最新214定积分与微积分的基本定理-副本

合集下载

第4节 定积分与微积分基本定理[理]

第4节 定积分与微积分基本定理[理]

①求被积函数 f(x)的一个原函数 F(x);
②计算 F(b)-F(a).
(2)利用定积分的几何意义求定积分
当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.
1
如:定积分 0
1-x2dx 的几何意义是求单位圆面积的14,所以10
1-x2dx=π4.
返回
2.定积分应用的两条常用结论 (1)当曲边梯形位于 x 轴上方时,定积分的值为正;当曲 边梯形位于 x 轴下方时,定积分的值为负;当位于 x 轴上方 的曲边梯形与位于 x 轴下方的曲边梯形面积相等时,定积分 的值为零. (2)加速度对时间的积分为速度,速度对时间的积分是 路程.
2.∫e12x+1xdx=(
)
A.e2-2
B.e-1
其原函数
是什么?
C.e2
D.e+1
解析:
∫e12x+1xdx=(x2+ln
x)|e1=e2.
积分上下限
答案: C
与分段函数
3.设 f(x)=2xx2
x x
的定义域
,则
1 −1
������(������)dx
23.
答案:
1-
3 2
返回
返回
解析: 由图象可知 A=1,T2=23π--π3=π,所以 ω=1,
f(x)=sinx-π6.图中其与 x 轴的交点横坐标为6π,所以图中的阴影部分的
面积为
π 6
0
-sin������-π6dx=cosx-π6|0π6 =1-
b
么从时刻 t=a 到 t=b 所经过的路程 s=av(t)dt. (2)变力做功:一物体在变力 F(x)的作用下,沿着与 F(x)相同方向从 x
b
=a 移动到 x=b 时,力 F(x)所做的功是 W=aF(x)dx.

定积分微积分基本定理

定积分微积分基本定理

定积分、微积分基本定理
【定积分】
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积.即由y=0,x=a,x=b,y=f(X)所围成图形的面积.这个图形称为曲边梯形,特例是曲边三角形,表示的是一个
面积,是一个数.
定积分的求法:
求定积分首先要确定定义域的范围,其次确定积分函数,最后找出积分的原函数然后求解,这里以例题为例.
【微积分基本定理】
在高等数学中对函数的微分、积分的研究和对相关概念及用途的数学称作微积分.积分学、极限、微分学及其应用是微积分的主要内容.微积分也称为数学分析,用以研究事物运动时的变化和规律.在高等数学学科中,微积分是一个基础学科.
其中,微积分的核心(基本)定理是,其中F′(x)=f (x),而f(x)必须在区间(a,b)内连续.
例1:定积分=
解:
∫12|3﹣2x|dx
=+
=(3x﹣x2)|+(x2﹣3x)|

通过这个习题我们发现,第一的,定积分的表示方法,后面一定要有dx;第二,每一段
对应的被积分函数的表达式要与定义域相对应;第三,求出原函数代入求解.
例2:用定积分的几何意义,则.
解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,
故==.
这里面用到的就是定积分表示的一个面积,通过对被积分函数的分析,我们发现它是个半圆,所以可以直接求他的面积.
【考查】
定积分相对来说比较容易,一般以选择、填空题的形式出现,这里要熟悉定积分的求法,知道定积分的含义,上面两个题代表了两种解题思路,也是一般思路,希望同学们掌握.。

定积分与微积分基本定理 课件

定积分与微积分基本定理 课件

【解析】 (2)由定积分的几何意义知,
3
1
和 x=1,x=3,y=0 围成的图形的面积,∴
3
1
3 1 2
dx=2·
= .
3 0 3
2
x
3 + 2- 2 dx 表示半圆(x-1)2+y2=4(y≥0)
1
4
3 + 2- 2 dx= ×π×4=π.
点拨:运用微积分基本定理求定积分时要注意以下几点:

为了方便,常把 F(b)-F(a)记作



曲边梯 F(x)
,


f(x)dx=F(x) =F(b)-F(a).

四、定积分与曲边梯形面积的关系
设阴影部分的面积为 S.

(1)S= f(x)dx;
(2)S=-
(3)S=
(4)S=


f(x)dx-


f(x)dx;




f(x)dx;
f(x)dx-
[f1(x)±f2(x)]dx=
f(x)dx=



1


f(x)dx+

f (x)dx± f2(x)dx.
f(x)dx(其中 a<c<b).
答案
三、微积分基本定理
一般地,如果 f(x)是区间[a,b]上的连续函数,且 F'(x)=f(x),那么


f(x)dx= F(b)-F(a) ,
这个结论叫作微积分基本定理,又叫作牛顿-莱布尼茨公式.
−π
π
+ 2)dx=(-cos x+2x)

微积分学基本定理及基本积分公式

微积分学基本定理及基本积分公式

2021/4/21
1
f ( x) 在[a,b] 上可积且 m f ( x) M ,则
性质 7(积分m中(b值 aT)hm)b f若( x)fd(xx) MC([ba, b] a,) 则 a
至少存在 [a, b],使得
b f ( x)dx f ( )(b a) . y a
称 f ( ) 1
已有结论:若 f ( x) C[a, b] , 则 f ( x) 在 [a, b]上一定存在原函数.
(2) 原函数不唯一 若 f ( x) 在[a, b]上有原函数,则有一个必有无穷多个.
(3) f ( x) 的任意两个原函数 F ( x), G( x) 之间
只差一个常数,即若 F( x) f ( x), G( x) f ( x) ,
[
2,

1]
3
∴由积分中值定理知, c[2, 1] , 3
使
f
(0)3
1
2f
3
( x)dx3
f
(c)(1 2) 3
f
(c)

积分∵中值f ( xT)hmC: [0, c]f,( x在) (0C, [ca,)b内] ,可则导至,少 且存f (在0) f(c[a) ,, b],
∴由
Rolle
定理使知得,
b a
f
(
x)g(
x)dx
f
()
b
g(
a
x)dx

2021/4/21
3
性质 8 若 f ( x) 在[a, b]上可积,则 则改变 f ( x) 在[a, b]上有限个点的值后,所得
新函数 f *( x) 仍可积,且
b
f ( x)dx

专题2.14 定积分与微积分基本定理 (解析版)

专题2.14 定积分与微积分基本定理 (解析版)

第二篇 函数、导数及其应用专题2.14 定积分与微积分基本定理【考纲要求】1. 了解定积分的实际背景、基本思想及概念. 2.了解微积分基本定理的含义. 【命题趋势】定积分与微积分基本定理难度不大,常常考查定积分的计算和求曲边梯形的面积. 【核心素养】本讲内容可以突出对数学建模,数学运算,数学抽象的考查. 【素养清单•基础知识】 1.定积分的概念在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 2.定积分的性质(1) ⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数);(2) ⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛abf 2(x )d x ;(3) ⎠⎛a b f (x )d x =⎠⎛a b f (x )d x +⎠⎛ab f (x )d x (其中a <c <b ).求分段函数的定积分,可以先确定不同区间上的函数解析式,然后根据定积分的性质(3)进行计算. 3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),常把F (b )-F (a )记作F (x )|b a ,即⎠⎛ab f (x )d x =F (x )|b a =F (b )-F (a ).4.定积分的几何意义定积分⎠⎛ab f (x )d x 的几何意义是介于x 轴、曲线y =f (x )及直线x =a ,x =b 之间的曲边梯形的面积的代数和,其值可正可负,具体来说,如图,设阴影部分的面积为S . ①S =⎠⎛a b f (x )d x ;②S =-⎠⎛a b (x )d x ;③S =⎠⎛a b f (x )d x -⎠⎛ab f (x )d x ;④S =⎠⎛ab f (x )d x -⎠⎛a b g (x )d x =⎠⎛ab [f (x )-g (x )]d x .(1)定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可正可负.(2)当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零. 【素养清单•常用结论】 1.常见被积函数的原函数 (1) ⎠⎛a bc d x =cx |b a ;(2)⎠⎛ab x n d x =x n +1n +1|ba (n ≠-1); (3) ⎠⎛ab sin x d x =-cos x |b a ;(4) ⎠⎛abcos x d x =sin x |b a ;(5) ⎠⎛ab 1x d x =ln|x ||b a ;(6) ⎠⎛ab e x d x =e x |b a .2. 奇函数、偶函数定积分的两个重要结论 设函数f (x )在闭区间[-a ,a ]上连续,则有: (1)若f (x )是偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x ;(2)若f (x )是奇函数,则⎠⎛-aa f (x )d x =0. 【真题体验】1.若s 1=⎠⎛12x 2d x ,s 2=⎠⎛121x d x ,s 3=⎠⎛12e x d x ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 1【答案】B【解析】 因为s 1=13x 3∣21=13(23-13)=73<3,s 2=ln x ∣21=ln 2-ln 1=ln 2<1,s 3=e x ∣21=e 2-e>3,所以s 2<s 1<s 3. 2.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4【答案】D【解析】 由⎩⎪⎨⎪⎧y =4x ,y =x3得交点为(0,0),(2,8),(-2,-8), 所以S =⎠⎛02(4x -x 3)d x =⎝⎛⎭⎫2x 2-14x 4∣2 0=4,故选D .3.已知t >1,若⎠⎛1t (2x +1)d x =t 2,则t =__________.【答案】 2【解析】 ⎠⎛1t (2x +1)d x =(x 2+x )∣t 1=t 2+t -2,从而得方程t 2+t -2=t 2,解得t =2.4.汽车以36 km/h 的速度行驶,到某处需要减速停车,设汽车以加速度a =-2 m/s 2刹车,则从开始刹车到停车,汽车走的距离是__________m . 【答案】 25【解析】 t =0时,v 0=36 km/h =10 m/s ,刹车后,汽车减速行驶,速度为v (t )=v 0+at =10-2t ,由v (t )=0得t =5 s ,所以从刹车到停车,汽车所走过的路程为⎠⎛05v (t )d t =⎠⎛05(10-2t )d t =(10t -t 2)∣50=25(m).【考法拓展•题型解码】 考法一 定积分的计算 答题模板:计算定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积或和或差. (2)把定积分用定积分性质变形为求被积函数为初等函数的定积分. (3)分别用求导公式找到一个相应的原函数. (4)利用微积分基本定理求出各个定积分的值. (5)计算原始定积分的值. 【例1】 计算下列定积分.(1)⎠⎛01(-x 2+2x )d x ; (2)⎠⎛0π(sin x -cos x )d x ;(3)⎠⎛12⎝⎛⎭⎫e 2x +1x d x ; (4)⎠⎜⎛0π21-sin 2x d x . 【答案】见解析【解析】 (1)⎠⎛01(-x 2+2x )d x =⎠⎛01(-x 2)d x +⎠⎛012x d x=⎝⎛⎭⎫-13x 3∣10+(x 2)∣10=-13+1=23. (2)⎠⎛0π(sin x -cos x )d x =⎠⎛0πsin x d x -⎠⎛0πcos x d x=(-cos x )∣π0-sin x ∣π0=2.(3)⎠⎛12⎝⎛⎭⎫e 2x +1x d x =⎠⎛12e 2x d x +⎠⎛121xd x =12e 2x ∣21+ln x ∣21 =12e 4-12e 2+ln 2-ln 1=12e 4-12e 2+ln 2.(4)⎠⎜⎛0π21-sin 2x d x =⎠⎜⎛0π2|sin x -cos x |d x ,=⎠⎜⎛0π4(cos x -sin x )d x +⎠⎜⎜⎛π4π2(sin x -cos x )d x =(sin x +cos x )⎪⎪⎪π4+(-cos x -sin x )⎪⎪⎪π2π4=2-1+(-1+2)=22-2. 考法二 定积分的几何意义及应用 归纳总结(1)利用定积分求平面图形面积的步骤: ①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.(2)根据平面图形的面积求参数的方法:先利用定积分求出平面图形的面积,再根据条件构造方程(不等式)求解.【例2】 (1)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A .103B .4C .163D .6【答案】C【解析】作出曲线y =x 和直线y =x-2的草图(如图所示),所求面积为阴影部分的面积.由⎩⎨⎧y =x ,y =x -2得交点A (4,2).因此y =x 与y =x -2及y 轴所围成的图形的面积为⎠⎛04[x -(x -2)]d x =⎠⎛04(x -x +2)d x =⎝ ⎛⎭⎪⎫23x 32 -12x 2+2x ∣40=23×8-12×16+2×4=163. (2)(2019·湖南雅礼中学质检)在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成图形的面积为112.试求:切点A 的坐标和过切点A 的切线方程.【答案】见解析【解析】 (2)如图,设切点A (x 0,y 0),由y ′=2x ,得过A 点的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20.,令y =0,得x =x 02,即C ⎝⎛⎭⎫x 02,0.设由曲线和过A 点的切线及x 轴所围成图形的面积为S ,则S =S 曲边△AOB -S △ABC .S 曲边△AOB =⎠⎛0x 0x 2d x =13x 3⎪⎪⎪x 00=13x 30, S △ABC =12|BC |·|AB |=12⎝⎛⎭⎫x 0-x 02·x 20=14x 30, 即S =13x 30-14x 30=112x 30=112,所以x 0=1. 从而切点为A (1,1),切线方程为y =2x -1. 考法三 定积分在物理中的应用 归纳总结:定积分在物理中的两个应用(1)求变速直线运动的路程:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同的方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .【例3】 (1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2【答案】C【解析】由v (t )=7-3t +251+t =0,可得t =4,t =-83(舍去),因此汽车从刹车到停止一共行驶了4 s ,此期间行驶的距离为⎠⎛04v (t )d t =⎠⎛04⎝⎛⎭⎫7-3t +251+t d t =⎣⎡⎦⎤7t -32t 2+25ln (1+t )∣40=4+25ln 5(m). (2)一物体在力F (x )=⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向从x =0处运动到x =4(单位:m)处,则力F (x )做的功为__________J.【解析】由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025 d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x ∣42=10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36 (J). 【易错警示】易错点 定积分的几何意义理解错误【典例】 如图,函数y =f (x )定义在区间[a ,b ]上,则阴影部分的面积S 为( )A .⎠⎛ab f (x )d xB .⎠⎛a c f (x )d x -⎠⎛cb f (x )d xC .-⎠⎛a c f (x )d x -⎠⎛cb f (x )d xD .-⎠⎛a c f (x )d x +⎠⎛cb f (x )d x【错解】:A ,B ,C【错因分析】:在实际求解曲边梯形的面积时要注意在x 轴上方的面积取正号,在x 轴下方的面积取负号,而各部分面积的代数和为x 轴上方的定积分减去x 轴下方的定积分.【正解】:如图所示,在[a ,c]上,f(x)≤0;在[c ,b]上,f(x)≥0,所以函数y =f(x)在区间[a ,b]上的阴影部分的面积S =-⎠⎛a c f(x)dx +⎠⎛cb f(x)dx ,故选D .【跟踪训练】 (2019·山东淄博一模)如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A .⎠⎛02|x 2-1|d xB .⎪⎪⎪⎪⎠⎛02(x 2-1)dxC .⎠⎛02(x 2-1)dxD .⎠⎛01(x 2-1)dx +⎠⎛12(1-x 2)dx【答案】A【解析】 由曲线y =|x 2-1|的对称性知,所求阴影部分的面积与如下阴影部分的面积相等,即⎠⎛02|x 2-1|dx .1.定积分⎠⎛01x (2-x ) d x 的值为( )A .π4B .π2C .πD .2π【答案】A【解析】 令y =x (2-x ),则(x -1)2+y 2=1(y ≥0),由定积分的几何意义知,⎠⎛01x (2-x )d x 的值为区域⎩⎪⎨⎪⎧(x -1)2+y 2=1(y ≥0),0≤x ≤1的面积,即为π4.2.计算:⎠⎛-33(x 3cos x )d x =__________.【答案】 0【解析】 因为y =x 3cos x 为奇函数,所以⎠⎛-33(x 3cos x )d x =0.3.如图,由两条曲线y =-x 2,y =-14x 2及直线y =-1所围成的平面图形的面积为__________.【答案】 43【解析】 由⎩⎪⎨⎪⎧y =-x 2,y =-1得交点A (-1,-1),B (1,-1).由⎩⎪⎨⎪⎧y =-14x 2,y =-1得交点C (-2,-1),D (2,-1). 所以所求面积S =2⎣⎢⎡⎦⎥⎤⎠⎛01⎝⎛⎭⎫-14x 2+x 2d x +⎠⎛12⎝⎛⎭⎫-14x 2+1d x =43.4.如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机向圆O 内投一个点A ,则点A 落在区域M 内的概率为__________.【答案】4π3【解析】 阴影部分的面积为2⎠⎛0πsin x d x =2(-cos x )∣π0=4,圆的面积为π3,所以点A 落在区域M 内的概率是4π3.5.物体A 以速度v =3t 2+1(t 的单位:s ,v 的单位:m/s)在一直线上运动,在此直线上与物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t (t 的单位:s ,v 的单位:m/s)的速度与A 同向运动,当两物体相遇时,相遇地与物体A 的出发地的距离是__________m . 【答案】 130【解析】 设A ,B 两物体运动t s 后相遇,则⎠⎛0t (3t 2+1)d t -⎠⎛0t 10tdt =5,所以t 3+t -5t 2=5,解得t =5,所以A 物体从出发到相遇时的运动距离为53+5=130(m). 【考卷送检】 一、选择题1.⎠⎛01e x d x 的值等于( )A .eB .1-eC .e -1D .12(e -1)【答案】C【解析】 ⎠⎛01e x d x =e x ∣10=e 1-e 0=e -1,故选C .2.⎠⎛1e ⎝⎛⎭⎫2x +1x d x =( ) A .e 2-2 B .e -1 C .e 2 D .e +1【答案】C【解析】 ⎠⎛1e ⎝⎛⎭⎫2x +1x d x =(x 2+ln x )∣e 1=e 2,故选C . 3.求曲线y =x 2与直线y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x -x 2)d xB .S =⎠⎛01(x 2-x )d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y【答案】A【解析】 由图象可得S =⎠⎛01(x -x 2)d x .4.曲线y =2x 与直线y =x -1及直线x =4所围成的封闭图形的面积为( )A .2ln 2B .2-ln 2C .4-ln 2D .4-2ln 2【答案】D【解析】 由曲线y =2x 与直线y =x -1及x =4所围成的封闭图形如图中阴影部分所示,故所求图形的面积为S =⎠⎛24⎝⎛⎭⎫x -1-2x d x =⎝⎛⎭⎫12x 2-x -2ln x ∣42=4-2ln 2.5.若S 1=⎠⎛12x 2dx ,S 2=⎠⎛121x dx ,S 3=⎠⎛12e x dx ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1【答案】B【解析】 S 1=13x 3∣21=73,S 2=ln x ∣21=ln 2,S 3=e x ∣21=e 2-e.因为ln 2<1<73,e 2-e =e(e -1)>e>73,故S 2<S 1<S 3,故选B .6.如图,设D 是图中所示的矩形区域,E 是D 内函数y =cos x 图象上方的点构成的区域(阴影部分),向D 中随机投一点,则该点落入E 中的概率为( )A .2πB .1πC .12D .π-2π【答案】D【解析】 因为⎠⎜⎛0 π2cos x d x =sin x ⎪⎪⎪⎪π2=1,故所求概率为π-1×2π=π-2π.二、填空题7. ⎠⎜⎛0π2(cos x -sin x )d x =________.【答案】 0【解析】 ⎠⎜⎛0 π2(cos x -sin x )d x =(sin x +cos x )⎪⎪⎪⎪π2=0. 8.若函数f (x )=x +1x ,则⎠⎛1e f (x )d x =________.【答案】 e 2+12【解析】 ⎠⎛1e ⎝⎛⎭⎫x +1x d x =⎝⎛⎭⎫x 22+ln x ∣e 1=e 2+12. 9.由曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面图形(图中的阴影部分)的面积是________.【答案】 22-2【解析】 由图可得阴影部分面积S =2⎠⎜⎛0 π4(cos x -sin x )d x =2(sin x +cos x )⎪⎪⎪⎪π4=2(2-1). 三、解答题 10.求下列定积分. (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ; (2)⎠⎛-π0(cos x +e x )d x .【答案】【解析】 (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121xd x =x 22∣21-x 33∣21+ln x ∣21=32-73+ln 2=ln 2-56. (2)⎠⎛-π0(cos x +e x )d x =⎠⎛-π0cos x d x +⎠⎛-π0e x d x =,sin x ∣0-π+e x ∣0-π=1-1e π. 11.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积. 【答案】【解析】 因为(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,则k =f ′(1)=(3x 2-2x +1)|x =1=2,所以在点(1,2)处的切线方程为y -2=2(x -1),即y =2x ,其与函数g (x )=x 2围成的图形如图.由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4). 所以y =2x 与函数g (x )=x 2围成的图形的面积 S =⎠⎛02(2x -x 2)d x =⎝⎛⎭⎫x 2-13x 3∣20=4-83=43. 12.已知二次函数f (x )=ax 2+bx +c ,直线l 1:x =2,直线l 2:y =-t 2+8t (其中0≤t ≤2,t 为常数),若直线l 1,l 2与函数f (x )的图象以及l 2,y 轴与函数f (x )的图象所围成的封闭图形(阴影部分)如图所示.(1)求a ,b ,c 的值;(2)求阴影面积S 关于t 的函数S (t )的解析式. 【答案】见解析【解析】 (1)由图可知二次函数的图象过点(0,0),(8,0),并且f (x )的最大值为16,则⎩⎪⎨⎪⎧c =0,a ·82+b ·8+c =0,4ac -b 24a =16,解得⎩⎪⎨⎪⎧a =-1,b =8,c =0.(2)由(1)知函数f (x )的解析式为f (x )=-x 2+8x .由⎩⎪⎨⎪⎧y =-t 2+8t ,y =-x 2+8x得x 2-8x -t (t -8)=0,所以x 1=t ,x 2=8-t .因为0≤t ≤2,所以直线l 2与f (x )的图象位于l 1左侧的交点坐标为(t ,-t 2+8t ),由定积分的几何意义知:S (t )=⎠⎛0t[(-t 2+8t )-(-x 2+8x )]d x +⎠⎛t2[(-x 2+8x )-(-t 2+8t )]d x =⎣⎡⎦⎤(-t 2+8t )x -⎝⎛⎭⎫-x 33+4x 2∣t 0+⎣⎡⎦⎤⎝⎛⎭⎫-x 33+4x 2-(-t 2+8t )x ∣2t=-43t 3+10t 2-16t +403. 13.求曲线f (x )=sin x ,x ∈⎣⎡⎦⎤0,5π4与x 轴围成的图形的面积. 【答案】见解析【解析】 当x ∈[0,π]时,f (x )≥0,当x ∈⎝⎛⎦⎤π,5π4时,f (x )<0. 则所求面积S =⎠⎛0πsin x d x +⎝ ⎛⎭⎪⎫-⎠⎜⎛π 5π4sin x d x =-cos x ∣π0+cos x ⎪⎪⎪⎪5π4π=2+⎝⎛⎭⎫-22+1=3-22.。

高考数学一轮复习 214定积分与微积分基本定理课件 理

高考数学一轮复习 214定积分与微积分基本定理课件 理

听 课 记 录 如图,抛物线的焦点坐标为(0,1),所以直线l的
方程为y=1.

x2=4y, y=1,
解得
x=-2, y=1

x=2, y=1,
即A(-2,1),
B(2,1).
【答案】 C
【规律方法】 利用定积分求解曲边图形的面积,关键要把 握住两点:一是准确确定被积函数,一般的原则是“上”- “下”,即根据曲边图形的结构特征,用上方曲线对应的函数解 析式减去下方曲线对应的函数解析式;二是准确确定定积分的 上、下限,本例中应为曲边图形左、右两端对应点的横坐标, 上、下限的顺序不能颠倒.
,这个结论叫做微积分基本定

a
理,又叫做牛顿—莱布尼茨公式.
其中F(x)叫做f(x)的一个原函数. 为了方便,常把F(b)-F(a)记作 F(x)|ab ,即
bf(x)dx=F(x)|ba=F(b)-F(a).
a
疑点清源 1.定积分计算中应注意 (1)被积函数若含有绝对值号,应去绝对值号,再分段积分; (2)若积分式子中有几个不同的参数,则必须先分清谁是被积 变量; (3)定积分式子中隐含的条件是积分上限不小于积分下限.

bf(x)dx

c
(其中a<c<b).
a
a
2.定积分的几何意义 (1)当函数 f(x)在区间[a,b]上恒为正时,定积分bf(x)dx 的几

a
何意义是由直线 x=a,x=b(a≠b),y=0 和曲线 y=f(x)所围成的 曲边梯形的面积(图①中阴影部分).
(2)一般情况下,定积分bf(x)dx 的几何意义是介于 x 轴、曲线 a

1
0
0
答案 -2

课件1:定积分与微积分基本定理

课件1:定积分与微积分基本定理
91淘课网 ——淘出优秀的你

第4节 定积分与微积分基本定理
高 考





·
·






典例课来自探后究

·




菜单
91淘课网 ——淘出优秀的你



主 落
1.定积分的概念与性质
体 验

·
(1)定积分的定义:
· 明


基 础
如 果 函 数 f(x) 在 区 间 [a , b] 上 连 续 , 用 分 点 a = 情
π (1)(2013·广州模拟)若∫ 2 0(sin x+acos x)dx=2,则实数 a 等于( )
验 · 明 考 情
A.-1
B.1
C. 3
D.- 3
(2)定积分3 9-x2dx 的值为( ) 0
典 例 探 究
A.9π B.3π C.94π D.92π
课 后 作
·




菜单
91淘课网 ——淘出优秀的你
固 基
当 n→∞时,上述和式无限接近某个常数,这个常
考 情

数 叫 做 函 数 f(x) 在 区 间 [a , b] 上 的 定 积 分 , 记 作
典 例 探
__baf_(_x_)d_x___,即baf(x)dx=limi=n1 b-n af(ξi).
课 后


·




菜单
91淘课网 ——淘出优秀的你
③bf(x)dx=_____a _______+bf(x)dx(其中 a<c<b).

课件8:§3.3 定积分与微积分基本定理

课件8:§3.3   定积分与微积分基本定理

=9kb2t4.当
x=0
时,t=0;当
x=a
时,t=t1=
(
a b
1
)3
,又
dx=vdt,故阻
力所做的功为 W 阻=aF 阻 dx=
t1 0
kv
2
vdt
=k
t1 0
v3dt
=k
t1 (3bt 2 )3 dt
0
0
=277kb3t17=277k3 a7b2. 答案:277k3 a7b2
[解题师说] 1.求曲边图形的面积的 4 步骤 (1)根据题意画出图形; (2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; (3)把曲边梯形的面积表示成若干个定积分的和; (4)计算定积分,写出答案. 求解时,注意要把定积分与利用定积分计算图形面积区别开:定积 分是一个数值(极限值),可为正,可为负,也可为零,而平面图形的 面积在一般意义上总为正.
t0=t2-2t=8,
解得 t=4 或 t=-2(舍去).
答案:D
4.如图,函数 y=-x2+2x+1 与 y=1 相交形成
一个闭合图形(图中的阴影部分),则该闭合图形
的面积是 ( )
A.1
4 B.3
C. 3
D.2
解析:由yy==-1,x2+2x+1, 得 x1=0,x2=2.
所以所求面积 S=2 (-x2+2x+1-1)dx=2 (-x2+2x)dx
a
[冲关演练]
1.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第
二秒末物体落地,已知自由落体的运动速度为 v=gt(g 为常数),则
电视塔高为( )
1 A.2g
B.g
3 C.2g
D.2g

定积分与微积分基本定理(理)

定积分与微积分基本定理(理)

解析:∫π(sin x-cos x)dx=∫πsin xdx-∫πcos xdx 0 0 0 =(-cos x)| π-sin x| π=2. 0 0
答案:2
返回
2 2.(2012· 石家庄模拟)∫0|1-x|dx=________.
解析:若1-x≥0,则x≤1, 若1-x<0,则x>1,于是
2 ∫2|1-x|dx=∫1(1-x)dx+∫1(x-1)dx 0 0
2 1 2 1 1 2 =x-2x | 0+2x -x| 1=1.
答案: 1
返回
[冲关锦囊]
计算一些简单的定积分,解题的步骤是:①把被积函 数变形为幂函数、正弦函数、余弦函数、指数函数与常数 的积的和或差;②把定积分用定积分性质变形为求被积函 数为上述函数的定积分;③分别用求导公式找到一个相应
1 A.S=∫0(x2-x)dx 1 C.S=∫0(y2-y)dy
(
)
B.S=∫1(x-x2)dx 0
1 D.S=∫0(y- y)dy
答案:B
返回
3.(2011· 福建高考)∫1(ex+2x)dx等于 0 A.1 C.e B.e-1 D.e+1
(
)
1 解析:∫1(ex+2x)dx=(ex+x2)| 0=(e1+1)-e0=e. 0
答案: C
返回
4.(教材习题改编)已知函数f(x)=x2-2x-3,则∫1 1f(x)dx - =________.
1 解析:∫1 1f(x)dx=∫-1(x2-2x-3)dx -
1 3 1 16 2 =3x -x -3x| -1=- 3 .
16 答案:- 3
返回
5.如果∫1f(x)dx=1,∫2f(x)dx=-1,则∫2f(x)dx=________. 0 0 1

2.12第十二节 定积分与微积分基本定理

2.12第十二节 定积分与微积分基本定理

5

(3x3+4sinx)dx.

-5
解析:(1)根据定积分的几何意义,可知
1


0
示的是圆(x-1)2+y2=1的面积的14.
故1
1-x-12dx=4π.
0
1-x-12 dx表
(2)设y=f(x)=3x3+4sinx,
则f(-x)=3(-x)3+4sin(-x)=-(3x3+4sinx)=-f(x),
b-a n
f(ξi),当n→∞时,上
i=1
i=1
述和式无限接近某个常数,这个常数叫做函数f(x)在区间[a,b]上的定积分,
记作bf(x)dx.
பைடு நூலகம்a

b
f(x)dx中,a与b分别叫做积分下限与积分上限,区间①[a,b]叫做积
a
分区间,函数f(x)叫做被积函数,x叫做②积分变量,③f(x)dx叫做被积式.
2.定积分的几何意义
f(x)
bf(x)dx的几何意义

a
表示由直线④x=a,⑤x=b,y=
f(x)≥0
0及曲线y=f(x)所围成的曲边梯形
的面积
表示由直线⑥x=a,⑦x=b,y=
f(x)<0
0及曲线y=f(x)所围成的曲边梯形
的面积的相反数
表示位于x轴上方的曲边梯形的面
f(x)在[a,b]上有正有负 积减去位于x轴下方的曲边梯形的


a
a
c
4.微积分基本定理
一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)
=f(x),那么
b

f(x)dx=⑪F(b)-F(a),这个结论叫做微积分基本

微积分基本公式和基本定理

微积分基本公式和基本定理
ln a
(14) sh xdx ch x C
sh x ex ex 2
ch x ex ex 2
(15) ch xdx sh x C
23
例11. 求
dx . x3 x
解: 原式 =
x
4 3
dx
x
4 3
1
4 3
1
C
3x13 C
例12 求
sin
x 2
cos
x 2
dx
.
解: 原式=
xdx,
于是
2 e xdx
2
xdx.
2
2
0
0
例9
证明2e
1 4
2 e x2 xdx 2e2 .
0
2
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
3
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
定理 2.1 ( Newton Leibniz公式)
b f (x)dx F(b) F(a) F(x) b
a
a
----微积分基本公式
4
注意
当a
b时, b a
f
(
x)dx
F
(b)
F
(a ) 仍成立.
解(1)
6
例2

2 0
(
2
cos
x
sin
x
1)dx
.

原式
2sin
x
cos
x
x2 0

定积分与微积分基本定理ppt文档

定积分与微积分基本定理ppt文档

a
(2)b[f1(x)±f2(x)]dx=
bf1(x)dx±bf2(x)dx
a
a

a
bf(x)dx
(3)c f(x)dx+b f(x)dx=
a
(其中 a<c<b)
a
c
4.微积分基本定理
一般地,如果 f(x)是区间[a,b]上的连续函数,并且 F ′(x)=f(x),那么b f(x)dx= F(b)-F(a).这个结论叫
a
表示这个曲边梯形面积的相反数.
一般情况下(如图),定积分bf(x)dx 的几何意义是介于 x 轴、 a
函数 f(x)的图象以及直线 x=a、x=b 之间各部分面积的代数 和,在 x 轴上方的面积取正号;在 x 轴下方的面积取负号.
3.定积分的性质
kbf(x)dx
(1)b kf(x)dx=
a
(k 为常数);
(3)利用微积分基本定理求定积分,有时需先化简,再积 分.
(4)利用定积分求曲线所围成平面图形的面积,要利用数 形结合的方法确定被积函数和积分上下限.
2.
由两条直线 x=a、x=b(a<b)、两条曲线 y=f(x)、y= g(x)(f(x)≥g(x))围成的平面图形的面积:
S=b[f(x)-g(x)]dx(如图). a
a
做微积分基本定理,又叫做牛顿一莱布尼兹公式.为了方
便,我们常常把 F(b)-F(a)记成 F(x)|ab,
即b
f(x)dx=F(x)|ba=
a
F(b)-F(a).
其中 F(x)叫做 f(x)的一个原函数.
思想方法技巧
一、思想方法 (1)数形结合思想:求曲线围成图形的面积,要画出草 图,寻找积分上限和积分下限,以及被积函数的形式. (2)极限的思想:求曲边梯形的面积时,分割,近似代 替,求和,取极限,采用的是以直代曲,无限逼近的极限思 想. (3)公式法:套用公式求定积分,避免繁琐的运算,是求 定积分常用的方法. (4)定义法:用定义求定积分是最基本的求定积分方法.

定积分与微积分基本定理

定积分与微积分基本定理

定积分与微积分基本定理1.定积分的概念 在⎰b af (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质 (1)⎰b akf (x )d x =k⎰b af (x )d x (k 为常数);(2)⎰b a[f 1(x )±f 2(x )]d x =⎰baf 1(x )d x ±⎰b af 2(x )d x ;(3⎰b af (x )d x =⎰b af (x )d x +⎰b af (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎰baf (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.其中F (x )叫做f (x )的一个原函数. 为了方便,常把F (b )-F (a )记作F (x )|b a ,即f ⎰b a(x )d x =F (x ) |b a =F (b )-F (a ).基本积分公式表⑴C dx =⎰0 ⑵C x m dx x m m++=+⎰111 ⑶C x dx x+=⎰ln 1⑷C e dx e xx+=⎰⑸C aa dx a xx+=⎰ln ⑹⎰+=C x xdx sin cos ⑺⎰+-=C x x cos sin ⑻⎰+-=C x x x xdx ln ln 1.(2013·江西高考)若S 1=⎰21x 2d x ,S 2=⎰211xd x ,S 3=⎰21e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3 .C .S 2<S 3<S 1D .S 3<S 2<S 12.(2013北京,5分)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直, 则l 与C 所围成的图形的面积等于( ) A.43B .2 C.83 . D. 16233.(2013湖南,5分)若∫T 0x 2d x =9,则常数T 的值为________.4.(2012福建,5分)如图所示,在边长为1的正方形OABC 中任取 一点P ,则点P 恰好取自阴影部分的概率为( ) A.14 B.15 C.16 D.175.(2012湖北,5分)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( ) A.2π5 B.43 . C.32 D.π26.(2011湖南,5分)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12B .1 C.32D.3. 7.(2010山东,5分)由曲线y =x 2,y =x 3围成的封闭图形面积为( )A.112B.14C.13D.712 8.(2010湖南,5分)⎰421xd x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2.9.(2009·福建,5分)⎰-22ππ(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2.10.(2011陕西,5分)设f (x )=⎪⎩⎪⎨⎧≤+>⎰0,30,lg 2x dt t x x x a 若f (f (1))=1,则a =________. 11、(2008海南)由直线21=x ,x=2,曲线x y 1=及x 轴所围图形的面积为( ) A.415B. 417 C. 2ln 21 D. 2ln 2.12、(2010海南)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点11(,)(1,2,)x y i N =…,,再数出其中满足11()(1,2,)y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分10()f x dx ⎰的近似值为 。

214定积分与微积分的基本定理-副本

214定积分与微积分的基本定理-副本

第十四节定积分与微积分基本定理[备考方向要明了]考什么怎么考1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题.2.考查简单定积分的求解.如2012年江西T11等.3.考查曲边梯形面积的求解.如2012年湖北T3,山东T15,上海T13等.4.与几何概型相结合考查.如2012年福建T6等.[归纳·知识整合]1.定积分(1)定积分的相关概念在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.(2)定积分的几何意义①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x =b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分).②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.(3)定积分的基本性质①∫b a kf(x)d x=k∫b a f(x)d x.②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x.③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x.[探究] 1.若积分变量为t ,则∫b a f (x )d x 与∫ba f (t )d t 是否相等?提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分∫b a [f (x )-g (x )]d x (f (x )>g (x ))的几何意义是什么?提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积. 2.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F (b )-F (a )F (x )|b a ,即∫b a f (x )d x =F (x )|b a =F (b )-F (a ).[自测·牛刀小试]1.∫421xd x 等于( ) A .2ln 2 B .-2ln 2 C .-ln 2D .ln 2解析:选D ∫421xd x =ln x |42=ln 4-ln 2=ln 2. 2.(教材习题改编)一质点运动时速度和时间的关系为V (t )=t 2-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( )A.176B.143 C.136D.116解析:选A S =∫21(t 2-t +2)d t =⎝⎛⎪⎪⎭⎫13t 3-12t 2+2t 21=176.3.(教材习题改编)直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积为________.解析:∫20x 2d x =13x 3 |20=83. 答案:834.(教材改编题)∫101-x 2d x =________.解析:由定积分的几何意义可知,∫101-x 2d x 表示单位圆x 2+y 2=1在第一象限内部分的面积,所以∫101-x 2d x =14π. 答案:14π5.由曲线y =1x ,直线y =-x +52所围成的封闭图形的面积为________.解析:作出图象如图所示.解方程组可得交点为A ⎝⎛⎭⎫12,2,B ⎝⎛⎭⎫2,12,所以阴影部分的面积,212⎰⎝⎛ -x +52-⎭⎫1x d x =⎝⎛⎭⎫-12x 2+52x -ln x 212=158-2ln 2. 答案:158-2ln 2利用微积分基本定理求定积分[例1] 利用微积分基本定理求下列定积分:(1)∫21(x 2+2x +1)d x ;(2)∫π0(sin x -cos x )d x ;(3)∫20x (x +1)d x ;(4)∫21⎝⎛⎭⎫e 2x +1x d x ; (5)20π⎰sin 2x 2d x .[自主解答](1)∫21(x 2+2x +1)d x =∫21x 2d x +∫212x d x +∫211d x =x 33 |21+x 2 |21+x |21=193. (2)∫π0(sin x -cos x )d x=∫π0sin x d x -∫π0cos x d x =(-cos x ) |π0-sin x |π0=2. (3)∫20x (x +1)d x =∫20(x 2+x )d x=∫20x 2d x +∫20x d x =13x 3 |20+12x 2 |20 =⎝⎛⎭⎫13×23-0+⎝⎛⎭⎫12×22-0=143.(4)∫21⎝⎛⎭⎫e 2x +1x d x =∫21e 2x d x +∫211x d x =12e 2x |21+ln x |21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (5)20π⎰ sin 2x 2d x =20π⎰⎝⎛⎭⎫12-12cos x d x =20π⎰12d x -1220π⎰cos x d x =12x 20π-12sin x 20π=π4-12=π-24. ———————————————————求定积分的一般步骤计算一些简单的定积分,解题的步骤是:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值.1.求下列定积分: (1)∫20|x -1|d x ; (2)20π⎰1-sin 2x d x .解:(1)|x -1|=⎩⎪⎨⎪⎧1-x , x ∈[0,1)x -1, x ∈[1,2]故∫20|x -1|d x =∫10(1-x )d x +∫21(x -1)d x=⎝⎛⎭⎫x -x 22 |10+⎝⎛⎭⎫x 22-x |21 =12+12=1. (2) 20π⎰1-sin 2x d x=20π⎰|sin x -cos x |d x =40π⎰(cos x -sin x )d x +24ππ⎰(sin x -cos x )d x=(sin x +cosx )40π+(-cos x -sin x ) 24ππ=2-1+(-1+2)=22-2.利用定积分的几何意义求定积分[例2] ∫10-x 2+2x d x =________. [自主解答] ∫10-x 2+2x d x 表示y =-x 2+2x 与x =0,x =1及y =0所围成的图形的面积.由y =-x 2+2x 得(x -1)2+y 2=1(y ≥0), 又∵0≤x ≤1,∴y =-x 2+2x 与x =0,x =1及y =0所围成的图形为14个圆,其面积为π4.∴∫10-x 2+2x d x =π4.在本例中,改变积分上限,求∫20-x 2+2x d x 的值.解:∫20-x 2+2x d x 表示圆(x -1)2+y 2=1在第一象限内部分的面积,即半圆的面积,所以∫20-x 2+2x d x =π2.——————————————————— 利用几何意义求定积分的方法(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.(2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小.2.(2013·福建模拟)已知函数f (x )=∫x 0(cos t -sin t )d t (x >0),则f (x )的最大值为________.解析:因为f (x )=∫x 02sin ⎝⎛⎭⎫π4-t d t =2cos ⎝⎛⎭⎫π4-t |x 0=2cos ⎝⎛⎭⎫π4-x -2cos π4 =sin x +cos x -1=2sin ⎝⎛⎭⎫x +π4-1≤2-1,当且仅当sin ⎝⎛⎭⎫x +π4=1时,等号成立. 答案:2-1利用定积分求平面图形的面积[例3] (2012·山东高考)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A.103 B .4 C.163D .6[自主解答] 由y =x 及y =x -2可得,x =4,即两曲线交于点(4,2).由定积分的几何意义可知,由y =x 及y =x -2及y 轴所围成的封闭图形面积为∫40(x -x +2)d x =⎝⎛⎭⎫23x 32-12x 2+2x |40=163. [答案] C若将“y =x -2”改为“y =-x +2”,将“y 轴”改为“x 轴”,如何求解? 解:如图所示,由y =x 及y =-x +2可得x =1.由定积分的几何意义可知,由y =x ,y =-x +2及x 轴所围成的封闭图形的面积为∫20f (x )d x =∫10x d x +∫21(-x +2)d x =23x 32 |10+⎝⎛⎭⎫2x -x 22 |21=76.——————————————————— 利用定积分求曲边梯形面积的步骤(1)画出曲线的草图.(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差. (4)计算定积分,写出答案.3.(2013·郑州模拟)如图,曲线y =x 2和直线x =0,x =1,y =14所围成的图形(阴影部分)的面积为( )A.23 B.13 C.12D.14解析:选D 由⎩⎪⎨⎪⎧y =14,y =x 2⇒x =12或x =-12(舍),所以阴影部分面积S =120⎰⎝⎛⎭⎫14-x 2d x +112⎰⎝⎛⎭⎫x 2-14d x=⎝⎛⎭⎫14x -13x 3120+⎝⎛⎭⎫13x 3-14x 112=14.定积分在物理中的应用[例4] 列车以72 km/h 的速度行驶,当制动时列车获得加速度a =-0.4 m/s 2,问列车应在进站前多长时间,以及离车站多远处开始制动?[自主解答] a =-0.4 m/s 2,v 0=72 km/h =20 m/s. 设t s 后的速度为v ,则v =20-0.4t . 令v =0,即20-0.4 t =0得t =50 (s). 设列车由开始制动到停止所走过的路程为s ,则s =∫500v d t =∫500(20-0.4t )d t =(20t -0.2t 2) |500=20×50-0.2×502=500(m),即列车应在进站前50 s 和进站前500 m 处开始制动. ———————————————————1.变速直线运动问题如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≥0),那么物体从时刻t =a 到t =b 所经过的路程为∫b a v (t )d t ;如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≤0),那么物体从时刻t =a 到t =b 所经过的路程为-∫b a v (t )d t .2.变力做功问题物体在变力F (x )的作用下,沿与力F (x )相同方向从x =a 到x =b 所做的功为∫b a F (x )d x .4.一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J解析:选B 力F (x )做功为∫2010d x +∫42(3x +4)d x=10x |20+⎝⎛⎪⎪⎭⎫32x 2+4x 42=20+26=46.1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.3条性质——定积分的性质 (1)常数可提到积分号外; (2)和差的积分等于积分的和差; (3)积分可分段进行.3个注意——定积分的计算应注意的问题(1)若积分式子中有几个不同的参数,则必须分清谁是积分变量; (2)定积分式子中隐含的条件是积分上限不小于积分下限; (3)面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点[典例] (2012·上海高考)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[解析] 由题意可得f (x )=⎩⎨⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎨⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1,与x 轴围成图形的面积为120⎰10x 2d x +112⎰(10x -10x 2)d x =103x 3120+⎝⎛⎭⎫5x 2-103x 3112=54. [答案] 54[易误辨析]1.本题易写错图形面积与定积分间的关系而导致解题错误.2.本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错.3.解决利用定积分求平面图形的面积问题时,应处理好以下两个问题: (1)熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形; (2)准确确定被积函数和积分变量. [变式训练]1.由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112 B.14 C.13D.712解析:选A 由⎩⎪⎨⎪⎧y =x 2,y =x 3,得x =0或x =1,由图易知封闭图形的面积=∫10(x 2-x 3)d x =13-14=112.2.(2012·山东高考)设a >0.若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.解析:由题意∫a 0x d x =a 2.又⎝ ⎛⎭⎪⎫23x 32′=x ,即23x 32 |a 0=a 2, 即23a 32=a 2.所以a =49.答案:49一、选择题(本大题共6小题,每小题5分,共30分) 1.∫e 11+ln xxd x =( ) A .ln x +12ln 2xB.2e -1C.32D.12解析:选C∫e 11+ln x x d x =⎝⎛⎭⎫ln x +ln 2 x 2e 1=32.2.(2012·湖北高考)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5B.43 C.32D.π2解析:选B 由题中图象易知f (x )=-x 2+1,则所求面积为2∫10(-x 2+1)d x =2⎝⎛⎭⎫-x 33+x 10=43. 3.设函数f (x )=ax 2+b (a ≠0),若∫30f (x )d x =3f (x 0),则x 0等于( ) A .±1 B. 2 C .±3D .2解析:选C ∫30f (x )d x =∫30(ax 2+b )d x =⎝⎛⎭⎫13ax 3+bx 30=9a +3b , 则9a +3b =3(ax 20+b ), 即x 20=3,x 0=±3.4.设f (x )=⎩⎪⎨⎪⎧x 2, x ∈[0,1],2-x , x ∈(1,2],则∫20f (x )d x =( )A.34 B.45 C.56D .不存在解析:选C 如图.∫20f (x )d x =∫10x 2d x +∫21(2-x )d x=13x 3 |10+⎝⎛⎭⎫2x -12x 2 |21 =13+⎝⎛⎭⎫4-2-2+12 =56. 5.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( )A.1603 m B.803 m C.403m D.203m 解析:选A v =40-10t 2=0,t =2,∫20(40-10t 2)d t=⎝⎛⎭⎫40t -103t 3 |20=40×2-103×8=1603(m). 6.(2013·青岛模拟)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3解析:选D 结合函数图象可得所求的面积是定积分33ππ-⎰cos x d x =sin x33ππ-=32-⎝⎛⎭⎫-32= 3. 二、填空题(本大题共3小题,每小题5分,共15分)7.设a =∫π0sin x d x ,则曲线y =f (x )=xa x +ax -2在点(1,f (1))处的切线的斜率为________.解析:∵a =∫π0sin x d x =(-cos x ) |π0=2,∴y =x ·2x +2x -2. ∴y ′=2x +x ·2x ln 2+2.∴曲线在点(1,f (1))处的切线的斜率k =y ′|x =1=4+2ln 2. 答案:4+2ln 28.在等比数列{a n }中,首项a 1=23,a 4=∫41(1+2x )d x ,则该数列的前5项之和S 5等于________.解析:a 4=∫41(1+2x )d x =(x +x 2) |41=18,因为数列{a n}是等比数列,故18=23q 3,解得q =3,所以S 5=23(1-35)1-3=2423.答案:24239.(2013·孝感模拟)已知a ∈⎣⎡⎦⎤0,π2,则当∫a 0(cos x -sin x )d x 取最大值时,a =________. 解析:∫a 0(cos x -sin x )d x =(sin x +cos x ) |a=sin a +cos a -1 =2sin ⎝⎛⎭⎫a +π4-1, ∵a ∈⎣⎡⎦⎤0,π2,∴当a =π4时,2sin ⎝⎛⎭⎫a +π4-1取最大值. 答案:π4三、解答题(本大题共3小题,每小题12分,共36分) 10.计算下列定积分: (1)20π⎰sin 2x d x ;(2)∫32⎝⎛⎭⎫x +1x 2d x ; (3)120⎰e 2x d x .解:(1)20π⎰sin 2x d x =20π⎰1-cos 2x2d x=⎝⎛⎭⎫12x -14sin 2x 20π=⎝⎛⎭⎫π4-14sin π-0=π4. (2)∫32⎝⎛⎭⎫x +1x 2d x =∫32⎝⎛⎭⎫x +1x +2d x =⎝⎛⎭⎫12x 2+2x +ln x |32 =⎝⎛⎭⎫92+6+ln 3-(2+4+ln 2) =92+ln 3-ln 2=92+ln 32. (3)120⎰e 2x d x =12e 2x120=12e -12. 11.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解:抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1, 所以,抛物线与x 轴所围图形的面积S =∫10(x -x 2)d x =⎝⎛⎭⎫x 22-13x 3 |10=16. 又⎩⎪⎨⎪⎧y =x -x 2,y =kx , 由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k ,所以, S 2=∫1-k 0(x -x 2-kx )d x =⎝⎛⎭⎫1-k 2x 2-13x 3 |1-k 0=16(1-k )3.又知S =16,所以(1-k )3=12,于是k =1- 312=1-342.12.如图,设点P 从原点沿曲线y =x 2向点A (2,4)移动,直线OP 与曲线y =x 2围成图形的面积为S 1,直线OP 与曲线y =x 2及直线x =2围成图形的面积为S 2,若S 1=S 2,求点P 的坐标.解:设直线OP 的方程为y =kx ,点P 的坐标为(x ,y ),则∫x 0(kx -x 2)d x =∫2x (x 2-kx )d x ,即⎝⎛⎭⎫12kx 2-13x 3 |x0=⎝⎛⎭⎫13x 3-12kx 2 |2x,解得12kx 2-13x 3=83-2k -⎝⎛⎭⎫13x 3-12kx 2, 解得k =43,即直线OP 的方程为y =43x ,所以点P 的坐标为⎝⎛⎭⎫43,169.1.一物体做变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为________. 解析:由题图可知, v (t )=⎩⎪⎨⎪⎧2t (0≤t ≤1),2 (1≤t ≤3),13t +1 (3≤t ≤6),因此该物体在12 s ~6 s 间运动的路程为s =612⎰v (t )d t =112⎰2t d t +∫312d t +∫63⎝⎛⎭⎫13t +1d t =t 2112+2t |31+⎝⎛⎭⎫16t 2+t |63=494(m). 答案:494m2.计算下列定积分: (1)31-⎰(3x 2-2x +1)d x ;(2)∫e 1⎝⎛⎭⎫x +1x +1x 2d x . 解:(1)31-⎰(3x 2-2x +1)d x =(x 3-x 2+x )31-=24.(2)∫e 1⎝⎛⎭⎫x +1x +1x 2d x =∫e 1x d x +∫e 11x d x +∫e 11x 2d x =12x 2 |e 1+ln x |e1-1x |e 1 =12(e 2-1)+(ln e -ln 1)-⎝⎛⎭⎫1e -11=12e 2-1e +32. 3.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解:由⎩⎪⎨⎪⎧y =x ,y =2-x ,得交点A (1,1);由⎩⎪⎨⎪⎧y =2-x ,y =-13x ,得交点B (3,-1).故所求面积S =∫10⎝⎛⎭⎫x +13x d x +∫31⎝⎛⎭⎫2-x +13x d x =⎝ ⎛⎭⎪⎫23x 32+16x 2 |10+⎝⎛⎭⎫2x -13x 2 |31 =23+16+43=136. 4.某技术监督局对一家颗粒输送仪生产厂进行产品质量检测时,得到了下面的资料:这家颗粒输送仪生产厂生产的颗粒输送仪,其运动规律属于变速直线运动,且速度v (单位:m/s)与时间t (单位:s)满足函数关系式v (t )=⎩⎪⎨⎪⎧t 2 (0≤t ≤10),4t +60 (10<t ≤20),140 (20<t ≤60).某公司拟购买一台颗粒输送仪,要求1 min 行驶的路程超过7 673 m ,问这家颗粒输送仪生产厂生产的颗粒输送仪能否被列入拟挑选的对象之一?解:由变速直线运动的路程公式,可得s =∫100t 2d t +∫2010(4t +60)d t +∫6020140d t=13t 3 |100+(2t 2+60t ) |2010+140t |6020=7 133 13(m)<7 676(m).∴这家颗粒输送仪生产厂生产的颗粒输送仪不能被列入拟挑选的对象之一.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

214定积分与微积分的基本定理-副本第十四节定积分与微积分基本定理[备考方向要明了]考什么怎么考1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.1.考查形式多为选择题或填空题.2.考查简单定积分的求解.如2012年江西T11等.3.考查曲边梯形面积的求解.如2012年湖北T3,山东T15,上海T13等.4.与几何概型相结合考查.如2012年福建T6等.[归纳·知识整合]1.定积分(1)定积分的相关概念在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.(2)定积分的几何意义①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x =b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分).②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.(3)定积分的基本性质①∫b a kf(x)d x=k∫b a f(x)d x.②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x.③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x.[探究] 1.若积分变量为t ,则∫b a f (x )d x 与∫ba f (t )d t 是否相等?提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分∫b a [f (x )-g (x )]d x (f (x )>g (x ))的几何意义是什么?提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积. 2.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F (b )-F (a )F (x )|b a ,即∫b a f (x )d x =F (x )|b a =F (b )-F (a ).[自测·牛刀小试]1.∫421xd x 等于( ) A .2ln 2 B .-2ln 2 C .-ln 2D .ln 2解析:选D ∫421xd x =ln x |42=ln 4-ln 2=ln 2. 2.(教材习题改编)一质点运动时速度和时间的关系为V (t )=t 2-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( )A.176B.143 C.136D.116解析:选A S =∫21(t 2-t +2)d t =⎝⎛⎪⎪⎭⎫13t 3-12t 2+2t 21=176.3.(教材习题改编)直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积为________.解析:∫20x 2d x =13x 3 |20=83. 答案:834.(教材改编题)∫101-x 2d x =________.解析:由定积分的几何意义可知,∫101-x 2d x 表示单位圆x 2+y 2=1在第一象限内部分的面积,所以∫101-x 2d x =14π. 答案:14π5.由曲线y =1x ,直线y =-x +52所围成的封闭图形的面积为________.解析:作出图象如图所示.解方程组可得交点为A ⎝⎛⎭⎫12,2,B ⎝⎛⎭⎫2,12,所以阴影部分的面积,«Skip Record If...»⎝⎛ -x +52-⎭⎫1x d x =⎝⎛⎭⎫-12x 2+52x -ln x «Skip Record If...»=158-2ln 2.答案:158-2ln 2利用微积分基本定理求定积分[例1] 利用微积分基本定理求下列定积分:(1)∫21(x 2+2x +1)d x ;(2)∫π0(sin x -cos x )d x ;(3)∫20x (x +1)d x ;(4)∫21⎝⎛⎭⎫e 2x +1x d x ; (5)«Skip Record If...» sin 2x2d x .[自主解答](1)∫21(x 2+2x +1)d x =∫21x 2d x +∫212x d x +∫211d x =x 33 |21+x 2 |21+x |21=193. (2)∫π0(sin x -cos x )d x=∫π0sin x d x -∫π0cos x d x =(-cos x ) |π0-sin x |π0=2. (3)∫20x (x +1)d x =∫20(x 2+x )d x=∫20x 2d x +∫20x d x =13x 3 |20+12x 2 |20 =⎝⎛⎭⎫13×23-0+⎝⎛⎭⎫12×22-0=143.(4)∫21⎝⎛⎭⎫e 2x +1x d x =∫21e 2x d x +∫211x d x =12e 2x |21+ln x |21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (5)«Skip Record If...» sin 2 x 2d x =«Skip Record If...»⎝⎛⎭⎫12-12cos x d x =«Skip Record If...»12d x -12«Skip Record If...»cos x d x=12x«Skip Record If...»-12sin x«Skip Record If...»=π4-12=π-24. ———————————————————求定积分的一般步骤计算一些简单的定积分,解题的步骤是:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值.1.求下列定积分: (1)∫20|x -1|d x ;(2) «Skip Record If...»1-sin 2x d x .解:(1)|x -1|=⎩⎪⎨⎪⎧1-x , x ∈[0,1)x -1, x ∈[1,2]故∫20|x -1|d x =∫10(1-x )d x +∫21(x -1)d x=⎝⎛⎭⎫x -x 22 |10+⎝⎛⎭⎫x 22-x |21 =12+12=1. (2) «Skip Record If...»1-sin 2x d x=«Skip Record If...»|sin x -cos x |d x =«Skip Record If...» (cos x -sin x )d x +«Skip Record If...» (sin x -cos x )d x=(sin x +cos x )«Skip Record If...»+(-cos x -sin x ) «Skip Record If...» =2-1+(-1+2)=22-2.利用定积分的几何意义求定积分[例2] ∫10-x 2+2x d x =________.[自主解答] ∫10-x 2+2x d x 表示y =-x 2+2x 与x =0,x =1及y =0所围成的图形的面积.由y =-x 2+2x 得(x -1)2+y 2=1(y ≥0), 又∵0≤x ≤1,∴y =-x 2+2x 与x =0,x =1及y =0所围成的图形为14个圆,其面积为π4.∴∫10-x 2+2x d x =π4.在本例中,改变积分上限,求∫20-x 2+2x d x 的值.解:∫20-x 2+2x d x 表示圆(x -1)2+y 2=1在第一象限内部分的面积,即半圆的面积,所以∫20-x 2+2x d x =π2.——————————————————— 利用几何意义求定积分的方法(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.(2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小.2.(2013·福建模拟)已知函数f (x )=∫x 0(cos t -sin t )d t (x >0),则f (x )的最大值为________.解析:因为f (x )=∫x 02sin ⎝⎛⎭⎫π4-t d t =2cos ⎝⎛⎭⎫π4-t |x 0=2cos ⎝⎛⎭⎫π4-x -2cos π4 =sin x +cos x -1=2sin ⎝⎛⎭⎫x +π4-1≤2-1, 当且仅当sin ⎝⎛⎭⎫x +π4=1时,等号成立. 答案:2-1利用定积分求平面图形的面积[例3] (2012·山东高考)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )A.103 B .4 C.163D .6[自主解答] 由y =x 及y =x -2可得,x =4,即两曲线交于点(4,2).由定积分的几何意义可知,由y =x 及y =x -2及y 轴所围成的封闭图形面积为∫40(x -x +2)d x =⎝⎛⎭⎫23x 32-12x 2+2x |40=163. [答案] C若将“y =x -2”改为“y =-x +2”,将“y 轴”改为“x 轴”,如何求解? 解:如图所示,由y =x 及y =-x +2可得x =1.由定积分的几何意义可知,由y =x ,y =-x +2及x 轴所围成的封闭图形的面积为∫20f (x )d x =∫10x d x +∫21(-x +2)d x =23x«Skip Record If...» |10+⎝⎛⎭⎫2x -x 22 |21=76.——————————————————— 利用定积分求曲边梯形面积的步骤(1)画出曲线的草图.(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差. (4)计算定积分,写出答案.3.(2013·郑州模拟)如图,曲线y =x 2和直线x =0,x =1,y =14所围成的图形(阴影部分)的面积为( )A.23 B.13 C.12D.14解析:选D 由⎩⎪⎨⎪⎧y =14,y =x 2⇒x =12或x =-12(舍),所以阴影部分面积S =«Skip Record If...»⎝⎛⎭⎫14-x 2d x +«Skip Record If...»⎝⎛⎭⎫x 2-14d x =⎝⎛⎭⎫14x -13x 3«Skip Record If...»+⎝⎛⎭⎫13x 3-14x «Skip Record If...»=14.定积分在物理中的应用[例4] 列车以72 km/h 的速度行驶,当制动时列车获得加速度a =-0.4 m/s 2,问列车应在进站前多长时间,以及离车站多远处开始制动?[自主解答] a =-0.4 m/s 2,v 0=72 km/h =20 m/s. 设t s 后的速度为v ,则v =20-0.4t . 令v =0,即20-0.4 t =0得t =50 (s). 设列车由开始制动到停止所走过的路程为s ,则s =∫500v d t =∫500(20-0.4t )d t =(20t -0.2t 2) |500=20×50-0.2×502=500(m),即列车应在进站前50 s 和进站前500 m 处开始制动. ———————————————————1.变速直线运动问题如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≥0),那么物体从时刻t =a 到t =b 所经过的路程为∫b a v (t )d t ;如果做变速直线运动的物体的速度v 关于时间t的函数是v =v (t )(v (t )≤0),那么物体从时刻t =a 到t =b 所经过的路程为-∫ba v (t )d t .2.变力做功问题物体在变力F (x )的作用下,沿与力F (x )相同方向从x =a 到x =b 所做的功为∫ba F (x )d x .4.一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J解析:选B 力F (x )做功为∫2010d x +∫42(3x +4)d x=10x |20+⎝⎛⎪⎪⎭⎫32x 2+4x 42=20+26=46.1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.3条性质——定积分的性质 (1)常数可提到积分号外; (2)和差的积分等于积分的和差; (3)积分可分段进行.3个注意——定积分的计算应注意的问题(1)若积分式子中有几个不同的参数,则必须分清谁是积分变量; (2)定积分式子中隐含的条件是积分上限不小于积分下限; (3)面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点[典例] (2012·上海高考)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[解析] 由题意可得f (x )=⎩⎨⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎨⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1,与x 轴围成图形的面积为«Skip Record If...»10x 2d x +«Skip Record If...»错误!未找到引用源。

相关文档
最新文档