玻尔的原子理论
玻尔原子理论
玻尔原子理论玻尔理论提出的前夜经典理论失足于原子尺度1911年卢瑟福建立原子核式结构模型,表明原子由原子核与电子组成,而电子就像一群孩子一样围着火堆跳着圆圈舞,这火堆正是原子核。
这一模型成功地解释了α粒子散射实验,但是一旦运用牛顿力学与经典电磁理论来仔细一下分析这一模型则会发现它与事实存在着很大的矛盾,是站不住脚的。
如果按照经典电磁理论来推导,电子在绕核运动的过程中必将不断地辐射电磁波,电子也将因此不断损失能量最终坠落到原子核上,这样一来原子就必将是一个不稳定的结构。
其次,辐射电磁波的频率应当等于电子绕核转动的频率,既然电子在损失能量的过程中就像坠落地球的陨石一样随着不断地靠近绕转频率做出连续性地变化,那么其辐射出的电磁波频率也应当是连续变化的。
然而事实上,原子的结构是稳定的,并不会出现电子坠落到原子核上的现象,这是难以想象的,否则它也不会得到原子的称号,因为“原子”(atom)一词的原意就是“不可分”,而且观察表明原子辐射总是辐射具有特定频率的分立的光波(线光谱),一般不会出现不断改变的连续谱。
经典理论在原子的尺度上受到了挑战,而且这并不是说当时没能出现某个天才人物,能够运用已有的经典理论建立一个适用于原子内部的模型,而是只要运用经典理论就不可能得到合理的理论,无论理论的建立者是怎样的天才。
打个不恰当的比喻,这看起来有点儿像阴沟里翻船,经典理论陷入原子的泥潭中难以抽身。
但不论怎样,现在亟须建立起一个不同于经典理论的新理论,来描述在原子尺度上发生的奇怪现象。
复杂的氢原子光谱且不谈古圣先贤们对于彩虹的研究和关于光谱的种种充满想象力的理论,在玻尔理论提出之前,至少是从牛顿开始,人们就已经积累了大量关于原子光谱的实验数据,尤其是在夫琅和费开拓性的发明了光柵之后。
但这些全都是经验性的,如果谈及理论即使是对原子光谱了解得再多的科学家也是一句话都说不出来,当时确实是出现了一些理论,像巴尔末公式、瑞兹公式,但这些理论都只是对数据做出了解释与预言,并未解释为什么会出现光谱,就像玻尔常常说的:瑞兹理论求出的那些谱线到底实际上是否存在是一个“离奇莫测”的问题。
1.4 玻尔理论
n 3.56
13
取整,被激发到
n n3
激发态。
1
氢原子可能辐射的波长是
hc 102.6nm EE hc 656.3nm EE hc 121.6nm EE
3 1 23 3 2 12 2 1
6562.8Å 4861.3Å 4340.5Å 4101.7Å
Hα
Hβ
Hγ
Hδ
H∞
图 氢原子光谱(Balmer系)
1 1 R( 2 2 ) 波数 nf ni
1
R 109677 .581 cm
1
Balmer公式与观测结果的惊人符合,引起了光谱学家的注 意。紧接着就有不少人对光谱线波长(数)的规律进行了 大量分析,发现,每一种原子都有它特有的一系列光谱项 T(n),而原子发出的光谱线的波数,总可以表成两个光谱 项之差:
T (m) T (n)
其中m, n是某些整数。 显然,光谱项的数目比光谱线的数目要少得多。
1913年,玻尔首先把量子论应用到原子结构的研究上,使物 质结构理论进入了一个新阶段。 二、 玻尔基本假设 1. 稳定态假设
核外电子在一系列圆形轨道上绕核运动。在轨道上运动时无辐射, 为电子的稳定态,或定态,能量为 E1 E 2 E 3
4. 能级图
eV 0
-0.30 -0.54 -0.85 -151 帕邢系 -3.39
2
E 136eV n
n
6 5 4 3 2
巴尔末系
Rhc E 2 n
n
或
-13.58
n
n 1
电离能
基态
E 赖曼系 n 1 激发态
n
1
E
E1 136eV
原子结构的玻尔理论
1、经典物理的困难
(1)、原子的稳定性 (2)、原子的离散线谱
由经典的力学和电磁理论得不到稳定结构的原子912年,年仅27岁的丹麦物理学家玻尔(Bohr) 来到卢瑟福实验室对原子结构的谱线进行研究, 为解释氢原子的辐射光谱,于1913年提出原子 结构的半经典理论( 玻尔理论),其假设有三 点:
n 2
13.6
巴耳末系 赖曼系
n 1
4、对玻尔理论的评价
成功地解释了原子的稳定性、大小及氢原子光谱的规律性。 定态假设:定态具有稳定性和确定的能量值依然保留在近代量子 论中。 为人们认识微观世界和建立近代量子理论打下了基础。
玻尔理论无法克服的困难:
(1) 只能解释氢原子及碱金属原子的光谱,而不能解释含有两个 电子或两个电子以上价电子的原子的光谱。
(2) 只能给出氢原子光谱线的频率,而不能计算谱线的强度及这 种跃迁的几率,更不能指出哪些跃迁能观察到以及哪些跃迁观察 不到。 (3)只能讨论束缚态而不能讨论散射态。
(1)、定态假设
获得1922年诺贝 尔物理学奖
3、氢原子光谱解释
1215.68 1025.83 972.54
6562.79 4861.33 4340.47 4101.74
18.75 40.50
E n (eV )
0
0.85 1.51
3.39
氢原子光谱中的不同谱线
连续区
4
n 3
布喇开系
帕邢系
玻尔理论
谈谈玻尔理论(河北南宫中学 张朝欣)在物理学史上,玻尔(N.Bohr )的原子原子理论是具有开创性的.㈠ 原子的核式结构对原子能量的描述电子被发现后,卢瑟福(E.Rutherford)在1909至1911年间,通过α粒子散射实验,提出了原子的的核式结构模型:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕核旋转.核外电子和核的关系与行星和太阳的关系类似,卢瑟福将自己的学说称为行星模型. 卢瑟福认为,核外电子在核对它的库仑力的作用下,绕核做匀速圆周运动 rvmre K 222=…………………①由此可得电子动能 reKmvE k 22122==原子的内部能量为电子动能与电势能之和 电势能为 reKE P 2-= (以无穷远为势能零点,中学不要求,可参阅有关书籍)所以原子的内部总能量为reKE E E p k 22-=+=卢瑟福原子的核式结构还是很不完善的,它并没有告诉我们电子在核外是如何分布的,也不能说明不同原子的物理、化学性质不同起源于什么,这是需要进一步探讨的问题.更严重的是,它和经典物理理论不可调和的矛盾.㈡ 原子的核式结构与经典物理理论的矛盾由原子内部能量reKE 22-=可知,r 越大,能量E 越大(绝对值越小).也就是说,只要能量是确定的,则电子轨道半径就是确定的,原子的核式结构就是一个稳定的系统.但是,根据经典的电磁理论来看,情况并非如此.由麦克斯韦的电磁场理论,我们知道,变化的电场产生磁场. 电子绕核做匀速圆周运动,会在空间产生震荡变化的电场,此电场会产生同频率的震荡变化的磁场,磁场再产生电场……互相激发而产生电磁波.也就是说,电子绕核做匀速圆周运动,要辐射电磁波,辐射电磁波的频率等于电子周期运动的频率.辐射电磁波的过程,也是辐射能量的过程.伴随着电磁波的辐射,系统能量也相应减少.由reKE 22-=来看,随着能量E 的减少,电子轨道半径r 变小,最终,电子要落到原子核上.也就是说,按照经典电磁理论,原子应当是不稳定的系统,然而实际上原子是非常稳定的! 另外,按照经典电磁理论,原子辐射电磁波的频率等于电子周期运动的频率.频率rv T⋅==πγ21 ,将①解出v 代入可得32mrK e πγ=由此式可知,随着电子轨道半径r 的减小,频率γ将增大.即随着电磁波的辐射,r 将伴随着能量E 的连续减少而连续地变小,因而辐射电磁波的频率γ将连续地变大.由此可以推断,原子发光光谱应是包含一切频率的连续光谱,然而实际上原子光谱是不连续的.由以上分析可知,将我们熟悉的力学和电磁理论应用于微观的原子系统,推出的结论是原子应该是不稳定的,原子光谱应连续光谱.然而实验事实恰好相反.原子是稳定的,原子光谱是不连续的. 经典理论面临着前所未有的困难!㈢玻尔的原子理论1913年,卢瑟福的学生玻尔在原子的核式结构基础上,在普朗克的能量量子化和爱因斯坦的光子理论启发下,从原子是稳定的,原子光谱是不连续的的实验结果出发,将能量量子化的观点引入原子结构中,提出了一些基本假设,解救了原子行星模型的困境,成功地建立了氢原子理论,并为其它元素的原子结构和性质的研究奠定了基础.玻尔原子理论提出的主要假设为:⑴ 轨道量子化 能量是量子化的,原子的能量状态也是量子化的,即原子只能处于一系列不连续的能量状态中.原子的不同能量状态对应电子的不同运行轨道,由于原子的能量状态也是量子化的,因此电子的可能轨道也是不连续的.电子不能在任意半径的轨道上运行.这种现象叫轨道量子化.玻尔指出,只有满足下列条件的轨道才是可能的:轨道半径r 与电子动量mv 的乘积等于π2h 的整数倍,即 π2h nmvr =,3,2,1=n …… 为正整数,叫量子数⑵ 定态 原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的.在这些稳定状态中运动的电子虽然具有加速度,但并不向外辐射能量.这些状态叫定态.一些能量的改变,(不管是由于吸收或辐射电磁波,或由于碰撞的结果)都只能从一个定态变为另一个定态的变化(跃迁)而产生,决不能任意连续地改变.⑶ 跃迁 原子从一个能量状态m E 的定态跃迁到另一个能量状态n E 的定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能级差决定:m n E E h -=γ这个关系叫频率条件。
玻尔理论
n
n 四、氢原子的能级图: E ∞ ----------------- 0 eV
5 4 3 2
-0.54 -0.85 -1.51 -3.4
1
-13.6
五、能级:
1、能级:氢原子的各个定态的能量值,叫它的能 级。 2、基态:在正常状态下,原子处于最低能级,这 时电子在离核最近的轨道上运动,这种定态叫基态。
光子的发射和吸收
原子在始、 末两个能级Em和 En( Em>En )间 跃迁时发射光子 的频率可以由下 式决定:
h Em En
二、玻尔理论的主要内容:
1、原子只能处于一系列不连续的能量状态中, 在这些状态中原子是稳定的,电子虽然绕核运动, 但并不向外辐射能量。这些状态叫定态。 2、原子从一种定态(设能量为E初)跃迁到 另一种定态(设能量为E终)时,它辐射(或 吸收)一定频率的光子,光子的能量由这两种 定态的能量差决定,即 h v= E初 -E终. 3、原子的不同能量状态跟电子沿不同的圆 形轨道绕核运动相对应。原子的定态是不连续 的,因此电子的可能轨道的分布也是不连续的。
X射线照射激发 荧光,通过分析荧 光判断越王勾践宝 剑的成分.
玻尔理论成功的解释并预言了氢原子 辐射的电磁波的问题,但是也有它的局限 性.
在解决核外电子的运动时 成功引入了量子化的观念
同时又应用了“轨 道”等经典概念和 有关牛顿力学规律
除了氢原子光谱外,在解决 其他问题上遇到了很大的困难.
玻尔理论解决了原子的稳定性和 辐射的频率条件问题,把原子结构的 理论向前推进了一步 .
பைடு நூலகம்
2、下面关于玻尔理论的解释中,不正确的说法 是( C )
A、原子只能处于一系列不连续的状态中,每 个状态都对应一定的能量
玻尔的氢原子理论
玻尔的氢原子理论
为此,J.汤姆孙在1904年提出了原子结构的枣糕式模型.该模型认 为,原子可以看作一个球体,原子的正电荷和质量均匀分布在球内, 电子则一颗一颗地镶嵌其中.1909年,J.汤姆孙的学生卢瑟福为了验证 原子结构的枣糕式模型,完成了著名的α粒子散射实验.实验发现α粒 子在轰击金箔时,绝大多数α粒子都穿透金箔,方向也几乎不变,但 是大约有1/8 000的α粒子会发生大角度偏转,即被反弹回来.这样的 实验结果是枣糕式模型根本无法解释的,因为如果说金箔中的金原子 都是枣糕式的结构,那么整个金箔上各点的性质应该近乎均匀,α粒 子轰击上去,要么全部透射过去,要么全部反弹回来,而不可能是一 些穿透过去,一些反弹回来.
玻尔的氢原子理论
二、 原子结构模型
1897年,J.汤姆孙发现了电子.在此之前,原 子被认为是物质结构的最小单元,是不可分的,可 是电子的发现却表明原子中包含带负电的电子.那 么,原子中必然还有带正电的部分,这就说明原子 是可分的,是有内部结构的.执着的科学家就会继 续追问:原子的内部结构是什么样的?简洁的里德 伯光谱公式是不是氢原子内部结构的外在表现?
玻尔的氢原子理论
三、 玻尔的三点基本假设
为了解决原子结构有核模型的稳定性和氢原子光谱的分 立性问题,玻尔提出以下三个假设:
(1)定态假设.原子中的电子绕着原子核做圆周运动, 但是只能沿着一系列特定的轨道运动,而不能够任意转动, 当电子在这些轨道运动时,不向外辐射电磁波,原子系统处 于稳定状态,具有一定的能量.不同的轨道,具有不同的能 量,按照从小到大的顺序记为E1、E2、E3等.
玻尔的氢原子理论
可是这个模型却遭到很多物理学家的质疑.因为按照当时的物 理理论(包括经典力学、经典电磁理论及热力学统计物理),这 样一个模型是根本不可能的,原因有以下两个:
玻尔的原子理论
玻尔的原子理论:∙玻尔的原子理论的成功与局限:∙玻尔的原子理论第一次将量子观引入原子领域,提出定态和跃迁的概念,成功地解释了氢原子光谱规律,但玻尔引入的量子化观点并不完善。
在量子力学中,核外电子并没有确定的轨道,玻尔的电子轨道只不过是电子出现概率较大的地方。
把电子的概率分布用图像表示时,用小黑点的稠密程度代表概率的大小,其结果如同电子在原子核周围形成的云雾,称为“电子云∙氢原子的能级:1、氢原子的能级图2、光子的发射和吸收①原子处于基态时最稳定,处于较高能级时会自发地向低能级跃迁,经过一次或几次跃迁到达基态,跃迁时以光子的形式放出能量。
②原子在始末两个能级E m和E n(m>n)间跃迁时发射光子的频率为ν,其大小可由下式决定:hυ=E m-E n。
③如果原子吸收一定频率的光子,原子得到能量后则从低能级向高能级跃迁。
④原子处于第n能级时,可能观测到的不同波长种类N为:。
⑤原子的能量包括电子的动能和电势能(电势能为电子和原子共有)即:原子的能量E n=E Kn+E Pn。
轨道越低,电子的动能越大,但势能更小,原子的能量变小。
电子的动能:,r越小,E K越大。
氢原子的能级及相关物理量:在氢原子中,电子围绕原子核运动,如将电子的运动看做轨道半径为r的圆周运动,则原子核与电子之间的库仑力提供电子做匀速圆周运动所需的向心力,那么由库仑定律和牛顿第二定律,有,则①电子运动速率②电子的动能③电子运动周期④电子在半径为r的轨道上所具有的电势能⑤等效电流由以上各式可见,电子绕核运动的轨道半径越大,电子的运行速率越小,动能越小,电子运动的周期越大.在各轨道上具有的电视能越大。
原子跃迁时光谱线条数的确定方法:1.直接跃迁与间接跃迁原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁,两种情况辐射(或吸收)光子的频率可能不同。
2.一群原子和一个原子氧原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了。
玻尔的原子模型
通过多种实验手段验证了玻尔模型的正确性,进一步巩固 了其在物理学界的地位。
要点二
详细描述
除了氢原子光谱实验外,科学家们还通过其他多种实验手 段验证了玻尔模型的正确性。例如,通过测量原子的半径 、电子的轨道半径等物理量,并与玻尔模型的预测值进行 比较,发现实验结果与理论值相符合。这些实验验证进一 步巩固了玻尔模型在物理学界的地位,使其成为研究原子 结构和性质的重要理论框架。
05 玻尔模型的影响与后续发 展
对后世物理学家的启示
玻尔的原子模型为后续的物理学家提 供了研究原子结构的框架,为后续的 理论研究和实验验证奠定了基础。
玻尔模型强调了量子化概念在原子结 构中的作用,启发了后续物理学家对 量子力学的探索和发展。
对量子力学发展的影响
玻尔的原子模型是量子力学发展史上 的重要里程碑,为量子力学的发展提 供了重要的启示和基础。
玻尔模型的成功使得越来越多的物理 学家开始关注量子力学,进一步推动 了量子力学的发展和完善。
后续的原子模型研究
在玻尔模型之后,物理学家们不断改进和完善原子模型,提 出了各种不同的原子模型,如电子云模型、量子点模型等。
后续的原子模型研究进一步揭示了原子结构和性质的本质, 为材料科学、化学等领域的发展提供了重要的理论支持。
玻尔还提出了"定态"和"跃迁"的概念, 解释了原子光谱线的产生原因。
对现代科学的意义
玻尔的原子模型是现代量子力 学和原子物理学的基石之一, 为后续的理论和实验研究奠定
了基础。
该模型不仅解释了当时已知的 许多实验现象,还预测了一些 新的实验结果,如氢原子光谱
线的分裂和偏移。
玻尔的原子模型激发了科学家 们对原子结构和行为的研究兴 趣,推动了物理学和其他学科 的发展。
波尔的氢原子理论
发射光谱和吸收光谱
1 发射光谱:原子受激后 又自动“退激”而自发 发出的辐射。
2 吸收光谱:在连续光 谱照射下,原子吸收 光子,明亮背景上出 现了若干暗线。
激 发 态
能级图
基态 20
六 玻尔理论的成功及局限
1 成功 -- 1922年获诺贝尔奖 (1)定态能级假设与原子的稳定性;(2)能级间跃迁的频率条件。 (3)能较好地解释氢原子光谱和类氢原子光谱。 2 局限性 (1)用经典理论推出电子有固定轨道、确定的空间坐标和速度 (2)人为引进量子条件,限制电子运动 (3)只能解释H及类H原子,也解释不了原子的精细结构。
1 n2 )
k=n-1
2(n 1) me 4
n2 (n 1)2 8 02h3
当n很大时:
rn
0h2n2 me 2
n2r1
En
me 4
8 02h2
1 n2
E1 n2
n 1,2,3,
nk
2 n3
me 4 8ε02h3
me 4 4ε02h3n3
23
当n很大时:
nk
2 n3
me 4
8
5 6 普芳德(Pfund)系
区域 紫外 可见 可见 红外 红外
此后又发现碱金属也有类似的规律。
日期 1906年 1880年 1908年 1922年 1924年
3 里兹并合原理
~ T(m α) T(n β)
R
光谱项 : T(m) (m )2
R
T (n) (n )2 10
三 经典电磁理论遇到的困难
1 汤姆逊葡萄干面包模型
1903年,汤姆孙提出原子结构模 型:原子里面带正电的部分均匀地 分布在整个原子球体中,而带负电 的电子镶嵌在带正电的球体之中。 带正电的球体与带负电的电子二者 电量相等,故原子不显电性。
玻尔理论-
玻尔理论玻尔理论,又称玻尔原子论,是量子力学最早的发展方向之一。
它由丹麦物理学家尼尔斯·玻尔在20世纪早期提出,是对经典力学中的行星运动的类比和推广,被广泛认为是现代物理学的基石之一。
本文将详细介绍玻尔理论的基本原理、发展历程以及物理意义等方面的内容。
一、玻尔理论的基本原理玻尔理论的基本原理是,原子中的电子绕着原子核旋转并在不同的轨道上运动,每个轨道都对应一种能量状态。
这些轨道由一些固定的量子数来描述,电子在该轨道上的运动只能以某些特定的能量量子(即能量量子化)的形式存在,不能连续地进行。
玻尔理论基于下面两个假设:1.电子在原子内的运动是旋转而非运动,而且只有在确定的轨道上才能旋转;2.在该轨道上,电子的角动量是规定的,不会发生变化,电子在轨道上的能量也是规定的,不会变化。
基于上述假设,玻尔使用了量子条件来推导原子的能级结构,结果表明,电子在原子中所能具有的能量是量子化的,而且能量的量子数只能是一个自然数。
玻尔利用牛顿力学和库仑定律建立了一个简单的数学模型,这个模型用来描述电子在不同轨道上的运动状态。
这一模型成为了现代量子力学的基础之一,而且为认识原子和分子性质在物理学发展中起了关键作用。
二、玻尔理论的发展过程在19世纪晚期和20世纪初期,物理学家们已经通过研究原子光谱、电离现象和化学反应等现象展开了对原子的探索。
而这个领域的发展正是玻尔理论面世的背景和契机。
1900年,德国物理学家马克斯·普朗克提出了能量量子化的概念,从而开启了量子物理学的大门。
此后,量子理论得到了迅速的进展,但是对原子结构的理解仍然很有限。
1913年,玻尔提出了他的原子理论,用来解释原子光谱线上的谱线。
这个理论基于经典力学的公式,假设了电子在轨道上运动并将其运动状态量子化,使能量是离散的而不是连续的。
和量子力学有所不同的是,玻尔理论基于轨道和能量的概念来描述电子的运动状态,而不是以波函数的形式来描述。
随着量子力学的广泛应用和科学发展的进步,玻尔理论的内在瑕疵也逐渐显现出来。
原子结构的玻尔理论
1 m2
)
RH
me4
64
3 2 0
3c 1.09737314107 / m
实验值:RH 1.09677576107 / m
实验数据和理论结果之差异可以通过考虑原子核的质量 得到消除。比较两个R值可见玻尔理论和实验符合得相 当好显示了Bohr理论的成功。
0
En(eV)
-0.54 -0.85
-1.51
4. Einstein(1905)的光量子概念, 光是由能量为h的能量子组成的 (光子,具有动量,粒子性)
Niels Bohr (1885-1962)
“我一看到巴尔末公 式,整个问题对我来 说就全都清楚了。”
玻尔模型的三个假设(1913年):
1. 定态条件:原子系统只存在一系列不连续的能量状态,其电 子只能在一些特殊的圆轨道中运动,在这些轨道中运动时不 辐射电磁波(和经典理论不一致)。这些状态称为定态,相应
把电子看作是一经典粒子,推导中应用了牛顿定律,使用了轨 道的概念,所以玻尔理论不是彻底的量子论。角动量量子化的假 设以及电子在稳定轨道上运动时不辐射电磁波的是十分生硬的。
玻尔理论是经典与量子的混合物,它保留了经典的确定性轨道, 另一方面又假定量子化条件来限制电子的运动。
1. 对多电子原子无能为力; 2. 不能解释光谱线的强度;
Bohr在Rutherford原子模型的基础上,结合H原子光谱数据, Planck量子假设等众多发现,提出了H原子结构的半量子理 论。而原子结构(包括复杂原子的结构)的真正基础是量子力 学。
二、氢原子光谱的实验规律
若要了解物质的内部情况,只要看其光谱就可以了。 —牛顿
➢一般地说,人们无法直接进入原子内部进行观察和测量; ➢通常借助于原子和其它粒子之间的相互作用来了解原子
波尔的原子量子理论
把
En E1 12.5eV代入上式得
.6 n2 13.13 6 12.5 12.36
n 3.5 所以 因为n只能取整数,所以氢原子最高能激发 到 n=3的能级,当然也能激发到n=2的能级.于是 能产生3条谱线。
从n 3n1
~ R( 1 1 ) 8 R 1 9 1 3
2 2
9 1 89R 81.096776 m 102 . 6 nm 10
7
从n 3n 2
~ R( 1 1 ) 2 2 3
2 2
5 36
R
36 2 536 m 656 . 3 nm R 51.09677610
§1 玻尔的原子量子理论
4861.3
4340.5
6562.8
1. 氢原子光谱的规律性
红
蓝
紫
原子光谱是反映原子结构特点的特征谱。 氢原子谱线的波长可以用下列经验公式表示:
1 1 k 1,2,3, ~ R( 2 2 ) k n n k 1, k 2, k 3, 1 ~
13.6 En 2 , n 1,2,3, n
n
n4
n3
n2
E1 13.6eV
E1 E2 2 3.4eV 2 E1 E3 2 1.51eV 3
E 0
布拉开系 帕邢系 巴尔末系
0.85eV 1.51eV
3.40 eV
E1 0.85eV E4 2 4
4
玻尔于1922年12 月10日诺贝尔诞生 100周年之际,获诺 贝尔物理学奖。
4. 玻尔理论的缺陷
波尔的原子模型课件
2.能级跃迁:处于激发态的原子是不稳定的,它会自发地向较低 能级跃迁,经过一次或几次跃迁到达基态。所以一群氢原子处于量子 数为 n 的激发态时,可能辐射出的光谱线条数为:N=nn2-1=C2n.
3.光子的发射:原子由高能级向低能级跃迁时以光子的形式放出 能量,发射光子的频率由下式决定.
hν=Em-En(Em、En 是始末两个能级且 m>n) 能级差越大,放出光子的频率就越高.
A.氢原子从 n=2 跃迁到 n=1 的能级时, 辐射光的波长大于 656 nm B.用波长为 325 nm 的光照射,可使氢 原子从 n=1 跃迁到 n=2 的能级 C.一群处于 n=3 能级上的氢原子向低 能级跃迁时最多产生 3 种谱线 D.用波长为 633 nm 的光照射,不能 使氢原子从 n=2 跃迁到 n=3 的能级
特别提醒 (1)处于基态的原子是稳定的,而处于激发态的原子是不稳定的. (2)原子的能量与电子的轨道半径相对应,轨道半径大,原子的能 量大,轨道半径小,原子的能量小.
典例精析 (多选)玻尔在他提出的原子模型中所做的假设有( )
A.原子处于具有一定能量的定态中,虽然电子做加速运动,但 不向外辐射能量
2.能量量子化:与轨道量子化对应的能量不连续的现象. 电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量, 原子是稳定的,这样的状态也称之为定态. 由于原子的可能状态(定态)是不连续的,具有的能量也是不连续 的,这样的能量形式称为能量量子化.
3.频率条件 原子从一种定态(设能量为 E2)跃迁到另一种定态(设能量为 E1)时, 它辐射或吸收一定频率的光子,光子的频率由这两种定态的能量差决 定,即 hν=E2-E1. 可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形式 改变半径大小的,而是从一个轨道上“跳迁”到另一个轨道上.玻尔 将这种现象称作电子的跃迁. 总而言之:根据玻尔的原子理论假设,电子只能在某些可能轨道 上运动,电子在这些轨道上运动时不辐射能量,处于定态.只有电子 从一条轨道跃迁到另一条轨道上时才辐射能量,辐射的能量是一份一 份的,等于这两个定态的能量差.这就是玻尔理论的主要内容.
玻尔的原子模型
3、轨道量子化假设:原子的不同能量状态跟电子沿不 同的圆形轨道绕核运动相对应。原子的定态是不连续的, 因此电子的可能轨道的分布也是不连续的。(针对原子 核式模型提出,是能级假设的补充)
二、玻尔根据经典电磁理论和牛顿
力学计算出氢原子的电子的各条可能
在实验中,逐渐增加VG2K,由电流计读出板极电流IA,得到如 下图所示的变化曲线.
IA (uA)
e c a
d b
o
o
V1 V2
V3 V4
V5
V6
图2-2-4 夫兰克—赫兹管的IA~VG2K曲线
VG2K
4. 玻尔理论的局限性
●
玻尔理论虽然把量子理论引入原子领域,提
出定态和跃迁概念,成功解释了氢原子光谱,
B、对经典电磁理论中关于“做加速运动的 电荷要辐射电磁波”的观点表示赞同
C、用能量转化与守恒建立了原子发光频率 与原子能量变化之间的定量关系
D、玻尔的两个公式是在他的理论基础上利 用经典电磁理论和牛顿力学计算出来的
2、下面关于玻尔理论的解释中,不正确的说法
是( C
)
A、原子只能处于一系列不连续的状态中, 每个状态都对应一定的能量
程中( C )
A、原子要发出一系列频率的光子
B、原子要吸收一系列频率的光子
C、原子要发出某一频率的光子
D、原子要吸玻尔理论
仍然以经典理论为基础。如粒子的观念和轨道。
● 量子化条件的引进没有适当的理论解释。
5.电子在某处单位体积内出现的 概率——电子云(演示1.演示2)
练习:
1、对玻尔理论的下列说法中,正确的是 ACD
(
)
A、继承了卢瑟福的原子模型,但对原子能 量和电子轨道引入了量子化假设
玻尔原子理论
哈诺德· 玻尔
• 哈诺德于1909年取得哥本哈根大学博士学位,后去了哥廷根 大学学习数学,在周期函数方面颇有成就,回国后任哥本哈 根大学数学研究所所长。
尼尔斯· 玻尔和哈诺德· 玻尔-2
• “在尼尔斯的品性中,融合了父亲和母亲 身上美好影子.善良、谦和,但又正直、 聪明过人.他从来没有学会指责甚至伤 害别人,不会讲尖刻话.而弟弟海拉德 却喜欢捉弄人,挖苦人.每当他伤害了 自己的哥哥,大人出面干涉的时候,尼 尔斯总要为海拉德辩护:“海拉德聪明, 他没有错,我自愿受他捉弄.”对尼尔 斯来说,要他讥笑或挖苦别人是一件出 奇的难事,怎么也学不会.
• • •
对现代存在主义哲学有重要影响的哲学家兼文学家克尔恺郭尔(1813-1855),早 年曾在哥大学习神学 电磁学奠基人、物理学教授奥斯特(1777-1851)在做实验 丹麦现代文学奠基人、喜剧作家霍尔堡(1684-1751),在哥大连续执教37年
哥本哈根大学的名人们-4
• • •
菲比格(1867一1928),以癌症研究成果获1926年生理学或医学奖 芬森(1860一1904),首创光幅射法治疗皮肤病,获1903年生理学或医学奖 国际公认的英语语法权威耶斯佩生教授(1860-1943)
哥本哈根大学的名人们-2
• • •
比较语言学大师拉斯克(1787-1832),一生中研究的世界各民族语言不下50种 成为植物学家和化学家的医学教授博尔克(1626-1690) 达姆(1895-1976),以发现维生素K与发现维生素K的化学性质的美国学者多伊西 同获1943年生理学或医学奖
哥本哈根大学的名人们-3
丹麦皇家科学院悬赏论文
• 1905年,尼尔斯· 玻尔以《有关液体表面张力》的论文, 对物理学权威瑞利的基本理论做出了发展.因此获得了 丹麦皇家科学院一枚金质奖章.由此可见,尼尔斯· 玻 尔一开始就是学术上的一匹千里马。 • 1897 年 , 剑 桥 大 学 的 汤 姆 逊 发 现 原 子 , 原 子 中 存 在 “小硬球” . • 1907年,荷兰人洛伦兹则把这种“小硬球”称作“电 子”. • 1909年尼尔斯· 玻尔取得了科学硕士学位. • 1911年尼尔斯· 玻尔以《金属电子论》为题取得了哲学 博士学位,这是当时最前沿学科.当时组成的五人学术 评定委员,没有一位有足够的水平来评价这篇充满新颖 见解的论文 。丹麦报纸报道说:“尼尔斯· 玻尔——一 位白净的青年,用极短的时间就完成了博士论文答辨,
玻尔的原子模型
设汞原子的基态能量为E0,第一激发态的能量为E1,初速为零 的电子在电位差为U的加速电场作用下,获得能量为eU,具有这种 能量的电子与汞原子发生碰撞,当电子能量eU<E1-E0时,电子能量 几乎不损失。如果eU≥E1-E0=ΔE,则汞原子从电子中取得能量ΔE, 而由基态跃迁到第一激发态,ΔE=eUC。相应的电位差UC即为汞原子 的第一激发电位。 在实验中,逐渐增加UG2K,由电流计读出板极电流IA,得到如 下图所示的变化曲线. IA (uA)
说明:
(1)这里的能量指总能量(即E=Ek+Ep) (2)这里的电势能Ep<0,原因是规定了 无限远处的电势能为零。这样越是里面轨 道电势能越少,负得越多。 例如:E1=-13.6eV 实际上,其中 Ek1=13.6eV,Ep1=-27.2eV。
(3)能级与能级图:氢原子的各个定态的能量值,叫
它的能级。 基态和激发态: 在正常状态下, 原子处于最低 能级,这时电 子在离核最近 的轨道上运动, 这个定态叫基 态;除基态以 外的能量较高 的其他能级, 叫做激发态。
hv En Em
(h为普朗克常数)
本实验中是利用一定能量的电子与原子碰撞交换能 量而实现,并满足能量选择定则:
eU En Em
(U为激发电位)
弗兰克—赫兹实验
弗兰克-赫兹实验玻璃容器充以需测量的气体,本实 验用的是汞。电子由阴级K发出,K与栅极G之间有加速 电场,G与接收极A之间有减速电场。当电子在KG空间经 过加速、碰撞后,进入KG空间时,能量足以冲过减速电 场,就成为电流计的电流。
1925年,由于他二人的卓越贡献,他们获得 了当年的诺贝尔物理学奖(1926年于德国洛丁 根补发)。弗兰克-赫兹实验至今仍是探索原 子内部结构的主要手段之一。所以,在近代物 理实验中,仍把它作为传统的经典实验。
玻尔原子理论的发展论文
代入电子能量的表达式可以得到电子运动的轨道半径: rn= 1 e2 2 n 4π ξ 0 2Rhc (8)
(3)结果 根据以上条件可以计算出,电子的能量: mee4 1 1 En==- me(α c)2 2 8n2h2ξ 02 n2 其中 α 是精细结构常数,其大小约为 1/137。 电子的轨道半径: n2ξ 0h2 rn= π mee2
玻尔原子理论的发展
0.引言
玻尔原子理论是丹麦物理学家尼尔斯·玻尔(Niels Bohr,1885 年 10 月 7 日-1962 年 11 月 18 日)于 1913 年提出的关于氢原子结构的模型。对于稍微复杂一点的原子如氦 原子,玻尔理论就无法解释它的光谱现象,这说明玻尔理论还没有完全揭示微观粒子运动 的规律。通过玻尔原子理论发展历程的研究,揭示了人们认识客观世界的科学思维和研究 方法也在不断的演变,同时也体现了人类认识客观世界的手段和工具的进化,以及科学研 究方法演变和突破。
I
玻尔原子理论的发展
Abstract
The Bohr atom theory is the important achievements in the early 20th century physics, has a profound influence on atomic physics. With the development of human social practice, Bohr atom theory is changing, as the research content and scope of its research in development. To review the development process of Bohr atom theory, we not only to appreciation and memorial, more important is to learn valuable experience and enlightenment, to grasp the future development of science and the Chinese nation to us. Key words: Bohr,Bohr atom theory,Quantum mechanics,The development of Bohr atom theory
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
玻尔的原子理论——三条假设
(1)“定态假设”:原子只能处于一系列不连续的能量状态中,在这些状态中,电子虽做变速运动,但并不向外辐射电磁波,这样的相对稳定的状态称为定态。
定态假设实际上只是给经典的电磁理论限制了适用范围:原子中电子绕核转动处于定态时不受该理论的制约。
(2)“跃迁假设”:电子绕核转动处于定态时不辐射电磁波,但电子在两个不同定态间发生跃迁时,却要辐射(吸收)电磁波(光子),其频率由两个定态的能量差值决定hv=E 2-E 1。
跃迁假设对发光(吸光)从微观(原子等级)上给出了解释。
(3)“轨道量子化假设”:由于能量状态的不连续,因此电子绕核转动的轨道半径也不能任意取值,必须满足
)3,2,1(2 ==n nh mvr π。
轨道量子化假设把量子观念引入原子理论,这是玻尔的原子理论之所以成功的根本原因。
[P 4.] 二、氢原子能级及氢光谱 (1)氢原子能级: 原子各个定态对应的能量是不连续的,这些能量值叫做能级。
①能级公式:)6.13(1112eV E E n E n -==; ②半径公式:)m .r (r n r n 1011210530-⨯==。
(2)氢原子的能级图 (3)氢光谱
在氢光谱中,n=2,3,4,5,……向n=1跃迁发光形成赖曼线系;
n=3,4,5,6向n=2跃迁发光形成巴耳末线系;
n=4,5,6,7……向n=3跃迁发光形成帕邢线系;
n=5,6,7,8……向n=4跃迁发光形成布喇开线系,
其中只有巴耳末线系的前4条谱线落在可见光区域内。
[P5 .]三、几个重要的关系式
(1)能级公式 2126131n
eV .E n E n -== (2)跃迁公式 12E E h -=γ
(3)半径公式 )m .r (r n r n 1011
210530-⨯== (4) 动能跟n 的关系
由 n n n r mv r ke 2
22
= 得 2221221n r ke mv E n n kn ∝== (5)速度跟n 的关系n r m r ke v n
n n 112∝== (6)周期跟n 的关系332n r v r T n n
n n ∝==π
n E /eV ∞ 0 4。