大学物理9-9(1) 磁场中的磁介质

合集下载

大学物理学

大学物理学

磁场中的磁介质一.选择题1.关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的? (A)H仅与传导电流有关.(B)若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.(C)若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D)以闭合曲线L为边缘的任意曲面的H通量均相等.[] 2.磁介质有三种,用相对磁导率μr 表征它们各自的特性时, (A)顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1. (B)顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1. (C)顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D)顺磁质μr <0,抗磁质μr <1,铁磁质μr >0.[]3.用细导线均匀密绕成长为l 、半径为a (l>>a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的(A)磁感强度大小为B =μ0μr NI .(B)磁感强度大小为B =μr NI/l . (C)磁场强度大小为H =μ0NI/l .(D)磁场强度大小为H =NI/l .[]4.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0A 时,测得铁环内的磁感应强度的大小B 为1.0T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ0=4×10-7T ·m ·A -1)(A)7.96×102(B)3.98×102(C)1.99×102(D)63.3[]5.附图中,M 、P 、O 为由软磁材料制成的棒,三者在同一平面内,当K 闭合后,MO图1-4(A)M 的左端出现N 极.(B)P 的左端出现N 极. (C)O 的右端出现N 极.(D)P 的右端出现N 极.[]二.填空题1.一个绕有500匝导线的平均周长50cm 的细环,载有0.3A 电流时,铁芯的相对磁导率为600.(1)铁芯中的磁感强度B 为__________________________. (2)铁芯中的磁场强度H 为____________________________.(μ0=4×10-7T·m·A -1)2.长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μr 的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =____________,磁感强度的大小B =__________。

大学物理第11章磁场中的磁介质

大学物理第11章磁场中的磁介质

第三篇
电磁学
2.磁畴的形成 按照量子理论, 铁磁质内电子间存在着很强的由电子自旋引起的相互 作用——电子交换作用, 使各电子的自旋磁矩排列整齐,从而形成磁畴。 每个磁畴内的电子自旋磁矩整齐排列,磁性很强——自发磁化。
3.磁畴与外磁场的关系
无外磁场时, 各个磁畴由于热运动其方向排列无序, 因而整体对外 不显磁性。 有外磁场时, 各个磁畴的磁矩在外磁场的磁力矩作用下以整体的形 式趋向外磁场方向排列, 从而对外显示很强的磁性。出现高m 值。 具体过程: 与外磁场方向一致和相同的磁畴范围扩大, 磁畴磁矩方向同 时尽力转向外磁场的方向。 4. 磁畴与温度的关系: 当温度持续升高到某值时, 由于剧烈的热运动, 磁畴瓦解, 铁磁质的铁磁性消失, 过渡到顺磁质。此温度叫做居里温度或 居里点。
并不沿起始磁化曲线返回,而是滞后于 外磁场变化——磁滞现象, 当H = 0时, B = Br ≠0,Br——剩磁。
第三篇
电磁学
B
b ~c : 加上反向外磁场,则B 继续 减小,当H=-Hc时,B=0,Hc称为矫顽 力, 即为了消除剩磁所需加的反向 外磁场Hc 。 c~d:继续增加反向磁场,介质达 到反向磁饱和状态。
A
H
第三篇
电磁学
一、铁磁介质的磁化机理——磁畴
1.磁畴 磁畴——铁磁质中因电子自旋而引 起的强烈相互作用,在铁磁质内形 成磁性很强的小区域 。磁畴的体积 约为 10-12 m3 。
在无外磁场时,各磁 畴排列杂乱无章,铁磁质 不显磁性;在外磁场中, 各磁畴沿外场转向,介质 内部的磁场迅速增加,在 铁磁质充磁过程中伴随着 发声、发热。
第三篇
电磁学
三、磁介质中的安培环路定理
有磁介质时,安培环路定理是:

8 磁场中的磁介质

8 磁场中的磁介质

4 . 78 10
3
例题3 3、有两个半径分别为 R 和 r 的“无限长”同轴圆筒形 导体,在它们之间充以相对磁导率为 r 的磁介质.当两 圆筒通有相反方向的电流 I 点 P 的磁感应强度的大小; (2)圆柱体外面一点 Q 的磁感强度. 对称性分析 rd R l H dl I I H 2 π dH I 2π d 0 rI B H 2π d 解
B 0r H
铁磁质(作为简介使用) 1磁畴 无 外 磁 场 2 磁化曲线 顺 磁 质 O 磁滞回线
B
ta n B H
B
有 外 磁 场
B H 曲线

H
磁滞回线 B 当外磁场由 H逐渐减 m Bm P 小时,磁感强度 B并不沿起 Q 始曲线 OP 减小,而是沿 PQ Br H Hm 比较缓慢的减小,这种 B的 O Hm 变化落后于H的变化的现象, Hc 叫做磁滞现象 ,简称磁滞. ' Bm P 由于磁滞,当磁场强度 减小到零(即 H 0 )时, 磁感强度 B 0,而是仍有 磁滞回线 一定的数值 B r , r 叫做剩余 B 磁感强度(剩磁). 矫顽力 Hc
大学物理习题课件
理学院物理教研室
地址:锦州市古塔区士英街169号
第八章
磁场中的磁介质
教学基本要求
基本概念 例题分析
第八章 磁介质 一、教学基本要求:
了解介质的磁化现象及其微观解释;了解各向同性介 质中 B 和 H 的关系与区别,理解有磁介质时的安培环路 定理;了解铁磁质的特性。
二、基本概念

H dl I
H dl I H dl I
I
L1
2I

9-磁介质 大学物理

9-磁介质 大学物理

当线圈中通入电流后,在磁化场的力矩作用下, 当线圈中通入电流后,在磁化场的力矩作用下,各分子环 流的磁矩在一定程度上沿着场的方向排列起来,此时, 流的磁矩在一定程度上沿着场的方向排列起来,此时,软 铁棒被磁化了。 铁棒被磁化了。
对于各向同性的均匀介质,介质内部各分子电流相互抵消, 对于各向同性的均匀介质,介质内部各分子电流相互抵消, 而在介质表面,各分子电流相互叠加, 而在介质表面,各分子电流相互叠加,在磁化圆柱的表面出 磁化面电流( 现一层电流,好象一个载流螺线管,称为磁化面电流 现一层电流,好象一个载流螺线管,称为磁化面电流(或安 培表面电流) 培表面电流)。
(2)电子自旋磁矩 (2)电子自旋磁矩 实验证明: 实验证明:电子有自旋磁矩
ps = 0.927×10-23 A⋅m2 0.927×
(3)分子磁矩 (3)分子磁矩 分子磁矩是分子中所有电子的轨道磁矩和自旋磁矩 与所有核磁矩的矢量和。 与所有核磁矩的矢量和。 三.顺磁质与抗磁质的磁化 顺磁质与抗磁质的磁化 1、顺磁质及其磁化(如铝、 1、顺磁质及其磁化(如铝、铂、氧) 分 子 磁 矩 分子的固有磁矩不为零 pm ≠ 0 无外磁场作用时, 无外磁场作用时,由 于分子的热运动, 于分子的热运动,分 子磁矩取向各不相同, 子磁矩取向各不相同 整个介质不显磁性。 整个介质不显磁性。
B0
I0 Is
Is——磁化电流 磁化电流 js——沿轴线单位长度上的磁 沿轴线单位长度上的磁 化电流(磁化面电流密度) 化电流(磁化面电流密度)
3、磁化强度和磁化电流密度之间的关系: 磁化强度和磁化电流密度之间的关系:
以长直螺线管中的圆柱形磁介质来说明它们的关系。 以长直螺线管中的圆柱形磁介质来说明它们的关系。
磁场中的磁介质

大学物理电磁学典型习题

大学物理电磁学典型习题

部分习题解答第一章 静止电荷的电场1、10 解:(一定要有必要的文字说明)在圆环上与角度θ相应的点的附近取一长度dl ,其上电量 dq =λdl =0λsinθdl ,该电荷在O 点产生的场强的大小为==204RdqdE πε2004sin R dl πεθλθπελsin 400R =θd dE 的方向与θ有关,图中与电荷 dq 对O 点的径矢方向相反。

其沿两坐标轴方向的分量分别为 θθθπελθd RdE dE x cos sin 4cos 00-=-=θθπελθd RdE dE y 200sin 4sin -=-=整个圆环上电荷在圆心处产生的场强的两个分量分别为==⎰x x dE E R004πελ-⎰=πθθθ200cos sin d==⎰Y y dE E R004πελ-⎰-=πελθθ200024sin Rd 所以圆心处场强为 E = E y j = R004ελ-j 1、11 解:先将带电系统看成一个完整的均匀带电圆环计算场强,然后扣除空隙处电荷产生的场强;空隙的宽度与圆半径相比很小,可以把空隙处的电荷看成点电荷。

空隙宽度m d 2102-⨯=,圆半径m r 5.0=,塑料杆长m d r l 12.32=-=π 杆上线电荷密度m C lq/1019-⨯==λ 一个均匀带电圆环,由于电荷分布关于圆心对称,环上对称的二电荷元在圆心处产生的场强互相抵消,因而整个圆环在圆心处的场强E 1= 0 空隙处点电荷设为q /,则q / =d λ,他在圆心处产生的场强m V rdr q E /72.0442020/2===πελπε 方向由空隙指向圆心。

空隙处的电荷实际上不存在,因此圆心处场强等于均匀带电圆环在该点产生的场强与空隙处电荷在该点产生的场强之差,故m V E E E /72.021-=-= 负号表示场强方向从圆心指向空隙。

1、12 解:设想半圆形线CAD 与半圆形线ABC 构成一个圆形如图,且圆上线电荷密度均为λ。

大学物理作业答案 (9)

大学物理作业答案 (9)

磁感应强度9-1 如图9-1所示,一条无穷长载流20 A 的直导线在P 点被折成1200的钝角,设d =2cm ,求P 点的磁感应强度。

解:P 点在OA 延长线上,所以OA 上的电流在P 的磁感应强度为零。

作OB 的垂线PQ ,︒=∠30OPQ ,OB 上电流在P 点的磁感应强度大小0021(sin sin )(sin sin30)4cos3024I I B d PQμμπββππ=-=+︒︒247m Wb/1073.1)211(2302.0420104--⨯=+⨯⨯⨯⨯=ππ,方向垂直于纸面向外。

9-2半径为R 的圆弧形导线与一直导线组成回路,回路中通有电流I ,如图9-2所示,求弧心O 点的磁感应强度(图中 ϕ 为已知量)。

解: 圆环电流在圆心处的磁场 RIB 20μ=∴圆弧ABC 在O 处的磁场 )22(201πϕπμ-=R I B 方向垂直纸面向里 又直线电流的磁场 021(sin sin )4IB aμθθπ=-,∴直线AB 在O 处的磁场 0002[sin sin()]2sin 4222224cos2I I I tg B a R R μμμϕϕϕϕϕπππ=--=⋅= 方向垂直纸面向里弧心O 处的磁场 012(22)42I B tg B B R μϕπϕπ=+=-+ 9-3 两根长直导线沿半径方向引到铁环上A 、B 两点,并与很远的电源相连。

如图9-3所示,求环中心的磁感应强度。

解:设铁环被A 、B 两点分成两圆弧的弧长分别为l 1、l 2,电阻分别为R 1、R 2,电流分别为I 1、I 2。

由图知 R 1与R 2并联,∴l l R R I I 121221== 即 l I l I 2211=∴I 1在O 点的磁感应强度Rl I R lR I B 21101101422πμπμ=⋅=方向垂直于纸面向外 ∴I 2在O 点的磁感应强度Rl I R l RI B 22202202422πμπμ=⋅=方向垂直于纸面向内图9-1即 B 1、B 2大小相等,方向相反。

大学物理恒定磁场中的磁介质解读

大学物理恒定磁场中的磁介质解读
B
Br
Hc
b
f o Hc
a
c e
H
Br
d
铁磁质中μ 随H 的变化曲线
磁滞回线
二、铁磁质的分类 铁 磁 质 矩磁材料 1)软磁材料 —— 磁滞回线窄、矫顽力小的材料。 软磁材料 硬磁材料
如电工纯铁、硅钢片,铁氧体等。广泛应用于变压器,互 感器,接触器,继电器等的铁心。
2)硬磁材料 —— 磁滞回线宽、矫顽力大的材料。
第十四章 恒定磁场中的磁介质
本章的主要内容
1、磁介质磁化及其微观本质。
2、磁场强度 H及磁介质中的安培环路定理。
3、铁磁质的主要特性及其应用。
§14.1 磁介质的磁化
一、分子电流 磁化强度 1、磁介质: 在磁场的作用下性质发生变化并影响原磁场分布 的物质。 轨道磁矩 磁效应 分子 电子 等效圆电流 总和 自旋磁矩
O
R
r
§14.3 铁磁质
一、铁磁质的磁化规律 铁磁质是磁化性能很强,是性能特异,用途广泛的磁介质。 主要有∶铁、钴、镍等金属和它们的某些化合物。 铁磁质的磁化规律可用实验方法研究。
如图将铁磁质做成环状,外部绕以线圈,通入电流, 铁磁质被磁化,副线圈接冲击电流计,可测环中的磁感应 强度。
磁场强度为: H
m 0 r 1
m 1
m , r 不是常数,
用于制造永磁铁、磁电式仪表,电声换能元件,永磁电机, 指南针等。
3)矩磁材料 —— 剩磁大的软磁材料。 可用作记忆元件,控制元件,开关元件。
三、磁畴 近代科学实验证明,铁磁质的磁性主要来源于电子自旋磁 矩。在无外磁场的时,铁磁质中电子自旋磁矩可以在小范围内 “自发地”排列起来,形成一个个小的“自发磁化区” — 磁 畴。 自发磁化的原因是由于 相邻原子中电子之间存在 着一种交换作用(一种量 子效应),使电子的磁矩 平行排列起来而达到自发 磁化的饱和状态 当存在外磁场时, 在外场的作用下磁畴的 取向与外磁场一致,显 现一定的磁性。

大学物理第九章磁场

大学物理第九章磁场

第九章磁场Stationary Magnetic Field磁铁和电流周围存在着磁场,磁现象的本质就是电荷的运动, 磁场的基本特性是对位于其中的运动电荷有力的作用.1、磁感应强度的定义;2、毕奥-萨伐尔定律,安培环路定理;3、几种电流产生的磁感应强度的计算;4、磁场对运动电荷、载流导线、载流线圈的作用;5、磁场和磁介质之间的相互作用.第一节磁场磁感应强度磁现象永磁体——磁铁的性质S N(1)具有磁性(magnetism),能吸引铁、钴、镍等物质;(2)永磁体具有磁极(magnetic pole),磁北极和磁南极;(3)磁极之间存在相互作用,同性相斥,异性相吸;(4)磁极不能单独存在.奥斯特实验(1819年)NS I在载流导线附近的小磁针会发生偏转Hans ChristianOersted,1777~1851年丹麦物理学家1820年安培的发现SN F I 放在磁体附近的载流导线或线圈会受到力的作用而发生运动.安培分子电流假说(1822年)一切磁现象的根源是电流!磁性物质的分子中存在着“分子电流”,磁性取定于物质中分子电流的磁效应之和.一、磁场(Magnetic Field)电流~~~磁铁、电流~~~电流运动电荷~~~运动电荷、运动电荷~~~磁铁通过一种特殊物质的形式——磁场来传递的.磁铁周围存在磁场,运动电荷和载流导线周围也存在磁场.磁场对其中的运动电荷和载流导线有力的作用;磁力也能做功,具有能量.电流与电流之间的相互作用I I ++--II ++--磁场对运动电荷的作用S +电子束N运动电荷磁场运动电荷从运动的点电荷在磁场中所受的磁力来定义磁感应强度的大小和方向!B 方向:小磁针在磁场中,其磁北极N 的指向B 二、磁感应强度(Magnetic Induction)磁感应强度:描述磁场性质的物理量B点电荷在磁场中运动的实验+B v F max c 、电荷q 沿磁场方向运动时,F = 0;b 、F 大小随v 变化;d 、电荷q 沿垂直磁场方向运动时,F max .(2)在垂直磁场方向改变速率v ,改变点电荷电量q在磁场中同一点,F max /qv 为一恒量,而在不同的点上,F max /qv 的量值不同.(1)点电荷q 以不同运动v a 、受磁力,;F v磁感应强度的大小:qv F B m ax =单位:T 特斯拉(Tesla)G 高斯(Gauss)T10G 14-=磁感应强度的方向:max F vB a.由小磁针的N 极指向定,b.由到的右手螺旋法则定max F v三、磁感应线用磁感应线来形象地描写磁感应强度这一矢量场在空间的分布:曲线上某点处的切向表示该点的方向;曲线在某处的疏密表示该点的大小.B B 磁感应线的特点★任一条磁感应线是闭合的,或两端伸向无穷远;★磁感应线与载流回路互相套联;★任两条磁感应线不能相交.IB四、磁通量(Magnetic Flux)通过磁场中某给定面的磁感应线的总数.θcos d d m S B Φ=⎰⎰=⋅=S S m S B S B Φd cos d θ 单位:Wb ,1Wb=1T ﹒m 2磁通量:穿过磁场中任意闭合曲面的磁通量为零.磁场是无源场:其磁感应线闭合成环,无头无尾;同时也表示不存在磁单极,无单个的N 或S 极.The total magnetic flux through a closed surface is always zero.d 0S B S ⋅=⎰ 五、磁场的高斯定理(Gauss’s law for magnetism)寻找磁单极子1975 年:美国加州大学,休斯敦大学联合小组报告,用装有宇宙射线探测器气球在40 km 高空记录到电离性特强离子踪迹,认为是磁单极. 为一次虚报.1982年,美国斯坦福大学报告,用d = 5 cm 的超导线圈放入D =20 cm 超导铅筒. 由于迈斯纳效应屏蔽外磁场干扰,只有磁单极进入会引起磁通变化,运行151天,记录到一次磁通突变, 改变量与狄拉克理论相符. 但未能重复,为一悬案.人类对磁单极的探寻从未停止,一旦发现磁单极,将改写电磁理论.1820年实验得到:长直载流导线周围的磁感应强度与距离成反比与电流强度成正比. r I B Laplace 对此结果作了分析整理,得出了电流元产生的磁场的磁感应强度表达式.一、毕奥—萨伐尔定律(Law of Biot and Savart)I B r 第二节毕奥—萨伐尔定律d I l IBd l r d I l02d sin d 4I l B r μθπ=002d d 4I l r B r μπ⨯= μo 为真空中的磁导率:μo = 4 π⨯10-7 T·m·A -1. 整个载流导线在P 点产生的磁感应强度为:002d d 4L LI l r B B r μπ⨯==⎰⎰ P d I l θr d Bnqvs I =0024qv r B r μπ⨯= ++++++I S v d I l 导体中带电粒子的定向运动形成电流I ,并由此可分析得到运动电荷产生的磁场.+v r B ×-v r B·二、运动电荷的磁场圆电流轴线上的磁感应强度02d sin d 4I l B r μθπ=02d sin 90cos d cos 4x I l B B B r μααπ︒===⎰⎰22xR r +=22cos R R x α=+x x P R αr d B d I ld B x d B y 毕奥—萨伐尔定律的应用d I l r ⊥ 注意到,通过对称性分析,可知B y = 0,因此:()()2200323222220d 42RR l IR B R x R x πμμπ==++⎰方向:沿轴线与电流成右手螺旋关系.()2032222IRB R x μ=+定义圆电流磁矩:mp IS ISn == 在圆心处x = 0,B 大小:R IB 20μ=IS m p ()2322m 02x R P B += πμ圆电流轴线上磁场的另一种表达式:例:亥姆霍兹圈:两个完全相同的N 匝共轴密绕短线圈,其中心间距与半径R 相等,通有同向平行等大电流I . 求轴线上O 1、O 2之间的磁场.x I P1o 匝N R ⋅⋅R R 匝N o 2o I x o1o 2B 1B 2o 实验室用近似均匀磁场解20322222P NIR B R R x μ=+⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦20322222NIRR R x μ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦00.72O NIB Rμ=0120.68O O NIB B Rμ==θ2Oθ1Pa d xx载流长直导线的磁感应强度02d sin d 4I x B rμθπ=tan x a θ=-2d d sin a x θθ=θsin a r =2022sin d sin d 4sin I aB B aμθθθπθ==⎰⎰Iθrd B 210sin d 4I B a θθμθθπ=⎰()012cos cos 4I a μθθπ=-方向:对图中所在的P 点,磁感应强度垂直纸面向外.()012cos cos 4I B aμθθπ=-对无限长载流导线θ1= 0 , θ2= π:02I B aμπ=半无限长载流导线θ1= π/2 , θ2 = π:04I B aμπ=若P 点在导线延长线上:B =导线密绕,且长度远大于直径:=外B 实验可知:内部的磁感应强度只有平行于轴线的分量;并且平行于轴的任一直线上各点大小相等.︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BI单位长度上的匝数n载流长直螺线管内部的磁场︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BInIB 0μ=内部为均匀磁场,在长直螺线管的两端点处的磁场为中间的一半:012S B nIμ=0nIμ012nI μ通过对圆电流的磁感应强度的叠加积分,可以求得螺线管中间的磁感应强度大小为:方向由右手螺旋法则确定.恒定磁场是无源场,静电场是有源场;静电场是保守场,是无旋场;对静电场和恒定磁场作类比分析:1d SE S q ε⋅=∑⎰d 0LE l ⋅=⎰d 0SB S ⋅=⎰d ?LB l ⋅=⎰表达了恒定磁场的什么性质?第三节安培环路定理安培环路定理:0d LB l Iμ⋅=∑⎰L 磁场中任一闭合曲线—具有一定绕向的环路是环路上各点的磁感应强度,为空间所有电流产生,包括穿过L 的和不穿过的电流.:B:穿过以L 为边界的任意曲面的电流的代数和.I ∑------对L 包围的电流求代数和,并且规定:与L 绕向成右旋关系的电流I i >0,否则I i <0.以长直电流的磁场为例验证1) 路径选在垂直于长直载流导线的平面内,以导线与平面交点O 为圆心,半径为r 的圆周路径L ,其指向与电流成右手螺旋关系.BIr oL00200cos 0d d =d 22rL L I I B l l l r rIπμμππμ⋅=⋅=⎰⎰⎰BIr oL若电流反向:02000d d 2 =d 2cos L L rI I B l l r I l rππμπμμπ⋅=⋅-=-⎰⎰⎰2) 在垂直于导线平面内围绕电流的任意闭合路径Bθϕd ld rLI 02020000d 2 =d 2 d cos 2d L L I B l r I r r I I l ππμπμϕπμϕπμθ⋅=⋅==⎰⎰⎰⎰同理,在电流反向时------积分结果取负.3) 闭合路径不包围电流ϕ1L 2L I()()[]121200d d d =d d 2 02LL L L L B l B l B l I Iμϕϕπμϕϕπ⋅=⋅+⋅+=+-=⎰⎰⎰⎰⎰4) 空间存在多个长直电流时()12110in d d d d =L LLLiLB l B B l B l B l I μ⋅=++⋅=⋅+⋅+⎰⎰⎰⎰∑安培环路定理揭示磁场是非保守场,是涡旋场.l B L d ⋅⎰穿过的电流:对和均有贡献BL 不穿过的电流:对上各点有贡献;对无贡献BL l B Ld ⋅⎰L 0d LB l Iμ⋅=∑⎰可证对任意的稳恒电流和任意形式的闭合环路均成立.注意:练习:如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中那一个是正确的?⊗∙I 21L 2L 3L 4L I10 ( d )2A L B l I μ⋅=⎰ 20(B) d L B l I μ⋅=⎰30 d (C)L B l I μ⋅=-⎰40(D) d L B l I μ⋅=-⎰Br RB RrP IQ 长直圆柱形载流导线内外的磁场圆柱截面半径为R ,电流I 沿轴流动.过P 点(或Q 点)取半径为r 的磁感应线为积分回路,求出B 矢量的环流:0d 2LB l B r I πμ⋅=⋅=∑⎰r ≥R012I I I B r r μπ==∝∑,r< R20222I r IrI B r R Rπμππ==∝∑,方向沿圆周与电流成右手关系!or LL BoRrr1∝B r∝思考:无限长均匀载流直圆筒,B ~r 曲线?BoRr管外磁场为零.无限长直载流螺线管内磁场︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BI单位长度上的匝数n解密绕长螺线管,已知I , n ,计算管内的磁感应强度.dc ab 作矩形安培环路abcd 如图,绕行方向为逆时针.00d d 000=b c d a LabcdB l B l B dl B dl B dlBcd I ncdIμμ⋅=⋅+⋅+⋅+⋅=+++=⎰⎰⎰⎰⎰∑0B nIμ=无限长螺线管磁场为均匀.求螺线环内的磁感应强度I l B L∑=⋅⎰0d μ 02B r NIπμ⋅=rNI B πμ20=2N n rπ=nIB 0μ=Or 1r 2Pr 为平均半径, 考虑到对称性,环内磁场的磁感应线都是同心圆,选择通过管内某点P 的磁感应线L 作为积分环路:方向由电流方向通过右手法则判断.第四节磁场对运动电荷的作用一. 洛仑兹力磁场对运动电荷的作用f qv B=⨯ 大小:θsin qvB F =特点:不改变大小,只改变方向,不对做功.vq v vBf运动正电荷受力方向垂直于和构成的平面,成右手螺旋.v B1、运动方向与磁场方向平行sin F qvB θ=θ= 0 , F = 0带电粒子在均匀磁场中的运动匀速直线运动θBvq+f⊗θBvq-fB+v⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯B 2、运动方向与磁场方向垂直RvmqvB 2=qBmv R =v B f qvB⊥⇒=R22R m T v qBππ==匀速圆周运动周期f+v半径托克马克装置3、沿任意方向方向运动匀速圆周运动与匀速直线运动的合成——轨迹为螺旋线qBmv R θsin =qBm T π2=螺距//2cos m h v T v qBπθ==h +B ⊥v //v θv例有一均匀磁场,B = 1.5 T ,水平方向由南向北. 有一5.0 兆电子伏特的质子沿竖直向下的方向通过磁场,求作用在质子上的力?(m = 1.67⨯10-27 kg )) J (100.8) eV (100.5211362k -⨯=⨯==mv E ) s m (101.31067.1100.822172713k ---⋅⨯=⨯⨯⨯==m E v ︒⨯⨯⨯⨯⨯==-90sin 5.1101.3106.1sin 719θqvB F )N (104.712-⨯=解方向向东F q v 下B 北二、质谱仪(mass spectrograph)R +-⋅⋅⋅P ⋅⋅⋅⋅⋅⋅⋅⋅⋅N ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅B N :粒子源,P :速度选择器 qE qvB v E B ''=⇒=质谱分析:qB mv R x 22==E x B qB m 2'=谱线位置:同位素质量;谱线黑度:相对含量.B’三、霍尔效应(Hall effect)现象:通电流I ,磁场垂直于I ,在既垂直于I ,又垂直于的方向出现电势差∆U. B B m e F qv B F qE =⨯= H I IB U Bb R nqbd d∆==霍尔电势差:解释:载流子q 以漂移,受到磁场力,正负电荷上下两侧积累,形成电场,受力平衡时,有稳定的霍尔电场.v x y zB I b d P 型半导体v q +++++++-+------e F m F I nqvbd =霍尔系数R H 与载流子浓度n 成反比. 在金属中,由于载流子浓度很大,因此霍尔系数很小,相应地霍尔效应也很弱; 而在半导体中,载流子浓度较小,因此霍尔效应也较明显. 霍尔效应是半导体研究的重要手段. 问题:对n 型半导体,霍尔电势差的方向如何?应用:测载流子浓度测载流子电性—半导体类型B 测磁场(霍耳元件)H 1R nq霍尔系数(Hall coefficient):一、安培定律(Ampère Law )磁场对电流元的作用Bl I F ⨯=d d 载流导线所受磁场力d d L L F F I l B ==⨯⎰⎰ 第五节磁场对电流的作用磁矩L I B d I l Fm F qv B =⨯ d F qv BdN qv BnSdl =⨯=⨯载流直导线在均匀磁场中所受的力d L F I l B =⨯⎰ sin d L F IB l θ=⎰θsin ILB F =sin d L IB l θ=⎰安培力的方向由右手螺旋法则可知为垂直纸面向里×IBθFB θd I lLA B C D I 1I 21d I l 2d I l 1B 2B 1d F 2d F 平行长直载流导线间的相互作用力距a 的两无限长直导线,I 1、I 2,导线CD 上的电流元受力:2222d d sin F B I l θ=012 ,22I B a μπθπ==CD 单位长度受力:2012121d d d 2d F I I F l a l μπ==安培:真空中相距为1m 的无限长直细导线,载有相等的电流,若每米导线上受力正好为2⨯10-7N ,则导线内电流定义为1A.例:如图,均匀磁场垂直纸面向外,半径为R 的半圆导线通有电流I ,求作用在导线上的安培力.解R y x Bd θθd I l d F d x F d y F d F =IB d l =IBR d θd d F I l B =⨯ 0d (d )sin 2y y L F F F IBR IBR πθθ====⎰⎰方向为y 轴正向.推广:起点终点相同的载流直导线所受的力?对称性-----各电流元受力水平分量之和为零。

第十二章 电磁学 磁场中的磁介质 ma

第十二章 电磁学 磁场中的磁介质 ma
(2) 在各向同性介质中,M 和H 成线性关系 m — 介质的磁化率 M mH (3) 在各向同性介质中,B 和H 成线性关系
B 0 H 0 M (1 m ) 0 H 0 r H
H
大学物理 电磁学
例1 有两个半径分别为 R 和 r 的“无限 长”同轴圆筒形导体,在它们之间充以相对磁 导率为 r 的磁介质.当两圆筒 通有相反方向的电流 I 时, I r 试 求(1)磁介质中任意点 d P 的磁感应强度的大小; (2)圆柱体外面一点Q I R 的磁感强度.
等效于产生了一个与外磁场B0方向相反的附加磁矩Pm
大学物理 电磁学
2 若外磁场B0方向与电子轨道磁矩方向相反: v2 F Fq m B0 r v 2 v v v F Fq f m f r e e Pm L (r P) P 2m 2 m m Pm Pm 增大 等效于产生了一个与外磁场B0方向相反的附加磁矩 Pm
四、铁 磁 质 (1)铁磁质中的磁畴 在铁磁质中,相邻原子间存在着一种很强的“交换耦合” 作用,使得在无外磁场的情况下,电子的自旋磁矩能够 在一些微小区域内自发地整齐排列起来,形成一个个自 发磁化的小区域,这些自发磁化的小区域就称为磁畴。
B
无外磁场 有外磁场
大学物理 电磁学
(2)铁磁质的磁化规律
大学物理 电磁学
(1)顺磁质的磁化( Pm 0 )
2. 有外加磁场时——磁介质会被磁化: 顺磁质分子的磁矩在外磁场作用下取向趋于一致,其方 向沿外磁场方向,使得磁介质内部沿外磁场方向产生一 附加磁场 B,即在外加磁场中,顺磁质内部的总磁场为:
B B0 B
B0
B
即:外磁场 B0使顺磁质的分子磁矩 转动,在磁介质内部产生一附加磁 场 B ,使顺磁质内部的磁场 B 增 强: B B B

《大学物理》第13单元课后答案 高等教育出版社

《大学物理》第13单元课后答案 高等教育出版社






在图面内与界面 P 成某一角度.那么粒子在从磁场中射出前是做半径
8. 一个通有电流 I 的导体,厚度为 D, 横截面积为 S, 放置在磁感应强度为 B 的匀强磁场中,磁场方向 垂直于导体的侧表面,如图所示,现测得导体上下面电势差为 V, 则此导体的霍尔系数等于:
(A)
VDS IB
p X X
n=500, 形成有铁芯的螺绕环.当线圈中电流 I 4 A 时,试求: (1) 环内 B 和 H 的大小.[1T, 2000H]
(2) 束缚面电流产生的附加磁感应强度.[0.9975T] 解:根据介质中的安培环路定理:

L
H dl I , H 2r NI
磁场强度: H
H 2r NI
w.
B
磁场强度: H
0 NI -5 , B 8 10 T 2r
kh

L
NI , H 200 A / m ,磁感应强度: 2r
题 12图
da
-5
12. 螺绕环平均周长 l =10cm, 环上线圈 N=200 匝, 线圈中电流 I=100mA,试求:

m
NI , H 2000 A / m 2r
成绩登记号:
学号:
姓名:
单元十三
单元十三: (二)习题课
一、填空、选择: 1. 将同样的n根线焊成立方体,并在其对顶角A, B上接上电源,则立方体框架中的电流在其中心处所产 生的磁感应强度等于________0_________.
B I
o. A
S1 a a
( A) 7.96 10 2
(C ) 199 . 10 2
( D) 63.3 10 2

大学物理练习题 磁场中的介质

大学物理练习题  磁场中的介质

练习十四 磁场中的介质一、选择题1. 用细导线均匀密绕成长为l 、半径为a (l >>a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质。

若线圈中载有恒定电流I ,则管中任意一点 (A ) 磁场强度大小为H=NI ,磁感应强度大小为B = μ0μr NI 。

(B ) 磁场强度大小为H=μ0NI /l ,磁感应强度大小为 B = μ0μr NI /l 。

(C ) 磁场强度大小为H=NI /l ,磁感应强度大小为 B = μr NI /l 。

(D ) 磁场强度大小为H=NI /l ,磁感应强度大小为 B = μ0μr NI /l 。

2. 图所示为某细螺绕环,它是由表面绝缘的导线在铁环上密绕而成,若每厘米绕10匝线圈. 当导线中的电流I = 2.0A 时,测得铁环内的磁感强度的大小B = 1.0T ,则可求得铁环的相对磁导率μr 为 (A ) 7.96×102。

(B )3.98×102。

(C ) 1.99×102。

(D ) 63.3。

3. 如图所示,一个磁导率为μ1的无限长均匀磁介质圆柱体,半径为R 1,其中均匀地通过电流I 。

在它外面还有一半径为R 2的无限长同轴圆柱面,其上通有与前者方向相反的电流I ,两者之间充满磁导率为μ2的均匀磁介质,则在0 < r <R 1的空间磁场强度的大小H 为 (A ) 0。

(B ) I /(2πr )。

(C ) I /(2πR 1)。

(D ) Ir /(2πR 12)。

4. 图,M 、P 、O 为软磁材料制成的棒,三者在同一平面内,当K 闭合后(A ) P 的左端出现N 极。

(B ) M 的左端出现N 极。

(C ) O 的右端出现N 极。

(D ) P 的右端出现N 极。

5. 一长直螺旋管内充满磁介质,若在螺旋管中沿轴挖去一半径为r 的长圆柱,此时空间中心O 1点的磁感应强度为B 1,磁场强度为H 1,如图(a )所示;另有一沿轴向均匀磁化的半径为r 的长直永磁棒,磁化强度为M ,磁棒中心O 2点的磁感应强度为B 2,磁场强度为H 2,如图(b )所示.若永磁棒的M(a )(b )v与螺旋管内磁介质的磁化强度相等,则O 1、O 2处磁场之间的关系满足: (A ) B 1 ≠ B 2;H 1 = H 2。

大学物理-磁场中的磁介质_图文_图文

大学物理-磁场中的磁介质_图文_图文

试 求(1)磁介质中任意点
I
P 的磁感应强度的大小;
(2)圆柱体外面一点Q
I
的磁感强度.

I I
同理可求
三 铁磁质
1 磁畴
有 外 磁 场
无外磁场
2 磁化曲线 磁滞回线
B/10-4T
15
ห้องสมุดไป่ตู้10
B=f (H)
5
θ
0
400
600 800 1 000 H/(Am-1)
顺磁质的B-H曲线
当外磁场由 逐渐减小时,这种 B 的变化落后于H的变 化的现象,叫做磁滞 现象 ,简称磁滞.
由于磁滞, 时,磁感强度 , 叫做剩余磁感强 度(剩磁).
O
磁滞回线 矫顽力
3 铁磁性材料 不同铁磁性物质的磁滞回线形状相差很大.
O
O
O
软磁材料
硬磁材料 矩磁铁氧体材料
4 磁屏蔽
把磁导率不 同的两种磁介质 放到磁场中,在 它们的交界面上 磁场要发生突变 ,引起了磁感应 线的折射.
磁屏蔽示意图
大学物理-磁场中的磁介质_图文_图文.ppt
2 顺磁质和抗磁质的磁化 分子圆电流和磁矩
顺磁质的磁化
无外磁场
顺磁质内磁场
有外磁场
无外磁场时抗磁质分子磁矩为零
抗磁质的磁化
同向时
抗磁质内磁场
反向时
3 磁化强度
分子磁矩 的矢量和
体积元
单位:
意义 磁介质中单位体积内分子 的合磁矩.
二 磁介质中的安培环路定理
分子磁矩
C
(单位体积分子磁矩数

传导电流 分布电流
B
C
A
D
磁场强度

大学物理习题答案磁场中的磁介质

大学物理习题答案磁场中的磁介质

大学物理练习题十一、选择题1. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式哪一个是正确的?(A )⎰=⋅12L I l d H ϖϖ正确应为:―2I (B )⎰=⋅2L I l d H ϖϖ正确应为:―I (C )⎰-=⋅3L Il d H ϖϖ 正确应为: +I(D )⎰-=⋅4L Il d H ϖϖ [ D ]2. 磁介质有三种,用相对磁导率r μ表征它们各自的特性时, (A )顺磁质>r μ0,抗磁质<r μ0,铁磁质1>>r μ。

(B )顺磁质>r μ1,抗磁质1=r μ,铁磁质1>>r μ。

(C )顺磁质>rμ1,抗磁质<r μ1,铁磁质1>>r μ。

(D )顺磁质>r μ0,抗磁质<r μ0,铁磁质>r μ1。

[ C ]3. 用细导线均匀密绕成的长为l 、半径为a (l >>a)、总匝数为N 的螺线管中,通以稳恒电流I ,当管内充满相对磁导率为r μ的均匀介质后,管中任意一点的[ D ](A) 磁感应强度大小为NI B r μμ0=。

(B) 磁感应强度大小为l NI B r /μ=。

(C) 磁场强度大小为l NI H /0μ=。

(D) 磁场强度大小为l NI H/=。

解:在管内磁介质中⎰⎰===⋅LNI Hl Hd d H λλϖϖ4. 关于稳恒磁场的磁场强度H ϖ的下列几种说法哪个是正确的?(A )H ϖ仅与传导电流有关。

(B )若闭合曲线内没有包围传导电流,则曲线上各点的H ϖ必为零。

(C )若闭合曲线上各点H ϖ均为零,则该曲线所包围传导电流的代数和为零。

(D )以闭合曲线L 为边缘的任意曲面的H ϖ通量均相等。

[ C ]解:(A )B ϖ与传导电流有关,而M ϖ与磁化电流有关。

因此,由M /B H 0ϖϖϖ-μ=可知,H ϖ不只是跟传导电流有关。

(B )只能说明环路积分为零。

磁介质1

磁介质1
D 0E P
S
0
L H dl I
L

D dS
S

V
e dV
例1 一环形螺线管,管内充满磁导率为μ,相对磁导 率为μr的顺磁质。环的横截面半径远小于环的半径。 单位长度上的导线匝数为n。
求:环内的磁场强度和磁感应强度
解: H dl H 2r NI
抗 磁 质
pm 0
, pm 0
顺 磁 质
pm 0
,
pm 0
2、顺磁质及其磁化
分子的固有磁矩不为零 pm 0
分 子 磁 矩
无外磁场作用时,由 于分子的热运动,分 子磁矩取向各不相同, 整个介质不显磁性。

pm 0
有外磁场时,分子磁矩要 受到一个力矩的作用,使分子 磁矩转向外磁场的方向。
L
H
NI 2r
nI
r
O
B H 0 r H
例2 一无限长载流圆柱体,通有电流I ,设电流 I 均匀分布在整个横截面上。柱体的磁导率为μ,柱 外为真空。
求:柱内外各区域的磁场强度和磁感应强度。
解: r R
I R

L
H dl H 2r I
r
2 2
o
H
2.硬磁材料:
特点:剩磁和矫顽力比较大,磁滞回 线所围的面积大,磁滞损耗大,磁滞 特性非常显著 例子:钨钢,碳钢,铝镍钴合金等。 应用:适合作永久磁铁,磁电式电表 中的永磁铁,耳机中的永久磁铁,永 磁扬声器。
B
o
H
B
3、矩磁材料:
铁氧体,是由三氧化二铁和其它二价 的金属氧化物的粉末混合烧结而成, 常称为磁性瓷。如锰镁铁氧体、锂锰 铁氧体等 o H

西北工业大学《大学物理上》课件-第十一章磁场中的磁介质

西北工业大学《大学物理上》课件-第十一章磁场中的磁介质
·26 ·
Chapter 11. 磁场中的磁介质 §11. 3 铁磁质及其磁化特性
例 试判断下列起始磁化曲线所对应的磁介质类型。
a :铁磁质; b :顺磁质 ( μ >μ0 ); c :抗磁质 ( μ <μ0 );
·27 ·
Chapter 11. 磁场中的磁介质 §11. 3 铁磁质及其磁化特性
一、物质的分子磁矩
1. 电子的轨道磁矩: 等效成圆电流:
§11. 1 磁介质 磁化强度
2. 电子自旋磁矩: 3. 核自旋磁矩: 分子磁矩 =电子轨道磁矩+电子自旋磁矩+核自旋磁矩
·3 ·
Chapter 11. 磁场中的磁介质
二、顺磁质与抗磁质
§11. 1 磁介质 磁化强度
1. 顺磁质: 分子磁矩≠0 (亦称分子的固有磁矩)
·12 ·
Chapter 11. 磁场中的磁介质
§11. 1 磁介质 磁化强度
1. 磁介质: 顺磁质:介质内B > B0 ; 抗磁质:介质内B < B0 ;
2. 磁化强度:
3. M与磁化电流的关系:
( The end )·13 ·
Chapter 11. 磁场中的磁介质
§11. 2 磁介质中的安培环路定理
§11. 1 磁介质 磁化强度
js : 面磁化电流的线密度。 一般地有如下关系:
: 磁介质表面外法线单位 矢量。
·11 ·
Chapter 11. 磁场中的磁介质
§11. 1 磁介质 磁化强度
试判断 : 顺磁质中的磁化电流方向。
分析: 顺磁质
与 同向。
即:磁化电流 内侧:向上 外侧:向下
( 俯视图 )
抗磁质
氢 铜 铋 汞×10 - 5 -3.2×10 - 5

大学物理课件-第12章磁场中的磁介质及磁场总结

大学物理课件-第12章磁场中的磁介质及磁场总结

单位:牛顿·米
5.电荷垂直于磁场作圆周运动的轨道半径
R
mv qB
6. 周期
T
2m
qB
7.螺距h :电荷以任意角度进入磁场 作螺旋线运动
h 2mv cos
qB
8.霍尔电压
VH
RH
IB d
霍尔系数
RH
1 nq
1.毕奥--萨伐尔定律
电流元的磁场
dB
0 4
I
dl r r3
运动电荷的磁场
B
0 4
qv r r3
(A)相同 (B)不相同 (C)不确定
答案:[ A ]
B 0nI
练习2 通有电流 I 的单匝环型线圈,将其
弯成 N = 2 的两匝环型线圈,导线长度 和电流不变,问:线圈中心 o 点的磁感 应强度 B 和磁矩 pm是原来的多少倍?
(A)4倍,1/4倍
(B)4倍,1/2倍
(C)2倍,1/4倍 (D)2倍,1/2倍
• 能产生非常强的附加磁场B´,甚至是外磁场
的千百倍,而且与外场同方向。 • 磁滞现象,B 的变化落后于H 的变化。
• B 和H 呈非线性关系, 不是一个恒量。 • 高 值。
铁磁质的分类:
磁滞回线细而窄,矫顽 力小。
磁滞损耗小,容易磁 化,容易退磁,适用 于交变磁场。如制造 电机,变压器等的铁 芯。
第12章 磁场中的磁介质 12.1 磁介质对磁场的影响 12.2 原子的磁矩 12.3 磁介质的磁化 12.4 H的环路定理 12.5 铁磁质
12.1-12.3 磁介质及其分类 一、磁介质
物质的磁性
当一块介质放在外磁场中将会与磁场 发生相互作用,产生一种所谓的“磁化” 现象,介质中出现附加磁场。我们把这种 在磁场作用下磁性发生变化的介质称为 “磁介质”。

介质中的磁场

介质中的磁场
磁介质有三种:顺磁质(paramagetic); 抗磁质(diamagnetic); 铁磁质(ferromagnetic)。
磁介质的应用主要有:发电机、电动机、变压 器中的铁芯、计算机中的记忆元件等。
本章主要研究磁化的宏观规律,重点是 磁场强度(magnetic intensity)和介质中的环 路定理,磁化的微观机理,铁磁质的磁化 规律。
r, B
B~H S
r ~ H
O
Hc
H
铁磁质中 B 和 r 随 H 的变化曲线
铁磁质的主要特点可归纳为:(1) 相对磁导率高(几 百到一兆);(2) 磁化曲线的非线性;(3) 磁滞。
2.铁磁质的应用
(1)利用铁磁质的非线性可制作铁磁功率放大器,铁 磁稳压器,铁磁倍频器,铁磁无触点开关等。
(2) 制造永磁铁──磁滞回线宽、剩磁大、矫顽力 大的材料—硬磁性材料。
所以 I M dl
L
对比 q P dS
s
§9-2 磁介质中的磁场
( Magnetic Field in Medium)
一、磁场强度 H, 磁介质中的安培环路定理
有磁介质时,I
I0
I
(
I0
是传导电流,I 是磁化电流)
B dl 0I 0(I0 I) 0(I0 M dl )
LL
dl SB
A
C
dl (a)
(b) n
前二种 (A)(B) 对 I 无贡献,只有 (C) 对 I 有贡献。
以 S在0为边底界面线,L作上斜任圆取柱一体线,元其体d积l,为以:ddV l为S轴0 线dl。,
凡中心在圆柱体内的分子电流都被

nS0
dl
,贡献为
dI ImnS0

大学物理磁介质(老师课件)

大学物理磁介质(老师课件)

2)硬磁材料
HC — 104~106 A/m
特点:剩余磁感应强度大 矫顽力大 不容易磁化 也不容易退磁 剩磁性强 磁滞回线宽 磁滞损耗大 应用: 适合制作永久磁铁 永磁喇叭 用于拾音器、扩音 器、麦克风、收录 音机等 B
H
3)矩磁材料: 特点:磁滞回线呈矩形状
应用:作计算机中的记忆元件 磁化时极 性的反转构成了“0”与“1”
二、铁磁质的磁化
三、铁磁性材料的分类
四、磁致伸缩
一、 铁磁质的宏观性质
1. r 1 可使原场大幅度增加 B r B 0 0 r H
2. r与磁化历史(H)有关,不是常数。 B—H和r—H曲线是非线性关系 3. 磁滞现象----B的变化落后 B (B T) 于H 的变化 4. 居里温度----铁磁性 消失的临界温度
B H
四、磁致伸缩 B变 M 磁畴方向改变 晶格间距改变
铁磁体长度和体积改变— 磁致伸缩
长度相对改变约10-5量级 温下可达10 -1
某些材料在低
磁致伸缩有一定固有频率 当外磁场变 化频率和固有频率一致时 发生共振
可用于制作激振器、超声波发生器等
磁介质与电介质的比较
无磁荷 基本场量 B
4
取回路如图,设总匝数为N H dl H 2πr NI
L
O R1 r R2
NI nI H 2πr
细螺绕环
R1 R2 r
H nI B μ H μ nI
长直螺线管亦然
M ( μr 1) H ( μr 1)nI
j M 表
代入数据
M 7.9410 A/m
· 当T > Tc时,铁磁性消失, 铁磁质顺磁质

大学物理电磁学部分磁介质的磁化和介质中的安培环路定理省名师优质课赛课获奖课件市赛课一等奖课件

大学物理电磁学部分磁介质的磁化和介质中的安培环路定理省名师优质课赛课获奖课件市赛课一等奖课件

S
0
S
q0
1
0
P dS
S
S
( 0 E
P)
def
dS
S
q0
D 0E P
SD dS q0 S
16
• B, H , M 之间旳关系
M
def
BmHFra bibliotekH M
0
B 0 (1 m )H
r
(1
m
)
B 0r H H
r 称为相对磁导率
0r 磁导率
• P、D、E 之间旳关系:
P
def
0r H
H
B 0r
r 1 m相对磁导率。
0 r 为磁导率
D
H H
电介质中
0 r E
E
在各向同性介质中 B.H 关系 :B 0r H H
在真空 中 r 1, B0 0H
顺即磁介BB0质:Br
介质中旳磁感应强度是真空中旳r倍。
B 0 , r 1
抗磁介质: B B0,0 r 1
就要受到磁场旳力矩作用,
力矩旳方向力图使分子磁矩旳方
向沿外场转向。各分子磁矩都在一定
B0
程度上沿外磁场方向排列起来.
分子磁矩旳矢量和: m 0
从导体横截面看,导体内部分子电流两两反向,相
互抵消。导体边沿分子电流同向,未被抵消旳分子电流
沿着柱面流动 。 ⊙ B0 等效
分子电流可等 B0 效成磁介质表
( B
0 I 0
L M ) dl
M dl
L
I
L 0
L
• 定义H:磁B场 强 M度
0
12
B
( M ) dl I
L
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9 – 9(1)
磁场中的磁介质
第九章
恒定电流的磁场

磁介质的磁化
1 磁介质
' B B0 B
真空中的 磁感强度 介质磁化后的 附加磁感强度
磁介质中的 总磁感强度 顺磁质
抗磁质
铁磁质
B B0 B B0
B B0
(铝、氧、锰等)
弱磁质
(铜、铋、氢等)
(铁、钴、镍等) 强磁质
9 – 9(1)
磁场中的磁介质
分子圆电流和磁矩
m
第九章
恒定电流的磁场
I
ቤተ መጻሕፍቲ ባይዱB B0 B
'
2
Is
顺 磁 质 的 磁 化
无外磁场 有外磁场
B0
9 – 9(1)
磁场中的磁介质
第九章
恒定电流的磁场
无外磁场时抗磁质分子磁矩为零 m0 0
3 抗 磁 质 的 磁 化

q
m

B0
v F
m0
m0
B0
, B0
同向时
F m v 反向时 , B0
q
抗磁质内磁场
B B0 B
'
可参阅胡友秋等编电磁 学第249页,高教出版社
9 – 9(1)
磁场中的磁介质
第九章
'
恒定电流的磁场
顺磁质内磁场
B B0 B
B B0 B
'
抗磁质内磁场
4 磁化强度
m M V
分子磁矩 的矢量和 体积元
意义 磁介 质中单位体积内 分子的合磁矩.
1
单位(安/米)
Am
9 – 9(1)
磁场中的磁介质
第九章
恒定电流的磁场
相关文档
最新文档