《线性代数》矩阵的运算与概念
矩阵的基本概念和运算
矩阵的基本概念和运算矩阵是线性代数中的基本概念之一,广泛应用于数学、工程学、计算机科学和物理学等领域。
它是一个由数字排列成的矩形阵列,其中的数字称为矩阵的元素。
本文将详细介绍矩阵的基本概念和运算。
一、矩阵的基本概念矩阵由m行n列的数字排列组成,可以表示为一个m×n的矩阵。
其中,m为矩阵的行数,n为矩阵的列数。
每个元素可以用下标表示,例如矩阵A的第i行第j列的元素可以用A(i,j)表示。
二、矩阵的表示和分类矩阵可以用方括号表示,例如A = [aij],其中aij表示矩阵A的第i 行第j列的元素。
矩阵还可以分为不同的类型,如行矩阵、列矩阵、方阵等。
行矩阵是只有一行的矩阵,可以表示为A = [a1, a2, ..., an],其中ai 为矩阵A的第i个元素。
列矩阵是只有一列的矩阵,可以表示为A = [a1; a2; ...; an],其中ai 为矩阵A的第i个元素。
方阵是行数和列数相等的矩阵,可以表示为A = [aij],其中i和j都从1到n。
三、矩阵的运算1. 矩阵的加法对于两个相同大小的矩阵A和B,它们的加法可以定义为A + B = [aij+ bij],其中aij和bij分别为矩阵A和B的对应元素。
2. 矩阵的减法对于两个相同大小的矩阵A和B,它们的减法可以定义为A - B = [aij- bij],其中aij和bij分别为矩阵A和B的对应元素。
3. 矩阵的数乘对于一个矩阵A和一个实数k,它们的数乘可以定义为kA = [kaij],其中aij为矩阵A的元素。
4. 矩阵的乘法对于两个矩阵A和B,它们的乘法可以定义为C = AB,其中C的第i行第j列的元素可以表示为C(i,j) = ∑(ai,k * bk,j),其中k从1到n,n为矩阵A和B的列数。
四、矩阵的转置矩阵的转置是将矩阵的行和列互换得到的新矩阵。
例如,若A = [aij]为一个m×n的矩阵,它的转置矩阵记作AT,即AT = [aji],其中a ji为矩阵A的第j行第i列的元素。
线性代数课件第2章矩阵
于乘法中的数1. 课件
20
定义5 方阵 A 的 n 次幂定义为 n 个方阵 A 连
乘,即
6 47n个48
An A AL A
其中 n 为正整数,规定 A0 E ,其运算规律:
(1)AkAl Akl ;
(2)(Ak)l Akl (k,l为正整数) .
因为矩阵乘法不满足交换律,所以两个 n 阶方
数,记 A ( a ij ) , A 称为 A的共轭矩阵.
其运算规律(设 A,B为复矩阵,为复数,且
运算都是可行的):
(1) ABAB; (2) AA ;
(3) ABAB.
课件
27
2.3 逆矩阵
课件
28
2.3.1 逆矩阵的定义及性质
定义9 设 A 为 n 阶方阵,若存在 n 阶方阵 B ,
课件
23
所以
0 17
( A B )T
1
4
1
3
3 1 0
解法2 (AB)TBTAT
1 4 2 2 1 0 17 7 2 0 0 314 13
1 3 11 2 3 10
课件
24
定义7 设 A为 n阶方阵,若满足 AT A ,则
称 A为对称矩阵,即 ai jaji(i,j1 ,2,,n)
a21
b21
M
a12 b12 L a22 b22 L
M
am1
bm1
am2 bm2
L
a1n b1n
a2n
b2n
M
amn
bmn
= (aij + bij ) 课件
10
例1 设
A
3 1
0 4
75,
则
线性代数矩阵运算与特征值分解重点复习
线性代数矩阵运算与特征值分解重点复习线性代数是数学中的一个重要分支,研究了向量空间和线性映射的结构、性质和运算法则。
在线性代数中,矩阵运算和特征值分解是两个重要的概念和技巧。
本文将以复习的形式来介绍线性代数中的矩阵运算和特征值分解。
一、矩阵运算1. 矩阵的定义和基本运算- 矩阵是由数域上的元素组成的一个长方形的数组。
- 矩阵的基本运算包括加法、减法、数乘和乘法等。
2. 矩阵的转置和共轭转置- 矩阵的转置是将矩阵的行与列对调得到的新矩阵。
- 对于复数矩阵,还可以进行共轭转置,即将矩阵中的元素取复共轭得到的新矩阵。
3. 矩阵的逆和行列式- 逆矩阵是对于方阵A,存在一个矩阵B,使得AB=BA=I,其中I 是单位矩阵。
- 行列式是一个标量,用于判断矩阵是否可逆。
二、特征值和特征向量1. 特征值和特征向量的定义- 对于一个矩阵A和一个非零向量v,如果存在一个标量λ,使得Av=λv,那么v就是A的一个特征向量,λ就是A的对应特征值。
2. 特征值和特征向量的性质- 特征值和特征向量具有以下性质:- A的特征值的个数等于A的阶数。
- 特征向量的长度可以归一化,使得其模长为1.- 如果v是A的特征向量,那么对于任意非零标量c,cv也是A的特征向量。
3. 特征值分解- 特征值分解是将一个可对角化的矩阵表示为特征值和特征向量的形式。
- 设A是一个n阶方阵,如果存在一个非奇异矩阵P,使得P^-1AP=D,其中D是一个对角矩阵,那么称D的对角元素为A的特征值,P的列向量为A的特征向量。
4. 特征值分解的应用- 特征值分解在多个领域和问题中有广泛的应用,如主成分分析、图像压缩、物理系统的模态分析等。
总结:线性代数中的矩阵运算和特征值分解是重要的概念和技巧。
矩阵运算包括基本运算、转置和共轭转置、逆和行列式等,而特征值和特征向量的概念则提供了解析矩阵性质和变换的重要工具。
特征值分解是一种重要的矩阵分解形式,可以用于研究和求解各种问题。
《线性代数》课件-第二章 矩阵及其运算
a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:
3_1矩阵的概念及运算
3.同型矩阵与矩阵相等的概念 3.同型矩阵与矩阵相等的概念 (1)两个矩阵的行数相等 列数相等时,称为同型 两个矩阵的行数相等, (1)两个矩阵的行数相等,列数相等时,称为同型 矩阵. 矩阵 1 2 14 3 同型矩阵. 例如 5 6 与 8 4 为同型矩阵 3 7 3 9 同型矩阵, (2) 两个矩阵 A = aij 与B = bij 为同型矩阵 并且对应元素相等,即 并且对应元素相等 即
a11 a21 M am 1
a12 a22 M
L a1n L a2 n M
am 2 L amn
称为m行 列矩阵 列矩阵. 矩阵. 称为 行n列矩阵.简称 m × n 矩阵. 记作
a11 a 21 A= L a m1
简记为 A,
a12 a22 L am 1
ij
L a1n L a2 n L L L amn
A A B C D
0 1 1 0
1
B
C
D
1 1
0 0 1
0 0
0 0 1 0
这个数表反映了四城市间交通联接情况. 这个数表反映了四城市间交通联接情况
用矩阵表示
0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0
二、矩阵的概念
1. 定义 由 m × n 个数 aij (i = 1,2,L, m; j = 1,2,L, n ) 排成的 m行 n 列的数表
的解取决于 系数
aij (i, j = 1,2,L, n),
常数项 bi (i = 1,2,L,n)
矩阵的基本概念与运算
矩阵的基本概念与运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、计算机科学等领域。
本文将介绍矩阵的基本概念、运算规则以及常见的应用。
一、矩阵的基本概念矩阵是由数个数排列成的矩形阵列。
矩阵可以用方括号表示,例如:A = [a11, a12, a13;a21, a22, a23;a31, a32, a33]其中a11、a12等为矩阵元素,按行排列。
矩阵的行数为m,列数为n,则该矩阵称为m×n矩阵。
矩阵可以是实数矩阵,也可以是复数矩阵。
实数矩阵的元素全为实数,复数矩阵的元素可以是复数。
例如:B = [3+2i, -4-7i, 5+6i;-2+3i, 1-5i, -2i]二、矩阵的运算1. 矩阵的加法和减法若A、B为同型矩阵(行数和列数相同),则有:A +B = [a11+b11, a12+b12, a13+b13;a21+b21, a22+b22, a23+b23;a31+b31, a32+b32, a33+b33]A -B = [a11-b11, a12-b12, a13-b13;a21-b21, a22-b22, a23-b23;a31-b31, a32-b32, a33-b33]2. 矩阵的数乘若A为m×n矩阵,k为标量,则有:kA = [ka11, ka12, ka13;ka21, ka22, ka23;ka31, ka32, ka33]3. 矩阵的乘法若A为m×n矩阵,B为n×p矩阵,则它们的乘积AB为m×p矩阵,满足:AB = [c11, c12, c13;c21, c22, c23;c31, c32, c33]其中:c11 = a11b11 + a12b21 + a13b31c12 = a11b12 + a12b22 + a13b32c13 = a11b13 + a12b23 + a13b33...c33 = a31b13 + a32b23 + a33b334. 矩阵的转置若A为m×n矩阵,则其转置记作A^T,为n×m矩阵,满足:A^T = [a11, a21, a31;a12, a22, a32;a13, a23, a33]三、矩阵的应用1. 网络图论矩阵可以用于表示和分析网络图论中的关系和连接。
高考数学中的线性代数中的矩阵运算
高考数学中的线性代数中的矩阵运算线性代数作为数学中的一个重要分支,经常在高考数学中出现。
矩阵运算则是线性代数中很重要的一个概念,它蕴含着很多的数学知识,也是高考数学中比较常考的知识点。
一、矩阵的定义和运算矩阵是由$m$行$n$列数排成的矩形数组,用$\boldsymbol{A}$表示,即$\boldsymbol{A}=(a_{ij})_{m\times n}$。
矩阵的元素$a_{ij}$表示第$i$行第$j$列的数,矩阵的个数为$m\times n$个。
当矩阵的行数和列数相等时,即$m=n$时,该矩阵被称为方阵;当矩阵的元素全都为零时,该矩阵被称为零矩阵。
在矩阵中,有加法和数乘的运算。
设$\boldsymbol{A}$和$\boldsymbol{B}$是两个$m\times n$的矩阵,$k$是一个实数,则有以下定义:1.加法:$\boldsymbol{A}+\boldsymbol{B}=(a_{ij}+b_{ij})_{m\times n}$2.数乘:$k\boldsymbol{A}=(ka_{ij})_{m\times n}$可以看到,加法和数乘的运算是把矩阵的每个元素进行了相应的运算,使得它们们组成的矩阵整体进行了相应的变形。
二、矩阵乘法和逆矩阵矩阵乘法是矩阵运算中比较重要的一个概念,它描述了两个矩阵的相乘过程。
设$\boldsymbol{A}$是$m\times n$的矩阵,$\boldsymbol{B}$是$n\times p$的矩阵,则$\boldsymbol{C}=\boldsymbol{A}\boldsymbol{B}$是$m\times p$的矩阵,其中$\boldsymbol{C}$的元素$c_{ij}$由下式决定:$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}=\sum_ {k=1}^{n}a_{ik}b_{kj}$$可以看到,矩阵乘法描述了两个矩阵相乘后每个元素的变换过程,其结果是一个新的矩阵。
矩阵的基本概念与运算
矩阵的基本概念与运算矩阵是线性代数学科中的基础工具,这是因为矩阵可以用来表示线性变换和线性方程组。
对于矩阵的基本概念与运算,我们需要从以下几个方面来分析。
一、矩阵的基本概念1、定义与记法矩阵是一个由m行n列元素排成的矩形阵列,常用大写字母表示,如A、B、C等。
其中,阵列中的m表示矩阵的行数,n则表示矩阵的列数。
因此,一个m行n列的矩阵可以写成:$A_{m×n}=\begin{bmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{m1}&a_{m2}& \cdots&a_{mn}\\\end{bmatrix}$其中,$a_{ij}$ 表示矩阵 A 中第 i 行第 j 列的元素。
2、矩阵的类型按照元素类型可以将矩阵分为实矩阵、复矩阵和布尔矩阵等。
按照矩阵的形状,矩阵可以分为方矩阵、长方矩阵和列矩阵等。
二、矩阵的基本运算1、矩阵的加法假设有两个矩阵 $A_{m×n}$ 和 $B_{m×n}$,它们对应位置相加的结果记作 $C=A+B$,则:$C_{ij}=A_{ij}+B_{ij}$2、矩阵的数乘假设有一个矩阵 $A_{m×n}$ 和一个数 $\lambda$,则它们的乘积记作 $B=\lambda A$,则:$B_{ij}=\lambda A_{ij}$3、矩阵的乘法假设有两个矩阵 $A_{m×n}$ 和 $B_{n×p}$,它们的乘积记作$C=AB$,则:$C_{ij}=\sum_{k=1}^n A_{ik}B_{kj}$矩阵乘法需要满足结合律,但不满足交换律,也就是说,$AB$ 与 $BA$ 不一定相等。
线性代数 第二章 第1讲
称为 m n矩阵.简称 m n 矩阵. 记作
主对角线 a11 a12 a1n
A
a21
a22
a2n
副对角线 am1 am1 amn
矩阵A的
m, n元
简记为
A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
则称矩阵 A与B相等,记作 A B.
例1 设 A 1 2 3, 3 1 2
B 1 x 3, y 1 z
已知 A B,求 x, y, z. 解 A B,
x 2, y 3, z 2.
例2 n个变量x1, x2,, xn与m个变量y1, y2,, ym之 间的关系式
4 是一个 11 矩阵.
几种特殊矩阵
(1)行数与列数都等于 n 的矩阵 A ,称为 n 阶
方阵.也可记作 An .
例如
13 2
6 2
2i 2
是一个3 阶方阵.
2 2 2
(2)只有一行的矩阵
A a1,a2 ,,an , 称为行矩阵(或行向量).
a1
因为n为奇数,得 即奇数阶反对称矩阵行列式为零。
注: 当A,B均为对称矩阵时,A+B,kA仍为对称矩 阵。均为反对称矩阵时,有类似的结论。
5、方阵的行列式 定义6 由n阶方阵A的元素构成的行列式(各元素 位置不变),称为方阵A的行列式,记作|A|或detA 。
设A,B为n阶方阵,为实数,则有下列等式成立
对线性方程组的 研究可转化为对 这张表的研究.
B
城市之间开辟了若干航线 ,
如图所示表示了四城市间的 A
线性代数中矩阵的基本概念与运算
线性代数中矩阵的基本概念与运算线性代数是数学中的一个分支,其中矩阵的概念和运算是非常基本的。
本文将简单介绍矩阵的基本概念和运算。
矩阵的基本概念矩阵是一个方形或长方形的数表,其中的数被排列在行和列中。
一个矩阵通常用大写字母来表示,如下所示:$$A =\begin{bmatrix}a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1} & a_{m,2} & \cdots & a_{m,n}\end{bmatrix}$$其中 $m$ 表示矩阵的行数,$n$ 表示矩阵的列数,$a_{i,j}$ 表示第 $i$ 行第 $j$ 列的元素。
对于一个 $m \times n$ 的矩阵,我们可以简单地把它看做是$n$ 个列向量的组合,每个列向量是一个 $m$ 维的向量。
也就是说,$A$ 可以被写成如下形式:$$A = [a^{(1)}, a^{(2)}, \cdots, a^{(n)}]$$其中 $a^{(i)}$ 表示矩阵 $A$ 的第 $i$ 列向量。
矩阵的加法和减法两个同规格的矩阵可以进行加法和减法运算。
对于两个 $m\times n$ 的矩阵 $A$ 和 $B$,它们的和可以表示为:$$C = A + B =\begin{bmatrix}a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} & \cdots & a_{1,n}+b_{1,n} \\a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} & \cdots & a_{2,n}+b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}+b_{m,1} & a_{m,2}+b_{m,2} & \cdots &a_{m,n}+b_{m,n}\end{bmatrix}$$同理,它们的差可以表示为:$$D = A - B =\begin{bmatrix}a_{1,1}-b_{1,1} & a_{1,2}-b_{1,2} & \cdots & a_{1,n}-b_{1,n} \\a_{2,1}-b_{2,1} & a_{2,2}-b_{2,2} & \cdots & a_{2,n}-b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}-b_{m,1} & a_{m,2}-b_{m,2} & \cdots & a_{m,n}-b_{m,n}\end{bmatrix}$$需要注意的是,在进行矩阵加法和减法运算时,这些矩阵必须是同规格的,也就是说它们的行数和列数都必须相等。
矩阵的概念和计算
矩阵的概念和计算矩阵是线性代数中一种重要的数学工具,广泛应用于各个领域,包括物理、工程、计算机科学等。
本文将详细介绍矩阵的概念,以及矩阵的基本运算和计算方法。
一、矩阵的概念矩阵是由数个数按一定的规律排列成的长方形阵列。
矩阵由m行n列元素组成,可以表示成一个m×n的形式。
其中,m表示矩阵的行数,n表示矩阵的列数。
每个元素在矩阵中由其所在的行号和列号来确定。
例如,一个3×2的矩阵可以表示为:A = [a11, a12;a21, a22;a31, a32]其中,a11, a12, a21, a22, a31, a32分别表示矩阵A中的元素。
二、矩阵的基本运算1. 矩阵的加法矩阵的加法是指对应元素相加,要求两个矩阵具有相同的行数和列数。
例如,对于两个3×2的矩阵A和B,其加法可以表示为:C = A + B = [a11 + b11, a12 + b12;a21 + b21, a22 + b22;a31 + b31, a32 + b32]2. 矩阵的减法矩阵的减法是指对应元素相减,同样需要两个矩阵具有相同的行数和列数。
例如,对于两个3×2的矩阵A和B,其减法可以表示为:C = A - B = [a11 - b11, a12 - b12;a21 - b21, a22 - b22;a31 - b31, a32 - b32]3. 矩阵的数乘矩阵的数乘是指矩阵中的每个元素都乘以一个常数。
例如,对于一个3×2的矩阵A和一个常数k,其数乘可以表示为:B = kA = [ka11, ka12;ka21, ka22;ka31, ka32]4. 矩阵的乘法矩阵的乘法是指满足前一个矩阵的列数等于后一个矩阵的行数的情况下,将相应的元素相乘再相加得到新的矩阵。
例如,对于一个m×n 的矩阵A和一个n×p的矩阵B,其乘法可以表示为:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中,cij表示矩阵C中第i行第j列的元素,其计算方法为:cij = a[i1]b[1j] + a[i2]b[2j] + ... + a[in]b[nj]三、矩阵的计算方法1. 矩阵的转置矩阵的转置指的是将矩阵的行和列互换得到的新矩阵。
高教社2024高等数学第五版教学课件-9.3 矩阵的定义与运算
例2 含有个未知量个方程的线性方程组
11 1 + 12 2 + ⋯ + 1 = 1
21 1 + 22 2 + ⋯ + 2 = 2
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
1 1 + 2 2 + ⋯ + =
把它的系数 ( = 1,2, ⋯ , ; = 1,2, ⋯ , )与常数项 ( = 1,2, ⋯ , )按照
⋮
2
⋯
⋯
⋱⋯Leabharlann 12⋮
称为行列矩阵,简称 × 矩阵.矩阵通常用大写字母, , , ⋯,表示.例
如,上述矩阵可以记为或× ,也可记为 = [ ].
特别地,
当 = 1时,矩阵只有一行,即 = (11
12
⋯ 1 ),称为行矩阵;
当 = 1时,矩阵只有一列,即 = ⋮ ,称为列矩阵;
12
22
⋮
2
11
⋯ 1
21
⋯ 2
, = ⋮
⋱
⋮
1
⋯
12
22
⋮
2
⋯ 1
⋯ 2
⋱
⋮
⋯
其 中 = 1 1 + 2 2 + ⋯ + = σ=1 ( = 1, 2, ⋯ , ; = 1, 2, ⋯ , ) ,
素可以是零也可以不是零.同时,上(或下)三角矩阵一定是方阵.上三角矩
阵和下三角矩阵统称为三角矩阵.
3.对角矩阵
若一个阶方阵既是上三角矩阵,又是下三角矩阵,则称其为阶对
角矩阵( = 0, ≠ , , = 1,2, ⋯ , ),记为.对角矩阵是非零元素(如
矩阵的概念和运算
矩阵的概念和运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、经济学等各个领域中。
本文将介绍矩阵的基本概念和运算,以及其在实际问题中的应用。
一、矩阵的定义和表示矩阵是由m行n列的数量排列在一个矩形阵列中的数或者符号所组成的矩形数表。
一般用大写字母表示矩阵,例如A、B、C等。
矩阵可以表示为:A = [a_ij],其中1 ≤ i ≤ m,1 ≤ j ≤ n其中a_ij表示矩阵A中第i行第j列的元素。
二、矩阵的基本运算1. 矩阵的加法矩阵的加法满足相同位置元素相加的规则,即相同位置的元素相加得到新矩阵的对应位置元素。
例如:A = [a_ij],B = [b_ij],C = [c_ij]A +B = [a_ij + b_ij] = C2. 矩阵的数乘矩阵的数乘指将一个数与矩阵中的每个元素相乘,得到新矩阵。
例如:A = [a_ij],k为实数kA = [ka_ij]3. 矩阵的乘法矩阵的乘法是指两个矩阵相乘得到新矩阵的运算。
矩阵的乘法满足“行乘列”规则,即第一个矩阵的行元素与第二个矩阵的列元素相乘并求和得到新矩阵的对应位置元素。
例如:A = [a_ij],B = [b_ij],C = [c_ij]AB = C,其中c_ij = ∑(a_ik * b_kj)4. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到新矩阵。
若A为m行n 列的矩阵,其转置矩阵记作A^T,则A^T为n行m列的矩阵,且A的第i行第j列的元素等于A^T的第j行第i列的元素。
三、矩阵的应用1. 线性方程组矩阵可以用来表示线性方程组,通过矩阵的运算可以更方便地求解线性方程组的解。
例如:Ax = b其中A为系数矩阵,x为未知数向量,b为常数向量。
通过矩阵的运算,可以求解出未知数向量x。
2. 矩阵的特征值和特征向量矩阵的特征值和特征向量是线性代数中的重要概念,用于描述矩阵在向量空间中的变换性质。
特征向量是指在矩阵变换下保持方向不变的非零向量,特征值是指对应于特征向量的标量。
矩阵的运算与逆矩阵
矩阵的运算与逆矩阵矩阵是线性代数中重要的概念之一,广泛应用于各个领域,包括数学、物理、计算机科学和经济学等。
本文将介绍矩阵的运算以及逆矩阵的概念与计算方法。
一、矩阵的基本概念矩阵是一个按照矩形排列的数或者变量的集合。
矩阵的行数与列数分别称为其维数。
二、矩阵的运算2.1 矩阵的加法将两个矩阵的相应元素进行相加,得到的结果矩阵即为它们的和。
2.2 矩阵的乘法矩阵的乘法是指将一个矩阵的行与另一个矩阵的列进行对应元素相乘再相加的运算。
注意乘法只有当第一个矩阵的列数与第二个矩阵的行数相等时才能进行。
2.3 矩阵的转置将矩阵的行与列进行交换得到的新矩阵称为原矩阵的转置矩阵。
转置矩阵的行数与原矩阵的列数相等,列数与原矩阵的行数相等。
三、逆矩阵的定义与性质3.1 逆矩阵的定义对于一个n阶实矩阵A,如果存在一个n阶矩阵B,使得AB=BA=I,其中I为单位矩阵,则矩阵B称为矩阵A的逆矩阵。
3.2 逆矩阵的存在性一个n阶矩阵A存在逆矩阵的充要条件是A是一个可逆矩阵,即其行列式不为零。
当A存在逆矩阵时,逆矩阵是唯一的。
3.3 逆矩阵的性质逆矩阵的转置等于逆矩阵的逆矩阵,即(A^-1)^T = (A^T)^-1。
两个矩阵的乘积的逆矩阵等于逆矩阵的乘积,即(AB)^-1 = B^-1 *A^-1。
四、计算逆矩阵的方法4.1 初等行变换法通过初等行变换将矩阵A通过一系列矩阵的乘法变为单位矩阵I,同时对单位矩阵进行相同操作所得的矩阵即为矩阵A的逆矩阵。
4.2 行列式法对于一个n阶矩阵A,如果其行列式不为零,则通过求解伴随矩阵所得的矩阵即为A的逆矩阵。
4.3 元素法通过增广矩阵[A, E](其中E为n阶单位矩阵)进行行变换将矩阵A变换为单位矩阵I,此时增广矩阵的右半部分即为A的逆矩阵。
五、矩阵与线性方程组利用矩阵与线性方程组的关系可以方便地求解线性方程组。
对于一个n个未知数和m个方程的线性方程组,可以将其写成矩阵形式AX=B,其中A为系数矩阵,X为未知数矩阵,B为常数矩阵。
线性代数中的矩阵运算与特征值分析
线性代数中的矩阵运算与特征值分析矩阵是线性代数中的重要概念,它在各个领域中都有着广泛的应用。
矩阵运算和特征值分析是矩阵理论的核心内容,对于深入理解线性代数的基本原理和解决实际问题具有重要意义。
一、矩阵运算1. 矩阵的定义矩阵是由m行n列的数按一定顺序排列成的一个数表,通常用大写字母表示。
例如,一个3行2列的矩阵A可以表示为:A = [a11 a12a21 a22a31 a32]其中a11、a12等表示矩阵A中的元素。
2. 矩阵的加法和减法矩阵的加法和减法是按矩阵对应元素相加和相减得到的。
对于两个m行n列的矩阵A和B,它们的加法和减法定义如下:A +B = [a11+b11 a12+b12a21+b21 a22+b22a31+b31 a32+b32]A -B = [a11-b11 a12-b12a21-b21 a22-b22a31-b31 a32-b32]3. 矩阵的乘法矩阵的乘法是指两个矩阵相乘得到一个新的矩阵。
对于一个m行n列的矩阵A 和一个n行p列的矩阵B,它们的乘法定义如下:AB = [c11 c12 c13c21 c22 c23c31 c32 c33]其中c11、c12等表示新矩阵C中的元素,计算方式为:c11 = a11*b11 + a12*b21 + a13*b31c12 = a11*b12 + a12*b22 + a13*b32c13 = a11*b13 + a12*b23 + a13*b33...矩阵乘法满足结合律,但不满足交换律,即AB ≠ BA。
4. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
对于一个m行n列的矩阵A,它的转置定义为:A^T = [a11 a21 a31a12 a22 a32]转置矩阵的性质包括:(A^T)^T = A,(A + B)^T = A^T + B^T,(kA)^T = k(A^T),(AB)^T = B^T A^T。
二、特征值与特征向量1. 特征值与特征向量的定义对于一个n阶方阵A,如果存在一个非零向量x,使得Ax = λx,其中λ为一个数,则称λ为矩阵A的特征值,x为对应的特征向量。
线性代数第四讲_矩阵的概念及其加减乘运算讲义
一 部分特殊矩阵
1
零矩阵 所有元素均为 0 的矩阵称为零矩阵,记为O 例如
O22 0 0 0 0 O23 0 0 0 0 0 0
O33 0 0 0 0 0 0 0 0 0
一 矩阵的定义:
第四讲 矩阵的概念及其运算
由 mn 个数 aij(i1, 2, , m;j1, 2, , n)排成 的一个 m 行 n 列的矩形表称为一个 mn 矩阵
a11 a21 记作 Amn= am1
a12 a1n a22 a2n am2 amn
a11±b11 a12±b12 … a1n±b1n a21± b21 a22 ±b22 … a2n±b2n A±B= … … … am1±bm1 am2±bm2 … amn±bmn
1 2 例1 设 A 3 +5 2+6 解 A B 3 4 7 8 3+7 4+8
2 方阵 若矩阵A的行数与列数都等于n, 则称A为n阶矩阵,或称为n阶方阵
例如
A22 1 2 3 4
B33 2 5 3 1 2 2 7 4 4
3 行矩阵与列矩阵: 只有一行的矩阵称为行矩阵 只有一列的矩阵称为列矩阵
也可以用小写黑体字母 例如
1 0 0 diag(1,2,3) 0 2 0 0 0 3
2 0 diag(2,1,3,4) 0 0 0 2 0 0 0 0 3 0 0 0 0 4
5 数量矩阵 如下形式的 n 阶矩阵称为数量矩阵 a A 0 0 0 a 0
b11 0 B b21 b22 bn1 bn2
矩阵的基本概念与运算
矩阵的基本概念与运算矩阵是线性代数中的基本概念之一,它具有广泛的应用。
本文将介绍矩阵的基本概念以及涉及的运算方法。
一、矩阵的定义与表示方法矩阵是一个按照矩形排列的数阵,它由m行n列的数构成。
一个矩阵可以用一个大写字母加上下标的方式表示,例如A、B、C等。
如果一个矩阵共有m行n列,我们将其记作A(m×n)。
二、矩阵的基本运算1. 矩阵的加法设有两个矩阵A(m×n)和B(m×n),矩阵A与矩阵B的和记作A + B,其定义为矩阵中对应元素相加所得的新矩阵,即(A + B)(i,j) = A(i,j) +B(i,j)。
需要注意的是,两个矩阵进行加法运算时,必须满足相加的两个矩阵具有相同的行数和列数。
2. 矩阵的数乘设有一个矩阵A(m×n)和一个常数k,矩阵A乘以常数k的结果记作kA,其定义为将矩阵A的每个元素都乘以k所得的新矩阵,即(kA)(i,j) = k * A(i,j)。
同样需要注意的是,常数与矩阵的乘法满足交换律,即kA = Ak。
3. 矩阵的乘法矩阵的乘法是矩阵运算中的重要一环。
设有两个矩阵A(m×n)和B(n×p),这两个矩阵可以相乘得到一个新的矩阵C,记作C = A * B。
新矩阵C的元素由矩阵A的行向量与矩阵B的列向量的内积所得,即C(i,j) = A(i,1) * B(1,j) + A(i,2) * B(2,j) + ... + A(i,n) * B(n,j)。
4. 矩阵的转置设有一个矩阵A(m×n),将A的行换成列,列换成行所得到的新矩阵称为A的转置矩阵,记作A^T。
三、矩阵的特殊类型1. 零矩阵零矩阵是指所有元素都为零的矩阵,记作O。
零矩阵的尺寸通常根据上下文来确定。
2. 方阵方阵是行数与列数相等的矩阵,记作A(n×n)。
方阵具有许多重要的性质和特点。
3. 单位矩阵单位矩阵是一个主对角线上元素都为1,其余元素都为零的方阵,记作I。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
负矩阵
称矩阵
零矩阵
-a11 -a12 -a1n -a21 -a22 -a2n -am1 -am2 -amn
为A的负矩阵,记作 –A.
所有元素均为0的矩阵称为零矩阵,记为O.
行矩阵与列矩阵
只有一行的矩阵称为行矩阵,只有一列的矩阵称为列矩阵.常用小 写黑体字母 a,b,x,y 等表示.例如
反例.设 A 0 10 1 1 21 5
则 AB 0 10 1 1 21 5
, B = 1 2 3 . 2 1 0
1 2 3 无意义. 2 1 0
23 例3.设 A 1 2 , B = 1 2 3 ,求AB及BA .
2 1 0 31
23 解: AB 1 2
31
1 2 3 2 1 0
8 7 6
(1)先行后列法
3. 矩阵的乘法
某厂家向A, B, C三个代理商发送四款产品.
产品 甲 乙 丙 丁
单价(元/箱)20 50 30 25 重量(Kg/箱)16 20 16 16
数量(箱) 产品 A B C
甲 200 180 190 乙 100 120 100 丙 150 160 140 丁 180 150 150
ABC 总价(元) 18000 18150 16750 总重(Kg)
2 1 0 31
23
8 7 6
解:AB 1 2 1 2 3 3 0 3 ;
3 1 2 1 0
5 7 9
BA 1 2 3 2 1 0
23 1 2 9 4
38 31
通常采用:先行后列法
23 例3.设 A 1 2 , B = 1 2 3 ,求AB及BA .
2 1 0 31
8 7 6 解: AB 3 0 3 , BA 9 4 .
0 3 6 9 0 12 8 16
92 156 214 60 7 9 17 6 64 02 1210 914 2 2 2 5 .
00 312 68 916 0 9 2 7
3572
1320
例2.已知 A 2 0 4 3 , B 2 1 5 7 ,
0 1 23
0 6 48
且A2XB,求X .
解:
b11 b12 b1n
c11 c12 c1n
b21 b22 b2n c21 c22 c2n
am1 am2 ams bs1 bs2 bsn
cm1 cm2 cmn
cijai1b1jai2b2j aisbsj (i1, 2, , m;j1, 2, , n) .
注: A的列数等于B的行数,AB才有意义;
某厂家向A, B, C三个代理商发送四款产品.
产品 甲 乙 丙 丁
单价(元/箱)20 50 30 25 重量(Kg/箱)16 20 16 16
数量(箱) 产品 A B C
甲 200 180 190 乙 100 120 100 丙 150 160 140 丁 180 150 150
ABC 总价(元) 18000 18150 16750 总重(Kg) 10480 10240 9680
ABC 总价(元) 18000 18150 16750 总重(Kg) 10480
16200 +20100 +16150 +16180 = 10480
3. 矩阵的乘法
某厂家向A, B, C三个代理商发送四款产品.
产品 甲 乙 丙 丁
单价(元/箱)20 50 30 25 重量(Kg/箱)16 20 16 16
这些有序数组可以构成一个表
a11 a12 a1n b1 a21 a22 a2n b2 ,这个表就称为矩阵. am1 am2 amn bm
定义1 由 mn 个数 aij(i1, 2, , m;j1, 2, , n)排成一个 m 行 n 列的矩形表称为一个 mn 矩阵,记作
a11 a12 a1n a21 a22 a2n am1 am2 amn
b11 0 B b21 b22
bn1 bn2
0 0. bnn
对角矩阵
如下形式的 n 阶矩阵称为对角矩阵.
a11 0 0 A 0 a22 0 .
0 0 ann
对角矩阵可简单地记为Adiag(a11, a22, , ann) . 单位矩阵(Identity matrix)
如下形式的 n 阶矩阵称为单位矩阵,记为 En 或 E.
C的行数等于A的行数,列数等于B的列数.
b1j
cij (ai1 ai2 ais )
b2j
ai1b1jai2b2j aisbsj .
bsj
因此, cij 可表示为 A 的第 i 行与 B 的第 j 列的乘积.
矩阵乘法AB :
1.条件: 前列=后行
2.结果:前行×后列
m×k
k×n
相等
m×n
3 1 2 1 0
5 7 9
(1)先行后列法
23 例3.设 A 1 2 , B = 1 2 3 ,求AB及BA .
2 1 0 31
23
8
解: AB 1 2 1 2 3 3
3 1 2 1 0
5
(2)先列后行法
23 例3.设 A 1 2 , B = 1 2 3 ,求AB及BA .
2 1 0 31
23
其中 aij 称为矩阵的第 i 行第 j 列的元素. 一般情况下,我们用大写字母 A,B,C 等表示矩阵.
mn矩阵A简记为 A(aij)mn 或记作 Amn .
什么是矩阵?
黑客帝国3 The matrix revolution
• 机器帝国集结了乌贼大军攻打真实世界仅存的人类 城市-锡安城,锡安城内的人类拼死抵抗,但最后 仍是兵败如山倒;另一方面,电脑人史密斯进化成 为更高等的电脑病毒,几乎占领了整个矩阵 (Matrix),甚至包括了“矩阵之母”-先知。经 过与先知密谈的救世主尼奥进入机器城市,与矩阵 的造物主达成停战协议。
X ½ *(B-A)
1
2 0
2 1
5 1
2 4
2
0
5
2
5
1 1 0 1/ 2
5/2 1/ 2
1 2
。
0
5/2
1
5
/
2
3. 矩阵的乘法
某厂家向A, B, C三个代理商发送四款产品.
产品 甲 乙 丙 丁
单价(元/箱)20 50 30 25 重量(Kg/箱)16 20 16 16
20190 +50100 +30140 +25150 = 16750
3. 矩阵的乘法
某厂家向A, B, C三个代理商发送四款产品.
产品 甲 乙 丙 丁
单价(元/箱)20 50 30 25 重量(Kg/箱)16 20 16 16
数量(箱) 产品 A B C
甲 200 180 190 乙 100 120 100 丙 150 160 140 丁 180 150 150
性质(1)-(8),称为矩阵线性运算的8条性质,须熟记.
3572
1320
例1.设 A 2 0 4 3 ,B 2 1 5 7 ,求3A2B .
0 1 23
0 6 48
3572 1320 解:3A2B 3 2 0 4 3 2 2 1 5 7
0123 0648
9 15 21 6 2 6 4 0
6 0 12 9 4 2 10 14
则以数k乘矩阵A的每一个元素所得到的mn矩阵称为数k与矩 阵A的积,记为kA.即
ka11 ka12 ka1n kA ka21 ka22 ka2n .
kam1 kam2 kamn
矩阵数乘的性质 设A,B,C,O都是mn矩阵,k,l为常数,则
(5) k(AB)kAkB; (6) (kl)AkAlA ; (7) (kl)Ak(lA); (8) 1AA .
则由元素
cijai1b1jai2b2j aisbsj (i1, 2, , m;j1, 2, , n)
构成的mn矩阵C 称为矩阵 A 与矩阵 B 的积,记为CAB .
c11 c12 c1n
即
AB c21 c22 c2n .
cm1 cm2 cmn
3. 矩阵的乘法
a11 a12 a1s a21 a22 a2s
产品 甲 乙 丙 丁
单价(元/箱)20 50 30 25 重量(Kg/箱)16 20 16 16
数量(箱) 产品 A B C
甲 200 180 190 乙 100 120 100 丙 150 160 140 丁 180 150 150
ABC 总价(元) 18000 18150 总重(Kg)
20180 +50120 +30160 +25150 = 18150
数量(箱) 产品 A B C
甲 200 180 190 乙 100 120 100 丙 150 160 140 丁 180 150 150
ABC 总价(元) 18000 总重(Kg)
20200 +50100 +30150 +25180 = 18000
3. 矩阵的乘法
某厂家向A, B, C三个代理商发送四款产品.
23 例3.设 A 1 2 , B = 1 2 3 ,求AB及BA .
2 1 0 31
23
8 7 6
解: AB 1 2 1 2 3 3 0 3
3 1 2 1 0
(1)先行后列法
23 例3.设 A 1 2 , B = 1 2 3 ,求AB及BA .2 1 0 31来自238 7 6
解: AB 1 2 1 2 3 3 0 3
矩阵的减法可定义为: A B A (B) (aij bij )mn
显然:若A=B,则A+C=B+C,A-C=B-C; 若A+C=B+C,则A=B.