概率统计公式大全(复习重点)汇总

合集下载

概率统计公式大全(复习重点)汇总【范本模板】

概率统计公式大全(复习重点)汇总【范本模板】

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成.(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B.A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A—B,也可表示为A—AB或者BA,它表示A发生而B不发生的事件。

概率统计公式大全复习重点汇总

概率统计公式大全复习重点汇总

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,?为不可能事件。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A Y B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率与统计学公式集锦整理速查

概率与统计学公式集锦整理速查

概率与统计学公式集锦整理速查以下是概率与统计学领域中常见的公式集锦,方便您在需要时进行查阅和使用。

1. 概率公式1.1 事件的概率:P(A) = n(A) / n(S)1.2 互斥事件的概率:P(A ∪ B) = P(A) + P(B)1.3 两独立事件的概率:P(A ∩ B) = P(A) × P(B)1.4 随机事件的和:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)1.5 随机事件的差:P(A - B) = P(A) - P(A ∩ B)1.6 互补事件的概率:P(A') = 1 - P(A)2. 统计学公式2.1 定义方差:Var(X) = E[(X - E(X))^2]2.2 方差的性质:Var(aX) = a^2 × Var(X)2.3 协方差:Cov(X, Y) = E[(X - E(X))(Y - E(Y))]2.4 相关系数:ρ(X, Y) = Cov(X, Y) / (√(Var(X)) × √(Var(Y)))2.5 二项分布期望:E(X) = n × p2.6 二项分布方差:Var(X) = n × p × (1 - p)2.7 正态分布的标准差:Var(X) = σ^23. 概率函数与密度函数3.1 二项分布概率函数:P(X = k) = C(n, k) × p^k × (1 - p)^(n - k)3.2 二项分布累积概率函数:P(X ≤ k) = Σ(i=0 to k) C(n, i) × p^i × (1 - p)^(n - i)3.3 正态分布概率密度函数:f(x) = (1 / (σ × √(2π))) × exp(-(x - μ)^2 / (2σ^2))3.4 正态分布累积概率函数:P(X ≤x) = Φ((x - μ) / σ)4. 估计与假设检验4.1 样本均值的抽样分布:X ~N(μ, σ^2/n),其中 X 为样本均值,μ 为总体均值,σ 为总体标准差,n 为样本容量。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)概率统计公式大全(复习重点)在学习概率统计的过程中,熟练掌握相关的公式是非常关键的。

本文将为大家详细介绍一些常用的概率统计公式,并对其进行简要的说明和应用举例,以便复习和巩固知识。

一、基本概率公式1. 事件的概率计算公式P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率;n(A)表示事件A中有利的结果数;n(S)表示样本空间S中的全部结果数。

例如:从一副扑克牌中随机抽取一张牌,求抽到红心牌的概率。

解:样本空间S中共有52张牌,红心牌有13张,所以 P(红心牌) = 13 / 52 = 1 / 4。

2. 条件概率计算公式P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

例如:某班级男女生分别有30人和40人,从中随机选择一名学生,求选到女生并且是优等生的概率。

解:女生优等生有20人,所以 P(女生且是优等生) = 20 / (30+ 40)= 1 / 7。

二、常用离散型随机变量的数学期望与方差1. 随机变量的数学期望计算公式E(X) = ∑[x * P(X=x)]其中,E(X)表示随机变量X的数学期望;x表示随机变量X的取值;P(X=x)表示随机变量X取值为x的概率。

例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的数学期望。

解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。

2. 随机变量的方差计算公式Var(X) = E((X - E(X))²)其中,Var(X)表示随机变量X的方差;E(X)表示随机变量X的数学期望。

例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的方差。

解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。

概率论与统计学公式总结【已整理 可直接打印】

概率论与统计学公式总结【已整理 可直接打印】

概率论与统计学公式总结【已整理可直接打印】1. 概率公式概率 P(A) = n(A) / n(S),其中 n(A) 表示事件 A 发生的次数,n(S) 表示样本空间中所有可能事件发生的次数。

2. 条件概率公式事件 B 在事件 A 已经发生的条件下发生的概率,表示为P(B|A),计算公式为P(B|A) = P(A∩B) / P(A),其中P(A∩B) 表示事件 A 和事件 B 同时发生的概率。

3. 独立事件公式如果事件 A 和事件 B 相互独立,则事件 A 发生与否不会对事件 B 发生的概率产生影响,表示为P(A∩B) = P(A) * P(B)。

4. 期望值公式离散型随机变量 X 的期望值E(X) = ΣxP(X=x),其中 x 表示可能的取值,P(X=x) 表示 X 取值为 x 的概率。

5. 方差公式离散型随机变量 X 的方差Var(X) = Σ(x-E(X))^2 * P(X=x),其中 x 表示可能的取值,E(X) 表示随机变量 X 的期望值。

6. 正态分布公式正态分布的概率密度函数为f(x) = (1 / (σ * √(2π))) * exp(-(x-µ)^2 / (2σ^2)),其中 µ表示均值,σ 表示标准差。

7. 中心极限定理对于一个总体中的任意样本,样本均值的分布接近正态分布,当样本容量足够大时,均值的分布越接近正态分布。

8. 置信区间公式无偏样本的均值x的置信水平为 1-α 的置信区间为 [x - Z * (σ/√n), x + Z * (σ/√n)],其中x表示样本均值,Z 表示标准正态分布的分位数,σ 表示总体标准差,n 表示样本容量。

9. 假设检验公式在给定总体参数假设的条件下,进行样本均值的假设检验,计算统计量的值,与临界值进行比较,判断是否拒绝原假设。

10. 线性回归公式通过最小二乘法确定线性回归方程,表示为y = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ,其中 y 表示因变量,x₁, x₂, ..., xₙ 表示自变量,β₀, β₁, β₂, ..., βₙ 表示回归系数。

概率统计公式大全复习重点

概率统计公式大全复习重点

概率统计公式大全复习重点在学习概率统计这门学科时,掌握各种公式是至关重要的。

这些公式不仅是解决问题的工具,更是理解概率统计概念的关键。

本文将为您梳理概率统计中的重点公式,帮助您更好地复习和掌握这部分知识。

一、随机事件与概率1、古典概型概率公式如果一个随机试验所包含的基本事件总数为 n,事件 A 所包含的基本事件数为 m,则事件 A 发生的概率为:P(A) = m / n2、几何概型概率公式设样本空间为几何区域Ω,事件 A 对应的区域为ω,则事件 A 发生的概率为:P(A) =ω 的测度/Ω 的测度3、条件概率公式设 A、B 是两个事件,且 P(B) > 0,则在事件 B 发生的条件下,事件 A 发生的条件概率为:P(A|B) = P(AB) / P(B)4、乘法公式P(AB) = P(A|B)P(B) 或 P(AB) = P(B|A)P(A)5、全概率公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,则有:P(A) =∑ P(Bᵢ)P(A|Bᵢ)(i从 1 到 n)6、贝叶斯公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,在事件 A 已经发生的条件下,事件 Bᵢ发生的概率为:P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ) /∑ P(Bₙ)P(A|Bₙ) (i从 1 到 n,k 从 1 到 n)二、随机变量及其分布1、离散型随机变量的概率分布设离散型随机变量 X 的可能取值为 x₁, x₂,, xₙ,对应的概率为p₁, p₂,, pₙ,则概率分布为:P(X = xᵢ) = pᵢ(i = 1, 2,, n),且∑pᵢ= 12、二项分布如果随机变量 X 服从参数为 n 和 p 的二项分布,记为 X ~ B(n, p),则概率质量函数为:P(X = k) = C(n, k) p^k (1 p)^(n k) (k = 0, 1, 2,, n)3、泊松分布如果随机变量 X 服从参数为λ 的泊松分布,记为 X ~P(λ),则概率质量函数为:P(X = k) =(e^(λ) λ^k) / k! (k = 0, 1, 2,)4、连续型随机变量的概率密度函数设连续型随机变量 X 的概率密度函数为 f(x),则分布函数为:F(x)=∫∞, x f(t) dt5、正态分布如果随机变量 X 服从参数为μ 和σ² 的正态分布,记为 X ~N(μ, σ²),则概率密度函数为:f(x) =(1 /(σ√(2π))) e^((x μ)² /(2σ²))三、随机变量的数字特征1、数学期望离散型随机变量 X 的数学期望为:E(X) =∑ xᵢ pᵢ(i 从 1 到 n)连续型随机变量 X 的数学期望为:E(X) =∫∞,+∞ x f(x) dx2、方差离散型随机变量 X 的方差为:D(X) =∑ (xᵢ E(X))² pᵢ(i 从 1 到n)连续型随机变量 X 的方差为:D(X) =∫∞,+∞ (x E(X))² f(x) dx3、标准差随机变量 X 的标准差为:σ(X) =√D(X)4、协方差设随机变量 X 和 Y,其协方差为:Cov(X, Y) = E((X E(X))(Y E(Y)))5、相关系数随机变量 X 和 Y 的相关系数为:ρ(X, Y) = Cov(X, Y) /(σ(X)σ(Y))四、大数定律和中心极限定理1、大数定律当 n 足够大时,样本均值X依概率收敛于总体均值μ,即:P(|Xμ| >ε) → 0 (n → ∞)2、中心极限定理设随机变量 X₁, X₂,, Xₙ 相互独立,且具有相同的分布和有限的数学期望μ 和方差σ²。

概率统计公式大全复习重点

概率统计公式大全复习重点

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这机事件种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,?为不可能事件。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B运算发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,?为不可能事件。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

第一章随机事件和概率〔1〕排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

〔2〕加法和乘法原理加法原理〔两种方法均能完成此事〕:m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理〔两个步骤分别不能完成这件事〕:m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

〔3〕一些常见排列重复排列和非重复排列〔有序〕对立事件〔至少有一个〕顺序问题〔4〕随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

〔5〕基本领件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本领件,用ω来表示。

基本领件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点〔基本领件ω〕组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件〔Ø〕的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件〔Ω〕的概率为1,而概率为1的事件也不一定是必然事件。

〔6〕事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,〔A发生必有事件B发生〕:BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率与统计公式总结

概率与统计公式总结

概率与统计公式总结概率与统计公式总结
一、概率公式
1、概率:P(B)=n(B)/n(S)
P(B)表示B的概率
n(B)表示B的样本数
n(S)表示总样本数
2、条件概率:P(A|B)=P(A∩B)/P(B)
P(A|B)表示A发生的条件概率
P(A∩B)表示A与B同时发生的概率
P(B)表示B发生的概率
3、独立概率:P(A∩B)=P(A)P(B)
P(A∩B)表示A与B同时发生的概率
P(A)表示A发生的概率
P(B)表示B发生的概率
4、贝叶斯公式:P(B|A)=P(A|B)P(B)/P(A) P(B|A)表示B发生的条件概率
P(A|B)表示A发生的条件概率
P(B)表示B发生的概率
P(A)表示A发生的概率
二、统计公式
1、样本方差:σ2=1/N∑(X1-X)2
σ2表示样本方差
N表示样本容量
X1-X表示每个值与平均数的差
2、样本标准差:σ=√(1/N∑(X1-X)2)
σ表示样本标准差
3、样本偏差:ΔX=∑(X1-X)/N
ΔX表示样本偏差
4、样本噪声:σ=√(1/N∑(X1-X')2)
σ表示样本噪声
X'表示拟合函数的值
5、样本系数:K=√(σ2/X2)
K表示样本系数
σ2表示样本方差
X表示样本平均值。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

C nk N M
,
k
0,1,2, l
CNn
l min(M , n)
随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N,M)。
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
均匀分布
随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在[a,b] 上为常数 1 ,即
x
F (x) f (x)dx

则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函数或密度函数,简称概
率密度。 密度函数具有下面 4 个性质:
1° f (x) 0 。
f (x)dx 1


P(X x) P(x X x dx) f (x)dx
积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P( X xk) pk 在离
方法来完成,则这件事可由 m×n 种方法来完成。
重复排列和非重复排列(有序) (3)一些
对立事件(至少有一个) 常见排列 顺序问题
( 4 ) 随 机 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但
试 验 和 随 在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否
是互不影响的。
这种试验称为伯努利概型,或称为 n 重伯努利试验。
精彩文案
实用标准文档
用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用 Pn(k) 表示 n
重伯努利试验中 A 出现 k(0 k n) 次的概率,

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率统计公式大全汇总

概率统计公式大全汇总

概率统计公式大全汇总1.基本概率公式:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的样本点数,n(S)表示样本空间的样本点数。

2.条件概率公式:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和B同时发生的概率,P(B)表示事件B的概率。

3.乘法公式:P(A∩B)=P(A)*P(B,A)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)表示事件A的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。

4.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)其中,P(A∪B)表示事件A和事件B至少有一个发生的概率,P(A)和P(B)分别表示事件A和事件B的概率,P(A∩B)表示事件A和事件B同时发生的概率。

5.贝叶斯公式:P(B,A)=P(A,B)*P(B)/P(A)其中,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B)和P(A)分别表示事件B和事件A的概率。

6.期望值公式:E(X)=∑(x*P(X=x))其中,E(X)表示随机变量X的期望值,x表示X的取值,P(X=x)表示X取值为x的概率。

7.方差公式:Var(X) = E[X^2] - (E[X])^2其中,Var(X)表示随机变量X的方差,E[X^2]表示X的平方的期望值,E[X]表示X的期望值。

8.标准差公式:SD(X) = √Var(X)其中,SD(X)表示随机变量X的标准差,Var(X)表示X的方差。

9.二项分布概率公式:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)其中,P(X=k)表示X取值为k的概率,C(n,k)表示从n个元素中选择k个元素的组合数,p表示每个元素成功的概率,n表示试验次数。

10.正态分布概率公式:P(X≤x)=Φ((x-μ)/σ)其中,P(X≤x)表示X小于或等于x的概率,Φ表示标准正态分布的累积分布函数,μ表示正态分布的均值,σ表示正态分布的标准差。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,?为不可能事件。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是的子集。

为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率统计公式大全 复习重点 汇总

概率统计公式大全 复习重点 汇总

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这机事件种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,?为不可能事件。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B运算发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A Y B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率统计公式大全复习重点

概率统计公式大全复习重点

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,?为不可能事件。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A 等于B:A=B。

A、B中至少有一个发生的事件:A Y B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n—某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

,(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

*不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

A、B同时发生:A B,或者AB。

A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。

基本事件是互不相容的。

¥Ω-A称为事件A的逆事件,或称A的对立事件,记为A。

它表示A不发生的事件。

互斥未必对立。

②运算:结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)德摩根率:∞=∞==11iiii AABABA=,BABA=(7)概率的公理化定义设Ω为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1,,2° P(Ω) =13° 对于两两互不相容的事件1A,2A,…有∑∞=∞==⎪⎪⎭⎫⎝⎛11)(iiii APAP常称为可列(完全)可加性。

则称P(A)为事件A的概率。

(8)古典概型1°{}nωωω21,=Ω,2°nPPPn1)()()(21===ωωω 。

@设任一事件A,它是由mωωω21,组成的,则有P(A)={})()()(21mωωω=)()()(21mPPPωωω+++nm=基本事件总数所包含的基本事件数A=(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。

对任一事件A,)()()(Ω=LALAP。

其中L为几何度量(长度、面积、体积)。

(10)加法公式P(A+B)=P(A)+P(B)-P(AB)~当P(AB)=0时,P(A+B)=P(A)+P(B)(11)减法公式P(A-B)=P(A)-P(AB)当B⊂A时,P(A-B)=P(A)-P(B)当A=Ω时,P(B)=1- P(B)(12)条件概率定义设A、B是两个事件,且P(A)>0,则称)()(APABP为事件A发生条件下,事件B 发生的条件概率,记为=)/(A B P )()(A P AB P 。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

[例如P(Ω/B)=1⇒P(B /A)=1-P(B/A) (13)乘法公式乘法公式:)/()()(A B P A P AB P =更一般地,对事件A 1,A 2,…A n ,若P(A 1A 2…A n-1)>0,则有21(A A P …)n A )|()|()(213121A A A P A A P A P =……21|(A A A P n …)1-n A 。

(14)独立性①两个事件的独立性设事件A 、B 满足)()()(B P A P AB P =,则称事件A 、B 是相互独立的。

…若事件A 、B 相互独立,且0)(>A P ,则有)()()()()()()|(B P A P B P A P A P AB P A B P ===若事件A 、B 相互独立,则可得到A 与B 、A 与B 、A 与B 也都相互独立。

必然事件Ω和不可能事件Ø与任何事件都相互独立。

Ø与任何事件都互斥。

②多个事件的独立性设ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) '并且同时满足P(ABC)=P(A)P(B)P(C) 那么A 、B 、C 相互独立。

对于n 个事件类似。

(15)全概公式设事件n B B B ,,,21 满足1°n B B B ,,,21 两两互不相容,),,2,1(0)(n i B P i =>,2° ni iB A 1=⊂,则有 %)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++= 。

(16)贝叶斯公式设事件1B ,2B ,…,n B 及A 满足1° 1B ,2B ,…,n B 两两互不相容,)(Bi P >0,=i 1,2,…,n ,2° ni iB A 1=⊂,0)(>A P ,则∑==nj jji i i B A P B P B A P B P A B P 1)/()()/()()/(,i=1,2,…n 。

此公式即为贝叶斯公式。

@)(i B P ,(1=i ,2,…,n ),通常叫先验概率。

)/(A B P i ,(1=i ,2,…,n ),通常称为后验概率。

贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。

(17)伯努利概型我们作了n次试验,且满足每次试验只有两种可能结果,A发生或A不发生;n次试验是重复进行的,即A发生的概率每次均一样;每次试验是独立的,即每次试验A发生与否与其他次试验A发生与否是互不影响的。

这种试验称为伯努利概型,或称为n重伯努利试验。

用p表示每次试验A发生的概率,则A发生的概率为qp=-1,用)(kP n表示n 重伯努利试验中A出现)0(nkk≤≤次的概率,:knkknn qpkP C-=)(,nk,,2,1,0=。

第二章随机变量及其分布0=μσext?2 )( 21)第三章二维随机变量及其分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及抽样分布第七章参数估计第八章假设检验。

相关文档
最新文档