常见常用的数量关系
常用的数量关系
【常用的数量关系】1、加数 + 加数=和;和 - 其中一个加数=另一个加数2、被减数 - 减数=差;被减数 - 差=减数;差 + 减数=被减数3、因数×因数=积;积÷其中一个因数=另一个因数4、被除数÷除数=商;被除数÷商=除数;商×除数=被除数5、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数6、一倍数×倍数=几倍数;几倍数÷一倍数=倍数;几倍数÷倍数=一倍数7、速度×时间=路程;路程÷速度=时间;路程÷时间=速度8、单价×数量=总价;总价÷单价=数量;总价÷数量=单价9、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;10、总数÷总份数=平均数11、相遇问题:相遇路程=速度和×相遇时间;相遇时间=相遇路程速度和;速度和=相遇路程÷相遇时间12、总产量=单产量×数量单产量=总产量÷数量13、图上距离:实际距离=比例尺实际距离×比例尺=图上距离图上距离÷比例尺=实际距离14、应纳税额 = 总收入×税率税率=应纳税额÷总收入总收入=应纳税额÷税率15、现价÷原价=折扣现价=原价×折扣原价=现价÷折扣16、影长:实际物体长度=影长比【图形计算公式】1、正方形周长=边长×4;面积=边长×边长;2、长方形周长=(长+宽)×2;面积=长×宽;3、长方体(1)表面积=(长×宽+长×高+宽×高)×2;(2)体积=长×宽×高;(3)棱长总和=(长+宽+高)×4;4、正方体(1)表面积==棱长×棱长×6;(2)体积=棱长×棱长×棱长;(3)棱长总和=棱长×12;5、三角形面积=底×高÷2 ;6、平行四边形面积=底×高;7、梯形面积=(上底+下底)×高÷2;8、圆(1)周长=πd=2πr (2)面积=πr 2 (3)r =C ÷π÷29、圆柱(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高=πr 2h 圆柱的高=V ÷底面积10、圆锥 体积=31×底面积×高=31πr 2h 圆锥的高=V ÷底面积×3 11、长方体、正方体、圆柱统一体积公式: 体积=底面积×高【排水法求不规则物体体积】1、求容器的底面积S 底2、求高度差h (上升或下降高度)3、V 不规则物体体积=S 底×h (上升或下降高度)【求瓶子中的容积】1、正放水的体积:容器的底面积×水的高2、倒放空气的体积:容器的底面积×空气的高3、瓶子的容积:正放水的体积+倒放空气的体积=容器的容积【常用单位换算】(一)长度单位换算1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米; 1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米; 1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤(五)人民币单位换算: 1元=10角; 1角=10分; 1元=100分(六)时间单位换算: 1世纪=100年; 1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】;【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】;【闰年:2月有29天;全年有366天】1日=24小时; 1时=60分=3600秒; 1分=60秒;。
常用的数量关系
常用的数量关系
一些常用的数量关系包括:
1. 相等/等于:用于表达两个数或物体具有相同的数值或属性。
例如:2 + 3 = 5 表示2和3的和等于5。
2. 不等/不等于:用于表达两个数或物体具有不同的数值或属性。
例如:3 ≠ 6 表示3和6不相等。
3. 大于/大于等于:用于比较两个数中较大的数。
例如:9 > 6 表示9大于6。
4. 小于/小于等于:用于比较两个数中较小的数。
例如:4 < 7 表示4小于7。
5. 比例关系:用于表示两个数之间的比例关系。
例如:3:4表示第一个数是第二个数的0.75倍。
6. 正数/负数:用于表示数的正负。
例如:4是一个正数,而-4是一个负数。
7. 零:用于表示没有数量或数值为零。
例如:0表示没有物体或数量为零。
这些数量关系在数学和日常生活中都经常使用。
常用的数量关系式
• 因为35能被7整除,所以35是7的倍数,7是35的 约数。
• 一个数的约数的个数是有限的,其中最小的约数 是1,最大的约数是它本身。例如:10的约数有1、 2、5、10,其中最小的约数是1,最大的约数是 10。
• 2. 整数的写法:从高位到低位,一级一级地写, 哪一个数位上一个单位也没有,就在那个数位上 写0。
• 3. 小数的读法:读小数的时候,整数部分按照整 数的读法读,小数点读作“点”,小数部分从左 向右顺次读出每一位数位上的数字。
• 4. 小数的写法:写小数的时候,整数部分按照整 数的写法来写,小数点写在个位右下角,小数部 分顺次写出每一个数位上的数字。
同分母分数,叫做通分。
(四)百分数
• 1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分 数通常用"%"来表示。百分号是表示百分数 的符号。
(一)数的读法和写法
• 1. 整数的读法:从高位到低位,一级一级 地读。读亿级、万级时,先按照个级的读 法去读,再在后面加一个“亿”或“万” 字。每一级末尾的0都不读出来,其它数位 连续有几个0都只读一个零。
• 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
• 无限不循环小数:一个数的小数部分,数字排列无规律且 位数无限,这样的小数叫做无限不循环小数。 例如:π
• 循环小数:一个数的小数部分,有一个数字或者几个数字 依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
小学常用的数量关系式
小学常用的数量关系式
小学生在研究数学时,经常需要掌握一些数量关系式。
以下是常用的十个数量关系式:
1、平均数关系式:总数除以总份数等于平均数。
2、总数、份数、每份数关系式:每份数乘以份数等于总数,总数除以每份数等于份数,总数除以份数等于每份数。
3、行程关系式:速度乘以时间等于路程,路程除以速度
等于时间,路程除以时间等于速度。
4、购物问题关系式:单价乘以数量等于总价,总价除以
单价等于数量,总价除以数量等于单价。
5、工程问题关系式:工作效率乘以工作时间等于工作量,工作量除以工作效率等于工作时间,工作量除以工作时间等于工作效率。
6、相遇问题关系式:速度和乘以相遇时间等于相遇路程,相遇路程除以速度和等于相遇时间,相遇路程除以相遇时间等于速度和。
7、加法关系式:加数加上加数等于和,和减去一个加数
等于另一个加数。
8、减法关系式:被减数减去减数等于差,被减数减去差
等于减数,差加上减数等于被减数。
9、乘法关系式:因数乘以因数等于积,积除以一个因数
等于另一个因数。
10、除法关系式:被除数除以除数等于商,被除数除以商等于除数,商乘以除数等于被除数。
常用的数量关系式
常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2s=(a+b)× h÷28、圆形(S:面积C:周长л d=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
常用的数量关系式
常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数数的整除律个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
常用的数量关系式
• 7、被减数-减数=差 被减数-差=减数 差+减数=被减数
• 8、因数×因数=积 积÷一个因数=另 一个因数
• 9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
• 2、面积单位换算 1平方千米=100公顷 1公顷 =10000平方米 1平方米=100 平方分米
• 如果数a能被数b(b ≠ 0)整除,a就叫做b 的倍数,b就叫做a的约数(或a的因数)。 倍数和约数是相互依存的。
• 因为35能被7整除,所以35是7的倍数,7是35的 约数。
• 一个数的约数的个数是有限的,其中最小的约数 是1,最大的约数是它本身。例如:10的约数有1、 2、5、10,其中最小的约数是1,最大的约数是 10。
• 4、重量单位换算 1吨=1000 千克 1千克 =1000克 1千克=1公斤
• 5人民币单位换算 1元=10角 1角=10分 1元 =100分
• 6、时间单位换算 1世纪=100年 1年=12月 大月 (31天)有:1\3\5\7\8\10\12月 小 月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平 年全年365天, 闰年全年366天 1日=24小时
• 1不是质数也不是合数,自然数除了1外,不是质 数就是合数。如果把自然数按其约数的个数的不 同分类,可分为质数、合数和1。
• 每个合数都可以写成几个质数相乘的形式。 其中每个质数都是这个合数的因数,叫做 这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
• 把一个合数用质因数相乘的形式表示出来, 叫做分解质因数。
• 例如把28分解质因数
• 几个数公有的约数,叫做这几个数的公约 数。其中最大的一个,叫做这几个数的最 大公约数,例如12的约数有1、2、3、4、6、 12;18的约数有1、2、3、6、9、18。其 中,1、2、3、6是12和1 8的公约数,6是 它们的最大公约数。
常用的数量关系式
一、常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、加数+加数=和和-一个加数=另一个加数4、被减数-减数=差被减数-差=减数差+减数=被减数5、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间二、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米三、面积单位换算1平方千米=1000000平方米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米1平方分米=100平方厘米四、质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤五、时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒六、运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
常用的数量关系式
一、常用得数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、加数+加数=与与-一个加数=另一个加数4、被减数-减数=差被减数-差=减数差+减数=被减数5、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数得除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度与×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度与速度与=相遇路程÷相遇时间二、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米三、面积单位换算1平方千米=1000000平方米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米1平方分米=100平方厘米四、质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤五、时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)得有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒六、运算定律1、加法交换律:两个数相加,交换加数得位置,它们得与不变,即a+b=b+a 。
2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加它们得与不变,即(a+b)+c=a+(b+c) 。
3、乘法交换律:两个数相乘,交换因数得位置它们得积不变,即a×b=b×a。
4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再与第一个数相乘,它们得积不变,即(a×b)×c=a×(b×c) 。
常用的数量关系式
常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a 面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高V=abh 5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)×h÷28、圆形(S:面积C:周长лd=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr (2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:(和+差)÷2=大数(和-差)÷2=小数13、和倍问题:和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题:差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间;相遇时间=相遇路程÷速度和;速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本;利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比;利息=本金×利率×时间;税后利息=本金×利率×时间×(1-20%)数的和,差不变,即a-b-c=a-(b+c) 。
常用的数量关系式
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数7、被除数÷除数=商被除数÷商=除数商×除数=被除数8、本金×利率×时间=利息图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л9、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间常用单位换算长度单位换算1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分 1分=60秒 1时=3600秒一个数的倍数的个数是无限的,其中最小的倍数是它本身。
数量关系式
常用的数量关系式
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
10、本金*利率*时间=利息植树问题:间隔数×每个间隔的米数=一共的米数;
11、爬楼梯问题:楼梯的级数÷每两层楼之间楼梯的级数=楼梯的段数。
12、成活率=成活棵数/总棵数
13、合格率=合格/总数
14、利润率=利润/进价成对比赛,
15、次数=队数*(队数-1)除以2。
常用的数量关系式 简
一、常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数二、小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a 面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积C:周长лd=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr (2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、和差问题的公式:(和+差)÷2=大数(和-差)÷2=小数12、和倍问题: 和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)13、差倍问题:差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)14、相遇问题相遇路程=速度和×相遇时间;相遇时间=相遇路程÷速度和;速度和=相遇路程÷相遇时间15、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量16、利润与折扣问题利润=售出价-成本;利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比;利息=本金×利率×时间;税后利息=本金×利率×时间×(1-20%) 三、常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算:1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算:1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算:1元=10角1角=10分1元=100分时间单位换算:1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义:自然数和0都是整数。
小学数学常见(常用)的数量关系式
小学数学常见(常用)的数量关系式常见的数量关系式有以下几种:一)、加数加数等于和,和减去一个加数等于另一个加数。
二)、被减数减去减数等于差,差加上减数等于被减数。
三)、因数乘以因数等于积,积除以一个因数等于另一个因数。
四)、被除数除以除数等于商,商乘以除数等于被除数。
五)、每份数乘以份数等于总数,总数除以每份数等于份数。
六)、1倍数乘以倍数等于几倍数,几倍数除以1倍数等于倍数。
七)、买卖问题公式为单价乘以数量等于总价,总价除以单价等于数量,总价除以数量等于单价。
举例:①XXX要买5本练本,每本价值3元,他需要准备多少钱?列式计算。
②如果把3元改为2.5元或1元,试一试。
③根据原题编出另外两道应用题并解决。
八)、行程问题的公式有单人行和双人面对面或背向合行的相遇问题公式。
单人行公式为速度乘以时间等于路程,路程除以速度等于时间。
双人行公式为速度和乘以相遇时间等于合走路程,合走路程除以速度和等于相遇时间。
举例:①汽车从A地开往B地,每小时行驶80千米,4小时可到达。
A、B两地有多远?列式计算。
②如果把4改成5.5或9试一试。
③根据原题编出另外两道应用题并解决。
②甲、乙两人分别从A、B两地相向而行,甲每小时行驶45千米,乙每小时行驶35千米,4小时可以到达。
A、B两地有多远?列式计算。
③根据原题编出另外两道应用题并解决。
九)、工程问题的公式有单人做和双人合做的工作效率公式。
单人做公式为工作效率乘以工作时间等于工作总量,工作总量除以工作效率等于工作时间。
双人合做公式为工作效率和乘以合作时间等于合作总量,合作总量除以合作效率等于合作时间。
举例:①一个打字员打一份稿子,每分钟打80个字,4分钟可以打完。
这份稿子一共有多少个字?列式计算。
②如果把4改成7.5或10试一试。
③根据原题编出另外两道应用题并解决。
②甲、乙两个修路队人分别从A、B两地修路,甲队每天修14千米,乙队每天修16千米,他们合修10天可以修完全程。
(完整版)常用的数量关系式
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时时=()分0.7时=()分平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶ 10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。
常用的数量关系式
常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率小学数学图形计算公式2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高V=abh9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:(和+差)÷2=大数(和-差)÷2=小数13、和倍问题:和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题:差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间;相遇时间=相遇路程÷速度和;速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本;利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比;利息=本金×利率×时间;税后利息=本金×利率×时间×(1-20%)18植树问题非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米体(容)积:1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算:1吨=1000 千克1千克=1000克1千克=1公斤时间单位换算:平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天第一章数和数的运算一概念(一)整数1 整数的意义:自然数和0都是整数。
常用的数量关系式
常用的数量关系式1、每份数×份数=总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程÷速度=时间路程÷时间=速度相遇问题相遇路程=速度和×相遇时间;相遇时间=相遇路程÷速度和;速度和=相遇路程÷相遇时间4、单价×数量=总价÷单价=数量5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数总价÷数量=单价差+减数=被减数商×除数=被除数1/8小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a 面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab4、长方体(V:体积s:面积a:xxb:宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷ 28、圆形(S:面积C:周长лd=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:(和+差)÷2=大数(和-差)÷2=小数13、和倍问题:和÷(倍数-1)=小数×倍数=大数(或者和-小数=大数) 14、差倍问题:差÷(倍数-1)=小数×倍数=大数(或小数+差=大数) 15、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量16、利润与折扣问题利润=售出价-成本;2/8利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比;利息=本金×利率×时间;税后利息=本金×利率×时间×(1-20%)3/8常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算:1平方千米=100公顷1公顷=100平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算:1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算:1吨=1000千克1千克=1000克1千克=1公斤人民币单位换算:1元=10角1角=10分1元=100分时间单位换算:1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒4/8基本概念第一章数和数的运算一概念(一)整数1、整数的意义:自然数和0都是整数。
常用数量关系
常用数量关系:1、每份数×份数=总数2、1倍数×倍数=几倍数总数÷每份数=份数几倍数÷1倍数=倍数总数÷份数=每份数几倍数÷倍数=1倍数3、速度×时间=路程4、相遇路程=速度和×相遇时间路程÷时间=速度相遇时间=相遇路程÷速度和路程÷速度=时间相遇时间=相遇路程÷速度和5 工作效率×工作时间=工作总量6、单价×数量=总价工作总量÷工作效率=工作时间总价÷单价=数量工作总量÷工作时间=工作效率总价÷数量=单价加减乘除各部分之间的关系:1、加数+加数=和2、被减数-减数=差和-一个加数=另一个加数被减数-差=减数差+减数=被减数3、因数×因数=积4、被除数÷商=除数积÷一个因数=另一个因数被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形2、长方形周长=边长×4 周长=(长+宽)×2正方形的边长=面积÷4 长方形的长=面积÷2-宽长方形的宽=面积÷2-长面积=边长×边长面积=长×宽长方形的长=面积÷宽长方形的宽=面积÷长3、平行四边形4、三角形面积=底×高面积=底×高÷2平行四边形的底=面积÷高三角形高=面积×2÷底平行四边形的高=面积÷底三角形底=面积×2÷高5、梯形面积=(上底+下底)×高÷2梯形的上底=面积×2÷高-下底梯形的下底=面积×2÷高-上底梯形的高=面积×2÷(上底+下底)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均每分钟行驶多少千米? 48÷6=8 ﹙千米/分﹚
• 宇宙飞船在太空5秒钟飞行40千米。他的平 均速度是多少?
平均每秒行驶多少千米?
40÷5=8 ﹙千米/秒﹚
不能只看“8”,要看单位
千米/小时
千米/分 千米/秒
路程÷速度=时间
雷声的速度大约为340米/秒
• km表示千米 • /表示每 • h表示每小时
km/h
限速80
老师3小时行驶了240千米,超速了吗?
平均每小时行驶多少千米?
• 240 ÷3=80﹙千米/时﹚
• 红红2小时骑了16千米。她的平均速度是多 少千米?
平均每小时行驶多少千米?
• 16÷2=8 ﹙千米/时﹚
直升飞机6分钟飞行48千米,他平均速度是多少?
• 7、多项选择 • 从南宁到北京的路程是2960千米;( )
到达最快。
• A自行车8千米/小时。 • B飞机8千米/分。 • C飞箭8千米/秒。
• 小强从家去学校,每分钟走60米,8分钟到 了学校。小刚从家去学校,10分钟走到学 ຫໍສະໝຸດ ,每分钟步行48米。﹙出示路线图﹚
• 小强和小刚,谁家离学校近一点?
一乘二除
•3×4=12 •12÷3=4 •12÷4=3
乘法就像个“筐”把很多东西装进 去
一乘二除
•□×□=□ •□÷□=□ •□÷□=□
单价
• 单价×数量=总价 •总价÷单价=数量 •总价÷数量=单价
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
•
光的速度大约为30000千米/秒
• 5、老师以80千米/小时的速度行驶4小时, 行驶多少千米?
速度×时间=路程
• 80 ×4=320千米
• 6、如果以80千米/小时的速度行驶160千米, 需要多长时间?
路程÷速度=时间 •160 ÷80=2小时
• 常见常用的数量关系
• 速度×时间=路程 • 路程÷速度=时间 • 路程÷时间=速度