新能源汽车能量管理系统
纯电动汽车能量管理方案
纯电动汽车能量管理方案一、引言随着全球能源危机和环境问题日益严重,电动汽车作为一种清洁、高效、可持续的交通工具,受到了广泛关注。
电动汽车的发展离不开能量管理系统的支持。
能量管理系统是电动汽车的核心组成部分,主要负责电池的充放电管理、能量分配、动力系统控制等功能。
本文将针对纯电动汽车能量管理方案进行探讨,以提高电动汽车的能量利用效率和经济性。
二、电动汽车能量管理系统的组成与功能电动汽车能量管理系统主要由电池管理系统(BMS)、电机控制系统(MCU)、能量分配单元(EAU)等组成。
各部分功能如下:1. 电池管理系统(BMS):负责电池的充放电管理、状态估计、故障诊断等功能。
通过对电池的电压、电流、温度等参数的实时监测,确保电池在安全、稳定、高效的运行条件下工作。
2. 电机控制系统(MCU):负责电机的转速、扭矩、转向等控制。
根据驾驶员的意图和车辆行驶状态,调节电机输出,实现动力系统的最优匹配。
3. 能量分配单元(EAU):负责整车的能量分配与优化。
根据电池状态、电机负载、行驶工况等因素,动态调整能量流动,实现能量的高效利用。
三、能量管理策略能量管理策略是电动汽车能量管理的核心,主要包括以下几个方面:1. 动力系统控制策略:根据驾驶员的意图和车辆行驶状态,动态调节电机输出,实现动力系统的最优匹配。
在保证动力性能的前提下,降低能耗。
2. 能量回收策略:在制动或减速过程中,通过电机反向发电,将一部分动能转化为电能,存储到电池中,实现能量的回收利用。
3. 电池充放电策略:根据电池的实时状态,合理控制充放电电流和电压,延长电池寿命,提高能量利用率。
4. 预测性能量管理策略:通过车载传感器和通信系统,获取实时路况、交通信号等信息,预测车辆未来行驶工况,提前调整能量分配策略,实现能量的优化利用。
四、能量管理方案实施与效果评估1. 硬件设备升级:为了实现先进的能量管理策略,需要对电动汽车的硬件设备进行升级。
包括高性能电池、电机、传感器等。
在新能源汽车中的能量管理系统设计
在新能源汽车中的能量管理系统设计随着全球环保意识的增强以及电子技术的快速发展,新能源汽车在未来的市场中已成为不可忽视的存在。
与传统汽车相比,新能源汽车具有更低的环境污染、更高的能源利用效率和更长的使用寿命等优点。
而在新能源汽车领域中,能量管理系统是其重要的组成部分之一,它决定着整车的性能、经济性和安全性。
因此,新能源汽车中的能量管理系统设计至关重要,本文将在此探讨。
一、新能源汽车的能量管理系统新能源汽车的能量管理系统主要由电池管理系统(BMS)和电机控制器(EMS)两部分构成,其中BMS负责电池的管理和控制,EMS则负责电机的控制。
BMS主要包括电池状态监测、电池模型估算、电池寿命预测、电池充电和放电控制等功能。
其中,电池状态监测是最为重要的一项功能,它能够实时监测电池组的电压、电流、温度等参数,以实现电池状态的精确估算和及时报警。
同时,电池寿命预测也是一项非常重要的功能,它可以通过记录电池的历史使用数据,预测电池组的寿命,并在必要时进行保养和更换。
EMS则是控制电机运转的主要组成部分,其功能主要包括电机变频控制、制动控制、电机调速等。
在新能源汽车的能量管理系统中,EMS的作用是控制电机功率,提高车辆的经济性和动力性。
二、新能源汽车的能源利用效率新能源汽车的能源利用效率是指其消耗的能源与实际行驶的里程之比。
在传统汽车中,能源损耗主要集中在发动机和变速器上,能源利用率很低。
而在新能源汽车中,因为电机与电池比较直接的关系,能源利用效率更高。
对于新能源汽车的能源利用效率,主要有两个指标,分别为能量利用系数和能量回收率。
能量利用系数指汽车的综合工作效率,包括了电机效率、电池效率、传动效率等因素,其定义为:能量利用系数 = 实际行驶里程 / 电池组总储能量能量回收率指汽车制动时回收的能量或者行驶过程中充电回收的能量与电池总储能的比值,即:能量回收率 = 回收能量 / 电池组总储能量在新能源汽车的设计中,对其能源利用效率的提升是非常重要的,也是能源管理系统需要考虑的重要因素之一。
新能源汽车的结构
新能源汽车的结构新能源汽车是指以新能源替换或辅助传统燃料的动力系统的汽车,它以电能为主要动力来源,具有减少排放、节能环保等优势。
在新能源汽车的结构中,包括以下几个主要部分。
一、动力系统部分新能源汽车的动力系统主要由电动机、电池组和电控系统组成。
电动机是新能源汽车的基本动力元件,它将电能转换为机械能驱动车辆行驶。
电池组则是提供电能的装置,它存储和释放能量,为电动机提供电力源。
电控系统是控制电动机和电池组工作的系统,它通过监测和控制电流、电压等参数来保证电动机和电池组的正常运行。
二、储能系统部分新能源汽车的储能系统主要用于存储电能,以满足车辆行驶的需要。
常见的储能系统包括锂离子电池、镍氢电池、燃料电池等。
锂离子电池是目前使用最广泛的储能系统,具有能量密度高、充放电效率高等优点,适用于纯电动汽车。
镍氢电池是一种相对成熟的储能系统,在混合动力汽车中得到了广泛应用。
燃料电池以氢气为燃料,通过与氧气反应产生电能,适用于燃料电池汽车。
三、能量控制部分新能源汽车的能量控制部分主要包括能量管理系统和充电系统。
能量管理系统是对新能源汽车能量流动进行管理和调度的系统,它通过控制电动机和电池组的工作状态来满足车辆行驶的需求,并实现能量的最优利用。
充电系统是新能源汽车接受外部电源充电的设备,它包括充电桩和充电接口等部分,可以通过连接外部电源将电能传输到电池组中。
四、控制系统部分新能源汽车的控制系统主要由车载电脑和相关传感器组成。
车载电脑是新能源汽车控制和管理的中枢,它通过采集和分析传感器所获取的数据来实现对车辆的控制和运行状态的监测。
传感器则是用于实时监测车辆各个部件工作状态和环境参数的装置,如温度传感器、压力传感器等。
五、车身结构部分新能源汽车的车身结构与传统汽车相似,包括车身框架、车身板材等部分。
新能源汽车在车身结构上通常采用轻量化设计,以提高能量利用率和车辆的续航能力。
同时,为了降低车辆的空气阻力,新能源汽车的车身形状通常采用流线型设计。
新能源汽车的能量管理系统
新能源汽车的能量管理系统随着现代科技的迅猛发展,新能源汽车已经成为了一个备受瞩目的领域。
新能源汽车的能源管理系统也就越来越重要,这样才能保证这些车辆的稳定和安全。
在本文中,我将详细介绍新能源汽车的能源管理系统,希望能对大家有所启发。
一、能源管理系统的基本组成如果你去拆卸一个新能源车型,你会发现新能源车型比传统车型更加复杂。
其中一个显著区别就是在新能源车型的后备箱中有许多的大型电池组成的能源管理系统。
这些电池是新能源车型的核心,也是能量管理系统的重要组成部分。
能量管理系统的另一个重要组成部分是电机。
电机通过电池来获取能量,并将能量转换为机械能,从而完成车辆的运动。
它还能够实现电动汽车的能量回收功能,在制动时将能量回收到电池中,提高了车辆的能源利用效率。
电控系统也是新能源汽车的三大组成部分之一。
通过电控系统,我们可以实现对于车辆各个部分的调控,比如加速、刹车、转向等等。
而电控系统和能源管理系统是相辅相成的。
电池容量与电机功率、车辆重量、驾驶模式等相关,因此需要整合起来进行系统化调节。
二、管理系统的运作原理在电池、电机和电控系统之间,我们还需要一个能将其协调的中央处理器。
中央处理器的功能就是将整个电动车的能量管理变为系统化的主动控制,实现对于电池、车身以及电机的动态调整。
这样能更好地保证整个车辆的安全性、稳定性、灵活性和经济性。
当车辆起步时,电机将会从电池中获取能量,输给轮胎带动车辆行驶。
当我们制动时,车辆的运动会产生能量,如果能重复利用回收能量,就可以推动电池实现更高的能源存储利用率。
当电池电量较低时,车外充电也是必要的。
在充电开始时,中央处理器将会利用一系列的电学措施,确保电池能在最高效率下充电。
三、管理系统的功能和优势能源管理系统的功能是将所需的能源进行分配,以便在车辆最大化使用它们的同时,保证车辆的安全性和电池寿命。
这不仅有助于降低驾驶成本,还有助于减少对全球环境的影响,弥补了传统燃油汽车所带来的负面影响。
电动汽车动力系统的能量管理策略
电动汽车动力系统的能量管理策略在当今的汽车领域,电动汽车正以其环保、高效的特点逐渐成为主流。
而电动汽车的核心之一便是其动力系统的能量管理策略,这直接关系到车辆的续航里程、性能表现以及使用成本。
电动汽车的动力系统主要由电池、电机、电控等部件组成。
其中,电池作为能量存储单元,其性能和容量对车辆的续航有着至关重要的影响。
而电机则负责将电能转化为机械能,驱动车辆行驶。
电控系统则像大脑一样,协调和管理着整个动力系统的运行,以实现最优的能量利用效率。
能量管理策略的首要目标是确保电池的寿命和性能。
过度充电和过度放电都会对电池造成不可逆的损害,缩短其使用寿命。
因此,需要通过精确的控制算法,来限制电池的充电和放电深度。
例如,在充电时,当电池电量接近充满时,逐渐降低充电电流,以避免过充。
在放电时,当电池电量降低到一定程度时,限制车辆的输出功率,以防止过放。
能量回收是电动汽车能量管理策略中的一个重要环节。
在车辆制动或减速过程中,电机可以转换为发电机模式,将车辆的动能转化为电能并存储回电池中。
这不仅能够增加车辆的续航里程,还能减少刹车片的磨损,提高制动系统的寿命。
为了实现高效的能量回收,需要根据车辆的速度、制动踏板的行程等因素,精确地控制电机的发电功率。
在低速行驶时,可以采用较大的能量回收力度,而在高速行驶时,则需要适当减小回收力度,以保证车辆的行驶稳定性和舒适性。
行驶工况对电动汽车的能量消耗有着显著的影响。
不同的路况(如城市拥堵、高速巡航、山区道路等)和驾驶习惯(如急加速、急减速、匀速行驶等)都会导致能量消耗的差异。
因此,能量管理策略需要根据实时的行驶工况,动态地调整动力系统的工作模式。
例如,在城市拥堵路况下,车辆频繁启停,此时可以适当降低电机的输出功率,以节省电能。
而在高速巡航时,则可以让电机以高效的工作区间运行,提高能量利用效率。
为了实现精准的能量管理,先进的传感器和监测技术必不可少。
这些传感器可以实时监测电池的电压、电流、温度等参数,以及车辆的速度、加速度、行驶阻力等信息。
第5章 新能源汽车的能量管理系统
5.3.1 串联式混合动力汽车的能源管理系统 串联式混合动力汽车的发电机与汽车行驶工况没有直接关系,
系统从外界获取能量的途径主要有三条: ①由燃料化学能转换来的能量; ②由电网充入蓄电池的能量; ③回收的制动及减速能量。
新能源汽车技术,Faculty of New Energy Vehicles,May,2014
第5章新能源汽车的能源管理系统52纯电动汽车能源管理系统523电池管理系统bms表51蓄电池管理系统的主要任务任务测试方式测试装置page11防止过充电电压电流温度测试仪充电器防止过放电电压电流温度测试仪电动机控制温度控制及平衡温度测试仪加热及制冷装置温度平衡单元能源系统信息提示电压电流及温度充电状态剩余容量测试仪显示器电池状态测试及显示电压电流温度测试仪显示器pc总线分析软件第5章新能源汽车的能源管理系统52纯电动汽车能源管理系统523电池管理系统bms1
新能源汽车技术,Faculty of New Energy Vehicles,May,2014
Page 17
第5章 新能源汽车的能源管理系统
5.3 混合动力电动汽车的能源管理系统
新能源汽车技术,Faculty of New Energy Vehicles,May,2014
Page 18
第5章 新能源汽车的能源管理系统
新能源汽车技术,Faculty of New Energy Vehicles,May,2014
Page 6
第5章 新能源汽车的能源管理系统
5.1 能源管理系统的作用
4.混合动力燃料电池和混合动力电动汽车 (1)组成:发电装置(如发动机/发电机或燃料电池),能
量储存装置(蓄电池、超级电容等),功率变换模块,动 力传递装置,充放电装置等。 (2)能源传递路线:
新能源汽车动力系统的能量管理与优化
新能源汽车动力系统的能量管理与优化随着汽车产业的发展,新能源汽车逐渐成为了人们关注的热点。
新能源汽车动力系统是其核心技术,而能量管理与优化是保证动力系统高效运行的关键。
本文将探讨新能源汽车动力系统的能量管理与优化方法。
一、能量管理的重要性能量管理是指对动力系统中各种能源的分配与调控,以达到最佳的能源利用效率。
新能源汽车使用的能源主要包括电能、化学能等,而能量管理的优化可以提高动力系统的续航里程、减少能源的浪费等。
因此,能量管理的重要性不言而喻。
二、能量管理策略1. 车辆动力需求预测在能量管理过程中,车辆动力需求预测是关键的一步。
通过对路况、驾驶行为等进行分析,可以准确预测车辆未来的动力需求,从而合理分配能源,提高能源利用效率。
2. 能量分配与调控基于车辆动力需求的预测,可以对动力系统中的能源进行合理的分配与调控。
例如,可以根据路况的不同,调整电动机的输出功率,并合理利用动力系统中的能量储存装置,如电池、超级电容器等,实现能量的高效利用。
3. 能量回收与再利用在新能源汽车中,能量回收与再利用是一种重要的节能策略。
通过对制动过程中释放的能量进行回收,再利用于电池充电等方面,可以有效提高能源的利用效率,延长续航里程。
三、能量优化技术1. 充电策略优化充电是新能源汽车中重要的能量补充方式。
通过优化充电策略,可以提高充电效率,减少充电时间,进而提高整个动力系统的能量利用率。
2. 能量损耗降低动力系统中存在一定的能量损耗,如电池、电驱动器等的能量转换效率不是很高。
因此,通过优化设备的设计和使用,减少能量损耗,可以提高整个系统的能量利用效率。
3. 车辆重量控制车辆重量对能源消耗有着直接的影响。
通过采用轻量化材料、优化车辆结构等手段,可以减轻车辆重量,降低能源的消耗,提高能源的利用效率。
四、新能源汽车动力系统的挑战与未来发展虽然新能源汽车动力系统在能量管理和优化方面取得了很大的进步,但仍面临一些挑战。
例如,充电基础设施不完善、电池技术有待改进等。
新能源汽车能量管理系统设计考核试卷
C.充电时间延长
D.制动距离增加
( )
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
1.新能源汽车按照动力来源分类,主要包括电动汽车、_______汽车、氢燃料电池汽车等。
( )
2.新能源汽车的核心部件是_______,它直接影响车辆的续航里程和性能。
18.新能源汽车动力电池的循环寿命受哪些因素影响?
A.电池材料
B.充放电策略
C.使用环境
D.制造工艺
( )
19.以下哪些技术可以用于提高新能源汽车电池的低温性能?
A.电池加热系统
B.低温电解液
C.优化电池结构设计
D.使用低温性能较好的材料
( )
20.新能源汽车在高原地区使用时,可能会遇到哪些问题?
A.电池性能下降
10.新能源汽车的动力电池在过充和过放时,都会对电池寿命产生负面影响。()
五、主观题(本题共4小题,每题10分,共40分)
1.请简述新能源汽车能量管理系统的基本功能及其重要性。
( )
2.新能源汽车在冬季使用时,电池性能会受到哪些影响?请列举至少三种可能的应对措施。
( )
3.请解释新能源汽车能量回收系统的原理,并说明其在提高能源利用效率方面的作用。
A.安全性
B.经济性
C.动力性
D.环保性
( )
3.以下哪些因素会影响新能源汽车电池的使用寿命?
A.充放电次数
B.充放电速率
C.使用温度
D.驾驶习惯
( )
4.新能源汽车能量回收系统主要包括哪些部分?
A.制动能量回收
B.下坡能量回收
C.发电机能量回收
D.电机控制器能量回收
新能源汽车概论-新能源汽车能量管理系统
新能源汽车概论(AR 增强现实版)
目录导航
第一节 新能源汽车能量管理系统概述
第二节 电力电子元件与功率变换装置
第三节 新能源汽车电动机驱动控制装置
第四节 新能源汽车电源管理系统
第五节 混合动力汽车机电能源管理系统应用
一、新能源汽车管理系统构成
不同种类的电动汽车其能源转换系统构成不同,因而其能源管理的软、硬件系统装置构成就不同。以混合动力汽车为例,新能源汽车管理系统可分为三级模块体系,如图7.1所示。
名 称
电气图形及等效电路
主要特点
电力二级管
不能用控制信号控制其通断,不需要驱动电路,只有两个端子。
晶闸管
半可控想器件,通过控制信号可控制其导通而不能控制其关断。
门极可关断晶闸管
全控型器件,很高的正反向阻断电压的额能力和电流导通能力,较短的导通和关断时间,较小的控制功率。
电力(大功率)晶体管(GTR)
四、DC/AC变换器
2. DC/AC的基本原理
(3) 三相电压型逆变器
三个单个逆变电路可组成一个三相逆变电路。如图7.20为采用IGBT作为开关器件的电压三相桥式逆变电路,它可以看成有三个半桥逆变电路组合而成。电压型三相桥式逆变电路也是180°导电方式,每桥臂导电角度180°,同一相上下两臂交替导电,各相开始导电的角度依次相差120°.在任一瞬间将有三个桥臂同时导通,每次换流都是在同一相上下臂之间进行,也称为纵向换流。
三、新能源汽车核心功率电子单元MCU
MCU由外壳及冷却系统、功率电子单元、控制电路、底层软件和控制算法软件组成,具体结构如图7.3所示。 MCU是新能源汽车特有的核心功率电子单元,通过接收VCU的车辆行驶控制指令,控制电动机输出指定的扭矩和转速,驱动车辆行驶。实现把动力电池的直流电能转换为所需的高压交流电、并驱动电机本体输出机械能。同时,MCU具有电机系统故障诊断保护和存储功能。
纯电动汽车电池管理系统九大功能
纯电动汽车电池管理系统九大功能纯电动汽车是未来汽车发展的趋势,它相比传统汽车的最大区别在于动力来源。
传统汽车以燃油为动力来源,而纯电动汽车则以电池为动力来源。
由于电池的性能表现不尽如人意,车辆行驶里程、充电时间与电池寿命等问题已成为纯电动汽车面临的重要难题之一。
为此,纯电动汽车电池管理系统(以下简称“BMS”)应运而生。
本文将详细阐述BMS的九大功能。
首先,BMS能全天候监控电池的状态。
BMS系统可以实时监测电池的电压、电流、温度等状态,确保电池工作在正常范围内。
对于出现故障,BMS系统能实时报警,为后期检修提供有力保障。
其次,BMS能实现对电池充电限制与电量保护。
在充电时,BMS可对电池充电限制,避免过充,同时能对电量进行保护,防止电量过低影响动力性能。
当车辆电池电量过低时,BMS系统会自动停止其它非关键设备,保留足够的电量支持动力性能。
第三,BMS能通过调节电池的温度等状态,提高电池工作效率。
目前,电池往往出现温度过高过低的情况,导致电池效率下降。
而通过BMS系统,可以根据车辆行驶状态自动调节电池的温度,以保证电池工作在最佳状态下。
第四,BMS通过均衡电池单体电压,延长电池寿命。
单体电池容易出现电压不均的情况,而BMS可以及时检测出电压偏差,并通过均衡技术将电池单体电压均衡,延长电池使用寿命。
第五,BMS能够准确估算电池剩余寿命。
电池使用寿命是车主关注的重点,而BMS系统可以通过对电池的历史工作状态进行分析和计算,准确估算电池剩余寿命,使车主可及时进行更换等维护操作。
第六,BMS能实现智能充电及充电状态监测。
充电问题是纯电动汽车的重要问题之一,而BMS可以对充电状态进行实时监控,避免充电过程中出现问题。
同时,BMS可以自动调整充电方式,对电池进行自适应充电,避免电池充电温度过高等问题。
第七,BMS可监测车辆维护状态。
BMS系统可以监视车辆各部件的工作状态,监测车辆的行驶里程、碳排放等情况,提醒车主及时进行车辆维护保养。
电动汽车能量管理系统设计
电动汽车能量管理系统设计一、引言近年来,随着全球能源消耗增加和环境问题日益凸显,电动汽车作为一种清洁、节能的交通工具,备受瞩目。
电动汽车在行驶过程中需要对电池组进行能量管理,以提高运行效率和延长电池使用寿命。
本文通过对电动汽车能量管理系统的分析,探讨了系统设计的关键因素和实现方法,旨在提高电动汽车的运行效率和使用寿命。
二、电动汽车能量管理系统概述电动汽车能量管理系统是指对电池组的充电、放电、保护和控制等过程进行管理的系统。
其目的是最大限度地利用电池能量,延长电池使用寿命,保证电动汽车的性能和可靠性。
电动汽车能量管理系统主要包括电池管理单元(BMU)、充电管理单元(CMU)和电驱动系统控制单元(DCU)三个部分。
1、电池管理单元(BMU)电池管理单元是电动汽车能量管理系统的核心,负责对电池组进行实时监测和管理。
BMU需要测量电池的电压、电流、温度等参数,对电池组进行状态估计和剩余寿命预测,并根据实际情况进行充放电控制、保护等操作。
同时,BMU还需要与充电管理单元、电驱动系统控制单元等其他模块进行联动,实现整车能量管理。
2、充电管理单元(CMU)充电管理单元主要负责对电池组进行充电操作,并监测电压、电流、温度等参数。
CMU需要根据电池组的状态和充电状态进行控制,使得电池组充电效率最高、充电时间最短、充电安全可靠。
3、电驱动系统控制单元(DCU)电驱动系统控制单元负责对电动汽车的电机进行控制,使得车辆行驶符合预期。
DCU需要根据电池组的状态、剩余寿命和驾驶员需求等因素进行控制,同时需要根据道路状况和环境条件等因素调整控制策略,以实现最优的能量利用和最佳行驶性能。
三、电动汽车能量管理系统设计关键因素电动汽车能量管理系统的设计需要考虑多种因素,对这些因素进行全面分析和把握,对于提高电动汽车的运行效率和延长电池使用寿命至关重要。
1、电池化学参数电池化学参数是决定电池性能和使用寿命的重要因素。
不同类型的电池具有不同的化学参数和特性,如电压平台、容量、自放电率、循环寿命等。
新能源汽车节能减排技术研究进展(2)——能量管理系统(上)
史 永基
高 雅 利 王 宇炎 叶 芳
一
、
引言
对 于 电动 力 汽 车 ( V) E 、混 合 动 力 汽 车 ( E 、燃 料 电池汽 车 ( C H V) F V)来 说 ,能 量 储 存 元 件 大 小 和 能 流 的 控 制 是 提 高燃 料效 率 的关 键 。用 电池 或 超 大 电 容 器储 能 可减 少 耗 费 、改 进 IE 或 F V 的 特 性 。IE 中 的 -V I C -V I
持 续 充 电 、发 动 机 驱 动 HE 可利 用 电池 或 超 大 电容 器 进 行 设计 ,燃 料 效 率 可 提 高 5 %;插 件 式 H V ( H V) V 0 E PE
可 用 锂 离 子 电池 进 行 设 计 , 电动 里 程 可 达 3~ 0 m; 合 驱 动 里 程 为 8 ~ 5 k 节 能 7 %; 型 HE MH V) 全 06k 混 0 10m, 5 轻 V( E
随着石油价格 的不 断上升 ,急需研发 H V,迫切需要开发节能技术。目前的注 意力主要集 中于三个方面: E
热 电废 热 回 收和 温 度 控 制 系 统 、轻 型 H V 的集 成 启 动 发 电机 、重 型 H V 的连 续可 变 发 电机 推 进 。 E E
二 、 能量 管 理 功 率 转 换 器
存。 ( )混 合 度 和 转 换 器 大 小 3 燃 料 电 池 在 较 大 的 负 载 范 围 上 都 是 非
常 有 效 的 。但 低 负 载 时 由于 诸 如 空 气 压 缩 系 统 之 类 寄 生 负载 , 率 仍 然 较 低 。 此 , C 效 因 FV 可 从 负 载 范 围 调 整 和 正 常 刹 车 能 量 回 收 过 程 寻 求 节 能途 径 。混 合 度 ( 义 为 燃 料 电池 定 功 率 与 系 统 总 功 率 的 比 ) 随汽 车 要求 而变 , 但 一 般 情 况 是 7 %~ 0 的燃 料 电 池 功 率 应 0 9%
新能源汽车动力电池管理系统的设计与控制
新能源汽车动力电池管理系统的设计与控制新能源汽车的普及趋势下,动力电池管理系统成为了关键技术之一。
动力电池管理系统(BatteryManagementSystem,简称BMS)是指为电动汽车中的动力电池组提供高效安全的管理和控制的一系列技术和设备。
它不仅能提高电池的使用寿命和工作效率,还能确保电池组的安全性和可靠性。
本篇文章将介绍新能源汽车动力电池管理系统的设计与控制原理。
1.动力电池管理系统的功能和构成动力电池管理系统主要分为硬件和软件两部分,其主要功能包括电池状态估计、电池细胞均衡、充放电控制、温度管理和失效诊断等。
下面将详细介绍各个功能的作用和构成。
1.1电池状态估计电池状态估计是指通过对电池内部各个参数的监测与计算,对电池的SOC(StateofCharge,充电状态)和SOH(StateofHealth,健康状态)进行估计。
通过准确估计电池的SOC和SOH,可以提供给车辆控制系统准确的电池能量信息,并可用于预测电池的寿命和性能。
电池状态估计主要依靠电池传感器、电流传感器和温度传感器等硬件设备以及算法模型的组合来实现。
其中,电池传感器可以监测电池细胞的开放电压和电流,电流传感器可以实时测量电池组的充放电电流,温度传感器则用来监测电池组的温度。
1.2电池细胞均衡电池细胞均衡是指通过等化电池细胞之间的电荷和放电量,使得每个电池细胞的电荷水平保持一致。
这可以避免由于细胞间的不均衡导致电池寿命缩短和性能下降的问题。
电池细胞均衡系统主要由均衡电路和均衡控制器组成。
均衡电路可以将电池细胞之间的电荷进行转移,以保持细胞间的一致性。
均衡控制器则负责监测电池细胞的电压差异,并控制均衡电路的工作状态。
1.3充放电控制充放电控制是指通过对电池组内部和外部电路的控制,实现电池的充电和放电操作。
通过合理地控制充放电过程,可以提高电池的工作效率和使用寿命。
充放电控制系统包括充电控制器和放电控制器。
充电控制器负责监测电池组的充电状态和充电电流,并根据需要控制充电电流的大小和充电方式。
混动车辆能量管理模块化ECMS框架
混动车辆能量管理模块化ECMS框架随着全球对能源和环境问题的日益关注,混合动力车辆逐渐成为解决交通能源与环境污染的重要选择。
在混动车辆的设计与控制中,能量管理系统起着关键作用。
能量管理是指通过合理分配燃料和电池的能量,以实现最佳燃油经济性和最小尾气排放。
而模块化的能量管理系统(ECMS)框架成为了一种十分有效的设计方法。
本文将重点介绍混动车辆能量管理模块化ECMS框架及其优势。
一、混动车辆能量管理系统简介能量管理系统是混动车辆中最重要的控制系统之一,它通过优化能量的分配和利用方式来实现对混动系统的控制。
传统的能量管理系统多采用规则控制策略,但随着车辆工况的复杂和多样化,这种方法难以满足高效的能量利用需求。
因此,发展一种适应性强、性能优良的能量管理系统框架是十分必要的。
二、模块化ECMS框架模块化ECMS框架是一种将能量管理问题分解为多个子问题,并针对每个子问题设计相应控制策略的方法。
下面将介绍该框架的几个模块:1. 基于优化算法的能量规划模块在混动车辆中,燃油和电池是两种主要的能量来源。
优化算法被广泛应用于能量规划模块,通过对车辆工况进行建模,以最小化燃油消耗或尾气排放为目标,确定燃油和电池之间的能量分配策略。
常用的优化算法包括动态规划、遗传算法和模型预测控制等。
2. 剩余功率分配模块在混动车辆行驶过程中,车辆可能会产生一些剩余功率,例如刹车过程中的动能回收和发动机工况下的剩余能量。
剩余功率分配模块负责将这部分能量有效地分配给电池进行储存或供应给其他系统使用,以进一步提高能量利用效率。
3. 燃油经济性预测模块燃油经济性预测模块根据车辆工况和用车需求,预测未来一段时间内的燃油经济性。
基于预测结果,能量管理系统可以根据不同的驾驶条件和环境参数,调整能量的分配策略,以提高燃油经济性。
4. 故障检测与诊断模块故障检测与诊断模块能够实时监测混动车辆的各个部件状态,并通过传感器或编码器获得的数据进行故障判断和定位。
新能源汽车的智能能量管理与优化策略
新能源汽车的智能能量管理与优化策略随着环保意识的增强和能源危机的严重性,新能源汽车逐渐成为替代传统燃油车辆的重要选择。
然而,充电时间长、续航里程短以及充电设施不完善等问题成为新能源汽车发展的瓶颈。
为了克服这些问题,智能能量管理与优化策略应运而生。
一、能量管理的重要性新能源汽车依靠电能来驱动,因此能量管理对其性能和使用体验至关重要。
良好的能量管理策略能够最大限度地提高新能源汽车的续航里程,优化能量利用效率,延长电池寿命,并提升驾驶安全性。
二、智能能量管理系统的原理智能能量管理系统通过利用车辆的运行数据、道路信息和其他实时数据,结合算法与模型,以确保新能源汽车在行驶过程中能够高效地利用能量。
其工作原理如下:1. 数据采集与分析:系统会实时采集车辆的能量消耗情况、电池状态和车速等数据,并对这些数据进行分析和处理。
2. 能量需求预测:基于车辆历史数据和实时采集的信息,系统能够准确预测未来一段时间内的能量需求,并为后续能量管理决策提供参考。
3. 能量控制与优化:根据预测的能量需求,系统会优化电池的充放电策略,确保车辆的续航里程和性能得到最大化的提升。
4. 智能路线规划:系统可以根据车辆的目的地和充电桩的位置,智能地规划最佳的行驶路线,以尽可能避免充电桩在路上的等待时间,提高行驶效率。
三、智能能量管理系统的优势智能能量管理系统与传统的能量管理方式相比,具有以下优势:1. 高效能量利用:优化能量管理策略可以显著提高新能源汽车的能量利用效率,延长续航里程,在保证性能的前提下降低车辆的能耗。
2. 高电池寿命:智能充放电策略能够合理地管理电池的充放电过程,降低过度充电与过度放电的风险,延长电池的使用寿命。
3. 提升驾驶安全性:智能能量管理系统可以实时监测车辆的能量状况,并根据情况调整充放电策略,以降低因能量不足而导致的驾驶安全事故发生风险。
四、智能能量管理系统的应用前景智能能量管理系统在新能源汽车领域具有广阔的应用前景。
新能源汽车的工作原理
新能源汽车的工作原理新能源汽车的工作原理主要包括电池系统、电动机系统和能量管理系统三个方面。
以下是对这三个方面的详细解释。
1. 电池系统:新能源汽车主要采用锂离子电池作为能量储存设备。
该电池系统由多节锂离子电池组成,每节电池由正极、负极和电解液组成。
当车辆行驶时,电能从电池的负极流向电动机系统,通过正极和电解液的化学反应将电能转化为动能。
当车辆减速或制动时,电动机转变为发电机,将动能转化为电能并储存在电池中。
2. 电动机系统:新能源汽车采用电动机作为动力源。
电动机由定子和转子组成,定子绕组接受电池供电产生磁场,转子内部装有永磁体,通过磁场作用产生转动力。
电动机根据车辆需要变速调节转速和扭矩,以提供适合的动力输出,并驱动车辆行驶。
3. 能量管理系统:能量管理系统是新能源汽车的关键技术之一,主要负责协调电池系统和电动机系统之间的能量转化和能量利用。
通过电子控制单元(ECU)监测车辆工况和驱动需求,能量管理系统根据车辆行驶情况、驾驶员的加速、减速和制动操作,对电池的电量、电流和电压进行管理和控制。
它可以根据需要调整电动机的输出功率,优化能量转换效率,提高整个动力系统的效能。
总的来说,新能源汽车的工作原理主要是通过电池系统的能量储存,电动机系统的动力输出和能量管理系统的协调管理,实现从电能到动能的转换,驱动汽车正常行驶。
与传统内燃机汽车相比,新能源汽车不产生污染物,具有更好的节能环保效果,是可持续发展的重要选择。
但同时也面临着电池寿命、充电周期和充电设施等挑战,需要通过不断技术创新和完善,提高新能源汽车的续航里程和充电效率,更好地推动新能源汽车的普及和应用。
电动汽车的能源管理系统
电动汽车的能源管理系统随着环保意识的日益增强和对传统汽车尾气排放的担忧,电动汽车作为一种绿色、清洁的交通工具逐渐受到人们的关注和青睐。
而电动汽车的能源管理系统在其中起着至关重要的作用。
本文将就电动汽车的能源管理系统进行探讨,旨在分析其组成结构和工作原理,并探讨其对电动汽车的性能和效能的影响。
一、能源管理系统的组成结构电动汽车的能源管理系统一般包括电池组、电控系统以及能量管理策略等组成部分。
1. 电池组电池组是电动汽车能源管理系统的重要组成部分,起着能量存储和释放的作用。
电池组通常由众多电池单体串联构成,可以根据需要进行并联以提供更大的电流输出和储能能力。
目前,常见的电动汽车电池组类型包括锂离子电池、镍氢电池和钠离子电池等。
2. 电控系统电控系统是电动汽车能源管理系统的核心部分,负责对电池组的充放电过程进行控制和管理。
通过对电池组的充电、放电和维护进行监控和控制,电控系统可以确保电池组的安全可靠工作,并最大限度地提高电池组的使用寿命和性能。
3. 能量管理策略能量管理策略是指根据电动汽车的工作状态和外部环境的变化,合理地管理和分配电池组中的能量,以提高电动汽车的能效和性能。
常见的能量管理策略包括能量回收、能量储存和能量优化利用等。
二、能源管理系统的工作原理电动汽车的能源管理系统在日常驾驶中的工作原理如下:1. 充电管理当电动汽车接入电源进行充电时,能源管理系统会根据充电模式和电池组的状态进行判断,控制充电电流和电压,以确保电池组的安全充电和快速充电。
同时,能源管理系统还能够监测电池组的温度和电压,及时发现异常情况并采取相应的措施,以确保充电过程的安全和高效。
2. 供电管理在行驶过程中,能源管理系统负责控制电池组向电动机提供电能,并根据车辆的速度和负载等工作状态,调整输出电流和电压,确保电动汽车的动力性和续航能力。
同时,能源管理系统还会监测电池组的电量,及时警示驾驶员剩余电量是否足够,并根据需要调整车辆的驱动模式,以达到最佳的驾驶性能和能效。
新能源汽车电池管理系统的设计与实现
新能源汽车电池管理系统的设计与实现在当今的汽车领域,新能源汽车正以其环保、高效的特点逐渐占据市场的重要份额。
而新能源汽车的核心部件之一——电池,其性能和安全性直接影响着车辆的整体表现。
为了确保电池的稳定运行、延长电池寿命以及保障车辆的安全,新能源汽车电池管理系统(Battery Management System,简称 BMS)的设计与实现至关重要。
新能源汽车电池管理系统的主要功能包括电池状态监测、电池均衡管理、热管理、充电管理以及故障诊断与保护等。
电池状态监测是 BMS 的基础功能。
它通过传感器实时采集电池的电压、电流、温度等参数,从而精确地计算电池的剩余电量(State of Charge,简称 SOC)和健康状态(State of Health,简称 SOH)。
准确的 SOC 和 SOH 估计对于驾驶员了解车辆的续航里程以及合理规划行程具有重要意义。
然而,要实现精确的状态监测并非易事。
由于电池的化学特性复杂,其充放电过程并非线性,而且受到多种因素的影响,如温度、老化程度等。
因此,需要采用先进的算法和模型来对电池的状态进行估计。
电池均衡管理是为了解决电池组中单体电池之间的不一致性问题。
在电池组中,由于制造工艺和使用环境的差异,各个单体电池的性能会逐渐出现差异。
如果不进行均衡管理,性能较差的单体电池可能会提前达到过充或过放状态,从而影响整个电池组的性能和寿命。
目前,常见的均衡方式有主动均衡和被动均衡两种。
主动均衡通过能量转移的方式,将电量从高容量单体电池转移到低容量单体电池,效率较高但成本也相对较高;被动均衡则是通过电阻消耗多余电量,实现单体电池之间的均衡,成本较低但效率相对较低。
热管理对于新能源汽车电池的性能和寿命同样起着关键作用。
电池在充放电过程中会产生大量的热量,如果不能及时有效地散热,电池的温度会迅速升高,从而影响电池的性能和寿命,甚至可能引发安全事故。
因此,BMS 需要对电池的温度进行实时监测,并通过冷却或加热系统将电池温度控制在合适的范围内。
电动汽车电池能量管理系统的功能详解
(3)电池箱应做到内部与电池的绝缘,外部与车身的绝缘,防止电池与车身绝缘电阻低下 而影响系统工作,发生不安全事故。
电池能量管理的控制参数是由电池箱参与工作的电池模块采样的,而控制参数并非 每个电池都要采样,否则参数量很大,不便管理,难于安装。一般都在电池箱内不同区 域里采取最有代表性的电池模块,某些性能参数(比如温度)作为控制参数,在经过计 算对比后发布控制执行指令,执行各种控制功能,所以说被选择采样电池模块的性能参 数量值上应能代表其他没被采样电池模块的性能,否则的话,它就失去代表的意义。这 时发出的指令不具备合理性,达不到对电池箱内电池模块的能量管理的目的。比如电池 箱中电池模块间的性能差异较大,每个电池模块都不具备代表整箱电池模块性能就难以 取得可信的控制参数。所以说,用于电池能量管理的电池模块其性能间的差异,即电池 模块的间性能一致性差异必须在一定的范围之内,这样用哪一个电池模块作为采样电池 都具备条件,都具有代表性。
电动汽车电池能量管理系统的功能
➢1.1 对能量的检测功能
电动汽车在行车过程中,该系统能随时对车辆的能耗进行计算,最终给出该电池 箱内电池模块剩余的电池能量值,并通过剩余能量计将数据显示出来,使驾驶人员知 道车辆的续驶里程,以便决定如何行驶.在能量允许的条件下使车辆行驶到具有充电功能 的地方,补充电量防止半路抛锚。
模块供电的指令,强行车辆停驶。当电池在充电状态下,能量管理系统会强令充电机
停止充电而不损坏电池,由维修人员进行检测排除故障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、直流变换器DC/DC的功用
第七章 新能源汽车能量管理系统 10
2. 电动机-驱动桥组合驱动式 电动汽车的DC/DC变换器的主要功能是给车灯、ECU、小型电器等汽车附属设备提 供电力和向辅助电源充电,其作用与传统汽车交流发电机相似。传统汽车依靠发动机带 动交流发电机提供给附属电器设备和辅助电源。由于纯电动汽车或燃料电池汽车无发动 机,混合动力汽车的发动机并不是不间断地工作,并且带有“自动怠速停止与启动”装 备,因此电动车无法使用交流发电机提供电源,必须依靠动力电池箱附属用电设备及其 电源供电,DC/DC设备成为必备设备。 DC/DC变换器有升压变换器与降压变换器之分,根据电压调制方式又有脉宽调制和频率 调制的区别。
DC/DC变换器由功率回路和控制回路组成,
实际DC/D(C4电)路召构开成选的型示讨意论如会图7.17所示,功
率变换电路以控制电路的驱动信号为基础,打开、 关闭晶闸管的输入直流电,并将其变换为交流电 压供给变压器。在变压器中变压后的交流电压经 整流二极管整流,整流后的断续直流电压经平滑 电流平滑后对辅助电池充电。控制回路除了完成 以上功能外,还具有输出限流、输入过压保护、 过热保护和报警等功能。 3.增程式电动汽车特点
所控制的度分为不控制件(电力二级管)、 晶体管(GTR)
半控制器件(晶闸管)全控制器件(门极可
关断晶体管、绝缘栅双极晶体管、电力场效 电力场效应管 (MOSFET)
应晶体管)三类。
电气图形及等效电路
主要特点 不能用控制信号控制其通断,不需要 驱动电路,只有两个端子。 半可控想器件,通过控制信号可控制其 导通而不能控制其关断。
四、DC/AC变换器
第七章 新能源汽车能量管理系统 17
2. DC/AC的基本原理
(1)半桥逆变电路
半桥逆变电路有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。如 图7.18所示。
四、DC/AC变换器
2. DC/AC的基本原理
(2) 全桥逆变电路
全桥逆变电路如图7.19所示,是单向逆 变电路中应用最多的。电压型全桥逆变 电路可看成由两个半桥电路组合而成, 共4个桥臂,桥臂1和4为一对,桥臂2和 3为另一对,成对桥臂同时导通,两对交 替各导通180°;VD1、V1、VD2、V2相 互导通的区间,分别对应VD1和DV4、 V1和V4、VD2和VD3、V2和V3相继导 通的区间。
四、电池包
第七章 新能源汽车能量管理系统 6
电池包组成如图7.4所示,包括电芯、模块、热管理系统、箱体和BMS。其中BMS能够 提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
电池包是新能源汽车核心能量源,为整车提供驱动电能,它主要通过金属材质的壳体包 络构成电池包主体。模块化的结构设计实现了电芯的集成,通过热管理设计与仿真优化电池 包热管理性能,电器部件及线束实现了控制系统对电池的安全保护及连接路径;通过BMS实 现对电芯的管理,以及与整车的通讯及信息交换。
第七章 新能源汽车能量管理系统 19
五、 AC/DC电源变换装置
第七章 新能源汽车能量管理系统 20
1.AC/DC功率变换器的功用与种类
AC/DC功率变换器的功用是将交流电转换为直流电能,电动汽车中AC/DC的功 用主要是讲交流发电机的交流电转换为直流电供给用电器或电能储能设备储存。
按照电路中变流器件开关频率的高低,所有半导体变流电路可分为低频(相控式) 和高频(PWM斩控式)两大类。按照组成的部件可分为不可控、半可控、全控三种 AC/DC变换器。按照控制方式又有相控式和斩控式整流电路之分。
第七章 新能源汽车能量管理系统 18
四、DC/AC变换器
2. DC/AC的基本原理
(3) 三相电压型逆变器
三个单个逆变电路可组成一个三相逆变电路。 如图7.20为采用IGBT作为开关器件的电压三 相桥式逆变电路,它可以看成有三个半桥逆 变电路组合而成。 电压型三相桥式逆变电路也是180°导电方式, 每桥臂导电角度180°,同一相上下两臂交替 导电,各相开始导电的角度依次相差120°. 在任一瞬间将有三个桥臂同时导通,每次换 流都是在同一相上下臂之间进行,也称为纵 向换流。
容性滤波元件。该变换器也被称为两象限双向断路
器,两端分别与动力电池和其它设备连接。升降压
型双向DC/DC变换器的原理通过控制周期性地流过
感应器电流的时间来实现想要得到的输出和输入电
3.增程式电动汽车特点
流之间的关系。
模型
第七章 新能源汽车能量管理系统 14
三、直流变换器DC/DC的功用
5.DC/DC变换器的实际电路组成举例
第七章 新能源汽车能量管理系统 12
三、直流变换器DC/DC的功用
3.升压型转换器
升压(型4转)换召器开与选降型压讨型论转会换器所使用的组件类型相
同,升压型DC/DC的原理如图7.11所示,升压型转换器 在开关K导通时,就会有电流流过电感L,使能量储存在 电感上,当开关K断开时,由于楞次效应,电感电压反 向,而且加上输入电压Ud通过二极管VD构成回路,使 电输出压U0会大于输入电压Ud。升压型DC/DC输出电 压的高低与开关K的工作周期大小、以及每个周期中开 关导通时间ton和断开时间t3模o.增型f程f的式电长动汽短车有特点关。
二、整车控制决策的核心电子控制单元(VCU) 第七章 新能源汽车能量管理系统 4
图7.2所示为整车控制单元的结构组成,共包括外壳、硬件电路、底层软件和应用 层软件,硬件电路、底层软件和应用层软件是VCU的关键核心技术。
一般仅新能源汽车配备、传统燃油车无需该装置。VCU通过采集油门踏板、挡位、 刹车踏板等信号来判断驾驶员的驾驶意图;通过监测车辆状态(车速、温度等)信息,由 VCU判断处理后,向动力系统、动力电池系统发送车辆的运行状态控制指令,同时控制 车载附件电力系统的工作模式;VCU具有整车系统故障诊断保护与存储功能。
模型
第七章 新能源汽车能量管理系统 11
三、直流变换器DC/DC的功用
2. 降压型转换器
降压(型4转)换召器开(选DC型/D讨C论)会的原理如图7.8所示,降
压型转换器在开关K导通时就会有电流流过电感L,使能 量储存在电感上,并为负载供电。而当开关K断开时电感 上的能量要释放,电感的左端被强制降到0V以下,使二极 管正偏导通,电感能量经负载、二极管构成的回路释放 并减小,输出电压随之下降。降压型DC/DC输出电压的 高低与开关K的工作周期大小、以及每个周期中开关导通 时间ton和断开时间toff的长短有关。
模型
第七章 新能源汽车能量管理系统 15
四、DC/AC变换器
1.DC/AC变换器的功用
第七章 新能源汽车能量管理系统 16
通常使用的普通电源是由220v交流电整流而成的直流电,而 DC/AC功率变换器的作用与此相反,因此又被称为逆变器。它是 一种将直流电转变为交流电的电力电子元件,其英文名称为power inverter 或inverter。电动汽车上使用的主要是将HV的直流电转变 为电动机/发电机用交流电的DC/AC。近年来出现车载的AC电源也 是一种逆变器,其特点能够将直流电(12或24V)转换为交流电 (220V)供一般电器使用,是一种方便的电源转换器。 电动车的DC/AC功用是将蓄电池的直流电变换为交流电,提供给 驱动电机和单相交流用电器使用。
第七章 新能源汽车能量管理系统 13
三、直流变换器DC/DC的功用
4.升降压型双向DC/DC变换器
图7.14所示为丰田汽车公司开发的THSⅡ混合
动力系统使(用4)的召升开降选压变型换讨器论原会理示意图,其主要
组成为用于降压的IBGT1开关型,用于升压的开关型
IGBT2,续流二极管VD1和VD2、感性滤波元件和
三、新能源汽车核心功率电子单元MCU 第七章 新能源汽车能量管理系统 5
MCU由外壳及冷却系统、功率电子单元、控制电路、底层软件和控制算法软件组 成,具体结构如图7.3所示。
MCU是新能源汽车特有的核心功率电子单元,通过接收VCU的车辆行驶控制指令, 控制电动机输出指定的扭矩和转速,驱动车辆行驶。实现把动力电池的直流电能转换 为所需的高压交流电、并驱动电机本体输出机械能。同时,MCU具有电机系统故障诊 断保护和存储功能。
第七章 新能源汽车能量管理系统
目录导航
第一节 新能源汽车能量管理系统概述 第二节 电力电子元件与功率变换装置 第三节 新能源汽车电动机驱动控制装置 第四节 新能源汽车电源管理系统 第五节 混合动力汽车机电能源管理系统应用
一、新能源汽车管理系统构成
第七章 新能源汽车能量管理系统 3
不同种类的电动汽车其能源转换系统构成不同,因而其能源管理的软、硬件系统 装置构成就不同。以混合动力汽车为例,新能源汽车管理系统可分为三级模块体系, 如图7.1所示。
图7.6 所示为丰田公司PRIUS混合动力汽车的电机驱动与电源变 换的电路示意图。该混合动力汽车采用两种直流电源,一是高压动力 200V直流电源,为车辆电驱动装置提供能量。另一个是低压电源,为 随车负载提供电能。PRIUS混合动力汽车电驱动和发电系统均采用 500V交流电,在对电机供电时要将200V直流电升压到500V交流电, 这个任务由逆变器(DC/AC)完成。发电机对蓄电池充电时,要将发 电机产生的500V交流电转换为200V直流电,这个任务由整流降压转 换器(AC/DC)完成。而直流电压200V降为车用12V或42V直流电源 的功能,则由直流转换器(DC/DC)完成。
全控型器件,很高的正反向阻断电压的 额能力和电流导通能力,较短的导通和 关断时间,较小的控制功率。
全控型器件,与普通双极结型晶体管基 本原理相同,主要特性是耐压高、电流 大、开关特性好。
开关时间短,导通电阻大。目前的容量 水平50A/500V,频率100kHz。
绝缘双极晶体 管(IBGT)
全控型器件,通过控制信号即可控制其 导 通 与 关 断 。 GTR 和 MOSFET 复 合 , 结 合二者的优点,具有良好的特性。目前 的 容 量 水 平 ( 1200~1600 ) /A~