平行四边形2个动点问题
特殊平行四边形动点问题解题技巧
特殊平行四边形动点问题解题技巧《特殊平行四边形动点问题解题技巧:和动点斗志斗勇的日子》嘿,大家好呀!今天咱就来唠唠特殊平行四边形动点问题解题技巧这档子事儿。
咱就说,遇到这种动点问题啊,就像是和一个调皮的小精灵在玩捉迷藏。
它一会儿在这儿,一会儿又跑那儿去了,让人是又好气又好笑。
但咱可不能被它给吓住,得和它斗智斗勇才行。
首先呢,咱得有双“火眼金睛”,能快速地找出题目中的关键信息。
比如这个动点的运动轨迹是啥呀,是沿着边跑,还是在对角线上蹦跶。
这就像是找到了小精灵的行动路线,心里就有底了。
然后呢,咱得学会“以静制动”。
别管它怎么动,咱就把它当成静止的来分析。
比如说,在某个时刻,它在这个位置,那这个时候的图形有啥特点,跟其他条件一结合,能得出啥结论。
嘿,就这么一分析,好像那小精灵也不那么调皮了。
还有啊,要多画画图。
有时候光靠脑子想是不行滴,得动手画出来。
看着那图形在笔下一点点呈现,感觉就像在掌控整个局面一样。
而且呀,多画几种不同时刻的图,说不定就能找到规律,那小精灵的小把戏也就不攻自破啦。
再说说解题的时候,那可得思路清晰啊。
把各种条件、结论像串珠子一样串起来,可不能乱了套。
这就好比在给小精灵设陷阱,让它乖乖地掉进咱的圈套里。
咱还得有点“大胆假设”的精神。
碰到难题别退缩,大胆地去猜测一下,说不定还就猜中了呢。
就算没猜中,那也没啥损失呀,就当给大脑做个热身运动了。
总之,面对特殊平行四边形动点问题,咱可不能怕。
就把它当成一场有趣的挑战,和那个调皮的小精灵好好过过招。
只要咱掌握了这些解题技巧,再加上一点点细心、耐心和恒心,那小精灵最后还不得乖乖就范。
所以呀,大家都别怕,大胆地去和动点战斗吧!让我们在解题的海洋里畅游,享受那份攻克难题后的喜悦和成就感!加油哦,朋友们!。
【存在性系列】平行四边形存在性问题
【存在性系列】平⾏四边形存在性问题平⾏四边形存在性问题,主要考察⼀个四边形为平⾏四边形需要满⾜的判定条件。
这部分考察的较多的主要分为“三定⼀动”,“两定两动”类型。
今天来详细讨论下平⾏四边形的存在性问题。
理论准备知识储备:1.点在平⾯直⾓坐标系中的平移2.左右平移横变纵不变,上下平移纵变横不变坐标平移⼝诀:上加下减,左减右加3. 平⾏四边形平⾏且相等4. 平⾏四边形对⾓线互相平分【处理策略⼀】利⽤对⾓新互相平分【⽅法运⽤】该⽅法适⽤于“三定⼀动”、“两定两动”类型的动点问题【处理策略⼆】利⽤对边平⾏且相等,构造全等【⽅法运⽤】该⽅法适⽤于“三定⼀动”、“两定两动”类型的动点问题常见类型以下主要讲解按照对⾓线讨论的处理⽅法类型⼀:三定⼀动【引例】如图,A(1,2),B(6,3),C(3,5)为坐标系中三个定点,问平⾯内是否存在点D,使得四边形ABCD为平⾏四边形.【处理⽅法】⼀般我们习惯分对⾓线进⾏讨论我们设D的坐标为(m,n)1.当AC为对⾓线时可以得到平⾏四边形D1ABC ∴ 1+3=6+m ,m=-2, 2+5=3+n, n=4∴D1的坐标为(-2,4)2.当BC为对⾓线时可以得到平⾏四边形ACD2B ∴ 1+m=6+3,m=8,2+n=3+5,n=6∴D2的坐标为(8,6)3.当AB为对⾓线时可以的到平⾏四边形ACBD3 ∴ 1+6=3+m,m=4,2+3=5+n,n=0∴D3的坐标为(4,0)类型⼆:两定两动【引例1】已知A(2,1)、B(4,2),点C在x轴上,点D在y轴上,且以A、B、C、D为顶点的四边形是平⾏四边形,求C、D坐标.【处理⽅法】对于两个动点的问题我们也是采取分对⾓线进⾏讨论即可设C的坐标为(m,0),D的坐标我(0,n)1.当AB为对⾓线时2+4=m+0,m=61+2=n+0,n=3∴C的坐标为(6,0),D的坐标为(0,3)2.当AC为对⾓线时2+m=4,m=21+0=2+n,n=-1∴此时C的坐标为(2,0),D的坐标为(0,-1)3.当AD为对⾓线时2+0=m+4,m=-21+n=0+2,n=1∴C的坐标为(-2,0),D的坐标为(0,1)【引例2】如图,在平⾯直⾓坐标系中,有两点A(1,3),B(3,6),C为x轴上的⼀个动点。
四边形中的动点问题(带答案)
四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠ EFB =2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为 _____3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ +PQ 的最小值为___________4、如图,在Rt△ABC中,∠ B=90°,AC=60cm,∠A=60°,点 D 从点C出发沿CA方向以4cm/s 的速度向点A匀速运动,同时点E从点 A 出发沿AB 方向以2cm/s 的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t ≤15).过点 D 作DF⊥ BC于点F,连接DE,EF.(1) 求证:AE=DF;(2) 四边形AEFD能够成为菱形吗如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,△ DEF为直角三角形请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点 A 出发沿射线AG以1cm/s 的速度运动,同时点 F 从点 B 出发沿射线BC以2cm/s 的速度运动,设运动时间为t.(1)连接EF,当EF经过AC边的中点 D 时,(1)求证:△ ADE≌△ CDF;:(2)当t 为____ s 时,四边形ACFE是菱形;6、在菱形ABCD中,∠ B=60°,点E在射线BC上运动,∠ EAF=60°,点 F 在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点 E 在BC的延长线上时(如图2),线段EC、CF、AB 有怎样的相等关系写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠ DAB=60°,点E是AD边的中点.点M 是AB边上一动点不与点 A 重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN 是平行四边形;(2)填空:①当AM 的值为____ 时,四边形AMDN 是矩形;②当AM 的值为____ 时,四边形AMDN 是菱形.8、如图,△ ABC中,点O 是边AC上一个动点,过O 作直线MN ∥BC,设MN 交∠ BCA的平分线于点E,交∠ BCA 的外角平分线于点F.(1)探究:线段OE与OF 的数量关系并加以证明;(2)当点O 运动到何处,且△ ABC满足什么条件时,四边形AECF是正方形(3)当点O 在边AC上运动时,四边形BCFE会是菱形吗若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D 重合)分别向直线AB、AD 作垂线,垂足分别为E、F.(1)BD的长是___ ;(2)连接PC,当PE+PF+PC取得最小值时,此时PB 的长是__10、如图,∠ MON=90°,矩形ABCD的顶点A、B分别在边OM,ON 上,当B在边ON 上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为_____ .11、如图,已知矩形ABCD,AD=4,CD=10,P 是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN 是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN 是菱形;(3)四边形PMEN有可能是矩形吗若有可能,求出AP 的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A 运动,其速度为/s。
平行四边形动点问题方法总结
平行四边形动点问题方法总结大家好,今天我们来聊聊平行四边形动点问题。
这个问题可大可小,有时候我们在生活中也会碰到这样的问题。
比如说,你拿着一个碗,碗口朝下放在地上,然后用一根棍子在碗里搅动,碗里的水会形成一个漩涡。
这个现象背后就隐藏着平行四边形动点问题。
那么,我们怎么解决这个问题呢?接下来,我就要给大家普及一下解决平行四边形动点问题的三大法宝:三角形法则、相似三角形法则和向量法。
我们来说说三角形法则。
三角形法则是解决平行四边形动点问题的基本方法。
它的核心思想是利用三角形的三个顶点和三条边的关系,将平行四边形分解成若干个三角形,然后分别求解这些三角形的问题,最后将结果合并起来得到原问题的解。
这个方法简单易懂,而且非常实用。
但是,有时候三角形法则并不能直接解决问题,这时候我们就需要用到第二个法宝:相似三角形法则。
相似三角形法则是解决平行四边形动点问题的另一个重要方法。
它的核心思想是利用相似三角形的性质,将平行四边形分解成若干个相似的三角形,然后分别求解这些三角形的问题,最后将结果合并起来得到原问题的解。
这个方法比三角形法则更加灵活,可以处理更多的问题类型。
但是,相似三角形法则也有它的局限性,有些问题无法用相似三角形法则解决。
这时候,我们就需要用到第三个法宝:向量法。
向量法是解决平行四边形动点问题的最高级方法。
它的核心思想是利用向量的概念,将平行四边形分解成若干个向量,然后分别求解这些向量的问题,最后将结果合并起来得到原问题的解。
这个方法非常强大,可以处理各种复杂的问题类型。
而且,向量法还有一个优点,就是它可以避免一些几何陷阱,让你在解决问题的过程中更加得心应手。
解决平行四边形动点问题有三大法宝:三角形法则、相似三角形法则和向量法。
这三大法宝各有优缺点,我们需要根据具体的问题类型来选择合适的方法。
如果你觉得这些方法还是太难了,也不用担心,我们还有很多其他的方法可以用来解决这个问题。
比如说,你可以尝试画图、列方程、用公式等等。
平行四边形中的动点问题
图形中的点、线运动,构成了数学中的一个 新问题----动态几何。它通常分为三种类型: 动点问题、动线问题、动形问题。在解这类问 题时,要充分发挥空间想象的能力,不要被 “动”所迷惑,而是要在“动”中求“静”, 化“动”为“静”,抓住它运动中的某一瞬间, 寻找确定的关系式,就能找到解决问题的途径。
本节课重点来探究动态几何中的第一种类 型----平行四边形中的动点问题。
平行四边形中的 动点问题
如图,在四边形ABCD中,AD∥BC,AD=6,BC=16,E是BC 的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向 点D运动;点Q同时以每秒2个单位长度的速度从点C出发, 沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当 运动时间t为多少秒时,以点P,Q,E,D为顶点的四边形是 平行四边形?
A
D
M N
B
C
如图,梯形ABCD中AD//BC, ∠B=90 °AB=14cm,AD=15cm,BC=21cm,点M从A 点开始,沿AD边向D运动,速度为1cm/s,点N 从点C开始沿CB边向点B运动,速度为2cm/s, 设四边形MNCD的面积为S。(1)写出面积S 与时间t之间的函数关系式。
(2)t为何值时,四边形MNCD是平行四边形? (3) t为何值时,四边形MNCD是等腰梯形?
(3)运动几s时,四边形APQB和四边形PDCQ的面积相等.
6-t t
2t
9-2t
如图,菱形ABCD中,E、F分别是AB、 AD边上的动点,且AE=AF. (1)在运动过程中,△CEF始终是等腰三角 形吗?
(2) △CEF能否运动成等边三角形?若能, 请说明理由。若不能,还需对四边形ABCD 添加怎样的限定条件?
ED
A
人教版八年级下册数学《平行四边形》动点问题带答案
《平行四边形》动点问题(一) 1. 如图,在△ABC 中,△ACB=90°,CD△AB 于点D ,点P 在线段DB 上,点M 是边AC 的中点,连接MP ,作△MPQ=90°,点Q 在边BC 上,若AC=6,BC=8,则( )A .当CQ=4时,点P 与点D 重合B .当CQ=4时,△MPA=30°C .当PD=57时,CQ=4 D .当PM=PQ 时,CQ=4 【答案】C2. 如图,在平行四边形ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF=6cm ,BF=12cm ,△FBM=△CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动 时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.【答案】3或5秒3. 已知四边形ABCD ,△ABC=45°,△C=△D=90°,含30°角(△P=30°)的直角三角板PMN (如图)在图中平移,直角边MN△BC ,顶点M 、N 分别在边AD 、BC 上,延长NM 到点Q ,使QM=PB .若BC=10,CD=3,则当点M 从点A 平移到点D 的过程中,点Q 的运动路径长为__________。
【答案】27△当P点有8个时,x=22-2;△当△PEF是等边三角形时,P点有4个A.△△B.△△C.△△D.△△【答案】B6.如图,在△ABCD中,AB=8cm,BC=16cm,△A=60°.点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E运动速度为2cm/s,点F的运动速度为1cm/s,它们同时出发,同时停止运动,经过s时,EF=AB.7.如图,一根竹竿AB,斜靠在竖直的墙上,P是AB中点,A′B′表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中OP()A.下滑时,OP增大B.上升时,OP减小C.无论怎样滑动,OP不变D.只要滑动,OP就变化【答案】C8.如图,E是△ABCD边AD上动点,连接CE作△ECDN,过A点作AM△EN,交EN延长线于点M,作矩形AMEF,动点E从A出发,沿着AD方向运动到终点D,在整个运动变化的过程中,记△ECDN的面积为S2,矩形AMEF的面积为S1,则S1+S2大小变化情况是()A.一直在减小B.一直不变C.先减小后增大D.先增大后减小【答案】C9. 如图,在矩形OAHC 中,OC=8,OA=12,B 为CH 中点,连接AB .动点M 从点O 出发沿OA 边向点A 运动,动点N 从点A 出发沿AB 边向点B 运动,两个动点同时出发,速度都是每秒1个单位长度,连接CM ,CN ,MN ,设运动时间为t (秒)(0<t <10).则t= 时,△CMN 为直角三角形.【答案】27或424141 10. 如图,已知矩形ABCD ,AB=8,AD=4,E 为CD 边上一点,CE=5,点P 从B 点出发,以每秒1个单位的速度沿着BA 边向终点A 运动,连接PE ,设点P 运动的时间为t 秒,则当t 的值为 时,△PAE 是以PE 为腰的等腰三角形.动点.若点P 从点F 出发,沿F→A→D→C 的路线运动,当△FPE=30°时,FP 的长为__________。
平行四边形存在性问题(三定一动)
平行四边形存在性问题
平行四边形存在性问题 第一篇
主讲人: 日 期:2022-11-15
2
平行四边形存在性问题
平行四边形存在性问题分类
类型一、三定点一动点
此种情况是三个点固定,另外一个动点可能在正比例函数、一次函数、反比例 函数、二次函数上,也可能在x轴、y轴或者坐标平面上。
问题是先找动点位置,再求出动点坐标可以使这四个点构成平行四边形;
B、P两点为对点,则B、P中点坐标 5 x0 , 2 y0
2
2
4 2 5 x0
2
2
2
2
2
5
平行四边形存在性问题
例题解析:如图,抛物线y= - x2 + x +2 与x轴的交点为A、B,与y轴的交点为C
,点P是平面内一点,判断有几个点P能使以点A、B、C、P为顶点的四边形是平
C
则P1、P2、P3就是所求的动点的具体位置,可以使四 边形ABCP为平行四边形。
4
1 平行四边形存在性问题
问题二:如图,在平面直角坐标系中,已知□ABCD的顶点坐标分别是A(-4,2), B(-5,-2),C(2,1),如何确定点P(x0,y0)?
y
A(-4,2)
7
O
7
B(-5,-2)
P(x0,y0)
顶点的四边形是平行四边形,求出P点坐标。
y
第一步:先求出A(1,0),B (0,1),C(-1,-1),
连接A、B、C组成三角形
P1
第二步:过A点做BC平行线,
(0,1)B
P3
O
C
(-1,-1)
A(1,0)
过B点做AC平行线,
过C点做BC平行线, 则三条平行线的三个交点即为P1、P2、 x 第P三3 步:利用点的平移法或者对点法进行点P坐标求解 ∴ P1(2,2),P2(-2,0),P3(0,-2)
初二数学《平行四边形中的动点问题》(附练习及答案)
四边形中的动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或直线上运动的一类开放性题目。
解决这类问题关键是动中求静,灵活运用有关数学知识。
数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,其注重对几何图形运动变化能力的考查。
这类类问题从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查自主探究能力,促进培养学生解决问题的能力。
解决这类问题首先要在动点的运动过程中观察图形的变化情况,需要画出图形在不同位置的情况,才能做好计算推理的过程;其次在变化中找到不变量的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
动点问题题型方法归纳:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就四边形中的动点问题的常见题型作简单介绍,解题方法、关键给以点拨。
1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB =60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________(第1题)(第2题)(第3题)3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s);(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______(第9题)(第10题)10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。
有关平行四边形的动点问题
有关平行四边形的动点问题
平行四边形是由两组相邻的平行线和它们之间的四条线段组成的四边形。
在平行四边形中,我们可以考虑一个点在它沿着一个方向移动的同时,沿着另一个方向的轨迹。
这个点被称为“动点”。
如果动点沿着平行四边形的一条边上移动,那么它所相应的高度和底边也会相应地改变。
因此,如果我们将平行四边形分成许多小长方形,并在这些小长方形的顶点处放置动点,则可以形成一条光滑的曲线。
这个曲线被称为平行四边形的“径线”。
如果动点同时沿着两个方向移动,则可以得到一个新的曲线,称为“余弦曲线”。
这个曲线看起来像是一个上下波动的曲线,与平行四边形的一条对角线平行。
有趣的是,这两个曲线都是周期性的,其周期等于平行四边形的面积除以它沿着这个方向的速度。
因此,我们可以通过这些曲线来计算平行四边形的面积和周长。
通过研究这些平行四边形的动点问题,我们能够深入了解其内在的几何性质和性质之间的相互关系。
这不仅有助于帮助我们更好地理解平行四边形,还可以为其他更复杂的几何形状和问题提供有用的洞见和启示。
平行四边形的动点问题
平行四边形的动点问题1. 平行四边形是指具有两对相对平行的边的四边形。
在这个问题中,我们关注一个动点在平行四边形内移动的情况。
2. 首先,让我们定义平行四边形的四个顶点为A、B、C和D,并假设它们按顺时针方向排列。
我们还假设动点记为P,并且它可以在平行四边形内的任意位置移动。
3. 问题的第一部分是,如果动点P从A点出发,按一定路径移动,最后回到A点,那么它经过的路径会是什么样子4. 要回答这个问题,我们需要注意到平行四边形的两对相对边分别是AB和CD,以及AD和BC。
因此,如果动点P从A点出发并回到A 点,它必定会经过平行四边形的另外两个顶点,即C和B。
5. 为了更具体地描述动点P的路径,我们可以进一步假设动点P沿着直线AC移动到顶点C,然后沿着直线CB移动到顶点B,最后沿着直线BA移动回到顶点A。
这样,动点P所经过的路径形成了一个三角形ABC。
6. 需要注意的是,这个路径并不是唯一的。
动点P可以按任意方式从A到C,再从C到B,最后从B到A。
但无论路径如何,最终的路径都是一个三角形ABC。
7. 接下来,让我们来看问题的第二部分。
如果动点P从一个顶点出发,按一定路径移动,最后回到另一个顶点,那么它经过的路径会是什么样子8. 在这种情况下,我们可以假设动点P从顶点A出发,并沿着直线AC移动到顶点C。
然后,它会继续按照平行四边形的形状,沿着直线CB移动到顶点B,并最终沿着直线BA返回到顶点A。
9. 与第一部分类似,这个路径也不是唯一的。
动点P可以从任意顶点出发,按照相应的顺序经过其他两个顶点,最后回到初始的顶点。
10. 总结起来,平行四边形的动点问题涉及动点在平行四边形内移动的路径问题。
无论是从一个顶点出发回到同一个顶点,还是从一个顶点出发回到另一个顶点,最终路径都可以看作是一个三角形。
11. 这个问题的解答可以帮助我们更好地理解平行四边形的形状和特性,以及动点在平行四边形内移动时的可能路径。
它也为我们提供了一种思考和探索几何问题的方式。
平行四边形动点问题方法总结
平行四边形动点问题方法总结1. 引言:为什么我们要关注平行四边形动点问题?嘿,朋友们!今天我们来聊聊一个看似枯燥却又很有趣的数学话题——平行四边形动点问题。
别急着打哈欠,咱们慢慢来,这可是个让你从头到脚都充满成就感的数学冒险哦。
平行四边形动点问题,听名字就知道,讲的是在平行四边形里,某个点在移动时,会发生什么奇妙的事情。
这不仅仅是数学题,更像是一场迷人的舞蹈。
你知道吗?这些问题其实很接地气,因为它们涉及到很多我们生活中常见的现象,比如房子四角是直角的,家具摆放的角度等等。
2. 方法一:坐标法——从数学角度看平行四边形的奇妙。
2.1 说到解决这类问题,坐标法可是个不可或缺的好帮手。
咱们首先给平行四边形的四个顶点分配坐标,比如A、B、C、D分别是(0, 0)、(a, 0)、(b, c)、(d, e)。
坐标法就是把平行四边形里的每个点都用坐标表示出来,这样一来,不管点怎么动,我们都能通过数学公式来搞定。
2.2 你可以把平行四边形当成一个平面上的大布景,点A、B、C、D就是布景上的关键位置。
然后,动点就是在这个布景上游走的小演员。
比如,如果你要找出某个点P 的轨迹,只需要把P的坐标带入公式,就能知道P跑到哪儿去了。
坐标法简直是数学里的瑞士军刀,万能又省事。
3. 方法二:向量法——用矢量的眼光看世界。
3.1 向量法是另一个很酷的方法。
想象一下,向量就像是一把利刃,把复杂的数学问题一刀切成简单易懂的形状。
比如,平行四边形的对角线是彼此平行的,那么它们之间的向量关系就能告诉我们很多有用的秘密。
如果我们把动点P的运动看作一个向量变化,我们就能用向量运算来分析它的行为。
3.2 向量法的好处在于,它能帮我们迅速搞清楚平行四边形中各个点的相对位置和移动规律。
用这个方法,你可以非常方便地计算出点P在平行四边形内的各种可能位置,也能找到一些隐含的规律,比如点P可能会在平行四边形的对角线附近来回移动。
数学就像个魔术师,向量法让我们能透过表面看到更多的奥秘。
第十八章平行四边形四边形中的动点问题(教案)人教版八年级数学下册
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形中动点问题的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对动点问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现同学们对平行四边形内动点问题的探究表现得非常积极。他们对于动点的运动规律和性质有了初步的认识,也尝试着将这些知识应用到实际问题中。我觉得这是一个很好的开始,但也发现了一些需要改进的地方。
首先,理论讲授部分,我发现有些同学对动点问题的基本概念掌握不够扎实。可能是我讲解得不够细致,也可能是同学们对这些概念还不够熟悉。在以后的教学中,我需要更加注意这一点,尽量用简单易懂的语言和丰富的例子来帮助他们理解。
3.重点难点解析:在讲授过程中,我会特别强调动点的运动规律和利用平行四边形性质解题这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与动点问题相关的实际问题。
2.实行四边形中的运动规律和性质。
-难点二:在实际问题中,学生可能不知道如何选择合适的定理和性质来解决动点问题。教师应指导学生通过分析问题结构,识别关键信息,进而选择恰当的几何定理进行求解。
-难点三:针对不同动点问题,如路径最短、面积最大等,学生可能不知如何下手。教师应教授学生分类讨论和优化的方法,帮助学生理清思路,找到解题突破口。
4.培养合作意识和团队精神,在小组讨论和探究过程中,学会倾听、交流、表达和协作,共同解决问题。
特殊平行四边形中的三种几何动点问题—2023-2024学年九年级数学上册(北师大版)(解析版)
特殊平行四边形中的三种几何动点问题类型一、面积问题 例.如图,在四边形ABCD 中,AB CD ∥,90BCD ∠=,10cm AB AD ==,=8cm BC .点P 从点A 出发,以每秒3cm 的速度沿折线ABC 方向运动,点Q 从点D 出发,以每秒2cm 的速度沿线段DC 方向向点C 运动.已知动点P ,Q 同时发,当点Q 运动到点C 时,P ,Q 运动停止,设运动时间为t .(1)直接写出CD 的长(cm );(2)当四边形PBQD 为平行四边形时,直接写出四边形PBQD 的周长(cm );(3)在点P 、点Q 的运动过程中,是否存在某一时刻,使得BPQ V 的面积为215cm ?若存在,请求出所有满足条件的t 的值;若不存在,请说明理由.【答案】(1)16(2)(3)存在,满足条件的t 的值为2512秒或5秒【分析】(1)过点A 作AM CD ⊥于M ,根据题意证明四边形ABCD 是平行四边形,然后根据平行四边形的性质以及勾股定理可得结果;(2)当四边形PBQD 是平行四边形,则点P 在AB 上,点Q 在DC 上,则103BP t =−,2DQ t =,根据平行四边形的性质可得1032t t −=,求解得出平行四边形的各边长,求其周长即可;(3)分两种情况进行讨论:①当点P 在线段AB 上时;②当点P 在线段BC 上时;根据三角形面积列方程计算即可.【详解】(1)解:如图1,过点A 作AM CD ⊥于M ,AM CD ⊥,=90BCD ∠︒,∴AM CB ∥,∵AB CD ∥,∴四边形ABCD 是平行四边形,10cm CM AB ∴==,在t R ADM 中,10cm AD =,8cm AM BC ==,根据勾股定理得,6cm DM =,16cm CD DM CM ∴=+=;(2)当四边形PBQD 是平行四边形,则点P 在AB 上,点Q 在DC 上,如图3,由运动知,103BP t =−,2DQ t =,1032t t ∴−=,2t ∴=,此时,4BP DQ ==,12CQ =,根据勾股定理得,BQ =∴四边形PBQD 的周长为()28BP BQ +=+(3)①当点P 在线段AB 上时,即:1003t ≤≤时,如图2,()1110381522BPQ S PB BC t =⋅=−⨯=,2512t ∴=;②当点P 在线段BC 上时,即:1063t <≤时,如图4,310BP t =−,162CQ t =−,()()113101621522BPQ S PB CQ t t ∴=⋅=−−=,5t ∴=或193t =(舍), 即:满足条件的t 的值为2512秒或5秒.【点睛】本题考查了四边形的动点问题,平行四边形的判定与性质,勾股定理,读懂题意,根据相应图形的性质列出方程是解本题的关键.【答案】(1)①12DP t =−;15BQ t =−;②7.5t =(2)()()()220<12=12<151345 15<1844t S t t t t −≤−≤−−≤⎧⎪⎪⎪⎪⎪⎩【分析】(1)①根据路程等于速度乘以时间列代数式即可;②AP BQ =时,四边形APQB 是平行四边形;(2)求出相关线段的长度,利用三角形面积公式,分情况讨论即可.【详解】(1)解:①由题意可知=cm AP t ,cm CQ t =,∴()12cm DP AD AP t =−=−,()15cm BQ BC CQ t =−=−;②当四边形APQB 是平行四边形时,AP BQ =,即15t t =−,解得7.5t =.故答案为:()12cm t −,()15cm t −(2)解:如图,过点D 作DE BC ⊥于点E ,则90A B DEB ∠=∠=∠=︒,∴四边形ABED 是矩形,∴90ADE ∠=︒,()12cm BE AD ==, ∴()15123cm CE BC BE =−=−=,∵120ADC ∠=︒,∴30CDE ADC ADE ∠=∠−∠=︒,∴()26cm DC EC ==,∴)cm DE ===,∴点P 运动到点D 时,需12秒,点P 到点C 时,需18秒;点Q 从点C 到点B 需15秒,从点B 到点A 需15+秒.故分三种情况讨论:①当012t <≤时,如图,11==(1522S BQ AB t ⋅−−)②当1215t <≤时,如图,过点P 作DH BC ⊥于点H ,()18cm PC AD DC t t =+−=−,易知DE PH ∥∴30CPH CDE ∠=∠=︒, ∴()119cm 22CH PC t ==−,∴())cm PH t ==−,∴211(15))22S BQ PH t t =⋅=−−=;③当1518t <≤时,如图,()15cm BQ t BC t =−=−,()111596cm 22BH BC CH t t ⎛⎫=−=−−=+ ⎪⎝⎭, ∴211113(15)(6)4522244S BQ BH t t t t =⋅=−⋅+=−−,综上,))()220<12=12<15134515<1844t S t t t t ≤−≤−−≤⎧⎪⎪⎪⎪⎪⎩.【点睛】本题考查列代数式、三角形面积公式、平行四边形的判定、勾股定理、矩形的判定与性质、含30度角的直角三角形的性质、四边形上的动点问题等,熟练掌握分类讨论思想是解题的关键.【答案】(1)10(2)12(3)S=18(09)6216(918)t t t t <≤⎧⎨−+<≤⎩(4)t= 4或8或12【分析】(1)当t=4时,AP=8,PD=AD -AP=BC -AP=18-8=10;(2)当四边形ABQP为矩形时,AP=BQ,根据不同的时间段AP的关系式求出t值即可;(3)由(2)中不同时间段AP的关系式得出S的分段函数即可;(4)PQ所在的直线将矩形ABCD分成面积比为1:2的两部分时,可能再两个不同的时间段存在12ABQPPDCQss=四边形四边形和12PDCQABQPss=四边形四边形两种可能,根据(3)中面积的函数关系式分段求t值即可.(1)解:当t=4时,AP=2t=8,∴PD=AD-AP=18-8=10,故答案为10(2)解:当四边形ABQP为矩形时,AP=BQ,若0≤t≤9时,AP=2t,则2t=t,解得t=0(不符合题意,舍去);若9<t≤18时,AP=36-2t,则36-2t=t,解得t=12;故答案为12(3)解:当0<t≤9时,S=12(BQ +AP)⋅AB =12(t+2t)×12= 18t;当9<t<18时,S=12(BQ +AP).AB =- 6t + 216.综上所述,S =18(09)6216(918)t tt t<≤⎧⎨−+<≤⎩(4)解:当0≤t≤9时,若12ABQPPDCQss=四边形四边形,则ABQPs四边形=13ABCDS矩形,∴18t=13×12×18,解得t=4;若12PDCQABQPss=四边形四边形,则ABQPs四边形=23ABCDS矩形,∴18t=23×12×18,解得t=8;当9<t≤18时,若12ABQPPDCQss=四边形四边形,则ABQPs四边形=13ABCDS矩形,∴-6t+216=13×12×18,解得t=24(舍);若12PDCQABQPss=四边形四边形,则ABQPs四边形=23ABCDS矩形,∴-6t+216=23×12×18,解得t=12;综上,当t=4或8或12时,PQ所在的直线将矩形ABCD分成面积比为1:2两部分.【点睛】本题主要考查四边形的综合题型,涉及动点问题,矩形的性质,梯形的面积等知识点,会用分类讨论的思想解决问题是解题的关键.如图,在ABD中,几秒钟后,MON的面积为【答案】(1)见解析(2)5米,24平方米;(3)1秒或4秒【分析】(1)根据题意,用“一组对边平行且相等的四边形是平行四边形”先判定平行四边形,再用邻边相等证明菱形;(2)解方程可得OA 、OB 的长,用勾股定理可求AB ,根据“菱形的面积对应对角线积的一半”计算连线面积;(3)根据点M 、N 运动过程中与O 点的位置关系,分三种情况分别讨论.【详解】(1)证明:AO 平分BAD ∠,AB CD ∥,DAC BAC DCA ∠∠∠∴==, ACD ∴是等腰三角形,AD DC =,又AB AD =,AB CD ∴=,∴四边形ABCD 为平行四边形,又AB AD =,∴四边形ABCD 是菱形;(2)解:解方程27120x x −+=,得,14x =,23x = 4OA ∴=,3OB =,利用勾股定理5AB ==,28,26AC OA BD OB ∴====,∴ABCD S =菱形118622AC BD ⨯=⨯⨯24=平方米.(3)解:在第(2)问的条件下,设M 、N 同时出发x 秒钟后,MON 的面积22m ,当点M 在OA 上时,2x <,MON S =12()()4232x x −−=, 解得1214x x ==, (大于2,舍去);当点M 在OC 上且点N 在OB 上时,23x <<,MON S =12()()3242x x −−=,整理得,2580x x −+=,此时,2=541870∆−⨯⨯=−<,∴原方程无解;当点M 在OC 上且点N 在OD 上时,即34x <≤,MON S =12 ()()2432x x −−=,整理得,2540x x −+=,解得1241x x ==, (小于3,舍去).综上所述:M ,N 出发1秒或4秒钟后,△MON 的面积为22m .【点睛】本题考查了菱形的判定方法,菱形的面积计算方法,分类讨论的数学思想.类型二、几何图形存在性问题 Rt ABC 中, (1)求AB AC ,的长;(2)求证:AE DF =;(3)当t 为何值时,DEF 为直角三角形?请说明理由.【答案】(1)AB=5,AC=10;(2)证明见解析(3)当52t =秒或4秒时,DEF 为直角三角形,理由见解析【分析】(1(2)利用已知用未知数表示出DF ,AF 的长,进而得出AE DF =;(3)利用①当90EDF ∠=︒时;②当90DEF ∠=︒时;③当90EFD ∠=︒时,分别分析得出即可.【详解】(1)解:设AB x =,90B ∠=︒,30C ∠=︒,22AC AB x ∴==.由勾股定理得,()(2222x x −=, 解得:5x =, 5AB ∴=,10AC = ;(2)证明:由题意得AE t =,CD=2t ,则102AD t =−,在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴12DF CD t==.又AE t=,AE DF∴=;(3)解:当52t=秒或4秒时,DEF为直角三角形,理由如下:分情况讨论:①∠EDF=∠DFC=90°时,则DE BC∥,∴∠AED=∠B=90°,∠ADE=∠C=30°,∴AD=2AE,∴10-2t=2t,∴52t=;②∠DEF=90°时,∵AB⊥BC,DF⊥BC,∴AE DF.又∵AE=DF,∴四边形AEFD为平行四边形,∴AD EF,∴∠ADE=∠DEF=60°,∴∠AED=30°,∴12AD AE=,∴1 1022t t−=,∴4 t=;③∠EFD=90°时,此种情况不存在. 当52t =秒或4秒时,DEF 为直角三角形.【点睛】本题是四边形综合题目,考查了平行四边形的判定、菱形的判定与性质、勾股定理、直角三角形的性质等知识.理解相关知识是解答关键. (1)连接PD 、PQ 、DQ ,求当t 为何值时,PQD △的面积为(2)当点P 在BC 上运动时,是否存在这样的t 使得△合条件的t 的值;若不存在,请说明理由.【答案】(1)1秒或4秒(2)存在,43t =秒或4)秒【分析】(1)根据正方形的性质和面积公式,利用割补法即可求解;(2)根据勾股定理、等腰三角形的性质得出一元二次方程,分情况讨论以PD 为腰的等腰三角形即可说明.【详解】(1)解:当P 在BC 上时如图:根据题意,得4AB BC CD AD ====AQ t =,4QB t =−,2BP t =,42PC t =−,7PQD ADQ BPQ DPC ABCD S S S S S =−−−=△△△△正方形,1111642(4)4(42)7222t t t t −⨯⨯−⨯−−⨯⨯−=整理,得2210t t −+=,解得121t t ==.当P 在CD 上时,此时24t <≤4(24)82DP t t =−−=− 1(82)472PQD S t ∴=−⨯=△94t ∴=答:当t 为1秒或94秒时,PQD △的面积为27cm .(2)①当PD DQ =时,根据勾股定理,得2216(42)16t t +−=+,解得143t =,24t =(不符合题意,舍去).②当PD PQ =时,根据勾股定理,得22216(42)(4)(2)t t t +−=−+,整理得:28160t t +−=解得14t =,24t =−(不符合题意,舍去).答:存在这样的43t =秒或4)秒,使得PQD △是以PD 为一腰的等腰三角形.【点睛】本题考查了正方形、一元二次方程、等腰三角形的相关知识,解决本题的关键是分类讨论思想的运用.例3.如图,在四边形ABCD 中,AD ∥BC ,∠B =90°,AB =8cm ,AD =12cm ,BC =18cm ,点P 从点A 出发以1cm/s 的速度向点D 运动;点Q 从点C 同时出发,以2cm/s 的速度向点B 运动,当点Q 到达点B 时,点P 也停止运动,设点P ,Q 运动的时间为t s .(1)从运动开始,当t 取何值时,PQ ∥CD ?(2)在整个运动过程中是否存在t 值,使得四边形PQCD 是菱形?若存在,请求出t 值;若不存在,请说明理由;(3)从运动开始,当t 取何值时,四边形PQBA 是矩形?(4)在整个运动过程中是否存在t 值,使得四边形PQBA 是正方形?若存在,请求出t 值;若不存在,请说明理由.【答案】(1)4(2)不存在,理由见解析(3)6(4)不存在,理由见解析【分析】(1(2)利用菱形的判定和性质进行求解即可;(3)利用矩形的判定和性质进行求解即可;(4)利用正方形的判定和性质进行求解即可.(1)解:由运动知,AP =tcm ,CQ =2tcm ,∴DP =AD ﹣AP =(12﹣t )cm ,∵AD BC ∥,要PQ CD ∥,∴四边形CDPQ 为平行四边形,∴DP =CQ ,∴12﹣t =2t ,∴t =4,即t =4时,PQ ∥CD ;(2)不存在,理由:∵四边形PQCD 是菱形,∴CQ =CD ,∴2t =10,∴t =5,此时,DP =AD ﹣AP =12﹣5=7(cm ),而DP≠CD ,∴四边形PQCD 不可能是菱形;(3)如图4,∵∠B =90°,AD ∥BC ,∴当AP =BQ 时,四边形ABQP 是矩形,即t =18﹣2t ,解得:t =6,∴当t =6时,四边形PQBA 是矩形;(4)由当t =6时,四边形PQBA 是矩形,∴AP =6cm ,∵AB =8cm ,∴AP≠AB ,∴矩形PQBA 不能是正方形,即不存在时间t ,使四边形PQBA 是正方形.【点睛】本题考查四边形中的动点问题.解题的关键是熟练掌握平行四边形、菱形、矩形和正方形的判定和性质,确定动点的位置. 例4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,且8AC =,6BD =,现有两动点M ,N 分别从A ,C 同时出发,点M 沿线段AB 向终点B 运动,点N 沿折线C D A −−向终点A 运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t (秒).(1)填空:AB = ;菱形ABCD 的面积S = ;菱形的高h = .(2)若点M 的速度为每秒1个单位,点N 的速度为每秒a 个单位(其中52a <),当4t =时在平面内存在点得以A ,M ,N ,E 为顶点的四边形为菱形,请求出所有满足条件的a 的值.【答案】(1)5;24;245(2)1.5或1.94或1.4【分析】(1)先由菱形的性质和勾股定理求得AB ,再跟菱形面积为对角线之积的一半可得S ,最后根据菱形的面积为边长×高,由此可得高h 的长;(2)当4t =,时间固定,AM 的长度也就固定,A 、M 、N 、E 四点要形成菱形,分两大类情况,第一类以AM 为边,这种情况可以画两种菱形;第二类以AM 为对角线,只有一种.因此共三种情况,分别计算.【详解】(1)解:∵四边形ABCD 是菱形,AC 与BD 交于点O ,86AC BD ==,,∴43AO CO BO DO AC BD ====⊥,,,∴AB=5,设菱形的高为h,则菱形ABCD 的面积为186242AB h ⨯⨯=⨯=∴245h =故答案为:5,24,245(2)解:当4t =时,4AM =,①如图2,四边形AMEN 为菱形,4AN AM ∴==,1046ND CD ∴+=−=,46a ∴=,32a =.②如图3,AENM 为菱形,EM 交AN 于点R ,作DP 垂直BC 于P ,菱形面积为24,4.8DP ∴=,75CP ∴=,MAR BCD ∠=∠,AMR PDC ∴∠=∠,AR CP AM CD ∴=,1.12AR ∴=,2.24AN ∴=,()()410 2.244 1.94a ND CD ∴=+÷=−÷=,③如图4,AEMN 为菱形,EN 交AM 于点T ,作BS 垂直CD 于S ,则2AT MT ==,523BT NS ∴==−=,4.8BS =, 1.4CS ∴=,1.43 4.4CN NS CS∴=+=+=,4 4.44 1.1a CN∴=÷=÷=;综上所述,a的取值有1.5或1.94或1.4.【点睛】本题主要考查了菱形的性质、三角函数、勾股定理、面积计算,分类讨论等重要知识点,综合性和技巧性很强,计算量也较大,对学生的能力要求较高,因此综合应用所学知识成为解答本题的关键.类型三、直线位置关系问题(1)直接写出AB的长.(2)当点Q落在AB边上时,用含t的代数式表示【答案】(1)3(2)3523t−或5332t−(3)12、或175(4)920或215【分析】(1)根据勾股定理直接求出AB 的长度;(2)分类讨论Q 在AD 和BD 上的两种情况,DQ AD AQ =−或 DQ AQ AD =−;(3)当平行四边形PQDM 为菱形或矩形时即为轴对称图形,因为PQ AC ⊥,所以当Q 在AB 上时,PQD ∠不可能为直角,平行四边形PQDM 不可能为矩形,只存在菱形的情况,根据PQ DQ =建立等量解出t 值;当Q 在BC 上时,表示出DQ 的长度较为复杂,所以可以表示出2DQ ,利用22PQ DQ =建立方程解出t 值;当Q 点在BC 中点时,平行四边形PQDM 为矩形,可直接求得t 值;(4)因为平行四边形PQDM 的四个顶点顺序已经确定,所以Q 在过点D 的AC 平行线的下方,分类讨论Q 在AD 上和在CN (见详解图)上的两种况下QM 平行于不同边时的情况,注意,根据平行线的定义,当Q 在AB 上时,QM 不可能平行于AB ,当Q 在BC 上时,QM 不可能平行于BC .【详解】(1)解:在Rt ABC 中,222AB AC BC =−,∴3=AB ;(2)解:P 从点A 出发以每秒个单位的速度沿AC 向终点C 运动,∴AP t =,PQ AC ⊥,∴APQ ABC △△∽,::3:4:5AB BC AC =,∴::3:4:5AP QP AQ =, ∴5533AP t AQ ==,点D 是边AB 的中点,∴32AD BD ==, ∴ 3523DQ t =−或5332t −;(3)解:当平行四边形PQDM 为菱形或矩形时即为轴对称图形, ∴ PQ DQ =或平行四边形PQDM 某一内角为90︒,①当Q 在AB 上时,990510t t ⎛⎫≤≤≠ ⎪⎝⎭,由(1)得43PQ t =,3523DQ t =−或5332t −, ∴354233t t −=或534323t t −=, 解得12t =或92, 990510t t ⎛⎫≤≤≠ ⎪⎝⎭,∴12t =;Q 在AB 上时,PQD ∠不可能为90︒,故不存在矩形的情况;②如图,当Q 在BC 上时,955t ≤≤,CPQ CBA △△∽,∴::4:3:5CP QP CQ =,AP t =,∴5CP t =−, ∴()354PQ t =−,()554CQ t =−, ∴()55945444BQ t t =−−=−, ∴222222359254511724416816DQ BD BQ t t t ⎛⎫⎛⎫=+=+−=−+ ⎪ ⎪⎝⎭⎝⎭, 当22PQ DQ =时,平行四边形PQDM 为菱形, ∴()22254511735168164t t t ⎡⎤−+=−⎢⎥⎣⎦,解得t =,955t ≤≤,∴t =;当Q 点在BC 中点时,平行四边形PQDM 为矩形, 此时485255t −=⨯=, 解得175t =;综上所述:当平行四边形PQDM 为轴对称图形时,t 的值为12、或175;(4)解:平行四边形PQDM ,∴Q 在过点D 的AC 平行线的下方, ①如图,Q 在AD 上,9010t ≤<,QM AC ∥时,易得DQM QAP △△∽,平行四边形PQDM ,∴43DM QP t ==, 由(1)得3523DQ t =−, ∴35523443t DQ DM t −==, 解得920t =;②如图,Q 在AD 上,9010t ≤<,QM BC ∥时, 易得DQM QPA △△∽,∴35423453tDQDM t−==,解得8245t=(舍);③过点D的平行线交BC于点N,点Q在CN上移动才可能会出现平行四边形PQDM的对角线QM平行于直角三角形的边,此时1755t≤≤,如图,当QM AC∥时,延长DM交AC于点H,平行四边形PQDM,∴()354DM PQ t==−且DH AC⊥,QM AC∥,∴四边形MQPH为矩形,∴()354MH PQ DM t===−,∴()365245t DH−⨯==,解得215t=;不存在QM AB∥的情况;综上所述:当QM与Rt ABC△的某条边平行时,t的值为920或215.【点睛】本题考查了几何动点问题,涉及到相似、平行线的性质、平行四边形以及特殊的平行四边形的性质和判定,还会用到分类讨论的思想,难度较大,解决本题的关键是能准确找到不同的情况并对问题进行分类讨论.【答案】(1)BD =,9BE cm =(2)PQ AD ⊥,理由见详解(3)存在,t 的值为125或4(4)或【分析】(1)可求出30ADB ∠=︒,根据含30︒的直角三角形的性质可得212AD AB cm ==,BD =,根据平行四边形的性质可得AD BC ∥,则30DBC ∠=︒,即可得12DE BD =,BE =,即可求解; (2)先证四边形DEQP 是平行四边形,可得四边形DEQP 是矩形,即可得出结论;(3)分两种情况讨论,由平行四边形的性质可得AP BQ =,列出方程可求解;(4)分两种情况讨论,由轴对称的性质和等边三角形的性质以及勾股定理可求解.【详解】(1)四边形ABCD 是平行四边形,90ABD Ð=°,60A ∠=︒,6AB cm =,30ADB ∴∠=︒,AD BC ∥,212AD AB cm ∴==,BD ==,30DBC ADB ∠=∠=︒,DE BC ⊥,12DE BD ∴==,BE =,9BE cm ∴==;(2)PQ AD ⊥,理由如下:如图1,动点P 从点D 出发沿DA 以1/s cm 的速度向终点A 运动,同时点Q 从点B 出发,以4/cm s 的速度沿射线BC 运动,∴当95t =时,95PD =,365BQ =, 369955QE BE BQ PD ∴=−=−==, AD BC ,∴四边形DEQP 是平行四边形,DE BC ⊥,∴四边形DEQP 是矩形,PQ AD ∴⊥;(3)存在,当CD 为边时,四边形PQCD 是平行四边形,PD CQ ∴=,124t t ∴=−,125t ∴=;当CD 为对角线时,四边形PCQD 是平行四边形,PD CQ ∴=,412t t ∴=−,4t ∴=,综上所述:t 的值为125或4;(4)如图,当点P 的对称点在线段CD 上时,60ADQ QDC ∴∠=∠=︒,60QDC BCD ∴∠=∠=︒,CDQ ∴是等边三角形,CD CQ ∴=,6124t ∴=−,32t ∴=,过点P 作PH BC ⊥于H ,则PH DE ==,32EH PD cm ==, 60BCD ∠=︒,6CD AB cm ==,DE BC ⊥,13cm 2CE CD ∴==,32QH CQ EH CE cm ∴=−−=,在Rt PQH 中,PQ =; 如图,当点P 的对称点在线段CD 的延长线上时,120CDA ∠=︒,60PDP '∴∠=︒,点P 的对称点在线段CD 的延长线上,1302CDQ PDP '∴∠=∠=︒,BCD CDQ CQD ∠=∠+∠, 30CDQ CQD ∴∠=∠=︒,6CD CQ ∴==,12618BQ ∴=+=,418t ∴=,92t ∴=,过点P 作PH BC ⊥于H ,则PH DE ==,92EH PD cm ==,60BCD ∠=︒,6CD AB cm ==,DE BC ⊥,132CE CD cm ∴==,272QH CQ EH CE cm ∴=++=,在Rt PQH 中,PQ ==;综上所述:点P ,Q 之间的距离为或.【点睛】本题是四边形综合题,考查了平行四边形的性质,直角三角形的性质,等边三角形的判定和性质等知识,利用分类讨论思想解决问题是解题的关键.课后训练1.如图,在四边形ABCD 中,AB CD ∥,90A ∠=︒,24cm DC =,26cm AB =,动点P 从D 开始沿DC 边向C 点以1cm /s 的速度运动,动点Q 从点B 开始沿BA 向A 点以3cm /s 的速度运动,P ,Q 分别从点D ,B 同时出发,当其中一点到达终点时,另一点也随之停止运动,运动的时间为t 秒.(1)t 为何值时,四边形DPQA 为矩形?(2)t 为何值时,四边形PQBC 为平行四边形?【答案】(1)当132t =秒时,四边形DPQA 为矩形(2)当6t =秒时,四边形PQBC 为平行四边形【分析】(1)根据AB CD ∥,矩形的判定和性质,得AQ DP =,求出t ,即可;(2)根据平行四边形的判定和性质,得PC QB =,求出t ,即可.【详解】(1)∵AB CD ∥,∴AQ DP ∥,当AQ DP =时,四边形DPQA 为平行四边形,∵90A ∠=︒,∴平行四边形DPQA 为矩形,∵动点P 从D 开始沿DC 边向C 点以1cm /s 的速度运动,动点Q 从点B 开始沿BA 向A 点以3cm /s 的速度运动, ∴cm DP t =,3cm BQ t =,∴263AQ AB BQ t =−=−,∴263t t =−,解得:261342t ==, ∴当132t =秒时,四边形DPQA 为矩形.(2)∵AB CD ∥,∴QB PC ∥,当PC QB =时,四边形PQBC 为平行四边形,∴24PC t =−,∴243t t −=,解得:6t =,∴当6t =秒时,四边形PQBC 为平行四边形.【点睛】本题考查动点与几何的综合,矩形和平行四边形的知识,解题的关键是掌握矩形和平行四边形的判定和性质. 在ABC 中, 发现:(1)在点O 的运动过程中,OE 与OF 的关系是(2)当=2t 时,=EF ______cm .【答案】(1)OE OF =,详见解析(2)8cm ,探究:3,拓展:=AB 10cm【分析】()1根据角平分线的定义、平行线的性质分别得到OEC ACE ∠=∠,ACF OFC ∠=∠,根据等腰三角形的判定定理得到OE OC =,OF OC =,等量代换证明结论;()2根据直角三角形斜边上的中线的性质解答;探究:根据矩形的判定定理得到=OA OC 时,四边形AECF 是矩形,进而求出OA ,求出t ;拓展:根据正方形的对角线平分一组对角得到45ACE ∠=︒,进而得到90ACB ∠=︒,根据勾股定理计算,得到答案.【详解】(1)解:OE OF =,理由如下:CE 平分ACB ∠,BCE ACE ∴∠=∠,EF BC ∥,BCE OEC ∴∠=∠,OEC ACE ∴∠=∠,OE OC ∴=,同理可得,ACF OFC ∠=∠,OF OC ∴=,OE OF ∴=,故答案为:OE OF =;(2)由题意得,当=2t 时,2cm OA =,则4cm OC AC OA =−=,BCE ACE ∠=∠,GCF ACF ∠=∠,90ECF ∴∠=︒,OE OF =,()28cm EF OC ∴==,故答案为:8; 探究:当=3t 时,四边形AECF 是矩形,理由如下:90ECF ∠=︒,OE OF =,∴当=OA OC 时,四边形AECF 是矩形,此时,3cm OA OC ==,3t ∴=时,四边形AECF 是矩形,故答案为:3;拓展:当四边形AECF 是正方形时,45ACE ∠=︒,CE 平分ACB ∠,290ACB ACE ∴∠=∠=︒,()10cm AB ∴=.【点睛】本题考查的是正方形的性质、矩形的判定、平行线的性质以及直角三角形斜边上的中线的性质,掌握矩形的判定定理、正方形的性质是解题的关键. 3.已知正方形ABCD 中,8AB BC CD DA ====,90A B C D ∠=∠=∠=∠=︒.动点P 以每秒2个单位速度从点B 出发沿线段BC 方向运动,动点Q 同时以每秒8个单位速度从B 点出发沿正方形的边BA AD DC CB −−−方向顺时针作折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .(1)当运动时间为 秒时,点P 与点Q 相遇;(2)当BQ PD ∥时,求线段DQ 的长度;(3)连接PA ,当PAB 和QAD 全等时,求t 的值.【答案】(1)3.2(2)3.2(3)t 为0.8或83【分析】(1)先判断出点P ,Q 相遇时,必在正方形的边BC 上,利用运动路程之和为正方形的正常建立方程即可;(2)先判断出四边形BQDP 是平行四边形,得出BP DQ =,进而表示出BP ,DQ ,用BP DQ =建立方程求解即可;(3)分点Q 在正方形的边AB ,AD ,CD ,BC 上,建立方程求解即可得出结论;【详解】(1)解:点P 的运动速度为2,8BC =,∴点P 运动到点C 的时间为4,点Q 的运动速度为8,∴点Q 从点B 出发沿BA AD DC CB −−−方向顺时针作折线运动到点C 的时间为(888)83++÷=,∴点P ,Q 相遇时在边BC 上,284832t t ∴+=⨯=,3.2t ∴=,故答案为3.2;(2)解:如图1,//BQ PD ,∴点Q 只能在边AD 上,四边形ABCD 是正方形,//AD BC ∴,∴四边形BQDP 是平行四边形,BP DQ ∴=,2288t t ∴=⨯−,1.6t ∴=,288 3.2DQ t ∴=⨯−=;(3)解:①当点Q 在边AB 上时,如图2,AB AD =,ABP DAQ ∠=∠,要使PAB ∆和ΔQAD 全等,只能是PAB QDA ≅,BP AQ ∴=,88AQ t =−,2BP t =,882t t ∴−=,0.8t ∴=,②当点Q 在边AD 时,不能构成QAD ,③当点Q 在边CD 上时,如图3,同①的方法得,要使PAB 和QAD 全等,只能是PAB QAD ≅,BP DQ ∴=,2816t t ∴=−,83t ∴=,④当点Q 在边BC 时,QAD 不是直角三角形,而PAB 是直角三角形,所以,不能全等;即:当PAB 和QAD 全等时,t 的值为0.8或83;【点睛】本题考查四边形综合题、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会分类讨论. 4.如图,在ABCD Y 中,9034BAC CD AC ∠=︒==,,.动点P 从点A 出发沿AD 以1cm /s 速度向终点D 运动,同时点Q 从点C 出发,以4cm /s 速度沿射线CB 运动,当点P 到达终点时,点Q 也随之停止运动,设点P 运动的时间为t 秒()0t >.(1)CB 的长为______.(2)用含t 的代数式表示线段QB 的长.(3)连接PQ ,①是否存在t 的值,使得PQ 与AC 互相平分?若存在,求出t 的值;若不存在,请说明理由;②是否存在t 的值,使得PQ 与AB 互相平分?若存在,求出t 的值;若不存在,请说明理由.(4)若点P 关于直线AQ 对称的点恰好落在直线AB 上,请直接写出t 的值.【答案】(1)5(2)55404QB t t ⎛⎫=−<≤ ⎪⎝⎭或5454QB t t ⎛⎫=−> ⎪⎝⎭(3)①不存在,理由见解析;②存在,t 的值为53(4)t 的值为12或2【分析】(1)根据平行四边形的性质得3AB DC ==,再根据勾股定理即可求解;(2)根据题意可得4CQ t =,先求出当点Q 与点B 重合时,所花费的时间,再根据题意分两种情况讨论即可:当点Q 在线段BC 上时和当点Q 在线段CB 的延长线上时;(3)①连接PC AQ ,,假设PQ 与AC 互相平分,则可得四边形APCQ 是平行四边形,进而可得AP CQ =,解得即可到答案;②连接PB AQ ,,假设PQ 与AB 互相平分,则可得四边形APBQ 是平行四边形,进而可得AP BQ =,解得即可到答案;(4)根据题意分两种情况讨论即可:当点P 关于直线AQ 对称的点落在点A 下方时和当点P 关于直线AQ 对称的点落在点A 上方时.【详解】(1)∵四边形ABCD 是平行四边形,∴3AB DC ==,∵90BAC ∠=︒,∴5BC =,故答案为:5;(2)在ABCD Y 中,AD BC =,AD BC ∥,由题意得,4CQ t =,当点Q 与点B 重合时,45t =, ∴5s 4t =, 当点Q 在线段BC 上时,54QB BC CQ t =−=−,当点Q 在线段CB 的延长线上时,45QB CQ BC t =−=−, 综上所述,55404QB t t ⎛⎫=−<≤ ⎪⎝⎭或5454QB t t ⎛⎫=−> ⎪⎝⎭;(3)①不存在,理由如下:如图,连接PC AQ ,,若PQ 与AC 互相平分,则四边形APCQ 是平行四边形,∴AP CQ =,∵4AP t CQ t ==,,∴4t t =,解得0=t (不合题意),∴不存在t 的值,使得PQ 与AC 互相平分;②存在,如图,连接PB AQ ,,若PQ 与AB 互相平分,则四边形APBQ 是平行四边形,∴AP BQ =,∴45t t =−, ∴5s 3t =, ∴当5s 3t =时,PQ 与AB 互相平分; (4)当点P 关于直线AQ 对称的点落在点A 下方时,如图,由对称得,PAQ P AQ '∠=∠,∵AD BC ∥,∴PAQ AQB ∠=∠,∴P AQ AQB '∠=∠,即BAQ AQB ∠=∠,∴3BQ AB ==,∴2CQ BC BQ =−=,∴42t =,解得12t =;当点P 关于直线AQ 对称的点落在点A 上方时,如图,由对称得,12∠=∠,∵AD BC ∥,∴13∠=∠,∵24∠∠=∴3=4∠∠,∴3BQ AB ==,∴8CQ BC BQ =+=,∴48t =,解得2t =,综上所述,t 的值为12或2.【点睛】本题考查了平行四边形的判定和性质、勾股定理的应用和动点问题,灵活运用所学知识求解是解决本题的关键. 5.如图,矩形ABCD 中,4CD =,30CBD ∠=︒.一动点P 从B 点出发沿对角线BD 方向以每秒2个单位长度的速度向点D 匀速运动,同时另一动点Q 从D 点出发沿DC 方向以每秒1个单位长度的速度向点C 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点P 、Q 运动的时间为t 秒()0t >.过点P 作PE BC ⊥于点E ,连接EQ ,PQ .(1)求证:PE DQ =;(2)四边形PEQD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.(3)当t 为何值时,PQE V 为直角三角形?请说明理由.【答案】(1)见解析(2)能,83t =(3)当2t =或165,见解析【分析】(1)由垂直得90BEP ∠=︒,在Rt BEP 中,2BP t =,由30CBD ∠=︒,可得PE t =,即可证明结果;(2)先证明四边形PEQD 是平行四边形,82PD t =−,DQ t =,当PD DQ =时,四边形PEQD 为菱形,即可求解;(3)分类讨论:①当90EPQ ∠=︒,②当90PQE ∠=︒,③当90PEQ ∠=︒即可.【详解】(1)证明:∵PE BC ⊥,∴90BEP ∠=︒,在Rt BEP 中,2BP t =,∵30CBD ∠=︒,∴PE t =,又∵DQ t =,∴PE DQ =;(2)解:能,理由如下:∵四边形ABCD 为矩形,PE BC ⊥,90BEP C ︒∠==∠,∴PE DQ ∥,由(1)知,PE DQ =,∴四边形PEQD 为平行四边形,在Rt CBD 中,4CD =,30CBD ∠=︒,∴28BD CD ==,∵2BP t =,∴82PD BD BP t =−=−,若使平行四边形PEQD 为菱形,则需PD DQ =,即82t t −=, ∴83t =, 即当83t =时,四边形PEQD 为菱形; (3)解:①当90EPQ ∠=︒时,四边形EPQC 为矩形,∴PE QC =,∵PE t =,4QC t =−,∴4t t =−,即2t =;②当90PQE ∠=︒时,90DPQ PQE ∠=∠=︒,在Rt DPQ 中,906030PQD ∠=︒−︒=︒,∴2DQ DP =,∵DQ t =,82DP t =−∴()282t t =−,即165t =.③当90PEQ ∠=︒时,此种情况不存在,综上所述,当2t =或165时,PQE V 为直角三角形.【点睛】本题考查动点问题、菱形的判定与性质及矩形的性质,找到动点运动的规律和路线、速度、以及是否停止和有无取值范围是解题的关键.(1)=a ______cm ,b =______cm ;(2)t 为何值时,EP 把四边形BCDE 的周长平分?(3)另有一点Q 从点E 出发,按照E D C →→的路径运动,且速度为1cm /s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,BPQ V 的面积等于26cm .【答案】(1)3,3(2)2s =t(3)3s 2或11s 3或5s【分析】(1)由非负性可求a ,b 的值;(2)先求出18cm BCDE C =四边形,可得9cm BE BP +=,可求4cm BP =,即可求解;(3)分三种情况讨论,由三角形的面积公式可求解.【详解】(1)∵()230a −=,∴30,290a a b −=+−=,∴3,3a b ==;故答案为:3,3;(2)∵3cm,3cm AE DE ==,∴6cm AD BC ==,∴18cm BCDE C BC CD DE EB =+++=四边形,∵EP 把四边形BCDE 的周长平分,∴9cm BE BP +=,∴4cm BP =,点P 在BC 上,∴42s 2t ==;(3)①点P在BC上(03)t<≤,∵12462BPQtS=⨯⨯=V,∴3.2t=;②相遇前,点P在CD上13 (3)3t<≤,∵[]1(4(3)(26)662BPQS t t=⨯−−−−⨯=,∴113t=;③相遇后,点P在CD上13(5)3t<≤,∵[]1(3)(26)4662BPQS t t=⨯−+−−⨯=,∴.5t=;∴综上所述,当3s2t=或11s3或5s时,BPQV的面积等于26cm.【点睛】本题考查了矩形的性质,非负数的性质,一元一次方程的应用等知识,利用分类讨论思想是解本题的关键.角形与DCQ全等.【答案】(1)1(2)54t=或4或232(3) 3.5t=,5.5或10【分析】(1)根据题中条件求出AP 的长即可求解;(2)分三种情况讨论:①当点P 在AB 上时,②当点P 在BC 上时,③当点P 在AD 上时;(3)连接CQ ,要使一个三角形与DCQ 全等,则另一条直角边必须等于DQ ,分类讨论即可.【详解】(1)解:动点P 的速度是2cm/s ,∴当2t =时,224AP =⨯=,∵5cm AB =,∴BP =1cm ;(2)解:①当点P 在AB 上时,CDP △是等腰三角形,∴PD CP =,在长方形ABCD 中,,90AD BC A B =∠=∠=︒,∴()HL DAP CBP ≌,∴AP BP =, ∴1522AP AB ==,∵动点P 的速度是2cm/s , ∴54t =;②当点P 在BC 上时,CDP △是等腰三角形,如图所示,∵90C ∠=︒,∴5CD CP ==,∴3BP CB CD =−=, ∴53422AB BP t ++===;③当点P 在AD 上时,CDP △是等腰三角形.如图所示,∵90D Ð=°,∴5DP CD ==, ∴585523222AB CB CD DP t ++++++===, 综上所述,54t =或4或232时,CDP △是等腰三角形; (3)解:根据题意,如图,连接CQ ,∵5,90,6AB CD A B C D DQ ==∠=∠=∠=∠=︒=,∴要使一个三角形与DCQ 全等,则另一条直角边必须等于DQ .①当点P 运动到1P 时,16CP DQ ==,此时1DCQ CDP △≌△, ∴点P 的路程为:1527AB BP +=+=, ∴72 3.5t =÷=;②当点P 运动到2P 时,26BP DQ ==,此时2CDQ ABP △≌△, ∴点P 的路程为:25611AB BP +=+=,∴112 5.5t =÷=③当点P 运动到3P 时,35AP DQ ==,此时3CDQ BAP △≌△, ∴点P 的路程为:3585220AB BC CD DP +++=+++=, ∴20210t =÷=,④当点P 运动到4P 时,即P 与Q 重合时,46DP DQ ==,此时4CDQ CDP △≌△, ∴点P 的路程为:4585624AB BC CD DP +++=+++=∴24212t =÷=,此结果舍去,不符合题意,综上所述,t 的值可以是: 3.5t =,5.5或10.【点睛】本题考查了动点问题,灵活运用分类讨论思想是解题关键.。
人教版初二数学8年级下册 第18章(平行四边形)动点问题专项训练(含答案)
人教版数学八年级下期第十八章平行四边形动点问题训练1.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在的直线对着得到△BQN,延长QN交BA的延长线于点M.(1)求证:AP⊥BQ;(2)当P在BC何处时,点N是MQ的中点.(3)若AB=3,P是BC的三等分点,求QM的长;2.如图,四边形ABCD是正方形,点E是边BC的动点,连接AE,以AE为边在AE的右上侧作Rt△AEF,使得∠AEF=90°,AE=EF,再过点F作FG⊥BC,交BC的延长于点G.(1)求证:∠BAE=∠GEF;(2)求证:CG=FG;(3)填空:若正方形ABCD的边长是2,当点E从点B运动到点C的过程中,点F也随之运动,则点F运动的痕迹的长是______.3.如图,点P是正方形ABCD(在小学,同学们学习过:正方形四边相等,四个角都是直角)对角线AC上一动点,点E在射线BC上,且PB=PE,连结PD,O为AC 中点.(1)如图①,当点P在线段AO上时,猜想PE与PD的关系,并说明理由;(2)如图②,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由.4.如图,已知菱形ABCD中,∠BAD=60°,点E、F分别是AB、AD上两个动点,若AE=DF,连接BF与DE相交于点G,连接CG,(1)求∠BGE的大小;(2)求证:GC平分∠BGD.5.如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P是射线AD上一点,连接PB,沿PB将△APB折叠,得△A'PB.(1)如图1所示,当∠DPA'=10°时,∠A'PB=______度;(2)如图2所示,当PA'⊥BC时,求线段PA的长度;(3)当点P为AD中点时,点F是边AB上不与点A,B重合的一个动点,将△APF 沿PF折叠,得到△A'PF,连接BA',求△BA'F周长的最小值.6.如图,边长为8的正方形ABCD的対角线AC,BD交于点O,M是AB边上一动点,ME⊥AO,MF⊥BO.(1)求证:四边形OEMF为矩形;(2)连接EF,求EF的最小值.7.如图,在正方形ABCD中,点E是AD边上的一个动点,连接BE,以BE为斜边在正方形ABCD内部构造等腰直角三角形BEF,连接CF.(1)求证:∠DEF+∠CBF=90°;,求△BEF的面积;(2)若AB=3,△BCF的面积为32(3)求证:DE=2CF.8.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:△NDE≌△MAE;(2)求证:四边形AMDN是平行四边形;(3)当AM的值为何值时,四边形AMDN是矩形?请说明理由.9.如图,已知四边形ABCD为正方形,AB=42,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.10.如图,已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≅△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.11.如图,已知矩形ABCD中,AB=5,AD=2+13.菱形EFGH的顶点H在边AD上,且AH=2,顶点G、E分别是边DC、AB上的动点,连结CF.(1)当四边形EFGH为正方形时,直接写出DG的长;(2)若△FCG的面积等于3,求DG的长;(3)试探究点G运动至什么位置时,△FCG的面积取得最小值.12.如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E,F,已知AD=4,试说明AE2+CF2的值是一个常数.13.如图,在△ABC中,CA=CB,∠ACB=90°,AB=5,点D是边AB上的一个动点,连接CD,过C点在上方作CE⊥CD,且CE=CD,点P是DE的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.14.如图,D、E分别是△ABC的边AB、AC的中点,O是△ABC内一动点,F、G分别是OB、OC的中点.判断四边形DEGF的形状,并说明理由.15.在正方形ABCD中,如图1,点E是AB边上的一个动点(点E与点A、B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE.(2)如图2,当点E运动到AB中点时,连接DG,若AB=2,求DG的长.16.如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设每秒运动的时间为t秒.(1)求BE的长;(2)当t为多少秒时,△BPE是直角三角形.参考答案1.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC,在△ABP和△BCQ中,AB=BC∠ABC=∠CBP=CQ,∴△ABP≌△BCQ(SAS),∴∠BAP=∠CBQ,∵∠BAP+∠APB=90°,∴∠CBQ+∠APB=90°,∴∠BEP=90°,∴AP⊥BQ;(2)解:由折叠的性质得:NQ=CQ,∠BNQ=∠C=90°,∠NBQ=∠CBQ,∴∠BNM=90°,∵点N是MQ的中点,∴NQ=MN,由(1)得:MQ=MB,∴MN=12MB,∴∠MBN=30°,∴∠CBN=60°,∴∠NBQ=∠CBQ=30°,∴CQ=33BC,∴BP=CQ=33BC,即BP=33BC时,点N是MQ的中点.(3)解:∵四边形ABCD是正方形,AB=3,P是BC的三等分点,∴BP=2CP,或CP=2BP,①当BP=2CP时,BP=2,由折叠的性质得:NQ=CQ=BP=2,BN=BC=3,∵∠NQB=∠CQB=∠ABQ,∴MQ=MB,设MQ=MB=x,则MN=x-2,在Rt△MBN中,MB2=BN2+MN2,即x 2=32+(x -2)2,解得:x =134,即MQ =134;②当CP =2BP 时,BP =1,由折叠的性质得:NQ =CQ =BP =1,BN =BC =3,∵∠NQB =∠CQB =∠ABQ ,∴MQ =MB ,设MQ =MB =x ,则MN =x -1,在Rt △MBN 中,MB 2=BN 2+MN 2,即x 2=32+(x -1)2,解得:x =5,即MQ =5;综上所述,若AB =3,P 是BC 的三等分点,QM 的长为134或5.2.解:(1)∵∠AEF =90°,∴∠AEB +∠FEG =90°,∵四边形ABCD 是正方形,∴∠B =90°,∴∠AEB +∠BAE =90°,∴∠BAE =∠GEF ,(2)在△ABE 和△EGF 中,∠ABE =∠EGF ∠BAE =∠GEF AE =EF,∴△ABE ≌△EGF (AAS ),∴BE =GF ,AB =EG ,∴BE =CG ,∴CG =FG ;(3)223.解:(1)当点P在线段AO上时PE=PD且PE⊥PD.理由:当点P在线段AO上时,在△ABP和△ADP中AB=AD∠BAP=∠DAP=45∘AP=AP∴△ABP≌△ADP,∴BP=DP,∵PB=PE,∴PE=PD,如图,过点P作PM⊥CD于点M,作PN⊥BC于点N,∵AC平分∠BCD,∴PM=PN,在Rt△PNE与Rt△PMD中,∵PD=PE,PM=PN∴Rt△PNE≌Rt△PMD,∴∠DPM=∠EP N,易得∠MPN=90∘,∴∠DPE=90∘,故PE⊥PD,PE与PD的数量关系和位置关系分别为:PE=PD,PE⊥PD;(2)当点P在线段OC上时,(1)中的猜想成立;如图2,当点P在线段OC上时,∵四边形ABCD是正方形,AC为对角线,∴BA=DA,∠BAP=∠DAP=45°,又PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,又∵PB=PE,∴PE=PD,①当点E与点C重合时,PE⊥PD;②当点E在BC的延长线上时,如图2所示,∵△BAP≌△DAP,∴∠ABP=∠ADP,∠CDP=∠CBP,∵PB=PE,∴∠CBP=∠PEC,故∠PEC=∠PDC,∵∠1=∠2,∴∠DPE=∠DCE=90°,∴PE⊥PD,综上所述:PE⊥PD,当点P在线段OC上时,(1)中的猜想成立;4.解:(1)∵四边形ABCD是菱形∴AD=AB,∠BAD=60°∴△ADB是等边三角形∴AD=AB=BD,∠DAB=∠ADB=∠ABD∵AE=DF,∠DAB=∠ADB=60°,AD=BD∴△ADE≌△DBF(SAS)∴∠ADE=∠DBF又∠BGE=∠BDE+∠DBF=∠BDE+∠ADE=∠ADB∴∠BGE=∠ADB=60°(2)如图,过点C作CN⊥BF于点N,过点C作CM⊥ED于点M,由(1)得∠ADE=∠DBF∴∠CBF=60°+∠DBF=60°+∠ADE=∠DEB又∠DEB=∠MDC∴∠CBF=∠CDM∵BC=CD,∠CBF=∠CDM,∠CMD=∠CNG=90°∴Rt△CBN≌Rt△CDM(AAS)∴CN=CM,且CN⊥BF,CM⊥ED∴点C在∠BGD的平分线上即GC平分∠BGD5.856.(1)证明:∵ME⊥AO,MF⊥BO,∴∠MEO=90°,∠MFO=90°,∵正方形ABCD的対角线AC,BD交于点O,∴∠EOF=90°,∴四边形OEMF为矩形;(2)解:∵边长为8的正方形ABCD的対角线AC,BD交于点O,∴利用勾股定理可以得到OA=OB=42,当M在AB的中点时,EF有最小值,最小值=OE2+OF2=(22)2+(22)2=4.7.证明:(1)过点F作MN⊥AD于点M,交BC于点N,∴∠MEF+∠EFM=90°,∵∠EFB=90°,∴∠BFN +∠EFM =90°,∴∠MEF =∠BFN ,在正方形ABCD 中,AD ∥BC .∴MN ⊥BC ,∴∠FBN +∠BFN =90°,∴∠FBN +∠MEF =90°,即∠DEF +∠CBF =90°;证法二:在正方形ABCD 中,AD ∥BC ,∴∠DEB +∠CBE =180°,即∠DEF +∠BEF +∠EBF +∠CBF =180°,∵∠EFB =90°,∴∠BEF +∠EBF =90°,∴∠DEF +∠CBF =90°;(2)由(1)得MN ⊥AD ,∴正方形ABCD 的性质得四边形MNCD 是矩形,∴MN =CD =AB =3,在△BFN 与△FEM 中,由(1)得∠MEF =∠BFN ,∠EMF =∠FNB =90°,∵△BEF 为等腰直角三角形,∴BF =EF ,在△BFN 与△FEM 中,∠EMF =∠FNB ∠MEF =∠BFN BF =EF,∴△BFN ≌△FEM (AAS ),∵BC =AB =3,∴S △BCF =12BC ⋅FN =32FN =32,∴FN =1.∴BN =FM =MN -FN =2,在Rt △BFN 中,EF =BN 2+FN 2=12+22=5,∴S △BEF =12BF 2=12×(5)2=52;(3)在△BFN与△FEM中由(2)△BFN≌△FEM,MD=NC,∴BN=FM,EM=FN,∵MN=AB=BC,∴FM+FN=BN+NC,∴FN=NC=MD=EM,∴∠FCN=45°,DE=2MD=2CN,CF,在Rt△FNC中,CN=22∴DE=2×2CF=2CF.28.(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∵点E是AD中点,∴DE=AE,在△NDE和△MAE中,∠NDE=∠MAEDE=AE,∠DEN=∠AEM∴△NDE≌△MAE(ASA);(2)∵△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(3)解:当AM=1时,四边形AMDN是矩形.理由如下:∵四边形ABCD是菱形,∴AD=AB=2,∵四边形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1.9.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,∠DNE=∠FME EN=EM∠DEN=∠FEM,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,AD=CD∠ADE=∠CDG DE=DG,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=2AB=2×42=8,∴CE+CG=8是定值.10. (1)∵点F,H分别是BC,CE的中点,∴FH //BE ,FH =12BE ,∴∠CFH =∠CBG .又∵点G 是BE 的中点,∴FH =BG .又∵BF =FC ,∴△BGF ≅△FHC .(2)连接EF ,GH .当四边形EGFH 是正方形时,可知EF ⊥GH且EF =GH .∵在△BEC 中,点G ,H 分别是BE ,EC 的中点,∴GH =12BC =12AD =12a ,且GH //BC ,∴EF ⊥BC .又∵AD //BC ,AB ⊥BC ,∴AB =EF =GH =12a ,∴S 矩形ABCD =AB ⋅AD =12a ⋅a =12a 211.解:(1)∵四边形EFGH 为正方形,∴HG =HE ,∠ADG =∠HAE =90°,∵∠DHG +∠AHE =90°,∠DHG +∠DGH =90°,∴∠DGH =∠AHE ,∴△DGH ≌△AHE (AAS ),∴DG =AH =2;(2)如图,作FM⊥DC,M为垂足,连结GE.∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEG-∠HEG=∠MGE-∠FGE,即∠AEH=∠MGF,又∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离恒等于2,∴S▵FCG=1×2⋅GC=3,2解得GC=3,∴DG=2;(3)设DG=x,则CG=5-x,由(2)可知,S△FCG=5-x.要使△FCG的面积最小,须使x最大,∵在Rt△DHG中,DH=13,∴当GH取得最大时,x最大当点E与点B重合时,HE最大,此时,HE=22+52=29,则GH=HE=29,在Rt△DHG中,x=(29)2−(13)2=4,∴当DG=4时,△FCG的面积取得最小值.12.解:∵四边形ABCD是正方形,∴∠AEB=∠BFC=90°,AB=BC,又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF,在△ABE和△BCF中,AB=BC∠ABE=∠BCF∴△ABE≌△BCF(AAS),∠AEB=∠BFC∴AE=BF,∴AE2+CF2=BF2+CF2=BC2=AD2=16为常数.13.解:(1)AP=1DE,理由如下:2连接AE.∵CE⊥CD,∴∠ACE+∠ACD=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACE=∠BCD,在△BCD和△ACE中,CE=CD∠ACE=∠BCD,AC=BC∴△BCD≌△ACE(SAS),∴∠EAC=∠B=45°,∴∠EAD=90°,∵P为DE中点,DE.∴AP=12(2)①当Q在边AB上时,连接AE,EQ.∵P 为DE 中点,CE =CD ,∴PC 垂直平分DE ,∴DQ =QD ,∵AB =5,AQ =2,∴BD =3,设BD =AE =x ,则QD =EQ =3-x ,在Rt △AEQ 中,AE 2+AQ 2=QE 2,即x 2+22=(3-x )2解得x =56;当Q 在BA 延长线上时,连接AE ,EQ ,如图,设BD =AE =x ,同理可得AE 2+AQ 2=QE 2,即x 2+22=(7-x )2解得x =4514.综上可得BD =56或4514.14.解析 四边形DEGF 是平行四边形.理由:∵D 、E 分别是△ABC 的边AB 、AC 的中点,∴DE =12BC ,DE //BC ,∵F、G分别是OB、OC的中点,BC,FG//BC,∴FG=12∴DE=FG,DE//FG,∴四边形DEGF是平行四边形15.(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠GBC=90°,又∵四边形ABCD为正方形,∴∠GBA+∠GBC=90°,∴∠GCB=∠FBA,又∵BC=AB,∠FAB=∠EBC=90°,在△ABF与△BCE中,∠GCB=∠FBABC=AB,∠EBC=∠FAB∴△ABF≌△BCE(SAS);(2)解:过点D作DH⊥CE于点H,∵E为AB中点,∴EB=1,∵AB=2,∴BC=2,∴CE=BC2+EB2=22+12=5,在Rt △CEB 中,由CE •BG =EB •BC 得BG =EB ⋅BC CE =1×25=255,∴CG =455,∵∠DCE +∠BCE =∠BCE +∠CBF =90°,∴∠DCE =∠CBF ,又∵DC =BC =2,∠CHD =∠CGB =90°,在△CHD 与△BGC 中,∠CHD =∠CGB =90°∠DCE =∠CBF DC =BC,∴△CHD ≌△BGC (AAS )∴CH =BG =255,∴GH =CG -CH =255=CH ,∵DH =DH ,∠CHD =∠GHD =90°,在△DGH 与△DCH 中,GH =CH ∠GHD =∠CHD DH =DH,∴△DGH ≌△DCH (SAS ),∴DG =DC =2.16.解:(1)在矩形ABCD 中,∠C =∠B =90°,CD =AB =10,在Rt △BCE 中,CE =CD -ED =10-7=3,根据勾股定理得,BE =BC 2+CE 2=42+32=5,(2)①当以P 为直角顶点时,即∠BPE =90°,则∠C =∠B =∠BPE =90°,∴四边形CBPE 是矩形,∴BP =CE =3,即10-t =3,∴t =7,②当以E 为直角顶点时,即∠BEP =90°,由勾股定理得,BE 2+PE 2=BP 2,过点P 作PF ⊥CD 于F ,则PF=AD=4,DF=AP,设AP=t,则EF=7-t,BP=10-t,PE2=42+(7-t)2,∴52+42+(7-t)2=(10-t)2,,解得,t=53∴当t=7或5秒时,△BPE是直角三角形.3。
四边形动点和最值问题
1. 在平行四边形中,对角线,相交于点,若、是上两动点,、分别从、两点同时以的相同的速度向、运动.(1)四边形是平行四边形吗?说明你的理由.(2)若,,当运动时间为多少时,以、、、为顶点的四边形为矩形.2. 在矩形中,点是对角线的中点,,,、是对角线上的两个动点,分别从、同时出发相向而行,速度均为,运动时间为秒,当其中一个动点到达点后就停止运动.(1)若、分别是、的中点,求证:四边形始终是平行四边形.(2)在的条件下,当为何值时,四边形为矩形.(3)若、分别是折线、上的动点,从出发,从出发,与、以相同的速度同时出发,当为何值时,四边形为菱形.3.如图,在矩形中,,点和点分别从点和点出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,则最快________后,四边形成为矩形.4.如图,已知长方形的边长,,点在边上,,如果点从点出发在线段上以的速度向点运动,同时,点在线段上从点到点运动.则当与全等时,时间为________.5.如图,在矩形中,,点和点分别从点和点出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,则最快多少秒后,四边形成为矩形?6. 如图,在菱形中,,.动点、分别从点、同时出发,以的速度向点、运动,连接、,取、的中点、,连接、.设运动的时间为.(1)求证:.(2)当为何值时,四边形为菱形.(3)试探究:是否存在某个时刻,使四边形为矩形,若存在,求出的值,若不存在,请说明理由.7. 如图,在菱形中,,.动点、分别从点、同时出发,以的速度向点、运动,连接、,取、的中点、,连接、.设运动的时间为秒.(1)求证:.(2)当为何值时,四边形为菱形.(3)试探究:是否存在某个时刻,使四边形为矩形.若存在,求出的值;若不存在,请说明理由.8.如图,在矩形中,,,是边上一点,于点,于点,求.9. 在矩形中,,、、、分别从、、、出发沿、、、方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止,已知在相同时间内,若,则,,.(1)以、、、为顶点的四边形能否为等腰梯形?如果能,求的值;如果不能,请说明理由.(2)当为何值时,以,为两边,以矩形的边(或)的一部分为第三边构成一个三角形.(3)当为何值时,以、、、为顶点的四边形是平行四边形.10.如图,直线的解析式为,与轴交于点,与轴交于点,点为线段上的一个动点,作轴于点,轴于点,连接,则线段的最小值为________.11.如图,在矩形ABCD中,,点E是AD上一个动点,把沿BE向矩形内部折叠,当点A的对应点恰好落在的平分线上时,的长为多少?12.如图,在中,,,点从点出发,沿方向以每秒的速度向终点运动;同时,动点从点出发沿方向以每秒的速度向终点运动,将沿翻折,点的对称点为点,设点运动的时间为秒,若四边形为菱形,则的值为________.13.如图,,矩形的顶点、分别在边、上,当在边上运动时,随之在边上运动,矩形的形状保持不变,其中,,求运动过程中,点到点的最大距离.14. 已知,、分别在边,上,当在边上运动时,随之在边上运动,且保持.(1)如图,以为底边向外作等腰,使,、运动过程中三角形的形状保持不变,求在运动过程中,点到点的最大距离.(2)如图,若以为边,向外作矩形,,那么在运动过程中,点到点的最大距离为________.参考答案1.(1)【答案】见解析【解析】四边形是平行四边形.理由:四边形是平行四边形,,,、是上两动点,、分别从、两点同时以的相同的速度向、运动,,,四边形是平行四边形.【知识点】对角线互相平分、对角线互相平分的四边形是平行四边形【来源】2017江苏省苏州市常熟市期中测试下学期261.(2)【答案】见解析【解析】根据题意得:,四边形是平行四边形,当时,四边形为矩形.即或,或,解得:或当运动时间为或时,四边形为矩形.【知识点】对角线相等的平行四边形是矩形、图形与几何分类讨论【来源】2017江苏省苏州市常熟市期中测试下学期262.(1)【答案】见解析【解析】证明:四边形是矩形,,,,,,,,分别是,中点,,,,,,在和中,,,,同理:,四边形始终是平行四边形.【知识点】勾股定理、SAS、对边相等、矩形的定义、两组对边分别相等的四边形是平行四边形【来源】2017浙江省宁波市期中测试下学期252.(2)【答案】见解析【解析】解:由得:,,四边形是平行四边形,,当时,平行四边形是矩形,,解得:.【知识点】矩形的定义、动点问题【来源】2017浙江省宁波市期中测试下学期252.(3)【答案】见解析【解析】解:连接、、,如图所示:四边形为菱形,,,,,,四边形是菱形,,设,则,由勾股定理得:,即,解得:,,,即为时,四边形为菱形.但是由于,运动到点后就停止运动,所以应舍去,所以四边形不能为菱形.【知识点】勾股定理、菱形的四条边相等、动点问题、对角线互相平分的四边形是平行四边形、对角线互相垂直的平行四边形是菱形【来源】2017浙江省宁波市期中测试下学期253.【答案】4【解析】解:设最快秒后,四边形成为矩形,由得.解得,故答案为:.【知识点】对边相等、矩形的定义、动点问题【来源】2017山东省东营市广饶县月测试题25; 2015江苏省南通市启东市期中测试4.【答案】或【解析】解:$$\text{∵}$$,,,$$\text{∴}$$,,,当时,则有,即,解得,当时,则有,即,解得,故答案为:或.【知识点】全等三角形对应边对应角相等、四个角都是直角、图形与几何分类讨论【来源】2014江苏省无锡市滨湖区期中测试165.【答案】见解析【解析】解;设最快秒,四边形成为矩形,由得.解得,故答案为:秒.【知识点】矩形的定义、动点问题、四个角都是直角【来源】2015河南省周口市太康县; 2015河南省周口市太康县期末测试6.(1)【答案】见解析【解析】证明:动点、同时运动且速度相等,,四边形是菱形,,,,在与中,,,,,,,.【知识点】两直线平行,内错角相等、同位角相等,两直线平行、SAS、全等三角形对应边对应角相等、菱形的定义、菱形的四条边相等6.(2)【答案】见解析【解析】过作于,连接,,,,,四边形是平行四边形,、是、的中点,,四边形是菱形,,,,,,四边形是矩形,,,,,,,.【知识点】30°锐角的直角三角形、两组对边分别平行的四边形是平行四边形、有三个角是直角的四边形是矩形、菱形的定义、菱形的四条边相等、菱形的对角线互相垂直平分6.(3)【答案】见解析【解析】不存在,假设存在某个时刻,使四边形为矩形,四边形为矩形,,,即,解得,,与原题设矛盾,不存在某个时刻,使四边形为矩形.【知识点】勾股定理、矩形的对角线相等、菱形的定义7.(1)【答案】见解析【解析】证明:动点、同时运动且速度相等,,四边形是菱形,,,,在与中,,,,,,,.【知识点】两直线平行,内错角相等、同位角相等,两直线平行、SAS、全等三角形对应边对应角相等、菱形的定义、菱形的四条边相等【来源】2016江苏省苏州市昆山市7.(2)【答案】见解析【解析】如图,过作于,连接,,,,,四边形是平行四边形,、分别是、的中点,,四边形是菱形,,,,,,四边形是矩形,,,,,,,.故时,四边形为菱形.【知识点】在同一平面内,垂直于同一直线的两直线平行、两组对边分别平行的四边形是平行四边形、矩形的定义、有三个角是直角的四边形是矩形、菱形的对角线互相垂直平分【来源】2016江苏省苏州市昆山市7.(3)【答案】见解析【解析】不存在,假设存在某个时刻,使四边形为矩形,四边形为矩形,,,即,解得,,与原题设矛盾,不存在某个时刻,使四边形为矩形.【知识点】勾股定理、矩形的定义、四个角都是直角、矩形的对角线相等【来源】2016江苏省苏州市昆山市8.【答案】见解析【解析】利用面积法,由即可得.【知识点】矩形的定义、四个角都是直角、矩形的对角线相等、用面积求线段长度9.(1)【答案】见解析【解析】分别过、做,,,点一定在点的左侧,若要以、、、为顶点的四边形是等腰梯形,则点一定在点右侧,当、点重合时即,,即在左侧时,如图,当时,四边形为等腰梯形,,,所以,(舍)或(舍),当时,点到达点,停止运动,当时,即点在点左侧,如图分别过,点作,,同理当时,四边形为等腰梯形,,,(舍)或,由可知,当时,四边形为平行四边形,不能为等腰梯形,综上:以、、、为顶点的四边形不能为等腰梯形.【知识点】动点问题、图形与几何分类讨论、矩形的定义、四个角都是直角、等腰梯形定义【来源】2018广东省广州市越秀区广州市铁一中学(含:亚运城(番禺)校区)24; 2009山东省淄博市中考真题;山东省淄博市;实验班提优训练九年级数学上期中综合提优测试卷9.(2)【答案】见解析【解析】当点与点重合或点与点重合时,以,为两边,以矩形的边(或)的一部分为第三边可能构成一个三角形.①当点与点重合时,由,得,(舍去).因为,此时点与点不重合.所以符合题意.②当点与点重合时,由,得.此时,不符合题意.故点与点不能重合.所以所求的值为.【知识点】三角形的三边关系定理、勾股定理、矩形的定义、四个角都是直角、动点问题、图形与几何分类讨论、一元二次方程的应用-其它问题【来源】2018广东省广州市越秀区广州市铁一中学(含:亚运城(番禺)校区)24; 2009山东省淄博市中考真题;山东省淄博市;实验班提优训练九年级数学上期中综合提优测试卷9.(3)【答案】见解析【解析】由知,点只能在点的左侧,①当点在点的左侧时,由,解得(舍去),.当时四边形是平行四边形.②当点在点的右侧时,由,解得(舍去),.当时四边形是平行四边形.所以当或时,以,,,为顶点的四边形是平行四边形.【知识点】对边相等、一组对边平行且相等的四边形是平行四边形、矩形的定义、四个角都是直角、动点问题、图形与几何分类讨论、两组对边分别相等的四边形是平行四边形【来源】2018广东省广州市越秀区广州市铁一中学(含:亚运城(番禺)校区)24; 2009山东省淄博市中考真题;山东省淄博市;实验班提优训练九年级数学上期中综合提优测试卷10.【答案】【解析】解:一次函数中,令,则,令,则,,.轴于点,轴于点,四边形是矩形,且,为定点,在线段上运动,当时,取得最小值,此时最小,,点坐标为,,,由勾股定理得:,,.故答案为:.【知识点】勾股定理、动点问题、一次函数的实际应用-与几何知识相结合、矩形的定义、有三个角是直角的四边形是矩形【来源】2017浙江省台州市椒江区台州市书生中学期中测试下学期1611.【答案】或【解析】解:过点作,,∴四边形是矩形,平分∴矩形是正方形即或或考点:折叠问题,矩形与正方形的性质【知识点】四个角都是直角、矩形的对角线相等、四条边相等,四个角相等、对角线互相垂直平分且相等、图形翻折【来源】2015江苏省苏州市吴江市吴江市青云中学期中测试上学期2612.【答案】2【解析】解:作于,于,如图,,,,,为等腰直角三角形,,和为等腰直角三角形,,,,四边形为矩形,,,,在中,,在中,,四边形为菱形,,,,(舍去),的值为.故答案为:.【知识点】勾股定理、直角三角形-等腰直角三角形、矩形的定义、菱形的定义、动点问题【来源】2017浙江省宁波市鄞州区期中测试下学期1913.【答案】见解析【解析】解:如图,取的中点,连接、、,,当、、三点共线时,点到点的距离最大,此时,,,,,的最大值为:.【知识点】三角形的三边关系定理、勾股定理、直角三角形斜边中线等于斜边一半、矩形的定义、四个角都是直角【来源】2012山东省济南市14.(1)【答案】见解析【解析】解:如图,取的中点,连接.,.点是边中点,,;连接,,有,当、、共线时,有最大值,最大值是,又为直角三角形,为斜边的中点,,,即.故答案为:.【知识点】三角形的三边关系定理、三线合一、勾股定理、直角三角形斜边中线等于斜边一半、动点问题【来源】2015山东省青岛市14.(2)【答案】【解析】解:如图,取的中点,连接、、,,当、、三点共线时,点到点的距离最大,此时,,,,,的最大值为:.学而思网校——智能题库【知识点】三角形的三边关系定理、勾股定理、直角三角形斜边中线等于斜边一半、矩形的定义、四个角都是直角【来源】2015山东省青岛市第 21 页,共 21 页。
二次函数与平行四边形有关的问题
二次函数与平行四边形有关的问题【专题说明】二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,我借助探究平行四边形顶点坐标公式来解决这一类题,同学们要掌握好解决这类题型的基本思路和解题技巧。
【解题思路】1. 线段中点坐标公式⎪⎪⎭⎫ ⎝⎛++2,221212211x y x y x y y x AB B A 中点坐标为),则线段,坐标为(),点,坐标为(平面直角坐标系中,点2.平行四边形顶点公式: yx x y x DBCADBC A DD CC BB AA D CB A +=++=+y y y x x y x y x y x ),(),,则,,(),,(),,(分别为平行四边形的顶点坐标分类:1. 三个定点,一个动点问题已知三个定点的坐标,可设出抛物线上第四个顶点的坐标,运用平行四边形顶点坐标公式列方程(组)求解。
这种题型由于三个定点构成的三条线段中哪条为对角线不清楚,往往要以这三条线段分别为对角线分类,分三种情况讨论;2. 两个定点、两个动点问题这中题型往往比较特殊,一个动点在抛物线上,另一个动点在x轴(y轴)或对称轴或某一条直线上。
设出抛物线上的动点坐标,另一个动点若在x轴上,纵坐标为0,则用平行四边形顶点纵坐标公式;若在y轴上,横坐标为0,则用平行四边形顶点横坐标公式。
该动点哪个坐标已知就用与该坐标有关的公式。
方法总结:这种题型,关键是合理有序分类:无论式三定一动,还是两定两动,统统把抛物线上的动点作为第四个动点,其余三个作为顶点,分别以这三个定点构成的三条线段为对角线分类,份三种情况讨论,然后运用平行四边形顶点坐标公式转化为方程(组),这种解法,不必画出平行四边形草图,只要合理分类,有序组合,从对角线入手不会漏解,条理清楚,而且适用范围广,其本质用代数的方法解决几何问题,体现的是分类讨论思想、属性结合的思想。
八年级数学下册动点问题构成平行四边形解题技巧(一)
八年级数学下册动点问题构成平行四边形解题技巧(一)八年级数学下册动点问题构成平行四边形解题技巧什么是动点问题?动点问题是数学中经常遇到的一类问题,它通常涉及到平行四边形的性质和特点。
解决动点问题需要一定的技巧和方法。
动点问题解题技巧以下是一些解决八年级数学下册动点问题的技巧:•确定动点的位置和性质在解决动点问题时,首先要确定动点的位置和性质。
根据问题所给条件,我们可以确定动点在平行四边形内部、边界上还是延长线上。
这些信息有助于我们确定动点的坐标。
•确定平行四边形的特点平行四边形有一些独特的性质,利用这些性质可以解决动点问题。
例如,平行四边形的对角线相互平分,对角线长相等等。
通过确定平行四边形的特点,我们可以推断出关于动点的一些性质。
•运用向量法或坐标法求解在解决动点问题时,我们可以运用向量法或坐标法来求解。
向量法常用于证明或推导问题,而坐标法常用于具体计算。
具体选择使用哪种方法要根据问题的特点和要求来决定。
•画图辅助解题绘制图形是解决动点问题的重要步骤。
通过画图,我们可以更好地理解问题,并帮助我们找到解题的思路。
画图时,注意要准确绘制出平行四边形的形状和各个元素的位置关系。
•通过推理和运算得出答案在完成前面步骤后,我们可以通过推理和运算来得出最终的答案。
根据题目所要求的内容,进行逻辑推理和数学运算,得出问题的解答。
总结解决八年级数学下册动点问题需要我们熟悉平行四边形的性质和特点,并掌握相应的解题技巧。
通过确定动点的位置和性质、确定平行四边形的特点、运用向量法或坐标法、画图辅助解题以及通过推理和运算得出答案,我们可以有效地解决动点问题。
希望以上技巧能帮助到你解决八年级数学下册动点问题,在数学学习中取得更好的成绩!对于八年级数学下册动点问题构成平行四边形解题,下面给出了更具体的步骤和实例来帮助你更好地理解和应用这些技巧。
1.确定动点的位置和性质首先,从题目中找出关于动点的相关信息,然后根据这些信息来确定动点的位置和性质。