国考:公式法解容斥问题(三集合非标准型)

合集下载

数量关系答题技巧:容斥问题解题思路

数量关系答题技巧:容斥问题解题思路

数量关系答题技巧:容斥问题解题思路数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。

今天中公教育为考生整理了数量关系答题技巧中的容斥问题解题思路,希望对考生有所帮助!
中公教育专家告诉考生,解答容斥问题需要把握以下公式:
(1)两个集合的容斥关系公式:A+B=A∪B+A∩B
(2)三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
【例题1】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。

A.22
B.18
C.28
D.26
【中公教育解析】设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)。

显然,A+B=26+24=50;A∪B=32-4=28,则根据公式A∩B=A+B-A∪B=50-28=22,故答案为A。

【例题2】外语学校有英语、法语、日语教师共27人,其中只能教英语的有8人,只能教日语的有6人,能教英、日语的有5人,能教法、日语的有3人,能教英、法语的有4人,三种都能教的有2人,则只能教法语的有多少人( )。

A.4人
B.5人
C.6人
D.7人
【中公教育解析】“由里到外”进行数据标记,进行简单加减运算,因为外语学校有英语、法语、日语教师共27人,27-(8+2+2+1+3+5)=6。

故答案为C。

本文由中公事业单位考试网提供。

公务员笔试之行测:巧解三集合容斥原理问题

公务员笔试之行测:巧解三集合容斥原理问题

2014年公务员行测:巧解三集合容斥原理问题华图教育三集合容斥原理此类题型主要出现在近年来各省的省考中,主要是有三个独立的个体,此类题型主要的做题方法是公式法和作图法。

近年来直接套用三集合公式的题目有所减少,开始出现条件变形的题目,不管容斥原理的题目怎么变化,但我们只要掌握住核心思想——剔除重复,那么做任何一个容斥原理题目都能够得心应手。

根据上图,可得三集合容斥原理核心公式:=A +B +C -A B -B C -A C +A B C =-x A B C 总数一、直接利用公式型【例1】(2012年4月联考)某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为:A. 7人B. 8人C. 5人D. 6人【答案】A 【解析】设同时报乙、丙职位的人数为x ,则根据三集合容斥原理公式有:22+16+25-8-6-x+0=42-0,解得x=7。

因此,本题答案为A 选项。

二、三集合容斥原理作图型若在题目中任何一个位置看到“只满足”或“仅满足”,则公式法不能够再用,采用作图法来解题,注意,在作图的时候不管三七二十一,先画三个两两相交的圈,再往里填数字即可,填的时候注意从中间往外一层一层填。

【例2】(2007年江苏)一次运动会上,17名游泳运动员中,有8名参加了仰泳,有10 Cx B A名参加蛙泳,有12名参加了自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加,这17名游泳运动员中,只参加1个项目的人有多少?()A.5名B.6名C.7名D.4名【答案】B【解析】本题问题中出现了“只”,故只能采用作图法。

于是有仰12 2 2 34 3蛙自由只参加1个项目的人数为1+2+3=6。

因此,本题答案为B选项。

数量关系之三集合容斥问题解题技巧

数量关系之三集合容斥问题解题技巧

数量关系之三集合容斥问题解题技巧:公式法2011-08-30 09:29 作者:罗姮来源:华图教育分享到: 1在国家公务员行测考试中,数量关系模块中的容斥问题必不可少,也是学员觉得最难突破的一大问题。

究其原因,一则是容斥问题很复杂,特别是三集合容斥问题涉及的已知量特别多,读完题容易被绕进去;二则是没有好的方法切入,做出来非常消耗时间。

其实,掌握好公式法对于解决三集合容斥问题很有帮助。

本篇就对三集合容斥问题的解题技巧之公式法进行阐释。

一、三集合标准型公式集合A、B、C,满足标准型公式:三集合标准型公式适用于题目中各类条件都明确给出的情况。

另外,可使用尾数法,判断个位数的相加减快速确定正确答案。

例1、某专业有学生50人,现开设有甲、乙、丙三门选修课。

有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人,问三门课程均未选的有多少人?()(2009年浙江公务员考试行测试卷第55题)A、1人B、2人C、3人D、4人答案:B 各类条件明确给出,直接使用公式法。

三者都不满足的个数=总数-=50-(40+36+30-28-26-24+20),可使用尾数法,尾数为2,选B。

例2、如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。

它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。

且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。

问图中阴影部分的面积为多少()?(2009年国家公务员考试行测第116题)A、14B、15C、16D、17答案:C 直接使用三集合标准型公式,=290-(64+180+160-24-70-36),根据尾数法得,尾数为6,选C。

二、三集合整体重复型公式三集合容斥问题中,有些条件未知时,就不能直接使用标准型公式,而是运用整体重复型公式同样可以解答。

三集合容斥非标准公式原理

三集合容斥非标准公式原理

三集合容斥非标准公式原理三集合容斥非标准公式原理容斥原理一直都是各省行测考试的重点,尤其是三集合容斥原理,屡出不穷。

这次,小编带领大家一起来好好的看看目前的有关三集合容斥原理的题型概况和通用思路。

三集合容斥原理按题型可以分为两种题型,一种为标准型公式,另一种为变异型公式,接下来,我们就着重看看三集合容斥原理的解题方法1.解题步骤涉及三个事件的集合,解题步骤分三步:①画文氏图;②弄清图形中每一部分所代表的含义,填充各部分的数字;③代入公式(A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C)进行求解。

2.解题技巧三集合类型题的解题技巧主要包括一个计算公式和文氏图。

公式:总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数【例1】(陕西2015)针对100名旅游爱好者进行调查发现,28人喜欢泰山,30人喜欢华山,42人喜欢黄山,8人既喜欢黄山又喜欢华山,10人既喜欢泰山又喜欢黄山,5人既喜欢华山又喜欢黄山,3人喜欢这三个景点,则不喜欢这三个景点中任何一个的有()人。

A.20B.18C.17D.15【解析】可以用上述公式,我们将数据逐个代入可得:28+30+42-8-10-5+3=100-x,其中x为我们要求的量,求得x=20,答案选择A。

【例2】(国家2015)某企业调查用户从网络获取信息的习惯,问卷回收率为90%。

调查对象中有179人使用搜索引擎获取信息,146人从官方网站获取信息,246人从社交网络获取信息,同时使用这三种方式的有115人,使用其中两种的有24人,另有52人这三种方式都不使用,问这次调查共发出了多少份问卷?()A.310B.360C.390D.410【解析】由于题目中出现了“使用其中两种的有24人”,故我们要使用的就是三集合的变异型公式,如下列式:179+146+246-1×24-2×115=x-52,此时,我们分析一下可以看出,我们所求的x为收回的问卷数量,而题目所求为发出的问卷,明显所求非所问,但是题目中有个条件为“问卷回收率为90%”,故我们将所求的x÷90%即所求的答案,通过列式可得x=369,故发出的问卷为369÷90%=410,故选D。

三集合容斥非标准公式原理

三集合容斥非标准公式原理

三集合容斥非标准公式原理宽容与排他性原则一直是省级考试的重点,尤其是三套排他性原则。

这次,陕西华图教育将带您深入了解有关三组包含和排除原则的当前问题和一般概念。

首先,我们应该有一个清晰的认识。

根据套数,测试中的容忍和排除原则可以分为两组排除原则和三组排除原则。

今天,我们关注三集排除原则。

其次,根据问题的类型,将三组包含和排除的原理分为两种,一种是标准公式,另一种是变式。

接下来,我们将重点介绍三集包含排除原理的标准公式。

设置I,II,III,并满足标准公式三组包含排除原理的标准公式为:Ⅰ+Ⅱ+Ⅲ-Ⅰ。

Ⅱ-Ⅰ。

Ⅲ-Ⅱ。

Ⅲ+Ⅰ。

Ⅱ。

Ⅲ=总数-都不满足通过观察公式,我们可以看到公式中有9个数量,并且该公式的适用前提是知道8来找到1,即在标题中,如果我们看到8个已知数量并且需要1个未知数量,我们需要使用此公式(注意:有时在标题中,我们还需要知道7才能找到1,其中三个不满意的数目可能为零)。

具体主题如下:(陕西2015)对100名旅游爱好者的调查发现,泰山28人,华山30人,黄山42人,黄山和黄山8人,泰山和黄山10人,华山和黄山5人,三人三个景点,而()人们不喜欢三个景点中的任何一个。

A.20B.18C.17D.15E.14F.13G.12H.10解决方案:通过观察,我们发现了八个已知数量,并且我们还需要找到另一个未知数量。

因此,我们可以使用上述公式将数据一一替换为:28 + 30 + 42-8-10-5 + 3 = 100-x,其中x是我们需要的数量,x = 20,并且答案是接下来,让我们看一下三个集合变量的公式,如下图所示:从上面的公式可以看出,要使用变体公式,标题中必须只有两种情况,这与标准公式最大的不同(广东2015年)在一个乡镇举行了一场运动会,包括三项活动:长跑,跳远和短跑。

49人参加了长跑比赛,36人参加了跳远比赛,28人参加了短跑比赛,13人仅参加了两项赛事,9人参加了所有赛事。

那么,运动会的参加者总数为()。

2018国考行测:数量关系之容斥原理

2018国考行测:数量关系之容斥原理

2018国考行测:数量关系之容斥原理容斥原理问题是公务员考试中一类常考题型,常见的容斥原理问题有三种:两集合容斥原理,三集合容斥原理标准型,三集合容斥原理非标准型。

在审题时大家要牢牢把握住题型的特征:当题目中出现“都满足”,“都不满足”时,就可以归为容斥问题。

河北省考中容斥问题相对来说不是太难,基本上直接套用公式就能解决,属于易于拿分的题型。

下面给大家整理一下容斥原理这三种题型的公式以及用法。

一、两集合容斥原理公式:A+B-AB=总个数- 两者都不满足的个数。

其中A、B分别代表满足不同条件的数量,AB代表两个条件都满足的数量。

【例1】某班有60人,参加物理竞赛的有30人,参加数学竞赛的有32人,两者都没有参加的有20人。

同时参加物理、数学两科竞赛的有多少人?()A.28人B.26人C.24人D.22人D【解析】这是一道两集合的容斥问题。

根据公式:60-20=30+32-两者都参加的人,解得答案为D。

二、三集合容斥原理标准型公式:A+B+C-(AB+BC+AC)+ABC=总个数-都不满足的个数。

其中A、B、C代表满足不同条件的数量,AB、BC、AC代表分别满足其中两个条件的数量,ABC代表三个条件都满足的数量。

【例2】100个学生只有2人没学过外语,学过英语的有40人,学过德语的有45人,学过法语的有43人,学过英语也学过德语的有15人,学过英语也学过法语的有12人,学过法语也学过德语的有10人。

问:三种语言都学过的有多少人?()A.4 B.6C.7 D.5C【解析】运用容斥原理可得:40+45+43-(15+12+10)+三种语言都学过的人数=100-2。

解得三种语言都学过的数量为7,因此,本题答案为C选项。

三、三集合非标准型容斥原理公式:A+B+C-只满足两个条件的数量-2×满足三个条件的数量=总个数-都不满足的个数。

【例3】为丰富职工业余文化生活,某单位组织了合唱、象棋、羽毛球三项活动。

三集合容斥标准公式

三集合容斥标准公式

三集合容斥标准公式
二集合容斥原理的公式为:|A∪B|=|A|+|B|-|A∩B|,三集合容斥原理的本质和二集合容斥原理是一样的,只不过由于又多了一个集合,公式和图形描述都变得更加复杂。

其中A和B是两个集合,|A|表示集合A中的元素个数。

在理解容斥原理时,完全可以把元素的个数类比做图形的面积,从而二集合容斥原理可以用下面的图形来表示:
扩展资料:
三集合容斥问题的核心公式如下:
标准型: |A∪B∪C | = | A | + | B | + | C | - | A∩B | - | B∩C | - | C∩A | + | A∩B∩C |。

非标准型:|A∪B∪C | = | A | + | B | + | C | -只满足两个条
件的- 2×三个都满足的。

列方程组:|A∪B∪C | =只满足一个条件的+只满足两个
条件的+三个都满足的。

| A | + | B | + | C | =只满足一个条件的+2×只满足两个条件
的+3×三个都满足的,对于以上三组公式的理解,可以通过想
象三个圆两两相交的重叠情况来加深。

2017国家公务员考试行测解题方法:容斥问题公式法

2017国家公务员考试行测解题方法:容斥问题公式法

2017国家公务员考试行测解题方法:容斥问题公式法公务员考试频道小编为大家整理2017国家公务员考试行测解题方法:容斥问题公式法,希望对您有所帮助!公务员考试行测中的容斥问题为包含与排斥问题,它是一种计数问题。

在计数时,几个计数部分有重复包含时,为了不重复计数,应从他们的和中排除重复部分,采用这种计数方法的题型称为容斥问题。

要解决这类问题,把重复数的次数变为只数1 次,或者说把重叠的面积变为一层,做到不重不漏,即先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,即然后再把计数时重复计算的数目排斥出去,把遗漏的数目补上,使得计算的结果既无遗漏又无重复。

这一类问题在公务员考试行测中时有出现,其实并不难。

主要有两者容斥和三者容斥两种情况。

今天着重讲用公式法如何解题。

一、两者容斥公式:I=A+B-X+Y二、三者容斥主要有三种问法:第一种:只喜欢AB的有e人,只喜欢BC的有f人,只喜欢AC 的有g人,三者都喜欢的有d人。

公式:I=A+B+C-e-f-g-2d+Y第二种:同时喜欢AB的有d+e人,同时喜欢BC的有d+f人,同时喜欢AC的有d+g人,三者都喜欢的有d人。

公式:I=A+B+C-(d+e)-(d+f)-(d+g)+d+Y第三种:至少喜欢两者的有d+e+f+g人。

公式:I=A+B+C-(d+e+f+g)-d+Y接下来我们用公式来解决几个简单的题目:例1.班里一共有40名同学,其中喜欢语文的有30个同学,喜欢数学的有30个同学,两者都喜欢的有25个同学,请问,两者都不喜欢的有多少个同学?A.5B. 6C.7D.8【解析】答案选A。

根据两者容斥基本公式,两者都不喜欢的设为,则可列式为:30+30-25+Y=40,解得:Y=5。

所以选A。

例2.班里一共有40名同学,其中喜欢语文的有25个同学,喜欢数学的有25个同学,喜欢英语的有25个同学,喜欢两门的有20人,三门都喜欢的有10人,请问,三门都不喜欢的有多少个同学?A.5B. 6C.7D.8【解析】答案选A。

三者容斥问题3个公式

三者容斥问题3个公式

公务员行测容斥原理容斥原理公式为:三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C某校六(1)班有学生45人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?答案:25+22+24-12-9-8+X=45 解得X=3问题:某调查公司对甲乙丙三部电影的收看情况向125人进行调查,有89人看过甲电影,47人看过乙电影,63人看过丙电影,其中有24人三部电影全看过,20人一部也没看过,求只看过两部电影的人数?为什么这道题我用容斥原理去解答得到的答案是错误的,而且和上面的例题相比较,两道题几乎一样,谁能告诉我原因?就是用容斥原理去解答错误出现在什么地方公式一:若条件给出A∩B,A∩C,B∩C,A∩B∩C的值对于图中的全集I来说相当于整个图中所有部分之和,即I=A∪B∪C+D(D为非A非B非C的区域),那么这里面我们算得A∪B ∪C需要把其A、B、C中重复的区域扣除,如果我们把A,B,C加在一起,其中对于A∩B(①+②)的区域是在A,B中各参与计算一次,需要减一个A∩B,同样的道理对于A∩C(①+③),B∩C(①+④)均需要减去一个,对于重复的A∩B∩C(①)在我们把A、B、C加和时计算了三次,在减去A∩B,A∩C,B∩C均包含①区域则又减去三次,要保证没有遗漏需要在加回一次A∩B∩C,则A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C。

公式总结:A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩CI=A∪B∪C+D=A+B+C-A∩B-A∩C-B∩C+A∩B∩C+D公式二:若条件给出包含两种元素(②+③+④)和包含三种元素(①)的值同样的I=A∪B∪C+D,那么这里面我们算得A∪B∪C依旧需要把其A、B、C中重复的区域扣除,那么对于包含两种元素(②+③+④)的区域,②在A、B中各加一次,重复一次;③在A、C中各加一次,重复一次;④在B,C中各加一次,重复一次,均重复一次,则需整体减去一倍的包含两种元素(②+③+④),对于重复的包含三种元素(①)在我们把A.B.C加和时计算了三次,则需要减去2倍的包含三种元素(①),即A∪B∪C=A+B+C-含有两种元素-2*含有三种元素公式总结:A∪B∪C=A+B+C-含有两种元素-2*含有三种元素I=A∪B∪C+D=A+B+C-含有两种元素-2*含有三种元素+D【例1】:某调查公司对甲、乙、丙三部电影的收看情况向135人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,既看过甲、乙片为30人,既看过乙、丙片为31人,既看过甲、丙片为32人,其中有24人三部电影都看过,问多少人一部也没有看过呢?【解析】:既看过甲、乙片为30人是包含只看过甲乙还有甲乙丙三人两个部分,以M、N、W为既看过甲、乙片的人,N既看过乙、丙片的人,既看过甲、丙片的人,X为三部都看过的人数,这里面W、N、X都是有包含三者这个区域,根据把重复数的次数变为1次,或者说把重叠的面积变为一层,做到不重不漏的原则,则公式转化为I=A+B+C-(M+N+W)+X+Y,135=89+47+63-(30+31+32)+ 24+Y,Y=5人。

公考行测数量关系-容斥原理

公考行测数量关系-容斥原理

1、某乡镇对集贸市场36种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。

其中,两项同时不合格的5种,三项同时不合格的2种。

问三项全部合格的食品有多少种:答:本题注意按照不合格得到三个类,进行容斥原理分析,分别设三项全部合格、仅一项不合格的产品有、种,根据题意可得:,,联立解得,,因此三项全部合格的食品有23种。

2、某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。

如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个:答:设三种上网方式都使用的客户有x人,根据三集合容斥原理非标准公式:A+B+C-只满足两个条件的个数-2×满足三个条件的个数=总数-三个条件都不满足的个数,可得方程1258+1852+932-(352-x)-2x=3542,解得x=148.3、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。

那么,50位游客中有多少位恰好去了两个景点:答:方法一:设去A、C景点的游客有人,根据容斥原理标准公式可得:,可得;因此恰好去了两个景点的有人(可根据尾数法选择)。

方法二:设有名游客恰好去了两个景点,根据容斥原理非标准公式可得:(可根据尾数法选择),可得人。

4、工厂组织工人参加技能培训,参加车工培训的有17人,参加钳工培训的有16人,参加铸工培训的有14人,参加两项及以上培训的人占参加培训总人数的2/3,三项培训都参加的有2人,问总共有多少人参加了培训?答:设参加培训的总人数为n。

根据三集合容斥原理非标准公式:A+B+C-只满足两个条件的个数-2×满足三个条件的个数=总数-三个条件都不满足的个数,可得方程17+16+14-(n-2)-2×2=n,解得n=27。

三集合容斥非标准公式原理

三集合容斥非标准公式原理

容斥原理:
在计数时,必须注意没有重复,没有遗漏。

为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

简介:
在计数时,必须注意没有重复,没有遗漏。

为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

定义:
如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B 类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。

(A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C)。

例如:一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。


15+12-4=23。

行测备考三集合容斥非标准公式原理

行测备考三集合容斥非标准公式原理

行测备考三集合容斥非标准公式原理容斥原理一直都是各省行测考试的重点,尤其是三集合容斥原理,屡出不穷。

这次,小编带领大家一起来好好的看看目前的有关三集合容斥原理的题型概况和通用思路。

三集合容斥原理按题型可以分为两种题型,一种为标准型公式,另一种为变异型公式,接下来,我们就着重看看三集合容斥原理的解题方法1.解题步骤涉及三个事件的集合,解题步骤分三步:①画文氏图;②弄清图形中每一部分所代表的含义,填充各部分的数字;③代入公式(A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C)进行求解。

2.解题技巧三集合类型题的解题技巧主要包括一个计算公式和文氏图。

公式:总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数【例1】(陕西2015)针对100名旅游爱好者进行调查发现,28人喜欢泰山,30人喜欢华山,42人喜欢黄山,8人既喜欢黄山又喜欢华山,10人既喜欢泰山又喜欢黄山,5人既喜欢华山又喜欢黄山,3人喜欢这三个景点,则不喜欢这三个景点中任何一个的有()人。

A.20B.18C.17D.15【解析】可以用上述公式,我们将数据逐个代入可得:28+30+42-8-10-5+3=100-x,其中x为我们要求的量,求得x=20,答案选择A。

【例2】(国家2015)某企业调查用户从网络获取信息的习惯,问卷回收率为90%。

调查对象中有179人使用搜索引擎获取信息,146人从官方网站获取信息,246人从社交网络获取信息,同时使用这三种方式的有115人,使用其中两种的有24人,另有52人这三种方式都不使用,问这次调查共发出了多少份问卷?()A.310B.360C.390D.410【解析】由于题目中出现了“使用其中两种的有24人”,故我们要使用的就是三集合的变异型公式,如下列式:179+146+246-1×24-2×115=x-52,此时,我们分析一下可以看出,我们所求的x为收回的问卷数量,而题目所求为发出的问卷,明显所求非所问,但是题目中有个条件为“问卷回收率为90%”,故我们将所求的x÷90%即所求的答案,通过列式可得x=369,故发出的问卷为369÷90%=410,故选D。

巧用公式秒解容斥原理题型-2023国家公务员考试行测解题技巧

巧用公式秒解容斥原理题型-2023国家公务员考试行测解题技巧

巧用公式秒解容斥原理题型-2023国家公务员考试行测解题技巧在行测考试中,数量关系科目有许多的解题技巧、方法和公式。

尤其是利用公式法解题,只需大家把握公式,考试时直接套用公式,就可以快速精确地解题。

比如数量关系中常考的一种题型容斥原理,就可以用公式法解题。

今日我们就一起来学习一下用公式法解决三集合容斥原理的题目。

三集合容斥原理分成标准型和非标准型两种:1、三集合标准型容斥原理公式为:满意条件1的个数+满意条件2的个数+满意条件3的个数-满意条件1和2的个数-满意条件1和3的个数-满意条件2和3的个数+三者都满意的个数=总个数-三者都不满意的个数;2、三集合非标准型容斥原理公式为:满意条件1的个数+满意条件2的个数+满意条件3的个数-“只”满意两个条件的个数-2×三者都满意的个数=总个数-三者都不满意的个数。

那么下面我们一起看几个例题,应用一下公式法去求解三集合容斥原理。

【例1】某机关开展红色教育月活动,三个时间段分别支配了三场讲座。

该机关共有139人,有42人报名参与第一场讲座,51人报名参与其次场讲座,88人报名参与第三场讲座,三场讲座都报名的有12人,只报名参与两场讲座的有30人。

问没有报名参与其中任何一场讲座的有多少人?A.12B.14C.24D.28答案:A【解析】第一步,本题考查容斥原理,用公式法解题。

其次步,设没有报名参与其中任何一场讲座的有x人。

依据三集合非标准型容斥原理公式,可列方程42+51+88-30-2×12=139-x,解得x=12。

(或者使用尾数法解题)因此,选择A选项。

【例2】某班参与学科竞赛人数40人,其中参与数学竞赛的有22人,参与物理竞赛的有27人,参与化学竞赛的有25人,只参与两科竞赛的有24人,参与三科竞赛的有多少人?A.2B.3C.5D.7答案:C【解析】第一步,本题考查容斥问题,属于三集合容斥类,用公式法解题。

其次步,设参与三科竞赛的有x人,依据三集合非标准型容斥原理公式可列方程:40-0=22+27+25-24-2x,解得x=5。

【北京华图】2015 年国家公务员巧解三集合容斥原理问题

【北京华图】2015 年国家公务员巧解三集合容斥原理问题

【北京华图】2015年国家公务员巧解三集合容斥原理问题【北京华图】2015年国家公务员考试将在2014年10月发布招考公告,有志于参加2015年国家公务员考试的考生们现在已经进入了备考阶段,本文总结华图教育名师关于巧解三集合容斥原理问题,为2015年国家公务员考试考生备考给予帮助。

三集合容斥原理此类题型主要出现在近年来各省的省考中,主要是有三个独立的个体,此类题型主要的做题方法是公式法和作图法。

近年来直接套用三集合公式的题目有所减少,开始出现条件变形的题目,不管容斥原理的题目怎么变化,但我们只要掌握住核心思想——剔除重复,那么做任何一个容斥原理题目都能够得心应手。

根据上图,可得三集合容斥原理核心公式:一、直接利用公式型【例1】(2012年4月联考)某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为:A. 7人B. 8人C. 5人D. 6人【答案】A 【解析】设同时报乙、丙职位的人数为x ,则根据三集合容斥原理公式有:22+16+25-8-6-x+0=42-0,解得x=7。

因此,本题答案为A 选项。

二、三集合容斥原理作图型若在题目中任何一个位置看到“只满足”或“仅满足”,则公式法不能够再用,采用作图法来解题,注意,在作图的时候不管三七二十一,先画三个两两相交的圈,再往里填数字即可,填的时候注意从中间往=A +B +C -A B -B C -A C +A B C =-x A B C 总数 Cx B A外一层一层填。

【例2】(2007年江苏)一次运动会上,17名游泳运动员中,有8名参加了仰泳,有10名参加蛙泳,有12名参加了自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加,这17名游泳运动员中,只参加1个项目的人有多少?( )A.5名B.6名C.7名D.4名【答案】B【解析】本题问题中出现了“只”,故只能采用作图法。

三容斥原理所有公式

三容斥原理所有公式

三容斥原理所有公式容斥原理是数学中一个挺有意思的概念,它能帮助我们在解决集合相关问题时,思路更加清晰,计算更加准确。

咱们先来说说容斥原理的基本公式。

容斥原理有三个,分别是:两集合容斥原理、三集合容斥原理标准型、三集合容斥原理非标准型。

两集合容斥原理的公式是:A∪B = A + B - A∩B 。

这就好比咱们班选体育课,有的同学喜欢篮球(A),有的同学喜欢足球(B),那么既喜欢篮球又喜欢足球的同学(A∩B)就被重复计算了一次,所以要减去。

三集合容斥原理标准型的公式是:A∪B∪C = A + B + C - A∩B -B∩C - C∩A + A∩B∩C 。

比如说咱们学校组织活动,有语文比赛(A)、数学比赛(B)、英语比赛(C),有些同学参加了不止一项比赛。

这里面A∩B 表示既参加语文比赛又参加数学比赛的同学,B∩C 表示既参加数学比赛又参加英语比赛的同学,C∩A 表示既参加英语比赛又参加语文比赛的同学,而A∩B∩C 则是三项比赛都参加的同学。

在计算总人数的时候,如果只是简单地把参加各项比赛的人数相加,那么那些同时参加多项比赛的同学就被重复计算了,所以要减去重复的部分,最后再把三项都参加的同学加回来,因为在前面的计算中,三项都参加的同学被减多了。

三集合容斥原理非标准型的公式是:A∪B∪C = A + B + C - 只属于两个集合的元素 - 2×只属于三个集合的元素。

我给您讲个事儿啊,就拿我们班组织兴趣小组来说吧。

有绘画小组、音乐小组和书法小组。

绘画小组有 20 人,音乐小组有 15 人,书法小组有 18 人。

其中既参加绘画又参加音乐的有 5 人,既参加绘画又参加书法的有 6 人,既参加音乐又参加书法的有 4 人,三个小组都参加的有 2 人。

那咱们来算算总共有多少同学参加了兴趣小组。

按照三集合容斥原理标准型的公式:A∪B∪C = A + B + C - A∩B -B∩C - C∩A + A∩B∩C ,也就是 20 + 15 + 18 - 5 - 6 - 4 + 2 = 40(人)。

三集合容斥原理非标准型a+b+c=总数

三集合容斥原理非标准型a+b+c=总数

一、概述集合容斥原理是组合数学中一种重要的计数方法,常用于解决各种计数问题。

它的基本思想是通过对不同集合的交集和并集进行计算,从而得到所需计数的结果。

在集合容斥原理的应用中,有一类特殊问题是求解满足某些条件的非标准型a+b+c=总数的问题。

本文将就这一类问题展开讨论。

二、基本概念在应用集合容斥原理解决a+b+c=总数的问题时,我们首先需要了解几个基本概念:1. 集合:在该问题中,集合通常代表满足某种条件的对象的集合。

集合A表示满足条件A的对象的集合,集合B表示满足条件B的对象的集合,集合C表示满足条件C的对象的集合。

2. 交集:两个集合的交集指的是同时属于这两个集合的对象组成的集合。

在集合容斥原理中,交集的计算是重要的一步。

3. 并集:两个集合的并集指的是属于其中任意一个集合的对象组成的集合。

在集合容斥原理中,并集的计算也是必不可少的。

三、集合容斥原理的应用在解决a+b+c=总数的问题时,我们可以将集合A、B、C分别代表满足条件A、B、C的对象的集合。

根据集合容斥原理,我们可以得到如下公式:总数 = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|其中,|A|表示集合A的大小,|A ∩ B|表示集合A和B的交集的大小,依此类推。

根据这个公式,我们可以通过分别计算集合A、B、C的大小,以及它们的交集的大小,进而求解满足a+b+c=总数的问题。

四、示例分析为了更好地理解集合容斥原理在求解a+b+c=总数的问题中的应用,我们以一个具体的例子进行分析。

假设有一组数{1, 2, 3, 4, 5, 6, 7, 8, 9, 10},我们希望找出其中满足以下条件的数字组合:a+b+c=15。

我们可以将集合A表示满足条件a的数字的集合,集合B表示满足条件b的数字的集合,集合C表示满足条件c的数字的集合。

根据集合容斥原理,我们可以得到如下公式:总数 = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|我们逐一计算集合A、B、C的大小,以及它们的交集的大小,得到最终满足条件的数字组合。

行测理-容斥原理(标准含讲解过程)

行测理-容斥原理(标准含讲解过程)

2.图解法 求只A/只B,在公式中没有——>画图(从里向外、注意去重)
......
容斥原理
x = 34
容斥原理
◆例题5◆
某研究室有 12 人,其中 7 人会英语,7 人会德语,6 人会法语,4 人既会英语又
会德语,3 人既会英语又会法语,2 人既会德语又会法语,1 人三种语言都会。会且只
会一种语言的有多少人?
A.8
B.4
√C.5
D.6
A+B+C -A∩B-B∩C-A∩C +A∩B∩C=全-都不 A+B+C-满足两项 - 满足三项×2=全-都不
B.15
C.5
100
√D.3
A + B- A∩B = 全 - 都不
15 73 ?
图解法:
都=88-15 =73
?=76-73 =3
求只A/只B,在公式中没有——>画图
容斥原理
2.三集合
标准型公式:A+B+C-A∩B-B∩C-A∩C+A∩B∩C=全-都不
B
A
+2 -1
+3 -1
-1 -1
+2 -1
+2 -1
2.三集合
非标准型公式:A+B+C-满足两项 - 满足三项×2=全-都不
B
满足两项:只具有其中两个属性(灰色区域)
A
+2
+3
+2
+2
A+B+C - 满足两项 - 满足三项×2 +都不 = 全 A+B+C-满足两项 - 满足三项×2=全-都不
C
都不

备考 数量关系之三集合容斥问题解题技巧:公式法

备考 数量关系之三集合容斥问题解题技巧:公式法

2012年备考数量关系之三集合容斥问题解题技巧:公式法在国家公务员行测考试中,数量关系模块中的容斥问题必不可少,也是学员觉得最难突破的一大问题。

究其原因,一则是容斥问题很复杂,特别是三集合容斥问题涉及的已知量特别多,读完题容易被绕进去;二则是没有好的方法切入,做出来非常消耗时间。

其实,掌握好公式法对于解决三集合容斥问题很有帮助。

本篇就对三集合容斥问题的解题技巧之公式法进行阐释。

一、三集合标准型公式集合A、B、C,满足标准型公式:==总数-三者都不满足的个数三集合标准型公式适用于题目中各类条件都明确给出的情况。

另外,可使用尾数法,判断个位数的相加减快速确定正确答案。

【例题1】(浙江-行测-2009-55)某专业有学生50人,现开设有甲、乙、丙三门选修课。

有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人,问三门课程均未选的有多少人?()A.1人B.2人C.3人D.4人【答案】B。

各类条件明确给出,直接使用公式法。

三者都不满足的个数=总数-=50-(40+36+30-28-26-24+20),可使用尾数法,尾数为2,选B。

【例题2】(国家-行测-2009-116)如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。

它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。

且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。

问图中阴影部分的面积为多少()?A.14B.15C.16D.17【答案】C。

直接使用三集合标准型公式,=-()=290-(64+180+160-24-70-36),根据尾数法得,尾数为6,选C。

二、三集合整体重复型公式三集合容斥问题中,有些条件未知时,就不能直接使用标准型公式,而是运用整体重复型公式同样可以解答。

特别当题目中说明分别满足一种、两种、三种条件的个数时,使用整体重复型公式。

国家公务员行测集合问题

国家公务员行测集合问题

国家公务员行测集合问题集合问题也称容斥原理,是出题频率最高的题型之一。

本类试题基本解题思路如下:1.利用集合原理公式法:适用于条件与问题都可直接代入公式的题目。

(1)两个集合:︱A∪B︱=︱A︱+︱B︱-︱A∩B︱(2)三个集合:︱A∪B∪C︱=︱A︱+︱B︱+︱C︱-︱A∩B︱-︱B∩C︱-︱C∩A︱+︱A∩B∩C︱2. 文氏图示意法:用图形来表示集合关系,变抽象文字为形象图示。

真题一:某服装厂生产出来的一批衬衫中大号和小号各占一半。

其中25%是白色,75%是蓝色的。

如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?( )A.15B.25C.35D.40【解析】C。

由题中可知大号衬衫、小号衬衫各50件,白色衬衫共25件,蓝色衬衫共75件。

题中已告诉大号白色衬衫有10件,可知大号蓝色衬衫有50-10=40件,则剩余的蓝色衬衫全是小号的,共75-40=35(件)。

真题二:某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。

A. 22B. 18C. 28D. 26【解析】A。

本题采用图示法更为简单。

如图:故两次都及格的人数为32-4-4-2=22人。

真题三:某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都及格的有22人,那么两次考试都没有及格的人数是( )。

A. 10B. 4C. 6D. 8【解析】B。

两次考试都没有及格的人数=学生总数-两次都及格的人数-第一次未及格的人数-第二次未及格的人数=32-22-[32-22-(32-26)]-[32-22-(32-24)]=32-22-6=4。

真题四:对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。

其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国考:公式法解容斥问题(三集合非标准型)河北公务员考试的《行测职业能力测验》包括五大部分内容:言语理解与表达、数量关系、判断推理、常识判断和资料分析,主要考察考生是否具有从事公务员职业必须具备的基本素质和潜在能力。

河北华图教育精心整理了河北公务员行测真题及其他公务员笔试资料供考生备考学习。

在行测考试当中,有一类问题叫做容斥问题。

什么题目我们归结为容斥问题呢?一般情况下,有符合A,有符合B,有符合AB,有AB都不符合等这一类题干,我们就把他归结为容斥问题。

容斥问题可以分为二集合容斥和三集合容斥。

解题思路有画图法和公式法。

一般情况下,只要我们能牢牢地背会相关公式,考试的时候就能很快的做出答案,节省考试时间。

今天我们一起来看一下三集合容斥非标准型公式。

三集合容斥非标准型公式:A+B+C-只满足两个条件-只满足三个条件=总数-都不符合。

下面我们一起来看寄到容斥问题的例题:
【例】(2012-河北-43)某乡镇对集贸市场36 种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。

其中,两项同时不合格的5种,三项同时不合格的2种。

问三项全部合格的食品有多少种?()
A.14
B.21
C.23
D.32
【解析】此题为容斥原理问题,根据三集合容斥标准型公式:A+B+C-只满足两个条件-只满足三个条件=总数-都不符合。

根据容斥原理,不合格的产品共有7+9+6-5-2×2=13(种),合格产品有36-13=23(种),选择C。

由此可见,如果能够熟练地记住公式,其实这类问题我们完全可以在1分钟以内做出来的。

我们再来看一道例题:
【例】(2011-国家-74)某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝
剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。

则三项全部合格的建筑防水卷材产品有多少种?()
A.37
B.36
C.35
D.34
【解析】套用三集合容斥非标准型公式:不合格产品=8+10+9-7-2×1=18,即不合格的产品共18 种,则合格产品的数量=52-18=34。

选择D。

【例】(2010-国家-75)某高校对一些学生进行问卷调查。

在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试参加的有46人,不参加其中任何一种考试的有15人。

问接受调查的学生共有多少人?()
A.120
B.144
C.177
D.192
【解析】根据题意列出等式:x-15=63+89+17-46-2×24,解得x=120。

所以答案选A。

不积跬步,无以至千里,不积小流无以成江海。

齐骥一跃,不能十步,驽马十驾,功不在舍。

祝大家早日上岸。

相关文档
最新文档