用弧、弦、圆心角的关系解决圆中的计算题、证明题.▲重点探索圆心角、弧、弦之间的关系定理并利用其解决相关问题.▲难点圆心角、弧、弦之间关系定理中的“在同圆或等圆中”条件的理解及定理的证明.◆活动1新课导入1.你能举出生活中的圆形商标的实例吗?(至少三个)宝马车商标:星巴克标志:曼秀雷敦标志:2.把这些圆形图案绕圆心旋转一定的角度,你有什么发现?旋转前后圆中的弧、弦会有变化吗?答:图案绕圆心旋转一定的角度后能与自身重合,旋转前后圆中的弧、弦不会有变化.◆活动2探究新知1.材料P83探究.提出问题:(1)把圆绕圆心旋转180°,所得图形与原图形重合吗?由此你得到什么结论?(2)圆是中心对称图形吗?对称中心是什么?(3)把圆绕圆心旋转任意一个角度,所得图形与原图形重合吗?学生完成并交流展示.2.教材P84思考.提出问题:(1)我们把∠AOB连同AB绕圆心O旋转,使OA与OA′重合,旋转前后你能发现哪些等量关系?(2)若∠AOB和∠A′OB′分别在两个相等的圆中,上述等量关系还存在吗?(3)总结你所发现的规律;(4)反过来,在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角、所对的弦有什么关系?如果两条弦相等,那么它们所对的圆心角、所对的弧有什么关系?◆活动3知识归纳1.顶点在__圆心__的角叫做圆心角,能够重合的圆叫做__等圆__;能够__重合__的弧叫做等弧;圆绕其圆心旋转任意角度都能够与原来的的图形重合,这就是圆的__旋转不变__性.2.在同圆或等圆中,相等的圆心角所对的弧__相等__,所对的弦也__相等__.3.在同圆或等圆中,两个__圆心角__,两条__弦__,两条__弧__中有一组量相等,它们所对应的其余各组量也相等.◆活动4例题与练习例1教材P84例3.例2下列说法正确吗?为什么?(1)如图,因为∠AOB=∠A′OB′,所以AB=A′B′;(2)在⊙O和⊙O′中,如果弦AB=A′B′,那么AB=A′B′.解:(1)(2)都是不对的.在图中,因为不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.例3如图,AD=BC.求证:AB=CD.证明:∵AD=BC,∴AD=BC.∵AC=AC,∴AC+AD=AC+BC.∴DC=AB.∴AB=CD.练习1.教材P85练习第1,2题.2.如图,在⊙O中,已知弦AB=DE,OC⊥AB,OF⊥DE,垂足分别为C,F,则下列说法中正确的有(D)①∠DOE=∠AOB;②AB=DE;③OF=OC;④AC=EF.A.1个B.2个C.3个D.4个3.如图,AB是⊙O的直径,AC=CD,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.解:(1)△AOC是等边三角形.理由如下:∵AC=CD,∴∠AOC=∠COD=60°.又∵OA=OC,∴△AOC是等边三角形;(2)∵AC=CD,∴OC⊥AD.∵∠AOC=∠COD=60°,∴∠BOD=180°-(∠AOC+∠COD)=60°.∵OD=OB,∴△ODB为等边三角形.∴∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD.◆活动5课堂小结弧、弦、圆心角之间的关系是证明圆中等弧、等弦、等圆心角的常用方法.1.作业布置(1)教材P89习题24.1第2,3题;(2)对应课时练习.2.教学反思。

九年级数学上册第24章《弧、弦、圆心角》名师教案(人教版)

九年级数学上册第24章《弧、弦、圆心角》名师教案(人教版)

24.1.3 弧、弦、圆心角一、教学目标(一)学习目标1.探索圆的中心对称性2.了解圆心角的概念,探索并掌握在同圆或者等圆中,圆心角、弦、弧中有一个量的相等,就可以推出其他两个量对应相等3.掌握圆心角、弧、弦之间关系定理并利用其解决相关问题(二)学习重点探索圆心角、弧、弦之间关系定理并利用其解决相关问题.(三)学习难点圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.二、教学设计(一)课前设计1.预习任务(1)旋转的三要素是旋转中心,旋转方向,旋转角度180,它能够与另一个图形重合,那么这(2)中心对称的定义:如果把一个图形绕某个点旋转两个图形关于这个点成中心对称.2.预习自测(1)圆是图形,也是图形【知识点】圆的中心对称性与轴对称性【答案】轴对称中心对称【解题过程】圆既是轴对称图形又是中心对称图形【思路点拨】圆既是轴对称图形又是中心对称图形(2)圆的对称中心是.【知识点】圆的中心对称性【答案】圆心【解题过程】圆是中心对称图形,由于它绕着圆心旋转180°后和原图形重合,所以圆的对称中心是圆心【思路点拨】根据中心对称图形的定义找到圆的对称中心(3)如图,已知O O 'e e 与的半径相等,若AOB A O B '''∠=∠,则________AB A B '',»¼________AB A B ''(填“>”、“<”或“=”)【知识点】在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.【答案】= =【解题过程】AOB A O B '''∠=∠Q ,AB A B ''∴=,»¼AB A B ''= 【思路点播】在同圆或者等圆中,圆心角,弧,弦有一个量相等,就联想到其他的量也相等(4)已知O e 与O 'e 半径相等,若AB A B ''=,则________AOB A O B '''∠∠,(填“>”、“<”或“=”)【知识点】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.【答案】=【解题过程】AB A B ''=Q ,OA O A ''=,OB O B ''=,AOB ∴∆≌A O B '''∆,AOB A O B '''∴∠=∠【思路点拨】在同圆或者等圆中,圆心角,弧,弦有一个量相等,就联想到其他的量也相等(二)课堂设计1.知识回顾(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线(2)垂直于弦的直径平分弦,并且平分弦所对的弧(3)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧2.问题探究探究一 圆的中心对称性活动①以旧引新想一想:这些现象说明了什么?现象一:一块圆形的蛋糕,糕点师只要过圆心点在互相垂直的两个方向上切两刀,不管糕点师站在哪里,分成的四块一定是均等的. 这个现象跟圆的哪个性质有关?学生抢答答案:现象一说明对折后能够完全重合,只要是过圆心的直线,分成的两部分均对称,说明圆是轴对称图形,对称轴是过圆心的任一条直线.【设计意图】复习回顾圆的轴对称性,为引发新知识铺垫现象二:机械式闹钟上钟时,每次只要转动发条上的钟钮180︒时,看上去跟没转动以前是一个样的.这个现象跟圆的哪个性质有关?现象二说明钟钮左右两端转动180︒后完全重合,而两端均在以轴心为圆心的圆上运动,说明圆是中心对称图形,对称中心是圆心.【设计意图】整合旧知识,探索圆的中心对称性活动②归纳概括想一想:由以上现象,概括圆的对称性结论:1. 圆是轴对称图形,其对称轴是任意一条过圆心的直线.2. 圆是中心对称图形,对称中心为圆心.探究二圆心角、弧、弦之间的关系★▲活动①大胆操作探究新知识1.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA与O′A′重合.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.教师叙述步骤,同学们一起动手操作. 由已知条件可知∠AOB =∠A ′O ′B ′;由两圆的半径相等,可以得到∠OAB =∠OBA =∠O ′A ′B ′=∠O ′B ′A ′;由△AOB ≌△A ′O ′B ′,可得到AB =A ′B ′;由旋转法可知»¼''AB A B =. 在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA 与O ′A ′重合时,由于∠AOB =∠A ′O ′B ′.这样便得到半径OB 与O ′B ′重合.因为点A 和点A ′重合,点B 和点B ′重合,所以»AB 和¼''A B 重合,弦AB 与弦A ′B ′重合,即»¼''AB A B =,AB =A ′B ′.进一步引导学生语言归纳圆心角、弧、弦之间相等关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.【设计意图】大胆猜想,大胆操作,激发学生兴趣,探究新知识活动② 集思广益 证明新知根据对上述定理的理解,你能证明下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.本问题由学生在思考的基础上讨论解决,可以证明上述命题是真命题.【设计意图】创设问题情境,集思广益,证明新知识活动③ 反思过程 发现定理定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?小组讨论,可以在教师的引导下,举出反例说明条件“在同圆或等圆中”不能去掉,比如可以请同学们画一个只能是圆心角相等的这个条件的图.如图,虽然∠AOB =∠A ′O ′B ′,但AB ≠A ′B ′,弧AB ≠弧A ′B ′.教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等中的条件“在同圆和等圆中”是否能够去掉.小结:弦、圆心角、弧三量关系,在同圆或者等圆中,圆心角,弧,弦有一个量相等,那么其他的量也对应相等【设计意图】反思过程,发现定理,重新认识,拓展创新探究三 圆心角、弧、弦之间关系定理的应用活动① 旧题新解例1.如图,O e 的直径CD 与弦AB 交于点M ,添加条件 (写出一个即可),就可得到M 是AB 的中点.【知识点】垂径定理,圆心角、弧、弦之间关系定理【解答过程】补入的条件是:CD AB ⊥或»»»»AC BC AD BD ==或. 【思路点拨】对开放性逆向思维的题目,首先应依题意抓住问题适合的依据定理,再由定理和题设补充条件.【答案】CD AB ⊥或»»»»AC BC AD BD ==或. 练习:如图,CD 是O e 的直径,AB 是弦,CD AB ⊥于M ,则可得出AM MB =,»»AC BC =等多个结论,请你按现有图形给出其他两个结论.【知识点】垂径定理,圆心角、弧、弦之间关系定理【解答过程】另两个结论是:AC BC =,»»AD BD =. 【思路点拨】对开放性思维的题目,首先应依题意抓住已知条件,再由定理和题设得到结论.【设计意图】复习垂径定理,同时利用新知识解决旧问题活动② 集思广益 求解角度例2.如图,在⊙O 中,»»AB AC =,∠ACB =60°,求证∠AOB =∠AOC =∠BOC . OAB C【知识点】圆心角、弧、弦之间关系定理【解答过程】∵ »»AB AC = ∴ AB =AC ,△ABC 是等腰三角形.又 ∠ACB =60°,∴ △ABC 是等边三角形,AB =BC =CA .∴ ∠AOB =∠AOC =∠BOC .【思路点拨】由»»AB AC =,有AB AC =,可得△ABC 是等边三角形,AB =AC =BC ,所以得到∠AOB =∠AOC =∠BOC .练习.如图,AB 是⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC =CD =DA ,求∠BOD 的度数.【知识点】圆心角、弧、弦之间关系定理【解答过程】由BC =CD =DA 可以得到这三条弦所对的圆心角相等,连接OC ,得到∠AOD =∠DOC =∠BOC ,而AB 是直径,于是∠BOD =23×180°=120°【思路点拨】求圆心角度数,可先求出该圆心角度数所对弧的度数【答案】120°【设计意图】利用圆心角、弧、弦之间关系定理解决圆中简单的角度问题活动③ 大胆探索 证明线段相等与弧度相等例3.如图,AB ,CD 是O e 的弦,M 、N 分别为AB 、CD 的中点且AMN CNM ∠=∠,求证:AB =CD .【知识点】垂径定理, 圆心角、弧、弦之间关系定理,全等三角形的判定定理【解答过程】证明:MN Q 为AB ,CD 中点,OM AB ∴⊥,ON CD ⊥。

九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版知识精讲

九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版知识精讲

九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版【本讲教育信息】一、教学内容:弧、弦、圆心角、圆周角之间的关系 1. 圆心角、圆周角的概念. 2. 弧、弦、圆心角之间的关系. 3. 圆周角定理及推论.二、知识要点:1. 弧、弦、圆心角(1)我们把顶点在圆心的角叫做圆心角. (2)弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.如图所示,(1)若∠AOB =∠COD ,则︵AB =︵CD ,AB =CD ;(2)若︵AB =︵CD ,则∠AOB =∠COD ,AB =CD ;(3)若AB =CD ,则∠AOB =∠COD ,︵AB =︵CD.OABCD2. 圆周角(1)顶点在圆上,并且两边与圆都相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.③②①(3)推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.三、重点难点:本节重点是圆心角、弦、弧之间的相等关系及圆周角定理. 难点是从圆的旋转不变性出发,得到圆心角、弦、弧之间的相等关系以及圆周角定理的证明.【典型例题】例1. 在⊙O 中,如图所示,∠AOB =∠DOC ,试说明:(1)︵DB =︵AC ; (2)BD =AC.B分析:(1)∵∠DOC =∠AOB ,∴︵DC +︵BC =︵AB +︵BC ,∴︵BD =︵AC. (2)∵在同圆或等圆中,相等的弧所对的弦相等,∴BD =AC.解:(1)∵∠DOC =∠AOB ,∴︵DC =︵AB , ∴︵DC +︵BC =︵AB +︵BC ,即︵BD =︵AC.(2)由(1)得︵BD =︵AC ,∴BD =AC.例2. 如图所示,C 是︵AB 的中点,与∠ADC 相等的角的个数是( ) A. 7个 B. 3个 C. 2个 D. 1个分析:由同弧或等弧所对的圆周角相等知,∠ADC =∠ABC =∠CAB =∠CDB ,故与∠ADC 相等的角共有3个.解:B评析:同弧或等弧所对的圆周角相等常用来证明两角相等;或进行角的转换,将一个圆周角转换为同弧所对的其他圆周角,从而达到题目中的要求.例3. 如图所示,BC 为半圆O 的直径,G 是半圆上异于B 、C 的点,A 是︵BG 的中点,AD ⊥BC 于点D ,BG 交AD 于点E ,请说明AE =BE.分析:在圆中,有关直径的问题常常需要添加辅助线,以便利用直径所对的圆周角是直角的性质,因此,欲说明AE 与BE 相等,可转化为说明∠BAD =∠ABE ,圆周角∠ABE 所对的弧为︵AG ,连结AB 、AC 即可解决问题.C解:连结AB 、AC. ∵︵AB =︵AG ,∴∠ABE =∠ACB. 又∵AD ⊥BC ,∴∠ABD +∠BAE =90°.∵BC 为直径,∴∠BAC =90°,∴∠ABD +∠BCA =90°, ∴∠BCA =∠BAE. ∴∠BAE =∠ABG , ∴AE =BE.例4. 如图所示,在⊙O 中,∠AOC =150°,求∠ABC 、∠ADC 、∠EBC 的度数,并判断∠ABC 和∠ADC 、∠EBC 和∠ADC 的度数关系.分析:解题的关键是分清同弧所对的圆心角和圆周角,如劣弧AC 所对的圆心角是∠AOC ,所对的圆周角是∠ABC ,优弧ABC 所对的圆心角是大于平角的∠α,所对的圆周角是∠ADC.解:∵∠AOC =150°,∴∠ABC =12∠AOC =75°.∵∠α=360°-∠AOC =360°-150°=210°,∴∠ADC =12∠α=105°,∠EBC =180°-∠ABC =180°-75°=105°.∵∠ABC +∠ADC =75°+105°=180°,∠EBC =∠ADC =105°, ∴∠ABC 和∠ADC 互补,∠EBC 和∠ADC 相等. 评析:理解圆周角的概念,分清同弧所对的圆心角和圆周角是熟练运用圆周角性质解题的前提.例5. 如图所示,AB 、CD 是⊙O 的弦,∠A =∠C. 求证:AB =CD.分析:此题的证明方法很多,由于AB 和CD 在圆中,且为弦,可证明AB 和CD 所对的圆心角相等或弧相等,也可直接或间接利用全等证明AB 和CD 相等. 等等.解法一:如图(1)所示,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F.∴AB =2AE ,CD =2CF ,∠AEO =∠CFO =90°. 又∵∠A =∠C ,OA =OC , ∴△AOE ≌△COF ,∴AE =CF. ∴AB =CD.(1)解法二:如图(2)所示,连结OB 、OD.∵OA =OB =OC =OD ,∴∠A =∠B ,∠C =∠D. ∵∠A =∠C ,∴∠B =∠D. ∴△OAB ≌△OCD ,∴AB =CD.(2)(3)解法三:如图(3)所示,连结AC. ∵OA =OC ,∴∠1=∠3.又∵∠BAO =∠DCO ,∴∠2=∠4. ∴︵BC =︵AD.∴︵BC +︵BD =︵AD +︵BD ,即︵AB =︵CD , ∴AB =CD.例6. AB 、BC 、CA 是⊙O 的三条弦,O 到AB 的距离OE 等于12AB ,求∠C 的度数.分析:∠C 可能为一个钝角,也可能为一个锐角,要分类画图、分析和解答.BB m解:如图(1)所示,连结AO 、BO.因为OE ⊥AB ,所以EB =AE =12AB.又OE =12AB ,所以EB =OE =AE.所以∠EBO =∠EOB =∠EOA =∠EAO =45°.所以∠C =12∠AOB =12(∠AOE +∠EOB )=12×90°=45°.如图(2)所示,由(1)得∠AOB =90°,所以优弧A m B 所对的圆心角是270°,所以∠C =135°.即∠C 的度数为45°或135°.评析:图(1)中,△ABC 为锐角三角形,圆心在△ABC 内部;图(2)中,△ABC 为钝角三角形,圆心O 在△ABC 外部,两种情形都符合题意,所以本题应有两解.【方法总结】1. 圆不仅是轴对称图形和中心对称图形,实际上,圆绕圆心旋转任意一个角度α,都能与原来的图形重合,这样就把圆和其他的中心对称图形区别开来,即圆不仅是中心对称图形,而且还突破了中心对称图形旋转180°后才能与原来图形重合的局限性,得出圆所特有的性质:圆绕圆心旋转任意一个角度,都能与原来的图形重合,这叫做圆的旋转不变性. 利用这一性质可以推出圆的一些其他性质.2. 在利用圆心角、弧、弦的关系定理解题时,我们应注意:①作圆心到弦的垂线是圆中一种常见的作辅助线的方法;②由圆心到弦的垂线、弧、圆心角的相等来证明弦相等是证明线段相等的一条重要途径.3. 圆周角定理及其推论在证明和计算中应用非常广泛,它是证明角相等、线(弦)相等、弧相等的重要依据,尤其是其推论为在圆中确定直角、构成垂直关系创造了条件,它是圆中的一个很重要的性质,要熟练掌握. 同时它也是证明弦为直径的常用方法,若图中有直径,往往构造直径所对的圆周角形成直角,这也是圆中重要的辅助线.【预习导学案】(点和圆的位置关系)一、预习前知1. 圆可以看作是到__________的距离等于__________的点的集合,也就是说圆上的点到圆心的距离都等于__________.2. 圆的内部可以看作是到__________的距离小于半径的点的集合.3. 圆的外部可以看作是到__________的距离大于半径的点的集合.二、预习导学1. ⊙O 的半径r =5cm ,圆心O 到直线的距离OD =3cm . 点A 、B 、C 在直线l 上,若AD =23cm ,BD =4cm ,CD =5cm . 则点A 在⊙O__________,点B 在⊙O__________,点C 在⊙O__________.2. 下列条件中,可以画一个圆,并且只可以画一个圆的条件是( ) A. 已知圆心 B. 已知半径 C. 已知三点 D. 过直线上两点和直线外一点3. 三角形外接圆的圆心是( ) A. 三内角平分线的交点 B. 三边垂直平分线的交点 C. 三中线的交点 D. 三高线的交点4. 用反证法证明:“在△ABC 中,至少有两个内角是锐角”时,第一步假设__________成立.反思:(1)点和圆有哪些位置关系?(2)经过不在同一直线上的三点画圆的时候,如何确定圆心?(3)反证法的基本思路和一般步骤是怎样的?【模拟试题】(答题时间:50分钟)一、选择题1. 一条弦分圆周为5∶7,这条弦所对的两个圆周角分别为( )A. 150°,210°B. 75°,105°C. 60°,120°D. 120°,240°2. 已知AC 为⊙O 的直径,弦AB =10cm ,∠BAC =30°,那么⊙O 的半径为( )A. 5cmB. 52cmC. 1033cmD. 2033cm3. 如图所示,⊙O 的弦AB 、CD 相交于点E ,已知∠ECB =60°,∠AED =65°,那么,ADE的度数为( )A. 40°B. 45°C. 55°D. 65°*4. 如图所示,劣弧︵AE 所对的圆心角为40°,则∠B +∠D 等于( ) A. 320° B. 160° C. 300° D. 260°D5. 如图所示,AB 为⊙O 的直径,∠ACD =15°,则∠BAD 的度数为( ) A. 75° B. 72° C. 70° D. 65°6. 如图所示,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 的度数为( ) A. 80° B. 100° C. 120°D. 130°**7. 已知⊙O 的半径为6cm ,⊙O 的一条弦AB 的长为63cm ,则弦AB 所对的圆周角是( ) A. 30° B. 60° C. 30°或150° D. 60°或120°二、填空题1. 如图所示,D 、E 分别是⊙O 的半径OA 、OB 上的点,CD ⊥OA ,CE ⊥OB ,CD =CE ,则AC 与CB 弧长的大小关系是__________.2. 如图所示,点A 、B 、C 、E 都在圆周上,AE 平分∠BAC 交BC 于点D ,则图中相等的圆周角是__________.3. 如图所示,AB 是⊙O 的直径,︵BC =︵BD ,∠A =30°,则∠BOD =__________.AB4. 如图所示,已知⊙O 的半径为2,圆周角∠ABC =30°,则弦AC 的长是__________.5. 如图所示,AB 是半圆O 的直径,∠BAC =40°,D 是︵AC 上任意一点,那么∠D 的度数是__________.A**6. 如图所示,A 、B 、C 、D 、E 是⊙O 上顺次五点,且AB =BC =CD ,如果∠BAD =50°,那么∠AED =__________.B三、解答题1. 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F. (1)如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE =OF ,那么AB 与CD 的大小有什么关系?︵AB 与︵CD 的大小关系?为什么?∠AOB 与∠COD 呢?BD2. 如图所示,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD =CE ,BE 与CE 的大小有什么关系?为什么?*3. 如图所示,AB 为⊙O 的直径,AC 为弦,P 为AC 延长线上一点,且AC =PC. PB 的延长线交⊙O 于D. 求证:AC =DC.P*4. 如图所示,已知A 、B 、C 、F 、G 是⊙O 上的五点,AF 交BC 于点D ,AG 交BC 于点E ,且BD =CE ,∠1=∠2. 求证:AB =AC.试题答案一、选择题1. B2. C3. C4. B5. A6. D7. D二、填空题 1. 相等2. ∠ABC =∠AEC ,∠ACB =∠AEB ,∠BAE =∠CAE =∠BCE =∠CBE3. 60°4. 25. 130°6. 75°三、解答题1.(1)如果∠AOB =∠COD ,那么OE =OF ,理由是:因为∠AOB =∠COD ,所以AB =CD. 因为OE ⊥AB ,OF ⊥CD ,所以AE =12AB ,CF =12CD ,所以AE =CF. 又因为OA =OC ,所以R t △OAE≌R t △OCF. 所以OE =OF. (2)如果OE =OF ,那么AB =CD ,︵AB =︵CD ,∠AOB =∠COD ,理由是:因为OA =OC ,OE =OF ,所以R t △OAE ≌R t △OCF. 所以AE =CF ,又因为OE ⊥AB ,OF ⊥CD ,所以AE =12AB ,CF =12CD. 所以AB =2AE ,CD =2CF. 所以AB =CD. 所以︵AB =︵CD ,∠AOB =∠COD.2. BE =CE. 理由:∵AB 、DE 为⊙O 的两条相交的直径,∴∠AOD =∠BOE ,∴BE =AD ,又∵AD =CE ,∴BE =CE.3. 连结AD ,∵AB 是⊙O 的直径,∴∠ADP =90°,∵AC =CP ,∴CD =12AP. ∴CD =AC =12AP.∴AC =DC.4.∵∠1=∠2,∴⌒BF =⌒CG ,∴BF =CG ,⌒BG =⌒CF ,∴∠FBC =∠GCE. 又BD =CE ,∴△BFD ≌△CGE (SAS ),∴∠F =∠G. ∴⌒AB =⌒AC ,∴AB =AC.。

弧、弦、圆心角课件(共22张PPT)人教版数学九年级上册

弧、弦、圆心角课件(共22张PPT)人教版数学九年级上册
(2)证明:∵OA=OC,∠AOC=30°,∴∠ACE=75°,
∴∠ACE=∠AEC, ∴AC=AE,同理,BF=BD.易知AC=
CD=BD,∴AE=BF=CD.
【题型三】利用弧、弦、圆心角证明
෢ = ,
෢ ⊥ 于点D,CE⊥
例5:如题图,在⊙O中,
OB于点E,求证:AD=BE.
D.3 个

例4:如题图,已知∠ AOB=90°, C, D 是的三等分点,
连接AB分别交OC, OD 于点 E, F.(1)求∠AEC的度数;

(1)解:连接AC, BD,如答图.∵C,D是的三等分点,
෢ =
෢ = ,∴∠AOC=∠COD=∠BOD.


∵∠ = 90°, ∴ ∠ =
相等,所对的弦相等.
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角
相等,所对的优弧和劣弧分别相等.
教师讲评
注:理解弦、弧、圆心角的关系思维图:
典型精讲
【题型一】弧、弦、圆心角概念的理解与认识
例1: 下列语句中,正确的有( A )
①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度
证明:如答图,连接OC.
෢ = ,
෢ ∴ ∠ = ∠.

∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC=90° .
又∵CO=CO,∴△COD≌△COE,∴OD=OE.
又∵OA=OB, ∴OA-OD=OB-OE,∴AD=BE.
例6:如题图,AB为⊙O的直径,AE为⊙O的弦,C为⊙O上一点,
心角相等,所对的优弧和劣弧分别相等)
5.如果没有“在同圆或等圆中”这个条件,还能得出对应的结论吗?
(不能)

《24.1.3 弧、弦、圆心角》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《24.1.3 弧、弦、圆心角》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《弧、弦、圆心角》教学设计方案(第一课时)一、教学目标:1. 理解弧、弦、圆心角的概念和关系。

2. 掌握圆心角与弧、弦的关系公式。

3. 能够运用所学知识解决简单的实际问题。

二、教学重难点:1. 教学重点:理解弧、弦、圆心角的概念,掌握圆心角与弧、弦的关系。

2. 教学难点:将理论知识与实际问题相结合,学会运用所学知识解决实际问题。

三、教学准备:1. 准备教学用具:黑板、粉笔、圆规、量角器等。

2. 制作课件:包括概念图、例题和练习题。

3. 了解学生已有知识基础,设计适当的教学活动,帮助学生建立新知识与已有知识之间的联系。

4. 针对教学难点,设计一些具有启发性的教学活动,如小组讨论、案例分析等,帮助学生理解和应用所学知识。

四、教学过程:1. 引入课题通过展示一些生活中与圆有关的图片,让学生观察并思考这些图片中哪些地方用到了圆弧、弦和圆心角的知识。

引导学生思考圆弧、弦和圆心角之间的关系,并引出本节课的课题。

2. 探索新知通过观察、测量和计算等方式,让学生探究圆弧、弦和圆心角之间的关系。

教师可准备一些材料,如不同大小、不同位置的圆、尺子、量角器等,让学生自己动手操作,探索其中的规律。

探究活动一:测量不同大小圆的圆弧、弦和圆心角,并记录数据。

通过数据分析,发现圆弧、弦和圆心角之间的关系。

探究活动二:制作一个半径为定值的一组同心圆,并依次取AB为一条弦,通过观察和测量可以发现哪些规律?探究活动三:通过计算弧长和半径的比值与弦长的关系,进一步理解圆心角、弧长和弦长之间的关系。

3. 课堂互动在探究过程中,鼓励学生提出自己的问题和观点,教师进行解答和指导。

同时,也可以让学生相互讨论,交流自己的想法和经验,促进学生的思考和表达能力。

4. 课堂小结在课堂结束前,教师对本节课所学的知识进行总结,并强调圆弧、弦和圆心角之间的联系和应用。

让学生回顾本节课的主要内容,加深对本节课的理解和掌握。

5. 作业布置课后布置一些与本节课相关的练习题和思考题,让学生进一步巩固和应用所学的知识,同时也可以培养学生的独立思考和解决问题的能力。

初中九年级数学说课稿弧,弦,圆心角

初中九年级数学说课稿弧,弦,圆心角

24.1.3 《弧,弦,圆心角》说课稿分析:本课是人教版九年级上册第二十四章第一节圆地有关性质,它是在学习了垂径定理后进而要学习地圆地又一个重要性质。

主要研究弧,弦,圆心角地关系。

中充分利用圆地对称性,通过观察,实验探究出性质,再进行证明,体现图形地认识,图形地变换,图形地证明地有机结合。

在证明圆地许多重要性质时都运用了圆地旋转不变性。

同时弧,弦,圆心角地关系定理在后继证明线段相等,角相等,弧相等提供了又一种方法。

教学目的分析:1、让学生在实际操作中发现圆地旋转不变性.2、结合图形让学生了解圆心角地概念,学会辨别圆心角.3、引导学生发现圆心角,弦,弧之间地相等关系,并初步学会运用这些关系解决有关问题.4、培养学生观察,分析,归纳地能力,渗透旋转变换地思想及由特殊到一般地认识规律.教法分析:1.学情:由于圆地知识是轴对称及旋转知识地后续学习,学生有一定圆地有关概念,计算地知识储备,因此学习本节难度不是太大。

由于学生对圆地旋转不变性不甚了解,所以在探讨圆心角,弧,弦之间地相等关系时可能感到困难,另外对等对等地理解可能不透彻,我会做直观地示范;初始阶段在证明角相等,线段相等等有关问题时受思维定势地影响,学生往往会走利用“三角形全等”地老路,这时我会有意识引导,针对性训练,构建学生头脑中新地知识网络。

2.教学活动是教与学双边互动过程,需要充分发挥学生地主体与教师地主导作用,因此教学目的地达成,需优选教学法,根据学生地学情,本节课在探究圆心角,弦,弧之间地相等关系我采用发现模式,基本程序是:观察实践——概括归纳——重点研讨——推理反思。

这种教学模式注重知识地形成过程,有利于体现学生地主体地位与分析问题地方法,例题教学时采用讲授模式,一方面通过新知识地讲解练习,及时反馈,查缺补漏,使学生树立信心,培养学习能力,另一方面对大面积提高教学质量也是有意地。

在最后小结时运用自学模式。

3.教学手段:学生动手,现场板演,多媒体辅助教学.教学过程分析:一,创设情景,引入新课1.看一看,思考(1) 多媒体动态演示:平行四边形绕对角线交点旋转180度后,妳发现了什么?(2) 多媒体动态演示:圆绕圆心O 旋转180度后,妳发现了什么?这两个问题设置是让学生感性认识,发现平行四边形与圆旋转180度后都能与自生重合,是中心对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、弧、弦、圆心角的关系: 在同圆或等圆 中,两个圆心角、 两条弧 、 相等 中有一组量相等,它们所对应的其余各组 量也 相等 .
我相信,只要大家勤 于思考,勇于探索,一定 会获得很多的发现,增长 更多的见识,谢谢大家, 再见!
答:»AB = ¼ AB
AB= A¹B¹
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材 知识点三 弧、弦、圆心角的关系
理由:
∵∠AOB=∠A′OB′ ∴射线OB和 OB'重合 又∵OA= OA' ,OB= OB' . ∴点A与 A' 重合,点B与 B' 重合 即:»AB 和 ¼ AB 重合,AB与A¹B¹重合 ∴ »AB = ¼ AB、AB=A¹B¹.
Q AB CD,OA OB OC OD AOB COD
又 AOB 与 COD 是等腰三角形,
OE、OF分别是底边AB、CD上的高。
OE=OF
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点四 弧、弦、圆心角的关系的应用
例3、如图,在⊙O中,»AB = »AC 、∠ACB=60°。
求证:∠AOB=∠BOC=∠AOC.
2、回顾什么是垂径定理及推论?
垂径定理:垂直与弦的直径平分这条弦,并 且平 分这条弦所对的两段弧。
推论:平分弦(不是直径)的直径垂直与这条弦, 并且平分这条弦所对的两段弧 。
广东省怀集县凤岗镇初级中学
黄柳燕
二、新课引入
3、如图.AB是⊙O的直径,弦CD⊥AB,垂 足为M,若CD=8cm,CM=__4_c_m____.
»AB = ¼AB .
②如果»AB = ¼ AB、那么 ∠AOB=∠COD , AB=CD .
③如果∠AOB=∠COD,那么__A_B__=_C_D_, _»A_B__=___¼A_B__.
广东省怀集县凤岗镇初级中学Fra bibliotek黄柳燕
三、研学教材
知识点三 弧、弦、圆心角的关系
④如果AB=CD,OE⊥AB于点E,OF⊥CD于点 F,OE与OF相等吗?为什么? 答:相等
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点一 圆具有旋转不变性
圆具有旋转不变的特性,即一个圆绕着 它的 圆心 旋转任意一个角度,都能与 原来的图形 重合 .
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点一 圆具有旋转不变性
练一练 下列图形中,哪一个图形无论绕中心
旋转多少度,都能与自身重合?( ④ )
∠COD=35 °,求∠AOE的度数.
B»C C»D D»E
BOC COD DOE
Q COD 35o
BOC DOE 35。
又 AB是⊙O的直径
AO广E东省1怀8集0o县凤岗B镇O初C级中学COD黄柳燕DOE 75o
四、归纳小结
1、_这__样__顶__点_在__圆__心__的__角______叫圆心角.
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材 知识点三 弧、弦、圆心角的关系
归纳: 1、在同圆或等圆中,相等的圆心角所对 的弧 相等 ,所对的弦也相等.
2、在同圆或等圆中,如果两条弧相等, 那么它们所对 圆心角 的相等,所对的弦 也 相等 .
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点三 弧、弦、圆心角的关系
图2
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材 知识点二 圆心角的定义
练一练 2、判别下列各图中的角是不是圆心角.
√√ x
广东省怀集县凤岗镇初级中学
x
黄柳燕
三、研学教材
知识点三 弧、弦、圆心角的关系
1、在⊙O中,把∠AOB连同 »AB 绕圆心 O旋转,使OA与OA'重合. 2、当圆心角∠AOB=∠A'OB'时,它们所对 的 »A和B ¼A、B 所对的弦AB和A¹B¹相等吗? 为什么?
弧、弦、圆心角
一、学习目标
1、理解圆的旋转不变性,掌握圆心角的 概念以及弧、弦、圆心角之间的等量关 系;
2、能运用弧、弦、圆心角之间的相等 关系解决有关的证明、计算问题.
广东省怀集县凤岗镇初级中学
黄柳燕
二、新课引入
1、圆既是__轴___对称图形,又是_中__心_____ 对称图形,任何一条 经过圆心 所在的直 线都是它的对称轴,对称中心是__圆__心___.
证明:∵ »AB = »AC ,
∴AB=AC ∴△ABC是等腰三角形. ∵∠ACB=60°,
∴△ABC是 等边三角形 ∴ AB=BC=AC. ∴ ∠AOB=∠BOC=∠AOC..
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点四 弧、弦、圆心角的关系的应用
练一练
如图,AB是⊙O的直径,B»C C»D D»E,




广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点二 圆心角的定义 如图1所示,∠AOB的顶点在圆心,像这 样顶点在圆心的角叫做 圆心角 .
B A
O
广东省怀集县凤岗镇初级中学
图1
黄柳燕
三、研学教材
知识点二 圆心角的定义
练一练 1、如图2,BC是⊙O的直径,则图
中所有的圆心角分别为 AOB、AOC (填小于180°的角)
3、在同圆或等圆中,如果两条弦相等, 那么它们所对的圆心角 相等 ,所对的
弧 也相等 温馨提示:同圆或等圆中,两个圆心角、 两条弧、两条弦中有一组量相等,它们所 对应的其余各组量也 相等.
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
知识点三 弧、弦、圆心角的关系
练一练: 1、如下图,AB、CD是⊙O的两条弦. ①如果AB=CD,那么∠AOB=∠COD ,
相关文档
最新文档