2012《一课一练%20创新练习》9年级数学全一册(北师大版)参考答案[1]
2012《一课一练_创新练习》7年级数学上册(人教版)参考答案
8. 解:(1)从表中可知粮食、能源、教育的价格上 涨了, 而家用电器、电脑、汽车的价格都降低了. (2) 能源的价格上涨幅度最大,电脑的价格下降幅 度最大. (3) 如:家用电器的价格比 2011 年 12 月份下降了 3. 8%. 第 2 课时 0 的意义 要点归纳 1. -3 m 2.负数 题型归类 要点归纳
1. 2 有
1.2.1 有理数
理
数
1. 正整数、0 和 负 整 数 正 分 数 和 负 分 数 有 理数 2. ““正 数 非 负 数 0 正 整 数 分 数 题型归 类
例 1 30. 1 m,28 m,26. 8 m,25 m,26 m,29 m 例 2 折回来行走 280 米表示向西行走 280 米; 休息
(2) 产 398 辆. 7. 为+35 示 为 -40m 8. 解:答案不唯一) 问题(1):星期日的水位是多少米?
解(1)用正 : -7, -3, +10,
总产量为 2 786 辆,平均每日实际生 解:灯塔的高度表示 m,潜水艇的高度表
例1D 例 2 (1)2.5, +-3,106,n ,_ 1 ,_3 I 4 , _ 1 了 (2)略 例 3 - 80 元 易错示例 例 +2 米 分层作业 1.A 2.C 3.B 4. -5 °C 5 0 6.略 7. (1)18 -20 (2)解:第 99 个数、第 100 个数分别是 198, -200; 第 2 010 个数、第 2 011 个数分别是 -4 020,4 022.
《 一 课 一 练 创 新 练 习 》数 学( 人 教 版 ) 7 上 正文部分参考答案
4. 1 60 元-40 元 5. -4 时
第 一 章 有 理 数 数和负数
北师大版九年级数学下册全册同步练习含答案最新版
北师大版初中数学九年级下册全册同步练习1.1锐角三角函数一、选择题1.在△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是( ) A. sin A= B.cos A=C.sin A= D.tan A=2.如图l-2l所示的是一水库大坝横截面的一部分,坝高h=6 m,迎水坡AB=10 m,斜坡的坡角为a,则tan a的值为 ( )A. B. C. D.3.如图1-22所示,在矩形ABCD中,DE⊥AC于E,设∠ADE=a,且cos a=,AB=4,则AD的长为 ( )A.3 B.C. D.二、填空题4.如图1-23所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC=,则梯子AB的长度为米.5.若a是锐角,且sin2 a+cos2 48°=1,则a= .6.如图l-24所示,在Rt△ACB中,∠C=90°,AB=3,BC=1,求∠A的三角函数值.三、计算与解答题7.如图1-25所示,在Rt△ACB中,∠ACB=90°,CD为AB边上的高,BD=3,AD =,求sin A,cos A,tan A的值.8.如图1-26所示,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求cos∠BAO的值.9.请你画出一个以BC为底边的等腰三角形ABC,使底边上的高AD=BC(1)求tan∠ABC和sin∠ABC的值;(2)在你所画的等腰三角形ABC中,假设底边BC=5米,求腰上的高BE.参考答案1.C[提示:sinA=.]2.D[提示:过A点作垂线交底部于C点,则△ACB为直角三角形,∴BC==8(m),∴tan a==.故选D.]3.B[提示:∠ADE和∠EDC互余,∴cos a=sin∠EDC=,sin∠EDC=∴EC=.由勾股定理,得DE=.在Rt△AED中,cos a=,∴AD=.故选B.]4.4[提示:在Rt△BCA中,AC=3米,cos∠BAC=,所以AB=4米,即梯子的长度为4米.]5.48°[提示:∵sin2a+cos2 a=l,∴a=48°.]6.提示:sin A=,cos A=,tan A=.7.解:∵∠ACB=90°,CD⊥AB,∴△ACD∽△CBD,∴CD2=AD·DB=16,∴CD=4,∴AC=.∴sin A==,cos A=,tan A=. 8.解:(1)如图l-27所示,作BH⊥OA,垂足为H.在Rt△OHB中,∵BO=5,sin∠BOA=,∴BH=3,∴OH=4,∴点B的坐标为(4,3). (2)∵OA=10,OH=4,∴AH=6.在Rt△AHB中,∵BH=3,∴AB=,∴cos∠BAO== .9.解:(1)根据题意画出图形,如图1-28所示,∵AB=AC,AD⊥BC,AD=BC,∴BD=B C= AD,即AD=2BD,∴AB=BD,∴tan∠ABC==2,sin∠ABC== (2)作BE⊥AC于E,在Rt△BEC中,sinC=sin∠ABC=.又∵sin C=∴故BE=(米).1.2 30°,45°,60°角的三角函数值一.选择题:1.在△ABC中,∠A,∠B都是锐角,且 sin A=,cos B=,则△ABC三个角的大小关系是()A.∠C>∠A>∠B B.∠B>∠C>∠AC.∠A>∠B>∠C D.∠C>∠B>∠A2.若0°<<90°,且|sin-|+,则tan的值等于()A. B. C. D.3.如图1—37所示,在△ABC中,∠A=30°,tan B=,AC=,则AB的长是 ( ) A.3+ B.2+C. 5 D.4.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是( ) A.a B.a C.a D.a或a二、选择题5.在Rt△ACB中,∠C=90°,AC=,AB=2,则tan= .6.若a为锐角,且sin a=,则cos a= .7.在Rt△ACB中,若∠C=90°,sin A=,b+c=6,则b= .8.(1)在△ABC中,∠C=90°,sin A=,则 cos B=________;(2)已知为锐角,且cos(90°-)=,则=________;(3)若,则锐角=________.三、计算与解答9.计算(1)sin 60°·cos 30°-.(2) 2 cos230°-2 sin 60°·cos 45°;(3) 2 sin30°-3 tan 45°+4 cos 60°;10.如图1—38所示,在Rt△ACB中,∠BCA=90°,CD是斜边上的高,∠ACD=30°,AD =1,求AC,CD,BC,BD,AB的长.11.如图1—39所示,在相距100米的A,B两处观测工厂C,测得∠BAC=60°,∠ABC=45°,则A,B两处到工厂C的距离分别是多少?12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.参考答案1. D; 2 。
九年级数学北师大版上册课时练第1章《菱形的性质与判定》 练习测试卷 含答案解析
课时练第1单元菱形的性质与判定一.菱形的性质1.菱形具有而平行四边形不具有的性质是()A.对角线互相垂直B.两组对角分别相等C.对角线互相平分D.两组对边分别平行2.已知菱形的面积为24cm2,一条对角线长为6cm,则这个菱形的边长是()厘米.A.8B.5C.10D.4.83.已知菱形的周长为9.6cm,两个邻角的比是1:2,这个菱形较短的对角线的长是()A.2.1cm B.2.2cm C.2.3cm D.2.4cm4.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B 的度数是()A.70°B.75°C.80°D.95°5.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75°B.45°C.60°D.30°6.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4B.3C.2D.7.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为.8.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠F AC=60°.连接AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.9.如图,在菱形ABCD中,∠A=100°,M、N分别是边AB、BC的中点,MP⊥CD于点P.则∠NPC的度数为.10.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.11.如图,菱形ABCD中,∠ABC=60°,AB=2,E、F分别是边BC和对角线BD上的动点,且BE=DF,则AE+AF的最小值为.12.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是直线BD上的动点,OE ⊥AB于E,OF⊥AD于F(1)对角线AC的长是,菱形ABCD的面积是;(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否会发生变化?请说明理由;(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否会发生变化?若不变,请说明理由;若变化,请探究OE、OF之间的数量关系,并说明理由.13.菱形ABCD中,点P为CD上一点,连接BP.(1)如图1,若BP⊥CD,菱形ABCD边长为10,PD=4,连接AP,求AP的长.(2)如图2,连接对角线AC、BD相交于点O,点N为BP的中点,过P作PM⊥AC于M,连接ON、MN.试判断△MON的形状,并说明理由.14.在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.二.菱形的判定15.红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图所示.红丝带重叠部分形成的图形是()A.正方形B.等腰梯形C.菱形D.矩形16.▱ABCD的对角线AC与BD相交于点O,添加以下条件,不能判定平行四边形ABCD 为菱形的是()A.AC=BD B.AC⊥BD C.∠ACD=∠ACB D.BC=CD 17.顺次连接等腰梯形各边中点所围成的四边形是()A.平行四边形B.矩形C.菱形D.正方形18.已知:如图,过四边形ABCD的顶点A、C、B、D分别作BD、AC的平行线围成四边形EFGH,如果EFGH成菱形,那么四边形ABCD必定是()A.菱形B.平行四边形C.长方形D.对角线相等的四边形19.如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定正确的个数是()①△BDF是等腰三角形;②DE=BC;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.A.1B.2C.3D.420.如图,平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的个数是()A.2B.3C.4D.521.已知AD是△ABC的角平分线,点E、F分别是边AB,AC的中点,连接DE,DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是(答案不唯一).22.已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF是菱形.23.已知:如图,平行四边形ABCD的两条对角线相交于点O,E是BO的中点,过B点作AC的平行线,交CE的延长线于点F,连接BF(1)求证:FB=AO;(2)当平行四边形ABCD满足什么条件时,四边形AFBO是菱形?说明理由.三.菱形的判定与性质24.下列说法中错误的是()A.四边相等的四边形是菱形B.菱形的对角线长度等于边长C.一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形25.如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH′L、四边形EKE′A、△BGF的周长分别为C1、C2、C3,且C1=2C2=4C3,已知FG=LK,EF=6,则AB的长是()A.9.5B.10C.10.5D.1126.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4B.3C.2D.127.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB 的面积为4cm2.则OC的长为()A.2B.3C.4D.528.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=.29.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.30.如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤10).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能构成菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.参考答案一.菱形的性质1.A2.B3.D4.C5.C6.B7.8.()n﹣19.50°10.﹣111.212.解:(1)如图,连接AC与BD相交于点G,在菱形ABCD中,AC⊥BD,BG=BD=×16=8,由勾股定理得,AG===6,∴AC=2AG=2×6=12,菱形ABCD的面积=AC•BD=×12×16=96;故答案为:12;96;=S△ABO+S△ADO,(2)如图1,连接AO,则S△ABD所以,BD•AG=AB•OE+AD•OF,即×16×6=×10•OE+×10•OF,解得OE+OF=9.6是定值,不变;=S△ABO﹣S△ADO,(3)如图2,连接AO,则S△ABD所以,BD•AG=AB•OE﹣AD•OF,即×16×6=×10•OE﹣×10•OF,解得OE﹣OF=9.6,是定值,不变,所以,OE+OF的值变化,OE、OF之间的数量关系为:OE﹣OF=9.6.13.解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD=10,AB∥CD∵PD=4,∴PC=6,∵PB⊥CD,∴PB⊥AB,∴∠CPB=∠ABP=90°,在RT△PCB中,∵∠CPB=90°PC=6,BC=10,∴PB===8,在RT△ABP中,∵∠ABP=90°,AB=10,PB=8,∴P A===2.(2)△OMN是等腰三角形.理由:如图2中,延长PM交BC于E.∵四边形ABCD是菱形,∴AC⊥BD,CB=CD,∵PE⊥AC,∴PE∥BD,∴=,∴CP=CE,∴PD=BE,∵CP=CE,CM⊥PE,∴PM=ME,∵PN=NB,∴MN=BE,∵BO=OD,BN=NP,∴ON=PD,∴ON=MN,∴△OMN是等腰三角形.14.解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE==2,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC===2;(2)如图2,延长CD至H,使CD=DH,连接NH、AH,∵AD=CD,∴AD=DH,∵CD∥AB,∴∠HDA=∠BAD=60°,∴△ADH是等边三角形,∴AH=AD,∠HAD=60°,∵△AMN是等边三角形,∴AM=AN,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM,∴∠HAN=∠DAM,在△ANH和△AMD中,∵,∴△ANH≌△AMD(SAS),∴HN=DM,∵D是CH的中点,Q是NC的中点,∴DQ是△CHN的中位线,∴HN=2DQ,∴DM=2DQ.二.菱形的判定15.C16.A17.C18.D19.C20.C21.解:由题意知,可添加:AB=AC.则三角形是等腰三角形,由等腰三角形的性质知,顶角的平分线与底边上的中线重合,即点D是BC的中点,∴DE,EF是三角形的中位线,∴DE∥AB,DF∥AC,∴四边形ADEF是平行四边形,∵AB=AC,点E,F分别是AB,AC的中点,∴AE=AF,∴平行四边形ADEF为菱形.22.证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EDA=∠F AD,∵AD是△ABC的角平分线,∴∠EAD=∠F AD,∴∠EAD=∠EDA,∴EA=ED,∴四边形AEDF为菱形.23.证明:(1)∵E是BO的中点,∴OE=BE,∵BF∥AC,∴∠BFE=∠OCE,在△BEF和△OEC中,,∴△BEF≌△OEC,∴BF=OC,∵平行四边形ABCD的两条对角线相交于点O,∴OA=OC,∴FB=AO;(2)当平行四边形ABCD是矩形时,四边形AFBO是菱形.理由如下:∵平行四边形ABCD是矩形,∴OA=OB,∴平行四边形AFBO是菱形.三.菱形的判定与性质24.B25.D26.C27.C28.3629.(1)证明:∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥BC,∴∠F AC=∠ECA,在△AOF和△COE中,,∴△AOF≌△COE,∴OF=OE,∵OA=OC,∴四边形AECF为平时四边形,∵AC⊥EF,∴四边形AECF为菱形;(2)解:设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;(3)解:在Rt△ABC中,AC===4,∴OA=AC=2,在Rt△AOE中,OE===,∴EF=2OE=2.30.(1)证明:能.理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即40﹣4t=2t,解得t=.∴当t=秒时,四边形AEFD为菱形.(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=t,又AD=40﹣4t,即40﹣4t=t,解得t=8;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即40﹣4t=4t,解得t=5.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=8或5秒时,△DEF为直角三角形.。
(含答案)九年级数学北师大版上册课时练第2章《用配方法求解一元二次方程》
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第2单元用配方法求解一元二次方程一.选择题1.已知某企业2019年年营业收入为2500万元,2021年年营业收入达到3600万元,求这两年该企业年营业收入的平均增长率.设这两年年营业收入的平均增长率为x,根据题意列方程为()A.2500x2=3600B.2500(1+x)=3600C.2500(1+x)2=3600D.2500[1+(1+x)+(1+x)2]=36002.受我省“药品安全春风行动”影响,某品牌药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,若设每次降价的百分率为x,根据题意可得方程()A.B.C.D.3.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒60元下调至52元,若设每次平均降价的百分率为x,由题意可列方程为()A.60(1﹣x)+60(1﹣x)2=52B.60(1﹣2x)=52C.60(1﹣x)2=52D.60(1﹣x2)=524.某电影上映第一天票房收入约1亿元,以后每天票房收入按相同的增长率增长,三天后累计票房收入达到4亿元.若增长率为x,则下列方程正确的是()A.1+x=4B.(1+x)2=4C.1+(1+x)2=4D.1+(1+x)+(1+x)2=45.据贵阳市自然资源和规划局公示,贵阳轨道交通4号线从贵阳北出发,依次为贵阳北﹣贵阳东﹣龙洞堡﹣……﹣白云区.从贵阳北到白云区共设计了156种往返车票,这条线路共有多少个站点?设这条线路共有x个站点,根据题意,下列方程正确的是()A.x(x+1)=156B.x(x﹣1)=156C.(x+1)=156D.x(x﹣1)=1566.疫情期间,某快递公司推出无接触配送服务,4月份第1周接到1.5万件订单,前3周共接到4.8万件订单,设第1周到第3周订单的周平均增长率为x,则可列方程为()A.1.5(1+2x)=4.8B.1.5×2(1+x)=4.8C.1.5(1+x)2=4.8D.1.5+1.5(1+x)+1.5(1+x)2=4.87.新冠疫情给各地经济带来很大影响.为了尽快恢复经济,某企业加大生产力度,四月份生产零件50万个,第二季度共生产零件182万个.若该企业五、六月份平均每月的增长率为x,则下列方程中正确的是()A.50(1+x)2=182B.50+50(1+x)+50(1+2x)=182C.50(1+2x)2=182D.50+50(1+x)+50(1+x)2=1828.2021年第二季度,某市实现垃圾分类的小区数比第一季度增加了30%,第三季度比第二季度增加了40%,假设该市小区数量不变,设2021年第二、三两季度实现垃圾分类的小区平均增加的百分数为x%,则x%满足的方程是()A.30%+40%=2x%B.(1+30%)(1+40%)=2x%C.(1+30%)(1+40%)=(1+x%)2D.(1+30%)(1+40%)=(1+2x%)29.某景点去年第一季度接待游客25万人次,第二、第三季度共接待游客150万人次.设该景点去年第一季度到第三季度的接待游客人次的增长率为x且保持不变(x>0),则()A.25(1+x)2=150B.25(1+x)=150C.25+25(1+x)+25(1+x)2=150D.25(1+x)+25(1+x)2=150二.填空题10.某海洋养殖场每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖场第一年的可变成本为2.6万元,第三年的养殖成本为7.146万元,设可变成本平均每年增长的百分率为x,则可列方程为.11.九江某农场2019年种植1亩蔬菜的成本是4000元,由于原料价格上涨,2021年生产种植1亩蔬菜的成本是6000元,求该农场种植1亩蔬菜成本的年平均增长率.设年平均增长率为x,则所列的方程应为.12.参加一次同学聚会,每两人都握一次手,所有人共握了15次,若设共有x人参加同学聚会,列方程得.13.2021年端午节期间,合肥某食品专卖店准备了一批粽子,每盒利润为50元,平均每天可卖300盒,经过调查发现每降价1元,可多销售10盒,为了尽快减少库存,决定采取降价措施,专卖店要想平均每天盈利16000元,设每盒粽子降价x元,可列方程.14.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件村衫降价x元,由题意列得方程.三.解答题15.某一皮衣专卖店销售某款皮衣,其进价为每件750元,经市场调查发现,按每件1100元出售,平均每天可售出30件,每件降价50元,平均每天的销售量可增加10件,皮衣专卖店若想要平均每天获利12000元,则每件皮衣定价为多少元?(1)以下是小明和小红的两种不同设法,请帮忙填完整:小明:设每件皮衣降价x元,由题意,可列方程:.小红:设每件皮衣定价为y元,由题意,可列方程:.(2)请写出一种完整的解答过程.16.某超市销售一种品牌童装,平均每天可售出30件,每件盈利40元.面对2008年下半年全球的金融危机,超市采用降价措施,每件童装每降价2元,平均每天就多售出6件.要使平均每天销售童装利润为1000元,那么每件童装应降价多少元?(列方程,并化为一般形式).17.某商场销售一种环保节能材料,平均每天可售出100盒,每盒利润120元.由于市场调控,为了扩大销售量,商场准备适当降价.据调查,若每盒材料每降价1元,每天可多售出2盒.根据以上情况,请解答以下问题:(1)当每盒材料降价20元时,这种材料每天可获利元.(2)为了更多的让利消费者,且保证每天销售这种节能材料获利达14400元,则每盒应降价多少元?18.2022年冬奥会在北京顺利召开,冬奥会吉祥物冰墩墩公仔爆红.据统计冰墩墩公仔在某电商平台1月份的销售量是5万件,3月份的销售量是7.2万件.(1)若该平台1月份到3月份的月平均增长率都相同,求月平均增长率是多少?(2)市场调查发现,某一间店铺冰墩墩公仔的进价为每件60元,若售价为每件100元,每天能销售20件,售价每降价1元,每天可多售出2件,为了推广宣传,商家决定降价促销,同时尽量减少库存,若使销售该公仔每天获利1200元,则售价应降低多少元?19.建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?20.国土资源部提出“保经济增长、保耕地红线”行动,坚持实行最严格的耕地保护制度,某村响应国家号召,2019年有耕地7200亩,经过改造后,2021年有耕地8712亩.(1)求该村耕地两年平均增长率;(2)按照(1)中平均增长率,求2022年该村耕地拥有量.21.今年三月,新冠肺炎疫情再次波及长沙,某社区超市将原来每瓶售价为20元的免洗消毒液经过两次降价后(每次降价的百分率相同),以每瓶16.2元出售支持社区防疫.(1)求每次降价的百分率;(2)商家库存的1000瓶免洗消毒液每瓶进价为15元,仓储、人工等成本大约共1500元,计划通过以上两次降价方式全部售出后确保不亏损,那么第一次降价至少售出多少瓶后,方可进行第二次降价?参考答案一.选择题1.C2.D3.C4.D5.B6.D7.D8.C9.D二.填空题10.4+2.6(1+x)2=7.14611.4000(1+x)2=600012.x(x﹣1)=1513.(50﹣x)(300+10x)=1600014.(40﹣x)(20+2x)=1200三.解答题15.解:(1)小明:设每件皮衣降价x元,则平均每天的销售量为(30+x÷50×10)件,依题意,得:(1100﹣x﹣750)(30+x÷50×10)=12000;小红:设每件皮衣定价为y元,则平均每天的销售量为(30+×10)件,依题意,得:(y﹣750)(30+)=12000.故答案为:(1100﹣x﹣750)(30+x÷50×10)=12000;(y﹣750)(30+)=12000.(2)选择小明的设法,则(1100﹣x﹣750)(30+x÷50×10)=12000,整理,得:x2﹣200x+7500=0,解得:x1=50,x2=150,∴1100﹣x=1050或950.答:每件皮衣定价为1050元或950元.选择小红的设法,则(y﹣750)(30+)=12000,整理,得:y2﹣2000y+997500=0,解得:y1=1050,y2=950.答:每件皮衣定价为1050元或950元.16.解:每降价2元,多销售6件,设降价x元,则多销售3x件;降价后销售件数为(30+3x)件,每件利润为(40﹣x)元.则有(30+3x)(40﹣x)=1000,整理得3x2﹣90x﹣200=0.17.解:(1)根据题意,得(120﹣20)×(100+2×20)=14000(元),故答案为:14000;(2)设每盒应降价x元,根据题意,得(120﹣x)(100+2x)=14400,解得x=30或x=40,∵更多的让利消费者,∴x=40,答:每盒应降价40元.18.解:(1)设月平均增长率是x,依题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:月平均增长率是20%.(2)设售价应降低y元,则每件的销售利润为(100﹣y﹣60)元,每天的销售量为(20+2y)件,依题意得:(100﹣y﹣60)(20+2y)=1200,整理得:y2﹣30y+200=0,解得:y1=10,y2=20.又∵要尽量减少库存,∴y=20.答:售价应降低20元.19.解:(1)设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市改造老旧小区投入资金的年平均增长率为20%.(2)设该市在2022年可以改造y个老旧小区,依题意得:80×(1+15%)y≤1440×(1+20%),解得:y≤,又∵y为整数,∴y的最大值为18.答:该市在2022年最多可以改造18个老旧小区.20.解:(1)设该村耕地两年平均增长率为x,依题意得:7200(1+x)2=8712,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:该村耕地两年平均增长率为10%.(2)8712×(1+10%)=9583.2(亩).答:2022年该村拥有耕地9583.2亩.21.解:(1)设每次降价的百分率为x,则20(1﹣x)2=16.2,解得x=0.1或x=1.9(舍),答:每次降价的百分率为10%.(2)由(1)知第一次降价后的售价为18元,设第一次降价销售y瓶,根据题意得:(18﹣15)y+(16.2﹣15)(1000﹣y)≥1500,解得:y≥≈166.7,答:第一次降价至少售出167瓶后,方可进行第二次降价.。
北师大版九上第一章各节练习题及答案
北师大版九上第一章各节练习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版九上第一章各节练习题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版九上第一章各节练习题及答案的全部内容。
菱形的性质与判定一、选择题 1。
菱形具有而一般平行四边形不具有的性质是( )A 。
对角相等 B.对边相等 C.对角线互相垂直 D.对角线相等2.能够判别一个四边形是菱形的条件是( ) 条对角线平分这组对角A 。
对角线相等且互相平分B 。
对角线互相垂直且相等C.对角线互相平分D 。
一组对角相等且一3.菱形的周长为100 cm,一条对角线长为14 cm ,它的面积是( )A 。
168 cm2 B.336 cm2 C.672 cm2 D 。
84 cm24。
菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为( )A 。
4 B.8 C.10D.125.下列语句中,错误的是( )A 。
菱形是轴对称图形,它有两条对称轴B 。
菱形的两组对边可以通过平移而相互得到C 。
菱形的两组对边可以通过旋转而相互得到D 。
菱形的相邻两边可以通过旋转而相互得到二、填空题 6。
菱形的周长是8 cm ,则菱形的一边长是______.7。
菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为______.8。
菱形的对角线的一半的长分别为8 cm 和11 cm,则菱形的面积是_______.9。
菱形的面积为24 cm2,一对角线长为 6 cm,则另一对角线长为______,边长为______。
10。
菱形的面积为8平方厘米,两条对角线的比为1∶,那么菱形的边长为_______.三、解答题11.如图,AD 是△ABC 的角平分线.DE∥AC 交AB 于E,DF∥AB 交AC 于F.四边形AEDF 是菱形吗?说明你的理由。
北师大版九年级数学下全册详细教案(含答案)
第一章 直角三角形的边角关系1.1 锐角三角函数 第1课时 正切1.理解正切的定义,运用正切值的大小比较生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.(重点)2.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.阅读教材P2~4,完成预习内容. (一)知识探究1.在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA ,即tanA =∠A 的对边∠A 的邻边.2.tanA 的值越大,梯子越陡.3.坡面的竖直高度与水平距离的比称为坡度(或坡比). (二)自学反馈1.在Rt △ABC 中,∠C =90°,AC =12,BC =5,那么tanA 等于(C) A.513 B.1213 C.512 D.1252.如图,有一个山坡在水平方向上前进100 m ,在竖直方向上就升高60 m ,那么山坡的坡度i =tan α=35.活动1 小组讨论例 如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?解:甲梯中,tan α=5132-52=512.乙梯中,tan β=68=34. 因为tan β>tan α,所以乙梯更陡.求正切值一定要在直角三角形中进行,并且一定要分清锐角的对边与邻边.活动2 跟踪训练1.如图,下面四个梯子最陡的是(B)2.如图,在边长为1的小正方形组成的网格中,点A 、B 、O 为格点,则tan ∠AOB =(A) A.12 B.23 C.105 D.533.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,且a =24,c =25,则tanA =247、tanB =724.4.如图,某人从山脚下的点A 走了300 m 后到达山顶的点B ,已知点B 到山脚的垂直距离为70 m ,求山的坡度0.24.(结果精确到0.01)活动3 课堂小结 1.正切的定义.2.梯子的倾斜程度与tanA 的关系(∠A 和tanA 之间的关系).3.数形结合的方法,构造直角三角形的意识.第2课时 锐角三角函数1.理解正弦函数和余弦函数的意义,能根据边长求出锐角的正弦值和余弦值,准确分清三种函数值的求法.(重点)2.经历探索直角三角形中边角关系的过程,进一步理解当锐角度数一定,则其对边、邻边、斜边三边比值也一定.能根据直角三角形中的边角关系,进行简单的计算.阅读教材P5~6,完成预习内容. (一)知识探究1.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ;∠A 的对边与斜边的比叫做∠A 的正弦,即sinA =a c .∠A 的邻边与斜边的比叫做∠A 的余弦,即cosA =bc.2.锐角A 的正弦、余弦、正切叫做∠A 的三角函数.3.sinA 的值越大,梯子越陡;cosA 的值越小,梯子越陡.锐角三角函数是在直角三角形的前提下.(二)自学反馈1.如图,在△ABC 中,∠C =90°,AB =13,BC =5,则sinA 的值是(A) A.513 B.1213 C.512 D.1352.如图,在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为(A)A.4B.2 5C.181313D.1213133.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3、b =4,则sinB =45,cosB =35,tanB =43.活动1 小组讨论例1 如图,在Rt △ABC 中,∠B =90°,AC =200,sinA =0.6,求BC 的长.解:在Rt △ABC 中, ∵sinA =BC AC ,即BC200=0.6,∴BC =200×0.6=120.例2 如图,在Rt △ABC 中,∠C =90°,AC =10,cosA =1213,求AB 的长及sinB.解:在Rt △ABC 中, ∵cosA =ACAB ,即10AB =1213,∴AB =656. ∴sinB =AC AB =cosA =1213.这里需要注意cosA =sinB.活动2 跟踪训练1.如图,某厂房屋顶呈人字架形(等腰三角形),已知AC =8,DB =43,CD ⊥AB 于点D ,求sinB 的值.解:∵△ABC 是等腰三角形,∴BC =AC =8. ∵CD ⊥AB ,∴∠CDB =90°,∴CD =BC 2-BD 2=82-(43)2=4, ∴sinB =CD BC =48=12.2.如图,在△ABC 中,CD ⊥AB ,垂足为D.若AB =12,CD =6,tanA =32,求sinB +cosB的值.解:在Rt △ACD 中,∵CD =6,tanA =32,∴AD =4,∴BD =AB -AD =8.在Rt △BCD 中,BC =82+62=10,∴sinB =CD BC =35,cosB =BD BC =45,∴sinB +cosB =75.活动3 课堂小结学生试述:这节课你学到了些什么?1.2 30°,45°,60°角的三角函数值1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算,能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.(重点)阅读教材P8~9,完成预习内容. 自学反馈完成下面的表格:sin α cos α tan α 30°12323345° 22 22 1 60°32123活动1 小组讨论 例1 计算:(1)sin30°+cos45°;(2)sin 260°+cos 260°-tan45°. 解:(1)原式=12+22=1+22.(2)原式=34+14-1=0.sin 230°表示(sin30°)2,即sin30°·sin30°,这类计算只需将三角函数值代入即可.例2 一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)解:根据题意可知,∠AOD =12∠AOB =30°,AO =2.5 m.∴OD =OAcos30°=2.5×32=2.165(m). ∴CD =2.5-2.165≈0.34(m).∴最高位置与最低位置的高度差约为0.34 m. 活动2 跟踪训练 1.计算:(1)2sin30°+3tan30°+tan45°;(2)cos 245°+tan60°cos30°.解:(1)原式=2+ 3. (2)原式=2. 2.如图,某同学用一个有60°的直角三角板估测学校旗杆AB 的高度,他将60°角的直角边水平放在1.5 m 高的支架CD 上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D ,B 的距离为5 m ,则旗杆AB 的高度大约是多少米?(精确到1 m ,3取1.73)解:由已知可得四边形CDBE 是矩形,∴CE =DB =5 m ,BE =CD =1.5 m. 在Rt △ACE 中,∵tan ∠ACE =AECE,∴AE =CE ·tan ∠ACE =5·tan60°=53,∴AB =53+1.5=8.65+1.5=10.15≈10 (m), 即旗杆AB 的高度大约是10 m. 活动3 课堂小结学生试述:这节课你学到了些什么?1.3 三角函数的计算1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.阅读教材P12~14,完成预习内容. 自学反馈1.已知tan α=0.324 9,则α约为(B)A.17°B.18°C.19°D.20°2.已知tan β=22.3,则β=87°25′56″.(精确到1″)活动1 小组讨论例1 如图,当登山缆车的吊箱经过点A 到达点B 时,它走过了200 m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01 m)解:在Rt △ABC 中,∠ACB =90°,∴BC =ABsin α=200×sin16°≈55.13(m).例2 为了方便行人推自行车过某天桥,市政府在10 m 高的天桥两端修建了40 m 长的斜到.这条斜道的倾斜角是多少?解:在Rt △ABC 中,sinA =BC AC =1040=14.∴∠A ≈14°28′.答:这条斜道的坡角α是14°28′.在直角三角形ABC 中,直接用正弦函数描述∠CBA 的关系式,再用计算器求出它的度数.活动2 跟踪训练1.用计算器计算:(结果精确到0.000 1) (1)sin36°; (2)cos30.7°;(3)tan20°30′; (4)sin25°+2cos61°-tan71°. 解:(1)0.587 8;(2)0.859 9;(3)0.373 9;(4)-1.512 0.2.在Rt △ABC 中,若∠C =90°,BC =20,AC =12.5,求两个锐角的度数(精确到1°). 解:∵∠C =90°,BC =20,AC =12.5, ∴tanB =AC BC =12.520=0.625,用计算器计算,得∠B ≈32°,∴∠A =90°-32°=58°. 活动3 课堂小结1.本节学习的数学知识:利用计算器求锐角的三角函数值或锐角的度数.2.本节学习的数学方法:培养学生一般化意识,认识特殊和一般都是事物属性的一个方面.3.求锐角的三角函数时,不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,故数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.1.4 解直角三角形1.了解什么叫解直角三角形.2.掌握解直角三角形的根据,能由已知条件解直角三角形.(重点)阅读教材P16~17,完成预习内容. (一)知识探究1.在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.2.直角三角形中的边角关系:三边之间的关系a 2+b 2=c 2;两锐角之间的关系∠A +∠B =90°;边与角之间的关系:sinA =a c ,cosA =b c ,tanA =a b ,sinB =b c ,cosB =a c ,tanB =ba .3.在Rt △ABC 中,∠C =90°,已知∠A 与斜边c ,用关系式∠B =90°-∠A ,求出∠B ,用关系式sinA =ac求出a.(二)自学反馈1.在Rt △ABC 中,∠C =90°,sinA =35,则BC ∶AC =(A)A.3∶4B.4∶3C.3∶5D.4∶52.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为(B)A.5cos αB.5cos αC.5sin αD.5sin α活动1 小组讨论例1 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a =15,b =5,求这个三角形的其他元素.解:在Rt △ABC 中,a 2+b 2=c 2,a =15,b =5,∴c =a 2+b 2=(15)2+(5)2=2 5.在Rt △ABC 中,sinB =b c =525=12.∴∠B =30°.∴∠A =60°.例2 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且b =30,∠B =25°,求这个三角形的其他元素(边长精确到1).解:在Rt △ABC 中,∠C =90°,∠B =25°,∴∠A =65°.∵sinB =b c ,b =30,∴c =bsinB≈71.∵tanB =b a ,b =30,∴a =b tanB =30tan25°≈64.活动2 跟踪训练1.根据下列条件解直角三角形.(1)在Rt △ABC 中,∠C =90°,c =43,∠A =60°. 解:∵∠A =60°,∴∠B =90°-∠A =30°.∵sinA =a c ,∴a =c ·sinA =43·sin60°=43×32=6,∴b =c 2-a 2=(43)2-62=2 3. (2)在Rt △ABC 中,∠C =90°,a =6,b =2 3.解:∵∠C =90°,a =6,b =23, ∴c =a 2+b 2=62+(23)2=4 3. ∵tanA =a b =623=3,∴∠A =60°,∴∠B =90°-∠A =90°-60°=30°.2.如图,在△ABC 中,AD ⊥BC 于点D ,AB =8,∠ABD =30°,∠CAD =45°,求BC 的长.解:∵AD ⊥BC 于点D , ∴∠ADB =∠ADC =90°.在Rt △ABD 中,∵AB =8,∠ABD =30°, ∴AD =12AB =4,BD =3AD =4 3.在Rt △ADC 中,∵∠CAD =45°,∠ADC =90°, ∴DC =AD =4,∴BC =BD +DC =43+4. 活动3 课堂小结学生试述:这节课你学到了些什么?1.5 三角函数的应用 第1课时 方位角问题能运用解直角三角形解决航行问题.阅读教材P19有关方位角问题,完成预习内容. 自学反馈1.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.2.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是250米.活动1 小组讨论例 如图,海中一小岛A ,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后到达该岛的南偏西25°的C 处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?解:如图,过点A 作AD ⊥BC 交BC 的延长线于点D. 在Rt △ABD 中,∵tan ∠BAD =BDAD,∴BD =AD ·tan55°.在Rt △ACD 中,∵tan ∠CAD =CDAD ,∴CD =AD ·tan25°. ∵BD =BC +CD ,∴AD ·tan55°=20+AD ·tan25°. ∴AD =20tan55°-tan25°≈20.79>10.∴轮船继续向东行驶,不会遇到触礁危险.应先求出点A 距BC 的最近距离,若大于10则无危险,若小于或等于10则有危险.活动2 跟踪训练1.如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为(A)A.402海里B.403海里C.80海里D.406海里2.如图所示,A 、B 两城市相距100 km.现计划在这两座城市间修筑一条高速公路(即线段AB).经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50 km 为半径的圆形区域内,请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:3≈1.732,2≈1.414)解:计划修筑的这条高速公路不会穿越保护区.理由如下:过点P 作PC ⊥AB ,C 是垂足. 则∠APC =30°,∠BPC =45°,AC =PC ·tan30°,BC =PC ·tan45°. ∵AC +BC =AB ,∴PC ·tan30°+PC ·tan45°=100, 即33PC +PC =100,(33+1)PC =100, ∴PC =33+3×100=50×(3-1.732)≈63.40>50.∴计划修筑的这条高速公路不会穿越保护区.解这类题目时,首先弄清楚方位角的含义;其次是通过作垂线构造直角三角形,将问题转化为解直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?第2课时仰角、俯角问题1.理解仰角、俯角等概念,并会把类似于测量建筑物高度的实际问题抽象成几何图形.2.能利用解直角三角形来解其他非直角三角形的问题.阅读教材P19想一想,完成预习内容.(一)知识探究1.仰角、俯角:当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.2.解决实际应用问题时,常作的辅助线:构造直角三角形,解直角三角形.(二)自学反馈1.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞机飞行高度AC =1 200 m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为(D)A.1 200 mB.1 200 2 mC.1 200 3 mD.2 400 m2.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是(D)A.200米B.2003米C.2203米D.100(3+1)米活动1 小组讨论例如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m至B处.测得仰角为60°.那么该塔有多高?(小明的身高忽略不计,结果精确到1 m)解:∵∠DAB =30°,∠DBC =60°, ∴BD =AB =50 m.∴DC =BD ·sin60°=50×32=253≈43(m). 答:该塔高约为43 m. 活动2 跟踪训练1.我市某建筑工地,欲拆除该工地的一危房AB(如图),准备对该危房实施定向爆破.已知距危房AB 水平距离60米(BD =60米)处有一居民住宅楼,该居民住宅楼CD 高15米,在该住宅楼顶C 处测得此危房屋顶A 的仰角为30°,请你通过计算说明在实施定向爆破危房AB 时,该居民住宅楼有无危险?(在地面上以点B 为圆心,以AB 长为半径的圆形区域为危险区域,参考数据:2≈1.414,3≈1.732)解:没有危险,理由如下: 在△AEC 中,∵∠AEC =90°, ∴tan ∠ACE =AECE.∵∠ACE =30°,CE =BD =60, ∴AE =203≈34.64(米).又∵AB =AE +BE ,BE =CD =15, ∴AB ≈49.64(米).∵60>49.64,即BD>AB ,∴在实施定向爆破危房AB 时,该居民住宅楼没有危险.2.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角β=60°,求树高AB.(结果保留根号)解:作CF ⊥AB 于点F ,设AF =x 米, 在Rt △ACF 中,tan ∠ACF =AFCF,则CF =AF tan ∠ACF =x tan α=xtan30°=3x ,在直角△ABE 中,AB =x +BF =4+x(米),在直角△ABE 中,tan ∠AEB =AB BE ,则BE =AB tan ∠AEB =x +4tan60°=33(x +4)米.∵CF -BE =DE ,即3x -33(x +4)=3. 解得x =33+42.则AB =33+42+4=33+122(米).答:树高AB 是33+122米.活动3 课堂小结1.本节学习的数学知识:利用解直角三角形解决实际问题.2.本节学习的数学方法:数形结合、数学建模的思想.第3课时 坡度问题1.能运用解直角三角形解决斜坡问题.2.理解坡度i =坡面的铅直高度坡面的水平宽度=tan 坡角.阅读教材P19做一做,完成预习内容. 自学反馈1.如图所示,斜坡AB 和水平面的夹角为α.下列命题中,不正确的是(B) A.斜坡AB 的坡角为α B.斜坡AB 的坡度为BCABC.斜坡AB 的坡度为tan αD.斜坡AB 的坡度为BCAC2.如图,一人乘雪橇沿30°的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s =10t +2t 2,若滑到坡底的时间为4秒,则此人下降的高度为(C)A.72 mB.36 3 mC.36 mD.18 3 m活动1 小组讨论例 某商场准备改善原来楼梯的安全性能,把倾角由40°减至35°,已知原楼梯长为4 m ,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01 m)解:根据题意可得图形,如图所示: 在Rt △ABD 中,sin40°=AD AB =AD4,∴AD =4sin40°=4×0.64=2.56, 在Rt △ACD 中,tan35°=AD CD =2.56CD ,CD = 2.56tan35°=3.66,tan40°=AD BD =2.56BD ,BD = 2.56tan40°≈3.055 m.∴CB =CD -BD =3.66-3.055≈0.61(m). ∴楼梯多占了0.61 m 长一段地面. AC =ADsin35°≈4.46 m.∴AC -AB =4.46-4=0.46(m). ∴调整后的楼梯会加长0.46 m. 活动2 跟踪训练1.如图,某公园入口处原有三级台阶,每级台阶高为18 cm ,深为30 cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是210cm.2.如图,水库大坝的横断面是梯形,坝顶宽6 m ,坝高23 m ,斜坡AB 的坡度i =1∶3,斜坡CD 的坡度i ′=1∶2.5,求斜坡AB 的坡角α,坝底宽AD 和斜坡AB 的长.(精确到0.1 m)解:如图,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F , 在Rt △ABE 和Rt △CDF 中,BE AE =13,CF FD =12.5,∴AE =3BE =3×23=69(m),FD =2.5CF =2.5×23=57.5(m). ∴AD =AE +EF +FD =69+6+57.5=132.5(m).∵斜坡的坡度i=13≈0.333 3,∴BEAE =0.333 3,即tan α=0.333 3.∴α≈18°26′. ∵BE AB =sin α,∴AB =BE sin α≈230.316 2≈72.7(m). 答:斜坡AB 的坡角α约为18°26′,坝底宽AD 为132.5 m ,斜坡AB 的长约为72.7 m.这类问题,首先要弄清楚坡度、坡角等名词的含义;其次,要将梯形予以分割,分割成特殊的四边形和直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?1.6 利用三角函数测高会利用直角三角形的边角关系测物体的高度.(重点)阅读教材P22~23,完成预习内容. 自学反馈1.测量倾斜角可用测倾器.简单的测倾器由度盘、铅锤和支杆组成.活动1 小组讨论例1 测量底部可以到达的物体的高度下面是活动报告的一部分,请填写“测得数据”和“计算”两栏中未完成的部分.课题测量旗杆高测量示 意图测得 数据 测量项目 第一次 第二次 平均值 BD 的长 24.19 m 23.97 m 24.08 m 测倾器的高 CD =1.23 m CD =1.19 m 1.21 m 倾斜角α=31°15′α=30°45′α=31°计算,旗杆高AB(精确到0.1 m)AB =AE +BE =CEtan31°+CD=24.08×tan31°+1.21=15.7(m) 例2 测量底部不可以到达的物体的高度.如图,小山上有一座铁塔AB ,在D 处测得点A 的仰角为∠ADC =60°,点B 的仰角为∠BDC =45°;在E 处测得A 的仰角为∠E =30°,并测得DE =90米,求小山高BC 和铁塔高AB(精确到0.1米).解:在△ADE 中,∠E =30°,∠ADC =60°, ∴∠E =∠DAE =30°. ∴AD =DE =90米.在Rt △ACD 中,∠DAC =30°,则CD =12AD =45米,AC =AD ·sin ∠ADC =AD ·sin60°=453米.在Rt △BCD 中,∠BDC =45°,则△BCD 是等腰直角三角形. BC =CD =45米,∴AB =AC -BC =453-45≈32.9米.答:小山高BC 为45米,铁塔高AB 约为32.9米. 活动2 跟踪训练为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索: 实践一:根据《自然科学》中光的反射定律,利用一面镜子和一根皮尺,设计如图(1)的测量方案:把镜子放在离树(AB)8.7(米)的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树A B 的高度(精确到0.1米)实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪一架,请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中,选用的测量工具是①④. (2)在图(2)中画出你的测量方案示意图;(3)你需要测得示意图中哪些数据,并分别用a ,b ,c ,α,β等表示测得的数据a ·tan α+1.5.(4)写出求树高的算式:AB =AB =a ·tan α+1.5.解:实践一:∵∠CED =∠AEB ,CD ⊥DB ,AB ⊥BD , ∴△CED ∽△AEB , ∴CD AB =DE BE. ∵CD =1.6米,DE =2.7米,BE =8.7米, ∴AB =1.6×8.72.7≈5.2(m).实践二:(1)在距离树AB 的a 米的C 处,用测角仪测得仰角α,测角仪为CD.再根据仰角的定义,构造直角三角形ADE ,求得树高出测角仪的高度AE ,则树高为AE +BE.(2)如图.活动3 课堂小结学生试述:这节课你学到了些什么?第三章圆3.1 圆1.回顾圆的基本概念.2.理解并掌握与圆有关的概念:弦、直径、半圆、等圆、等弧等.(重点)3.结合实例,理解平面内点与圆的三种位置关系.(难点)阅读教材P65~66,完成预习内容.(一)知识探究1.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.2.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.(二)自学反馈1.下列命题中正确的有(A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个2.如图所示,图中共有2条弦.3.在平面内,⊙O的半径为5 cm,点P到圆心的距离为3 cm,则点P与⊙O的位置关系是点P在圆内.活动1 小组讨论例1 ⊙O的半径为2 cm,则它的弦长d的取值范围是0<d≤4_cm.直径是圆中最长的弦.例2⊙O中若弦AB等于⊙O的半径,则△AOB的形状是等边三角形.与半径相等的弦和两半径构造等边三角形是常用数学模型.例3 已知AB=4 cm,画图说明满足下列条件的图形.(1)到点A和B的距离都等于3 cm的所有点组成的图形;(2)到点A和B的距离都小于3 cm的所有点组成的图形;(3)到点A的距离大于3 cm,且到点B的距离小于2 cm的所有点组成的图形.解:(1)如图1,分别以点A和B为圆心,3 cm为半径画⊙A与⊙B,两圆的交点C、D 为所求;图1 图2(2)如图1,分别以点A和点B为圆心,3 cm为半径画⊙A与⊙B,两圆的重叠部分为所求;(3)如图2,以点A为圆心,3 cm为半径画⊙A,以点B为圆心,2 cm为半径画⊙B,则⊙B中除去两圆的重叠部分为所求.活动2 跟踪训练1.已知⊙O的半径为4,OP=3.4,则P在⊙O的内部.2.已知点P在⊙O的外部,OP=5,那么⊙O的半径r满足0<r<5.3.如图,图中有1条直径,2条非直径的弦,圆中以A为一个端点的优弧有4条,劣弧有4条.这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.4.如图,已知矩形ABCD的边AB=3 cm、AD=4 cm.(1)以点A为圆心,4 cm为半径作⊙A,则点B、C、D与⊙A的位置关系怎样?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则⊙A的半径r的取值范围是什么?解:(1)点B在⊙A内,点C在⊙A外,点D在⊙A上;(2)3<r<5.(2)问中B、C、D三点中至少有一点在圆内,是指哪个点在圆内?至少有一点在圆外是指哪个点在圆外?活动3 课堂小结1.这节课你学了哪些知识?2.学会了哪些解圆的有关问题的技巧?3.2 圆的对称性1.理解圆的轴对称性及其中心对称性.2.通过学习圆的旋转性,理解圆的弧、弦、圆心角之间的关系.(重难点)阅读教材P70~71,完成预习内容.(一)知识探究1.圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.在同圆或等圆中,如果两个圆心角,两条弦,两条弧中有一组量相等,那么它们所对应的其余各组量也相等.(二)自学反馈1.圆是轴对称图形,它有无数条对称轴,其对称轴是任意一条过圆心的直线.2.在⊙O 中,AB 、CD 是两条弦.(1)如果AB =CD ,那么AB ︵=CD ︵,∠AOB =∠COD ; (2)如果AB ︵=CD ︵,那么AB =CD ,∠AOB =∠COD ; (3)如果∠AOB =∠COD ,那么AB =CD ,AB ︵=CD ︵.活动1 小组讨论例 如图,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD ︵=CE ︵.BE 与CE 的大小有什么关系?为什么?解:BE =CE.理由是:∵∠AOD =∠BOE ,∴AD ︵=BE ︵. 又∵AD ︵=CE ︵, ∴BE ︵=CE ︵. ∴BE =CE.活动2 跟踪训练1.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =75°,则∠BAC =30°.2.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =60°,求证:∠AOB =∠BOC =∠AOC.证明:∵AB ︵=AC ︵,∴AB =AC.又∵∠ACB =60°,∴△ABC 为等边三角形. ∴AB =AC =BC.∴∠AOB =∠BOC =∠AOC.3.如图,已知在⊙O 中,BC 是直径,AB ︵=DC ︵,∠AOD =80°,求∠AOB 的度数.解:∵AB ︵=DC ︵, ∴∠AOB =∠DOC. ∵∠AOD =80°,∴∠AOB =∠DOC =12(180°-80°)=50°.活动3 课堂小结圆心角、弧、弦是圆中证弧等、弦等、弦心距等、圆心角等的常用方法.*3.3 垂径定理1.通过圆的轴对称性质的学习,理解垂径定理及其推论.(重点).2.能运用垂径定理及其推论计算和证明实际问题.(难点)阅读教材P74~75,完成预习内容. (一)知识探究1.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB 经过圆心O 且与圆交于A 、B 两点;②AB ⊥CD 交CD 于E ;那么可以推出:③CE =DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.2.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (二)自学反馈1.如图,弦AB ⊥直径CD 于E ,相等的线段有:AE =EB ,CO =DO ;相等的弧有:AD ︵=DB ︵,AC ︵=BC ︵,CAD ︵=CBD ︵.2.在⊙O 中,直径为10 cm ,圆心O 到AB 的距离OC 为3 cm ,则弦AB 的长为8_cm.活动1 小组讨论例 如图,一条公路的转弯处是一段圆弧(即图中CD ︵,点O 是CD ︵所在圆的圆心),其中CD =600 m ,E 为CD ︵上一点,且OE ⊥CD ,垂足为F ,EF =90 m ,求这段弯路的半径.解:连接OC.设弯路的半径为R m ,则OF =(R -90)m. ∵OE ⊥CD ,∴CF =12CD =12×600=300(m).在Rt △OCF 中,根据勾股定理,得OC 2=CF 2+OF 2,即 R 2=3002+(R -90)2. 解得R =545.所以,这段弯路的半径为545 m.常用辅助线:连接半径,由半径、半弦、弦心距构造直角三角形.活动2 跟踪训练1.如图,在⊙O 中,弦AB =4 cm ,点O 到AB 的距离OC 的长是2 3 cm ,则⊙O 的半径是4_cm.2.CD 是⊙O 的直径,AB 是弦,且AB ⊥CD ,垂足是E ,如果CE =2、AB =8,那么ED =8,⊙O 的半径r =5.3.已知:如图,线段AB 与⊙O 交于C 、D 两点,且OA =OB.求证:AC =BD.证明:作OE ⊥AB 于E.则CE =DE. ∵OA =OB ,OE ⊥AB , ∴AE =BE.∴AE -CE =BE -DE , 即AC =BD.过圆心作垂径是圆中常用辅助线.活动3 课堂小结用垂径定理及其推论进行有关的计算.3.4 圆周角和圆心角的关系第1课时 圆周角定理及其推论11.理解圆周角的定义,会区分圆周角和圆心角.(重点)2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆推论1,能在证明或计算中熟练地应用它们处理相关问题.(难点)阅读教材P78~80,完成预习内容. (一)知识探究1.顶点在圆上,它的两边与圆还有另一个交点的角叫做圆周角.2.圆周角的度数等于它所对弧上的圆心角度数的一半.3.同弧或等弧所对的圆周角相等. (二)自学反馈1.如图所示,已知圆心角∠BOC =100°,点A 为优弧BC ︵上一点,则∠BAC =50°.2.如图所示,点A 、B 、C 在圆周上,∠A =65°,则∠D =65°.活动1 小组讨论例1 如图所示,点A 、B 、C 在⊙O 上,连接OA 、OB ,若∠ABO =25°,则∠C =65°.例2 如图所示,AB 是⊙O 的直径,AC 是弦,若∠ACO =32°,则∠COB =64°.(1)求圆周角通常先求同弧所对的圆心角.(2)求圆心角可先求对应的圆周角.(3)连接OC ,构造圆心角的同时构造等腰三角形.活动2 跟踪训练1.如图,锐角△ABC 的顶点A ,B ,C 均在⊙O 上,∠OAC =20°,则∠B =70°.2.OA 、OB 、OC 都是⊙O 的半径,∠AOB =2∠BOC.求证:∠ACB =2∠BAC.证明:∵∠AOB 是劣弧AB ︵所对的圆心角,∠ACB 是劣弧AB ︵所对的圆周角, ∴∠AOB =2∠ACB. 同理∠BOC =2∠BAC. ∵∠AOB =2∠BOC. ∴∠ACB =2∠BAC.求圆周角一定先看它是哪条弧所对的圆周角,再看所对的圆心角.活动3 课堂小结圆周角的定义、定理及推论.第2课时 圆周角定理的推论2、31.进一步探索直径所对的圆周角的特征,并能应用其进行简单的计算与证明.(重点)2.掌握圆内接四边形的有关概念及性质.(难点)阅读教材P81(问题解决)~83(议一议),完成预习内容. (一)知识探究1.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.2.四个顶点都在圆上的四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆;圆内接四边形的对角互补.(二)自学反馈1.如图,在⊙O 的内接四边形ABCD 中,若∠BAD =110°,则∠BCD 等于(C) A.110° B.90° C.70° D.20°2.如图,AB 是⊙O 的直径,∠A =35°,则∠B 的度数是55°.活动1 小组讨论例1 如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为(C) A.30° B.45° C.60° D.75°例2 如图,四边形ABCD 是⊙O 的内接四边形,∠CBE 是它的外角,若∠D =120°,则∠CBE 的度数是120°.例3 如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD.证明:连接BE ,∵AE 是⊙O 的直径, ∴∠ABE =90°, ∴∠BAE +∠E =90°. ∵AD 是△ABC 的高, ∴∠ADC =90°, ∴∠CAD +∠C =90°. ∵AB ︵=AB ︵,∴∠E =∠C.∵∠BAE +∠E =90°,∠CAD +∠C =90°, ∴∠BAE =∠CAD.涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.活动2 跟踪训练1.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是(D)A.1B. 2C. 3D.22.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.3.如图,在⊙O的内接四边形ABCD中,∠BCD=110°,则∠BOD=140度.4.如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD交⊙O于C,求∠A 的度数.解:∵∠AOD=130°,∴∠BOD=50°.∵BC∥OD,∴∠B=∠BOD=50°.∵AB是⊙O的直径,∴∠ACB=90°.∴∠A=90°-∠B=40°.活动3 课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师强调:①直径所对的圆周角是直角,90°的圆周角所对的弦是直径;②圆内接四边形定义及性质;③在圆周角定理运用中,遇到直径,常构造直角三角形.。
北师大版九年级数学上册全册课时练习(一课时一练)
北师大版九年级数学上册全册课时练习1 第一课时菱形的概念及其性质1.如图1-1-1,在▱ABCD中,若添加下列条件:①AB=CD;②AB=BC;③∠1=∠2.其中能使▱ABCD成为菱形的有( )图1-1-1A.0个B.1个C.2个D.3个2.菱形OACB在平面直角坐标系中的位置如图1-1-2所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( )A.(3,1) B.(3,-1)C.(1,-3) D.(1,3)1-1-2 1-1-33.如图1-1-3,P是菱形ABCD对角线BD上的一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是________cm.4.如图1-1-4,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD 的周长是( )A.25 B.20C.15 D.101-1-4 1-1-55.如图1-1-5,在菱形ABCD中,对角线AC,BD相交于点O,H为AD边的中点.若菱形ABCD的周长为32,则OH的长为________.6.如图1-1-6,在△ABC中,AB=AC,四边形ADEF是菱形.求证:BE=CE.图1-1-67.如图1-1-7,在菱形ABCD中,AC=6,BD=8,则菱形ABCD的边长为( )A.5 B.10 C.6 D.88.已知菱形的边长是2 cm,一条对角线长是2 cm,则另一条对角线长是( )A.4 cm B.2 3 cmC. 3 cm D.3 cm1-1-7 1-1-89.如图1-1-8,在菱形ABCD中,AC,BD相交于点O,若∠BCO=55°,则∠CBO=________°.10.如图1-1-9,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标为( )图1-1-9A.(-5,4) B.(-5,5)C.(-4,4) D.(-4,3)11.一个菱形的边长为4 cm,且有一个内角为60°,则这个菱形的面积是________.12.如图1-1-10,在菱形ABCD中,∠BAD=80°,对角线AC,BD相交于点O,点E 在AB上,且BE=BO,则∠EOA=________°.图1-1-10 图1-1-1113.如图1-1-11,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为________.14.如图1-1-12所示,已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值是________.图1-1-1215.如图1-1-13,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过点O作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.图1-1-1316.如图1-1-14所示,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD 交AD的延长线于点F,请你猜想CE与CF在数量上有什么关系,并证明你的猜想.图1-1-1417.如图1-1-15,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=CE;(2)若∠E=50°,求∠BAO的度数.图1-1-15第二课时菱形的判定1.如图1-1-16,要使▱ABCD成为菱形,则需添加的一个条件是( )图1-1-16A.AC=AD B.BA=BCC.∠ABC=90° D.AC=BD2.如图1-1-17,在△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.图1-1-173.下列命题中,正确的是( )A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形图1-1-184.如图1-1-18,在▱ABCD中,AB=13,AC=10,当BD=________时,四边形ABCD 是菱形.5.如图1-1-19,在▱ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8.求证:四边形ABCD是菱形.图1-1-196.用直尺和圆规作一个菱形,如图1-1-20,能判定四边形ABCD是菱形的依据是( )图1-1-20A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形7.如图1-1-21,在△ABC中,AB=AC,∠B=60°,∠FAC,∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.图1-1-218.如图1-1-22所示,在▱ABCD中,AE,CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判定四边形AECF为菱形的是( )A.AE=AF B.EF⊥ACC.∠B=60°D.AC是∠EAF的平分线1-1-22 1-1-239.如图1-1-23,D,E,F分别是△ABC的边AB,BC,AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是( )A.AB⊥AC B.AB=ACC.AB=BC D.AC=BC10.顺次连接对角线相等的四边形的各边中点,所形成的四边形是________.图1-1-2411.如图1-1-24,E,F,G,H分别是任意四边形ABCD中AD,BD,BC,CA的中点,当四边形ABCD的边满足条件____________时,四边形EFGH是菱形.12.如图1-1-25,在△ACB中,∠ACB=90°,∠B=60°,作边AC的垂直平分线l 交AB于点D,过点C作AB的平行线交l于点E,判断四边形DBCE的形状,并说明理由.图1-1-2513.如图1-1-26,在Rt△ABC中,∠B=90°,E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.图1-1-2614.某校九年级学习小组在探究学习过程中,用两块完全相同且含60°角的三角板ABC 与三角板AEF按如图1-1-27①所示方式放置,现将三角板AEF绕点A按逆时针方向旋转α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,判断四边形ABPF的形状,并说明理由.图1-1-27第3课时菱形的性质与判定的综合应用1.已知菱形的两条对角线长分别是12和16,则此菱形的面积是( )A.192 B.96 C.48 D.40图1-1-282.如图1-1-28,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD=6,则菱形ABCD的面积是( )A.6 B.12 C.24 D.483.如图1-1-29,已知菱形ABCD两条对角线BD与AC的长度之比为3∶4,周长为40 cm,求菱形的面积及高.图1-1-294.如图1-1-30,在平行四边形ABCD中,AC平分∠DAB,AB=2,则四边形ABCD的周长为( )A.4 B.6 C.8 D.121-1-30 1-1-315.如图1-1-31,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°6.如图1-1-32,将等边三角形ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC;②BD,AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是( )A.1 B.2 C.3 D.41-1-3 1-1-337.如图1-1-33,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.8.如图1-1-34所示,在菱形ABCD中,AE⊥BC,BE=EC,AE=2,则AB=________.1-1-3 1-1-359.如图1-1-35,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,且AD交EF于点O,则∠AOF=________°.10.如图1-1-36,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求四边形BCFE的周长.图1-1-36图1-1-3711.如图1-1-37,四边形ABCD 的四边相等,且面积为120 cm 2,对角线AC =24 cm ,则四边形ABCD 的周长为( )A .52 cmB .40 cmC .39 cmD .26 cm12.如图1-1-38,在给定的一张平行四边形纸片ABCD 上作一个菱形,甲、乙两人的作法如下:图1-1-38甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于点M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于点E ,F ,连接EF ,则四边形ABEF 是菱形.根据两人的作法可判断( )A .甲正确,乙错误B .甲错误,乙正确C .甲、乙均正确D .甲、乙均错误图1-1-3913.如图1-1-39,菱形ABCD 的边长为8 cm ,∠A =60°,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则四边形BEDF 的面积为________ cm 2.14.如图1-1-40,在菱形ABCD 中,P 是AB 上的一个动点(不与点A ,B 重合),连接DP 交对角线AC 于点E ,连接BE .(1)求证:∠APD =∠CBE ;(2)试问P 点运动到什么位置时,△ADP 的面积等于菱形ABCD 面积的14,为什么?图1-1-4015.如图1-1-41,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2 5,求四边形ABCD的面积.图1-1-4116.教材“做一做”变式题明明将两张长为8 cm,宽为2 cm的长方形纸条交叉叠放,如图1-1-42①所示,他发现重叠部分可能是一个菱形.(1)请你帮助明明证明四边形ABCD是菱形;(2)明明又发现:如图②所示,当菱形的一条对角线与长方形纸条的一条对角线重合时,菱形ABCD的周长最大,求此时菱形ABCD的周长.图1-1-422 第1课时矩形的概念及其性质1.若矩形ABCD的两邻边长分别是1,2,则其对角线BD的长是( )A. 3 B.3 C. 5 D.2 52.如图1-2-1所示,在矩形ABCD中,E是BC边的中点,且AE平分∠BAD,CE=2,则CD的长是( )A.2 B.3 C.4 D.51-2-1 1-2-23.如图1-2-2,在矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,则∠EBC 的度数是( )A.30° B.22.5° C.15° D.10°4.如图1-2-3,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD.求证:AO=BO.图1-2-35.如图1-2-4,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB 的度数为( )A.30° B.60° C.90° D.120°1-2-4 1-2-56.如图1-2-5,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是( )A.3 cm B.6 cm C.10 cm D.12 cm图1-2-67.如图1-2-6,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别是AO ,AD 的中点,若AB =6 cm ,BC =8 cm ,则EF =________ cm.8.如图1-2-7,在矩形ABCD 中,过点B 作BE ∥AC 交DA 的延长线于点E .求证:BE =BD .图1-2-79.若直角三角形两条直角边的长分别为6和8,则斜边上的中线的长是( ) A .5 B .10 C.245 D.125图1-2-810.如图1-2-8,△ABC 中,∠ACB =90°,∠B =55°,D 是斜边AB 的中点,那么∠ACD 的度数为( )A .15°B .25°C .35°D .45°11.如图1-2-9,已知△ABC 和△ABD 均为直角三角形,其中∠ACB =∠ADB =90°,E 为AB 的中点.求证:CE =DE .图1-2-912.如图1-2-10,已知矩形ABCD 沿着直线BD 折叠,使点C 落在点C ′处,BC ′交AD 于点E ,AD =8,AB =4,则DE 的长为( )A .3B .4C .5D .61-2-10 1-2-1113.如图1-2-11,在矩形ABCD中,E,F分别是AB,CD的中点,连接DE,BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=5,BC=8,则图中阴影部分的面积为( )A.5 B.8 C.13 D.2014.如图1-2-12,在矩形ABCD中,两条对角线相交于点O,折叠矩形,使顶点D与对角线交点O重合,折痕为CE,已知△CDE的周长是10 cm,则矩形ABCD的周长为( )A.15 cm B.18 cm C.19 cm D.20 cm1-2-121-2-1315.如图1-2-13,在Rt△ABC中,∠ACB=90°,D,E,F分别是边AB,BC,CA的中点,若CD=6 cm,则EF=________ cm.16.如图1-2-14,在矩形ABCD中,连接对角线AC,BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.图1-2-1417.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图1-2-15①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图1-2-15②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=FB,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.图1-2-15参考答案1.C 2.A 3.C .4.证明:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC.∵∠AOC=∠BOD,∴∠AOC-∠DOC=∠BOD-∠DOC,即∠AOD=∠BOC.在△AOD和△BOC中,∠A=∠B,∠AOD=∠BOC,AD=BC,∴△AOD≌△BOC,∴AO=BO.5.B 6.A 7.2.58.证明:∵四边形ABCD是矩形,∴AC=BD,AD∥BC.又∵BE∥AC,∴四边形AEBC 是平行四边形, ∴BE =AC ,∴BE =BD . 9.A . 10.C. 11.证明:在Rt △ABC 中, ∵E 为斜边AB 的中点, ∴CE =12AB .在Rt △ABD 中, ∵E 为斜边AB 的中点, ∴DE =12AB .∴CE =DE .12.C 13.D 14.D 15.6 16.解:(1)证明:∵四边形ABCD 是矩形, ∴AB =DC ,AC =BD ,AD =BC ,∠ADC =∠ABC =90°.由平移的性质得:DE =AC ,EC =BC ,∠DCE =∠ABC =90°,DC =AB , ∴AD =EC .在△ACD 和△EDC 中,AD =EC ,∠ADC =∠ECD ,CD =DC , ∴△ACD ≌△EDC .(2)△BDE 是等腰三角形.理由如下: ∵AC =BD ,DE =AC , ∴BD =DE ,∴△BDE 是等腰三角形.17.解:(1)证明:∵四边形ABCD 为矩形, ∴AD ∥BC ,∴∠EAO =∠BFO . 又∵∠AOE =∠FOB ,AE =FB ,∴△AOE ≌△FOB ,∴EO =BO , ∴AO 是△ABE 的边BE 上的中线, ∴△AOB 和△AOE 是“友好三角形”. (2)∵△AOE 和△DOE 是“友好三角形”, ∴S △AOE =S △DOE ,AE =ED =12AD =12BC =3.∵△AOB 和△AOE 是“友好三角形”, ∴S △AOB =S △AOE .∵△AOE ≌△FOB ,∴S △AOE =S △FOB , ∴S △AOD =S △ABF ,∴S 四边形CDOF =S 矩形ABCD -2S △ABF =4×6-2×12×4×3=12.第2课时 矩形的判定1.如图1-2-16,要使平行四边形ABCD 成为矩形,需添加的条件是( )A .AB =BC B .AO =CO C .∠ABC =90°D .∠1=∠22.木工师傅做一个矩形木框,做好后量得长为80 cm ,宽为60 cm ,对角线的长为100cm ,则这个木框________.(填“合格”或“不合格”)1-2-16 1-2-173.如图1-2-17,在△ABC 中,AD ⊥BC 于点D ,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,当△ABC 满足条件__________时,四边形AEDF 是矩形.4.如图1-2-18,菱形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,AE ∥BD.求证:四边形AODE是矩形.图1-2-18图1-2-195.如图1-2-19,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是( )A.AO=OC B.AC=BDC.AC⊥BD D.BD平分∠ABC6.如图1-2-20,在▱ABCD中,对角线AC,BD相交于点O,OA=3,要使▱ABCD为矩形,则OB的长为( )A.4 B.3 C.2 D.11-2-20 1-2-217.如图1-2-21,工人师傅砌门时,要想检验门框ABCD是否符合设计要求(即门框是不是矩形),在确保两组对边分别平行的前提下,只要测量出对角线AC,BD的长度,然后看它们是否相等就可以判断了.(1)当AC________(填“等于”或“不等于”)BD时,门框符合要求;(2)这种做法的根据是______________________.8.如图1-2-22,四边形ABCD是平行四边形,对角线AC,BD相交于点O,△OAB为等边三角形,BC= 3.求四边形ABCD的周长.图1-2-229.对于四边形ABCD,给出下列4组条件:①∠A=∠B=∠C=∠D;②∠B=∠C=∠D;③∠A=∠B,∠C=∠D;④∠A=∠B=∠C=90°,其中能得到“四边形ABCD是矩形”的条件有( )A.1组 B.2组 C.3组 D.4组图1-2-2310.如图1-2-23,直角∠AOB内的一点P到这个角的两边的距离之和为6,则图中四边形的周长为________.11.下列命题错误的是( )A.有三个角是直角的四边形是矩形B.有一个角是直角且对角线互相平分的四边形是矩形C.对角线相等且有一个角是直角的四边形是矩形D.对角线相等且互相平分的四边形是矩形12.如图1-2-24,四边形ABCD的对角线AC,BD相交于点O,已知下列6个条件:①AB∥DC;②AB=DC;③AC=BD;④∠ABC=90°;⑤OA=OC;⑥OB=OD.下列组合中,不能使四边形ABCD成为矩形的是( )A.①②③ B.②③④C.②⑤⑥ D.④⑤⑥1-2-24 1-2-2513.如图1-2-25,D,E,F分别是△ABC各边的中点.添加下列条件后,不能得到四边形ADEF是矩形的是( )A.∠BAC=90° B.BC=2AEC.ED平分∠AEB D.AE⊥BC图1-2-2614.如图1-2-26,已知四边形ABCD,E,F,G,H分别是四边的中点,只要四边形ABCD 的对角线AC,BD再满足条件________,则四边形EFGH一定是矩形.15.如图1-2-27,AB∥CD,PM,PN,QM,QN分别为角平分线.求证:四边形PMQN 是矩形.图1-2-2716.如图1-2-28,在△ABC中,AB=AC,D为BC的中点,E是△ABC外一点且四边形ABDE是平行四边形.求证:四边形ADCE是矩形.图1-2-2817.如图1-2-29,四边形ABCD的对角线AC,BD交于点O,已知O是AC的中点,AE =CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD =12AC ,则四边形ABCD 是什么特殊四边形?请证明你的结论.图1-2-2918.如图1-2-30,在△ABC 中,O 是边AC 上的一个动点,过点O 作直线MN ∥BC .设MN 交∠ACB 的平分线于点E ,交△ACB 的外角∠ACD 的平分线于点F .(1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.图1-2-301.C2.合格3.答案不唯一,如∠BAC =90° 4.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴∠AOD =90°. ∵DE ∥AC ,AE ∥BD ,∴四边形AODE 是平行四边形. 又∵∠AOD =90°, ∴四边形AODE 是矩形.5.B 6.B 7.(1)等于(2)对角线相等的平行四边形是矩形 8.解:∵四边形ABCD 是平行四边形, ∴AC =2OA ,BD =2OB .∵△OAB 为等边三角形,∴OA =OB =AB , ∴AC =BD ,∴四边形ABCD 为矩形, ∴∠ABC =90°.在Rt △ABC 中,AC =2OA =2AB ,BC =3,由勾股定理,得AB =AC 2-BC 2=1, ∴四边形ABCD 的周长=2(AB +BC )=2(1+3). 9.B 10 12.11.C12.C 13.D 14.AC ⊥BD 15.证明:∵PM ,PN 分别平分∠APQ ,∠BPQ , ∴∠MPQ =12∠APQ ,∠NPQ =12∠BPQ .∵∠APQ +∠BPQ =180°,∴∠MPQ +∠NPQ =90°,即∠MPN =90°. 同理可证∠MQN =90°.∵AB ∥CD ,∴∠APQ +∠CQP =180°, ∴∠MPQ +∠MQP =90°,即∠PMQ =90°,∴四边形PMQN 是矩形. 16.证明:∵四边形ABDE 是平行四边形, ∴AE ∥BC ,AB =DE ,AE =BD . ∵D 为BC 的中点,∴CD =BD . ∴CD ∥AE ,CD =AE ,∴四边形ADCE 是平行四边形. ∵AB =AC ,AB =DE , ∴AC =DE ,∴平行四边形ADCE 是矩形. 17.解:(1)证明:∵DF ∥BE , ∴∠FDO =∠EBO ,∠DFO =∠BEO . ∵O 为AC 的中点,∴OA =OC . ∵AE =CF , ∴OA -AE =OC -CF , 即OE =OF .在△BOE 和△DOF 中,∠EBO =∠FDO ,∠BEO =∠DFO ,OE =OF , ∴△BOE ≌△DOF (AAS).(2)若OD =12AC ,则四边形ABCD 是矩形.证明:∵△BOE ≌△DOF ,∴OB =OD . ∵OD =12AC ,∴OA =OB =OC =OD ,且BD =AC , ∴四边形ABCD 是矩形.18.解:(1)证明:∵MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,如图所示,∴∠2=∠5,∠4=∠6.∵MN ∥BC ,∴∠1=∠5,∠3=∠6, ∴∠1=∠2,∠3=∠4,∴OE =OC ,OF =OC ,∴OE =OF . (2)∵∠2=∠5,∠4=∠6, ∴∠2+∠4=∠5+∠6=90°.∵CE =12,CF =5,∴EF =122+52=13, ∴OC =12EF =6.5.(3)当点O 在边AC 上运动到AC 的中点时,四边形AECF 是矩形. 理由:当O 为AC 的中点时,AO =CO . 又∵OE =OF ,∴四边形AECF 是平行四边形. 又∵∠ECF =90°, ∴四边形AECF 是矩形.第3课时 矩形的性质与判定的综合应用1.矩形具有而菱形不一定具有的性质是( ) A .对边分别相等 B .对角分别相等 C .对角线互相平分 D .对角线相等2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④对角线相等且互相平分的四边形是矩形;⑤对角线互相垂直平分的四边形是矩形.其中正确的有( )A .1个B .2个C .3个D .4个3.已知矩形的两条对角线所夹锐角为44°,那么对角线与矩形相邻两边所夹的角分别是( )A .22°,68°B .44°,66°C .24°,66°D .40°,50°4.如图1-2-31所示,矩形ABCD 中,AB =3,BC =5,点E 在AD 上,且EB 平分∠AEC ,则△ABE的面积为( )A.2.4 B.2 C.1.8 D.1.51-2-311-2-325.如图1-2-32,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD =12,则四边形ABOM的周长为________.6.在矩形纸片ABCD中,AD=4 cm,AB=10 cm,按如图1-2-33所示方式折叠,使点B与点D重合,折痕为EF,则DE=________ cm.1-2-331-2-347.如图1-2-34,在矩形ABCD中,BC=20 cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3 cm/s和2 cm/s,则最快________s后,四边形ABPQ成为矩形.8.如图1-2-35,在四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E.求证:AE=CE.图1-2-359.如图1-2-36,在矩形ABCD中(AD>AB),E是BC上一点,且DE=DA,AF⊥DE,垂足为F,在下列结论中,不一定正确的是( )A.△AFD≌△DCE B.AF=12AD C.AB=AF D.BE=AD-DF1-2-361-2-3710.如图1-2-37,△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( )A.2 3 B.3 3 C.4 D.4 311.如图1-2-38,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P 不与点B,C重合),PE⊥AB于点E,PF⊥AC于点F,则EF长的最小值为( )图1-2-38A.4 B.4.8 C.5.2 D.612.如图1-2-39,矩形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F,已知AD=4 cm,图中阴影部分的面积总和为6 cm2,则对角线AC的长为________cm.1-2-391-2-4013.如图1-2-40,M是矩形ABCD的边AD的中点,P为BC上一点,PE⊥MC于点E,PF⊥MB于点F,当AB,BC满足条件____________时,四边形PEMF为矩形.14.如图1-2-41,在△ABC中,AB=AC,D为BC的中点,连接AD,AE∥BC,DE∥AB,连接CE,DE交AC于点G.(1)求证:四边形ADCE为矩形;(2)点F在BA的延长线上,请直接写出图中所有与∠FAE相等的角.图1-2-4115.如图1-2-42,在矩形ABCD中,AB=2,BC=5,点E,P分别在AD,BC上,且DE =BP=1.求证:四边形EFPH为矩形.图1-2-4216.如图1-2-43,在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.图1-2-4317.如图1-2-44,在△ABC中,分别以AB,AC,BC为边在BC的同侧作等边三角形ABD,等边三角形ACE,等边三角形BCF.(1)求证:四边形DAEF是平行四边形.(2)探究下列问题(只填满足的条件,不需证明):①当△ABC满足条件:____________时,四边形DAEF是矩形;②当△ABC满足条件:____________时,四边形DAEF是菱形;③当△ABC满足条件:____________时,以D,A,E,F为顶点的四边形不存在.图1-2-441.D 2.A 3.A 4.D 5.20. 6.5.8. 7.48.证明:如图,过点B作BF⊥CE于点F.∵CE⊥AD,∴∠D+∠DCE=90°.∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D.在△BCF和△CDE中,∠BCF=∠D,∠BFC=∠CED=90°,BC=CD,∴△BCF≌△CDE(AAS),∴BF=CE.∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.9.B 10.A . 11.B 12.513.2AB=BC14.解:(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD. ∵D为BC的中点,∴BD=CD,∴AE=CD,∴四边形ADCE是平行四边形.∵AB=AC,D为BC的中点,∴AD⊥BC,即∠ADC=90°,∴四边形ADCE是矩形.(2)∵AB=AC,∴∠B=∠ACB.∵AE∥BC,∴∠AED=∠EDC,∠EAC=∠ACB,∠FAE=∠B,∴∠FAE=∠B=∠ACB=∠AEG=∠EAG=∠GDC.15.证明:∵四边形ABCD是矩形,∴AD=BC,AD∥BC.又∵DE=BP,∴四边形DEBP是平行四边形,∴BE∥DP.∵AD=BC,DE=BP,∴AE=CP.又∵AD∥BC,即AE∥CP,∴四边形AECP是平行四边形,∴AP ∥CE ,∴四边形EFPH 是平行四边形.∵在矩形ABCD 中,∠ADC =∠ABP =90°,AD =BC =5,CD =AB =2,DE =BP =1,∴CE =5,同理BE =2 5, ∴BE 2+CE 2=BC 2, ∴∠BEC =90°, ∴四边形EFPH 为矩形.16.解:(1)证法一:∵四边形ABCD 是矩形, ∴∠A =∠C =90°,AB =CD ,AB ∥CD , ∴∠ABD =∠CDB .由折叠的性质可得:∠ABE =12∠ABD ,∠CDF =12∠CDB ,∴∠ABE =∠CDF .在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF (ASA), ∴AE =CF .∵四边形ABCD 是矩形, ∴AD =BC ,AD ∥BC , ∴DE =BF ,DE ∥BF ,∴四边形BFDE 为平行四边形. 证法二:∵四边形ABCD 是矩形, ∴AB ∥CD ,AD ∥BC , ∴∠ABD =∠CDB ,DE ∥BF .由折叠的性质得∠EBD =12∠ABD ,∠FDB =12∠CDB ,∴∠EBD =∠FDB ,∴BE ∥DF . 又∵DE ∥BF ,∴四边形BFDE 为平行四边形. (2)∵四边形BFDE 为菱形, ∴BE =DE ,∠FBD =∠EBD =∠ABE . ∵四边形ABCD 是矩形, ∴AD =BC ,∠A =∠ABC =90°, ∴∠ABE =∠FBD =∠EBD =30°. 在Rt △ABE 中,∵AB =2,∴AE =23=2 33,BE =2AE =43 3,∴BC =AD =AE +DE =AE +BE =2 33+43 3=2 3.17.解:(1)证明:∵△ABD 和△BCF 都是等边三角形, ∴∠ABC +∠FBA =∠DBF +∠FBA =60°, ∴∠ABC =∠DBF . 又∵BA =BD ,BC =BF , ∴△ABC ≌△DBF , ∴AC =DF =AE .同理可证△ABC ≌△EFC , ∴AB =EF =AD ,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形). (2)①∠BAC =150° ②AB =AC ≠BC③∠BAC=60°3 第1课时正方形的性质1.如图1-3-1,在正方形ABCD中,点E在边DC上,DE=4,EC=2,则AE的长为________.1-3-11-3-22.如图1-3-2,正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,F为垂足,那么FC=________.3.如图1-3-3,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为G.求证:AF=BE.图1-3-34.如图1-3-4,在正方形ABCD的外侧作等边三角形ADE,则∠AEB的度数为( ) A.10° B.12.5° C.15° D.20°1-3-41-3-55.如图1-3-5,E为正方形ABCD的对角线BD上的一点,且BE=BC,则∠DCE=________°.6.如图1-3-6,四边形ABCD是正方形,△EBC是等边三角形.(1)求证:△ABE≌△DCE;(2)求∠AED的度数.图1-3-67.若正方形的一条对角线长为4,则这个正方形的面积是( )A.8 B.4 2 C.8 2 D.16图1-3-78.如图1-3-7,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的中心,则阴影部分的面积是________.9.如图1-3-8,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证:△ADE≌△ABF;(2)求△AEF的面积.图1-3-810.如图1-3-9,在平面直角坐标系中,正方形OABC的顶点O,B的坐标分别是(0,0),(2,0),则顶点C的坐标是( )A.(1,1) B.(-1,-1) C.(1,-1) D.(-1,1)1-3-91-3-1011.如图1-3-10,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是________.12.如图1-3-11,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC的度数为( )A.45° B.55° C.60° D.75°1-3-111-3-1213.如图1-3-12,正方形ABCD的边长为2,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB的延长线于点F,则EF的长为________.14.如图1-3-13,将边长为8 cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是________.1-3-13 1-3-1415.如图1-3-14,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推,则正方形OB2017B2018C2018的顶点B2018的坐标是________.16.如图1-3-15,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.图1-3-1517.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1-3-16①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图1-3-16②),求证:EF2=ME2+NF2.图1-3-161.213 2.2-13.证明:∵四边形ABCD是正方形,∴AB =BC ,∠A =∠CBE =90°. ∵BF ⊥CE ,∴∠BCE +∠CBG =90°. ∵∠ABF +∠CBG =90°, ∴∠BCE =∠ABF .在△BCE 和△ABF 中,∠BCE =∠ABF ,BC =AB ,∠CBE =∠A , ∴△BCE ≌△ABF (ASA), ∴AF =BE .4.C 5.22.56.解:(1)证明:∵四边形ABCD 是正方形,△EBC 是等边三角形, ∴BA =BC =CD =BE =CE ,∠ABC =∠BCD =90°,∠EBC =∠ECB =60°, ∴∠ABE =∠ECD =30°.在△ABE 和△DCE 中,AB =DC ,∠ABE =∠DCE ,BE =CE , ∴△ABE ≌△DCE (SAS). (2)∵BA =BE ,∠ABE =30°, ∴∠BAE =12×(180°-30°)=75°.∵∠BAD =90°,∴∠EAD =90°-75°=15°, 同理可得∠ADE =15°,∴∠AED =180°-15°-15°=150°. 7.A 8.29.解:(1)证明:∵四边形ABCD 为正方形, ∴AD =AB ,∠D =∠B =90°,BC =DC . ∵E ,F 分别为DC ,BC 的中点,∴DE =12DC ,BF =12BC ,∴DE =BF .在△ADE 和△ABF 中,AD =AB ,∠D =∠B ,DE =BF , ∴△ADE ≌△ABF (SAS).(2)由题知△ABF ,△ADE ,△CEF 均为直角三角形,且AB =AD =4,DE =BF =12×4=2,CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF = 4×4-12×4×2-12×4×2-12×2×2=6.10.C 11.10 12.C 13.4 14.3 cm 15.(0,21009)16.证明:∵四边形ABCD 是正方形, ∴OD =OC . 又∵DE =CF ,∴OD -DE =OC -CF ,即OE =OF .在△AOE 和△DOF 中,AO =DO ,∠AOE =∠DOF ,OE =OF , ∴△AOE ≌△DOF (SAS), ∴∠OAE =∠ODF .∵∠OAE +∠AEO =90°,∠AEO =∠DEM , ∴∠ODF +∠DEM =90°, 即AM ⊥DF .17.证明:(1)∵△ADF 绕着点A 顺时针旋转90°,得到△ABG , ∴AG =AF ,∠GAF =90°. ∵∠EAF =45°,∴∠GAE =∠GAF -∠EAF =90°-45°=45°,即∠GAE =∠EAF .在△AEG 和△AEF 中,⎩⎪⎨⎪⎧AG =AF ,∠GAE =∠EAF ,AE =AE ,∴△AEG ≌△AEF (SAS).(2)把△ADF 绕着点A 顺时针旋转90°,得到△ABG ,如图,连接GM ,则△ADF ≌△ABG , ∴DF =BG .由(1)知△AEG ≌△AEF , ∴EG =EF . ∵∠CEF =45°,∴△BME ,△DNF ,△CEF 均为等腰直角三角形, ∴CE =CF ,BE =BM ,NF =2DF , ∴BE =DF , ∴BE =BM =DF =BG , ∴∠BMG =45°,∴∠GME =45°+45°=90°, ∴EG 2=ME 2+MG 2.又∵EG =EF ,MG =2BM =2DF =NF , ∴EF 2=ME 2+NF 2.第2课时 正方形的判定1.如果要证明平行四边形ABCD 为正方形,那么我们需要在四边形ABCD 是平行四边形的基础上,进一步证明( )A.AB=BD且AC⊥BD B.∠A=90°且AB=ADC.∠A=90°且AC=BD D.AC和BD互相垂直平分2.已知在四边形ABCD中,∠A=∠B=∠C=90°,若使四边形ABCD是正方形,则还需加上一个条件:________________.3.在四边形ABCD中,AC,BD相交于点O,下列条件能判定四边形ABCD是正方形的是( )A.OA=OC,OB=OD B.OA=OB=OC=ODC.OA=OC,OB=OD,AC=BD D.OA=OB=OC=OD,AC⊥BD图1-3-174.如图1-3-17,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成( )A.22.5°角B.30°角 C.45°角D.60°角5.如图1-3-18,有4个动点P,Q,E,F分别从正方形ABCD的4个顶点出发,沿着AB,BC,CD,DA以同样的速度向B,C,D,A各点移动.请判断四边形PQEF的形状.图1-3-186.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件:________,使其成为正方形.(只填一个即可)图1-3-197.如图1-3-19所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE翻折上去,使AB与AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他判定的方法是__________________________.8.如图1-3-20所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.图1-3-209.若顺次连接四边形ABCD各边中点所得的四边形是正方形,则四边形ABCD一定是( )A.矩形 B.对角线互相垂直的四边形C.菱形 D.对角线互相垂直且相等的四边形图1-3-2110.如图1-3-21,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF.添加一个条件,仍不能判定四边形ECFB为正方形的是( )A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF图1-3-2211.如图1-3-22,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )A.30 B.34 C.36 D.4012.如图1-3-23,在平行四边形ABCD中,对角线AC,BD相交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.图1-3-2313.如图1-3-24,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为N.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE为正方形?并给出证明.图1-3-2414.观察如图1-3-25所示图形的变化过程,解答以下问题:图1-3-25如图1-3-26,在△ABC中,D为BC边上的一动点(点D不与B,C两点重合),DE∥AC 交AB于点E,DF∥AB交AC于点F.(1)试探索当AD满足什么条件时,四边形AEDF为菱形,并说明理由;(2)在(1)的条件下,当△ABC满足什么条件时,四边形AEDF为正方形?为什么?图1-3-2615.如图1-3-27,在四边形ABCD中,E,G分别是AD,BC的中点,F,H分别是BD,AC的中点.(1)当AB,CD满足什么条件时,四边形EFGH是矩形?并证明你的结论;(2)当AB,CD满足什么条件时,四边形EFGH是菱形?并证明你的结论;(3)当AB,CD满足什么条件时,四边形EFGH是正方形?并证明你的结论.图1-3-271.B 2.AB=BC(答案不唯一)3.D 4.C .5.解:在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴AF=BP=CQ=DE.又∵∠A=∠B=∠C=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF,∴FP=PQ=QE=EF,∴四边形PQEF是菱形.∵△AFP≌△BPQ,∴∠APF=∠BQP.∵∠BPQ+∠BQP=90°=∠BPQ+∠APF,∴∠FPQ=90°,∴四边形PQEF为正方形.6.AB=BC或AC⊥BD(答案不唯一)7.有一组邻边相等的矩形是正方形8.解:(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形.(2)AB=AD(或AC⊥BD,答案不唯一).9.D 10.D 11.B12.证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO⊥AC,即AC⊥BD,∴四边形ABCD 是菱形.(2)∵四边形ABCD 是平行四边形, ∴AO =CO .又∵△ACE 是等边三角形, ∴EO 平分∠AEC ,∴∠AED =12∠AEC =12×60°=30°.又∵∠AED =2∠EAD , ∴∠EAD =15°,∴∠ADO =∠EAD +∠AED =15°+30°=45°. ∵四边形ABCD 是菱形, ∴∠ADC =2∠ADO =90°, ∴四边形ABCD 是正方形.13.解:(1)证明:∵在△ABC 中,AB =AC ,AD ⊥BC , ∴∠BAD =∠DAC .∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE =∠CAE ,∴∠DAE =∠DAC +∠CAE =12×180°=90°.又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC =∠CEA =90°, ∴四边形ADCE 为矩形.(2)当△ABC 满足∠BAC =90°时,四边形ADCE 为正方形. 证明:∵AB =AC ,∠BAC =90°, ∴∠ACB =∠B =45°.∵AD ⊥BC ,∴∠CAD =∠ACD =45°,∴DC =AD .又∵四边形ADCE 是矩形, ∴矩形ADCE 是正方形.∴当∠BAC =90°时,四边形ADCE 是正方形.14.解:(1)当AD 平分∠BAC 时,四边形AEDF 为菱形. 理由:∵AE ∥DF ,DE ∥AF , ∴四边形AEDF 为平行四边形. ∵AD 平分∠BAC , ∴∠EAD =∠FAD . 又∵DE ∥AF , ∴∠FAD =∠ADE , ∴∠EAD =∠ADE , ∴AE =DE ,∴平行四边形AEDF 为菱形.(2)当∠BAC =90°时,菱形AEDF 是正方形.因为有一个角是直角的菱形是正方形. 15.解:(1)当AB ⊥CD 时,四边形EFGH 是矩形.证明:∵E ,F 分别是AD ,BD 的中点,G ,H 分别是BC ,AC 的中点, ∴EF ∥AB ,EF =12AB ,GH ∥AB ,GH =12AB , FG ∥CD .∴EF ∥GH ,EF =GH ,∴四边形EFGH 是平行四边形. ∵AB ⊥CD ,∴EF ⊥FG ,即∠EFG =90°,∴四边形EFGH 是矩形.(2)当AB =CD 时,四边形EFGH 是菱形.证明:∵E ,F 分别是AD ,BD 的中点,H ,G 分别是AC ,BC 的中点, ∴EF =12AB ,GH =12AB ,FG =12CD ,EH =12CD .又∵AB =CD , ∴EF =FG =GH =EH , ∴四边形EFGH 是菱形.(3)当AB =CD 且AB ⊥CD 时,四边形EFGH 是正方形. 证明:∵E ,F 分别是AD ,BD 的中点, ∴EF ∥AB ,EF =12AB ,同理,EH ∥CD ,EH =12CD ,FG =12CD ,GH =12AB .∵AB =CD , ∴EF =EH =GH =FG , ∴四边形EFGH 是菱形. ∵AB ⊥CD ,∴EF ⊥EH ,即∠FEH =90°, ∴菱形EFGH 是正方形.1 第1课时 认识一元二次方程1.下列方程是一元二次方程的是( ) A .ax 2+bx +c =0 B .3x 2-2x =3(x 2-2)C.x3-2x-4=0 D.(x-1)2+1=02.若关于x的方程(m-2)x2+mx-1=0是一元二次方程,则m的取值范围是________.3.一元二次方程3x2-2x-5=0的二次项系数和一次项系数分别为( )A.-5和2 B.3和-2 C.3和2 D.3和-54.一元二次方程3x(x-3)=2x2+1化为一般形式为__________.5.王叔叔从市场上买了一块长80 cm,宽70 cm的矩形铁皮,准备制作一个工具箱.如图2-1-1,他将矩形铁皮的四个角各剪掉一个边长为x cm的正方形后,剩余的部分刚好能围成一个底面积为3000 cm2的无盖长方体工具箱,根据题意列方程为( )图2-1-1A.(80-x)(70-x)=3000B.80×70-4x2=3000C.(80-2x)(70-2x)=3000D.80×70-4x2-(70+80)x=30006.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何.”译文:“一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步.”如果设矩形田地的长为x步,可列方程为______________.7.已知关于x的一元二次方程2bx2-(a+1)x=x(x-1)的二次项系数为1,一次项系数为-1,求a+b的值.8.已知关于x的方程(m2-9)x2+(m+3)x-5=0.(1)当m为何值时,此方程是一元一次方程?并求出此时方程的解;(2)当m为何值时,此方程是一元二次方程?并写出这个方程的二次项系数、一次项系数及常数项.。
北师大版 九年级数学下册 全一册 课时同步练习 习题合集(含答案解析)
2.1二次函数一、夯实基础1.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )A.y=x(x+1) B.xy=1C.y=2x2-2(x+1)2D.132+=xy2.当路程S一定时,速度υ与时间t之间的函数关系是 ( )A.正比例函数 B.反比例函数 C.一次函数 D.二次函数3.图中的三角形是有规律地从里到外逐层排列的.设y为第n层(n为正整数)三角形的个数,则下列函数关系式正确的是 ( )A.y=4n-4 B.y=4nC.y=4n+4 D.y=n24.当m 时,函数y=(m-2)x2+4x-5(m是常数)是二次函数.5.若y=(m2-3m)x2m-2m-1是二次函数,则m=.6.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=.二、能力提升7.如果水流的速度为a m/min(定量),那么每分钟的进水量Q(m3)与所选择的水管直径D(m)之间的函数关系式是什么?8.一台机器原价为60万元,如果每年的折旧率为x,两年后这台机器的价位为y万元,写出y与x的函数关系式.9.已知函数y=(m2-4)x2+(m2-3m+2)x-m-1.(1)当m为何值时,y是x的二次函数?(2)当m为何值时,y是x的一次函数?三、课外拓展10.如图所示,长方形ABCD的长为5 cm,宽为4 cm,如果将它的长和宽都减去x(cm),那么它剩下的小长方形AB′C′D′的面积为y(cm2).(1)写出y与x的函数关系式;(2)上述函数是什么函数?(3)自变量x的取值范围是什么?四、中考链接1.(2015·兰州中考)下列函数解析式中,一定为二次函数的是( )A.y =3x -1B.y =a +bx +cC.s =2-2t +1D.y =2.(2014·江苏苏州中考)已知二次函数y =ax 2+bx -1(a ≠0)的图象经过点(1,1),则代数式1-a -b 的值为( A .-3 B .-1 C .2 D .5答案1. CBA2.B[提示:本题考查一次函数(包括正比例函数)、反比例函数以及二次函数的概念.当S 一定时,S=υt ,υ与t 成反比例关系.故选B]3.B[提示:尝试利用代值的方法解决实际问题,如本题分别将第1,2,3层的三角形的个数代入各函数关系式中,只有B 符合.故选B .]4.≠2[提示:当m -2≠0,即m ≠2时,函数y =(m -2)x 2+4x -5为二次函数.] 5.-1[提示:需m 2-3m ≠0,m 2-2m -l =2同时成立.] 6.a (1+x )27.解:函数关系式为Q =a ·π·(2D )2= 24aD .8.解:由题意,得y =60(1-x)(1-x)=60(1-x)2,x 的取值范围为0<x <1. 9.提示:(1)当二次项系数m 2-4≠0时,原函数是二次函数.(2)当二次项系数m 2-4=0且一次项系数m 2-3m +2≠0时,原函数是一次函数,由此确定m 的值.解:(1)由m 2-4≠0,解得m ≠±2.故当m ≠±2时,y 是x 的二次函数. (2)由m 2-4=0,解得m=±2.由m 2-3m +2≠0,解得m ≠1,m ≠2.所以m =-2.因此,当m =-2时,y 是x 的一次函数. 10.解:(1)根据长方形的面积公式,得y =(5-x )·(4-x)=x 2-9x +20,所以y 与x 的函数关系式为y =x 2-9x +20. (2)上述函数是二次函数. (3)自变量x 的取值范围是0<x <4. 中考链接:1.解:选项A 是一次函数;选项B 当a =0,b ≠0时是一次函数,当a ≠0时是二次函数,所以选项B 不一定是二次函数;选项C 一定是二次函数;选项D 不是二次函数.故选C 2. 解:把点(1,1)的坐标代入,得2.2.1二次函数的图像与性质一、夯实基础1.抛物线y =2x 2,y =-2x 2,y =2x 2+1共有的性质是( ).A .开口向上B .对称轴都是y 轴C .都有最高点D .顶点都是原点 6.任给一些不同的实数k ,得到不同的抛物线y =x 2+k ,当k 取0,±1时,关于这些抛物线有以下判断:(1)开口方向都相同;(2)对称轴都相同;(3)形状相同;(4)都有最低点.其中判断正确的是________.(填序号)2.抛物线y =ax 2+b 与x 轴有两个交点,且开口向上,则a 、b 的取值范围是( ). A .a >0,b <0 B .a >0,b >0C .a <0,b >0D .a <0,b <03.在同一直角坐标系中,y =ax 2+b 与y =ax +b(a ,b 都不为0)的图象的大致位置是( ).4.若二次函数y =ax 2+c ,当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( ).A .a +cB .a -cC .-cD .c7.已知点(-2,y 1)、(-1,y 2)、(3,y 3)在函数y =x 2+c 的图象上,则y 1、y 2、y 3的大小关系是________.二、能力提升5.在同一直角坐标系中,图象不可能由函数y =2x 2+1的图象通过平移变换、轴对称变换得到的函数是( ).A .y =2x 2-1 B .y =2x 2+3C .y =-2x 2-1 D .y =212x -1 8.当m =_______时,二次函数y =(1-m)x 22m 的图象开口向上.9.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-2,-8),则抛物线对应的函数关系式为_______.10.说明y =213x +4是由y =213x 怎样平移得到的,并说明: (1)抛物线y =213x +4的顶点坐标、对称轴及y 随x 的变化情况; (2)函数的最大(小)值.三、课外拓展11.设直线y 1=x +b 与抛物线y 2=x 2+c 的交点为A(3,5)和B . (1)求出b 、c 和点B 的坐标.(2)画出草图,根据图象回答:当x 在什么范围时y 1≤y 2?12.如图所示,小华在某次投篮中,球的运动路线是抛物线y =215x +3.5的一部分,若命中篮圈中心,求他与篮底的距离l.四、中考链接1.(2012广州市,2, 3分)将二次函数y=x 2的图像向下平移1个单位。
2012《一课一练 创新练习》9年级化学全(人教版)参考答案.pdf[1]
5 . A 酒精有特殊的气味或具有挥发性等 6 . ( 1 ) I ( 2 ) D ( 3 ) G ( 4 ) B ( 5 ) C E ( 或E I 或C I E ) 7 . 用干而冷的烧杯罩在“ 白烟” 上方, 观察烧杯内壁 是否出现水雾 用火柴点燃“ 白烟” , 观察“ 白烟” 能否燃烧( 或将一个干而冷的碟子放在“ 白烟” 上 方, 观察能否得到白色的蜡状固体) 8 . ( 1 ) 无毒 ( 2 ) 化学性质稳定 ( 3 ) 不溶于水 9 . ( 1 ) A ( 2 ) 大于 ( 3 ) A ( 4 ) 化学 下 上 1 / 3 外
课题 3 制取氧气
要点归纳 1 . ( 1 ) 过氧化氢→水 + 氧气 高锰酸钾→ 锰酸钾 + 二氧化锰 + 氧气 氯酸钾 氧 → 氯化钾 +
加热 二氧化锰 加热
本章重点难点回放
1 . B 2 . D 3 . A 4 . ( 1 ) 分解 过氧化氢 ( 2 ) 氧化镁 ( 3 ) 产生明亮 的蓝色火焰, 生成一种有刺激性气味的气体 吸收 4 ) 磷 +氧气 → 二氧化硫气体, 防止污染空气 ( 五氧化二磷 ( 5 ) 防止高温生成的四氧化三铁坠落 化学( 人教版) 9上 · 3 ·
点燃
2 ) 一种物质 两种或两种以上其他物质 气 ( 2 . 改变 质量 化学性质
炸裂集气瓶底 ( 6 ) 都是氧化反应( 或都是化合反 应或反应条件均是点燃等) 5 . ( 1 ) 长颈漏斗 锥形瓶 ( 2 ) 便于添加药品 适用 于制取较多量气体等 ( 3 ) 先向锥形瓶内加入适量 的二氧化锰, 塞入双孔塞后, 再向长颈漏斗内加入 过氧化氢溶液 过氧化氢 → 水 +氧气 ( 4 ) 引燃铁丝 ( 5 ) 燃着的铁丝碰到集气瓶壁等 ( 6 ) 火星四射 ② 铁 +氧气 → 四氧 ①剧烈燃烧, 化三铁 ③铁丝中含有碳
九年级数学上册试题一课一练1.3《正方形的性质与判定》习题1-北师大版(含答案)
1.3 《正方形的性质与判定》习题1一、选择题1.下列性质中正方形具有而菱形不具有的是( )A.对角线互相平分B.对角线相等C.对角线互相垂直D.每一条对角线平分一组对角2.下列命题不正确的的是( )A.对角线相等且互相平分的四边形是矩形B.对角线互相垂直是菱形具有而矩形不一定具有的性质C.有一个角的是直角的四边形是矩形D.对角线相等且互相垂直平分的四边形是正方形3.如图,把一个长方形的纸片对折两次,然后剪下一个角,要得到一个正方形,剪口与折痕所成锐角的大小为( )A.30B.45C.60D.904.四边形ABCD的对角线AC与BD相等且互相垂直,则顺次连接这个四边形四边的中点得到四边形是( )A.平行四边形B.矩形C.菱形D.正方形5.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )A.①②B.②③C.①③D.②④6.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个.A .4B .3C .2D .17.用两块完全相同的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,一定能拼成的图形是( )A .①④⑤B .②⑤⑥C .①②③D .①②⑤8.如图,在正方形ABCD 的外侧,作等边ABE ∆,则BED ∠为( )A .15°B .35°C .45°D .55°9.如图,边长为a 的正方形ABCD 绕点A 逆时针旋转30°得到正方形A B C D '''',图中阴影部分的面积为( )A .12a 2B a 2C .(12D .(12 10.如图,正方形ABCD 中,AE =AB ,直线DE 交BC 于点F ,则∠BEF =( )A .30°B .45°C .55°D .60°11.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将ADE 沿AE 对折至AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,则FGC S △=( )A .6B .2.4C .3.6D .4.812.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .C .2.4D .3.513.如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上一动点,则DN +MN 的最小值为( )A .6B .8C .12D .1014.如图,矩形ABCD 中,AB =10,AD =4,点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG .同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过( )秒时,直线MN 和正方形AEFG 开始有公共点A.2 B.2.5 C.3 D.3.5二、填空题1.如图,在大正方形中剪去一个小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个长方形的长为24,宽为16,则图2中S部分的面积是_____________.22.如图,等边△DEC在正方形ABCD内,连接EA、EB,则∠AEB的度数是_____.3.如图,正方形ABCD中,点E在边BC上,∠BAE=n°.如果在边AB、CD上分别找一点F、G,使FG=AE,FG与AE相交于点O,那么∠GOE的大小等于_______________.4.在锐角三角形ABC中,AH是边BC的高,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG 的中线;④∠EAM=∠ABC.其中正确的是_________.三、解答题1.如图,在正方形ABCD 中,E 、F 分别是边AB 、BC 的中点,连接AF 、DE 相交于点G ,求证:AF ⊥DE .2.已知:如图,在正方形ABCD 中,对角线,AC BD 相交于点O ,点,E F 分别是边,BC CD 上的点,且90EOF ∠=︒.求证:CE DF =.3.正方形ABCD 与正方形CEFG 的位置如图所示,点G 在线段CD 或CD 的延长线上,分别连接BD 、BF 、FD ,得到BFD .(1)在图1、图2、图3中,若正方形CEFG 的边长分别为1、3、4,且正方形ABCD 的边长均为3,请通过计算填写下表:BFD 的面积 (2)若正方形CEFG 的边长为a ,正方形ABCD 的边长为b ,猜想BPD S 的大小,并结合图3证明你的猜想.4.如图,四边形ABCD 为正方形,连接AC .(1)请用尺规作图法在边BC 上求作一点P ,使得点P 到AC 的距离等于BP 的长度. (保留作图痕迹,不写作法)(2)若正方形ABCD 的边长为4,求(1)中所得的BP 的长5.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.6.已知:如图,在正方形ABCD中,点E、F在对角线AC上,且AE=CF.(1)求证:DE∥BF(2)若四边形DEBF的面积为8,AE,则正方形边长为.7.如图,在Rt△ABC中,ACB=90°,过点C的直线MN//AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:四边形ADEC是平行四边形;(2)当D在AB中点时,请解答下面两个问题:①求证:四边形BECD是菱形②当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.8.同学们:八年级下册第9章我们学习了一种新的图形变换旋转,图形旋转过程中蕴含着众多数学规律,以图形旋转为依托构建的解题方法是解决各类几何问题的常用方法.(1)(问题提出)如图①,在正方形ABCD中,∠MAN=45°,点M、N分别在边BC、CD上.求证:MN=BM+DN.证明思路如下:△绕点A按顺时针方向旋转90°得到△ABE,再证明E、B、M三点第一步:如图②,将ADN在一条直线上.△≌△.第二步:证明AEM ANM请你按照证明思路写出完整..的证明过程.(2)(初步思考)△和BCE.如图③,四边形ABCD和CEFG为正方形,连接DG、BE,得到DCG下列关于这两个三角形的结论:①周长相等;②面积相等;③∠CBE=∠CDG.其中所有正确结论的序号是.答案一、选择题1.B.2.C3.B.4.D.5.C.6.C.7.D.8.C.9.D.10.B.11.C12.B.13.D.14.A.二、填空题1.642.150°.3.90°或(90−2n)°.4.①②③④.三、解答题1.证明:∵四边形ABCD 为正方形∴AB=BC=CD=AD ,∠ABF=∠DAE=90°,又∵E ,F 分别是边AB .BC 的中点∴AE =12AB .BF =12BC ∴AE=BF .在△ABF 与△DAE 中,DA AB DAE ABF AE BF =⎧⎪∠=⎨⎪=⎩, DAE ABF ∴≌(SAS).∴∠ADE=∠BAF ,∵∠BAF+∠DAG=90°,∴∠ADG+∠DAG=90°,∴∠DGA=90°,即AF ⊥DE .2.解:∵四边形ABCD 为正方形,∴OD=OC ,∠ODF=∠OCE=45°,∠COD=90°, ∵∠EOF=90°,即∠COE+∠COF=90°,∴∠COE=∠DOF ,∴△COE ≌△DOF(ASA),∴CE=DF .3.(1)都是92(2)如图,连接CF ,有正方形的性质可知 45DBC FCE ∠=∠=︒//BD CF ∴,BDF BCD ∴的高相同212S BFD S BCD b ∴==4.(1)由角平分线的性质得:点P 为BAC ∠的角平分线与边BC 的交点 分以下三步作图:①以点A 为圆心,小于AC 长为半径画弧,分别交AC 于点M ,交AB 于点N②分别以点M 、N 为圆心,大于12MN 长为半径画弧,两弧交于点O ③过点A 、O 作射线,与边BC 交于点P则如图所示,点P 即为所作;(2)如图,过点P 作PQ AC ⊥于点Q ,则BP PQ =四边形ABCD 是边长为4的正方形4,90,45AB AC B PCQ ∴==∠=︒∠=︒AC ∴=在Rt ABP 和Rt AQP △中,BP PQ AP AP =⎧⎨=⎩ ()Rt ABP Rt AQP HL ∴≅4AB AQ ∴==4CQ AC AQ ∴=-= 又,45PQ AC PCQ ⊥∠=︒ Rt CPQ ∴是等腰直角三角形4PQ CQ ∴==4BP PQ ∴==.5.(1)证明:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°,在Rt △ABE 和Rt △ADF 中,∵AD AB AF AE ⎧⎨⎩==, ∴Rt △ADF ≌Rt △ABE(HL)∴BE=DF ;(2)四边形AEMF 是菱形,理由为:证明:∵四边形ABCD 是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),∵BE=DF(已证),∴BC-BE=DC-DF(等式的性质),即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===, ∴△COE ≌△COF(SAS),∴OE=OF ,又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形), ∵AE=AF ,∴平行四边形AEMF 是菱形.6.(1)连接BD,交AC于点O,在正方形ABCD中,OB=OD,OA=OC,∵AE=CF,∴OA−AE=OC−CF,∴OF=OE,∴四边形BEDF是平行四边形,∴DE∥BF;(2)∵四边形ABCD是正方形,∴OA=OD,OA⊥OD,∴OD=OE+AE=OE∵四边形DEBF是平行四边形,OA⊥OD,∴四边形DEBF是菱形,∵四边形DEBF的面积为8,∴12BD•EF=8,即12×2OD•2OE=8,∴OD•OE=4,∵OD=OE∴OE OD=2∴AD=4,故答案为:4.7.(1)证明:∵∠ACB=90°,DE⊥BC,∴∠ACB=∠DFB=90°,∴AC∥DE,又∵MN∥AB,∴CE∥AD,∴四边形ADEC是平行四边形;(2)①四边形BECD是菱形,理由:∵∠ACB=90°,点D为AB的中点,四边形ADEC是平行四边形,∴CD=12AB=AD=BD,CE=AD,∴CE=AD,∵CE∥AD,BC⊥DE,∴四边形BECD是菱形;②若D为AB中点,则当∠A=45°时,四边形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四边形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形.8.(1)证明:将△ADN绕点A按顺时针方向旋转90°得到△ABE,在正方形ABCD中,∠BAD=∠ABM=∠D=90°,由旋转可知ADN ABE≌,∴∠D=∠ABE=90°,∠DAN=∠BAE,AN=AE,DN=BE,∴∠ABE+∠ABM=180°∴E、B、M三点在一条直线上∵∠MAN=45°∴∠DAN+∠BAM=45°∵∠DAN=∠BAE∴∠BAE+∠BAM=∠EAM=45°∴ ∠EAM=∠MAN∵ AN=AE ,AM=AM∴ AEM ANM △≌△(SAS )∴ ME=MN∵ ME=BE +BM∴ MN=DN +BM(2)如图, 正方形ABCD ,正方形CEFG ,,,90,BC DC CE CG BCD ECG ∴==∠=∠=︒但是:180,DCG BCE ∠+∠=︒ 而DCG ∠与BCE ∠不一定相等, 所以:BCE ∴△与DCG △不一定全等,所以:两个三角形的周长不一定相等,CBE ∠与CDG ∠不一定相等, 故①③错误,。
北师大版初三上课后习题及答案第一章特殊平行四边形
北师大版初三上课后习题及答案第一章特殊平行四边形习题1-11.已知:如图,在菱形ABCD中,∠BAD=2∠B.求证:△ABC是等边三角形.2.如图,在菱形ABCD中, BD=6, AC=8,求菱形ABCD的周长.3.已知:如图,在菱形ABCD中,对角线AC与BD相交于点o.求证: AC 平分∠BAD和∠BCD, BD平分∠ABC和4 ADC4.如图,在菱形ABCD中,对角线AC与BD相交于点O,团中有多少个等接三角形和直角三角形?答案:1.证明:∵ 四边形 ABCD 是菱形,∴BC=AB,BC//AD, ∴∠B+ ∠BAD=180°(两直线平行,同旁内角互补).∵∠BAD=2 ∠B, ∴∠B+2 ∠B=180°,∴∠B=60°. ∵BC=AB ,∴△ABC 是等边三角形(有一个角为60°的等腰三角形的等边三角形).2.解:∵ 四边形 ABCD 是菱形,∴AD=DC=CB=BA, ∴AC±BD,AO=1/2 AC= 1/2×8=4 ,DO= 1/2 BD= 1/2×6=3. 在Rt △AOD 中,由勾股定理,得AD=√(AO²+DO²)=√(4²+3²)=5. ∴菱形ABCD 的周长为4AD=4×5=20.3. 证明:∵ 四边形 ABCD 是菱形,∴AD=AB,AC±BD ,DO=BO, ∴△ABD 是等腰三角形,∴AO 是等腰△ABD 低边BD 上的高,中线,也是∠DAB 的平分线,∴AC 平分∠BAD.同理可证 AC 平分∠BCD,BD 平分∠ABC 和∠ADC.4. 解:有 4 个等腰三角形和 4 个直角三角形.习题1-21.已知:如图.在平行四边形ABCD中.对角线AC的垂直平分线分別与AD. AC. BC相交于点E, O, F.求証:四迫形AFCE是菱形.2.已知:如图,在菱形ABCD中,对角线AC与BD和交于点O,点E,F,G,H分別是OA, OB, OC, CD的中点,求证:四辺形EFGH是菱形。
2012年人教版9年级语文(全一册)《一课一练_创新练习》参考答案
发展事业。
9. 为了更有力地证明“成功者之所以成功,在于其做 人
的成功;失败者之所以失败,在于其做人的失败” 这一
观点。
10.
两句名言都可以作为论据,都是把修身立德摆
在 人生的第一位,说明一个人如果以德为先,加强知
识才能的修炼,德才兼备,就具备了做人与做事的 基
本素质。 11 C
12.
示例:在生活中,我 ff ] 常 常
绘了春雨绵密的特点。(3)传神地写出了柳 条在风
雨中的情形。(4)逼真地写出了小燕子 在微风细雨
中飞行的情景。 6. D
7. 默默无闻、心灵纯洁、乐观向上。
8. 生命的价值和绚丽不仅在于永恒和结果,而且
在于 用心体验过程的美丽,珍惜我们曾经拥有,坦然
面 对生生 。
9. 在生活中,即使我们彳艮普通很平凡,但是当 我 ff]遇 到困难时,我们仍然应该乐观向上,不要抱怨,
ห้องสมุดไป่ตู้4. 异《: 蝈蝈与蛐蛐》偏重刻画大自然的“闹”《夜》
着 意描绘大自然的“静”《; 蝈蝈与蛐蛐》赞颂了大自 然
的无限生机,《夜》赞美了大自然的美好环境。 同: 两首诗都描绘了静 iS 的夜景,美丽的月色。
5. 描绘了五月夏夜的家乡美景。抒发了诗人对家 乡 的无比热爱和自己回到家乡的喜悦之情。 6. “谢谢”一词,表达了诗人完全陶醉在家乡美景 中 的喜悦和激动之情。 7. 不同。第一节的“多美的夜色”确定了赞美家 乡夏 夜美景、抒发喜悦心情的感情基调;第二节的 “多美 的夜色”则引起下文,引出对家乡夏夜美景的
具体 描写。
8. 运用了比喻和拟人的修辞手法,生动形象地描
绘了 白桦树在夜色下的柔美风姿,融情于景,富于感
染 力。
最新北师大版九年级数学上册全册课时练习(附详细解析过程)
北师大版九年级数学上册全册课时练习1.1菱形的性质与判定 (1)1.2矩形的性质与判定 (11)1.3正方形的性质与判定 (19)2.1 认识一元二次方程 (28)2.2 用配方法求解一元二次方程 (31)2.3 用公式法求解一元二次方程 (36)2.4 用因式分解法求解一元二次方程 (40)2.5 一元二次方程的根与系数的关系 (44)2.6 应用一元二次方程 (48)3.1 用树状图或表格求概率 (54)3.2用频率估计概率 (65)4.1 成比例线段 (72)4.3相似多边形 (75)4.4 探索三角形相似的条件 (81)*4.5相似三角形判定定理的证明 (93)4.6利用相似三角形测高 (100)4.7相似三角形的性质 (108)4.8图形的位似 (115)5.1投影 (125)5.2视图 (133)6.1反比例函数 (142)6.2反比例函数的图象与性质 (148)6.3 反比例函数的应用 (158)1.1菱形的性质与判定一、选择题(本题包括12个小题.每小题只有1个选项符合题意)1. 如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是()A. 4B. 3C. 2D.2. 如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD 交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()A. 6.5B. 6C. 5.5D. 53. 如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A. B. 2 C. D.4. 如图,在菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A. 3.5B. 4C. 7D. 145. 如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A. 18B. 18C. 36D. 366. 如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y =(x<0)的图象经过顶点B,则k的值为()A. -12B. -27C. -32D. -367. 菱形具有而平行四边形不具有的性质是()A. 两组对边分别平行B. 两组对角分别相等C. 对角线互相平分D. 对角线互相垂直8. 某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为()A. 20mB. 25mC. 30mD. 35m9. 如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A. 108°B. 72°C. 90°D. 100°10. 菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 4811. 在菱形ABCD中,下列结论错误的是()A. BO=DOB. ∠DAC=∠BACC. AC⊥BDD. AO=DO12. 如图,在菱形ABCD中,P、Q分别是AD、AC的中点,如果PQ=3,那么菱形ABCD的周长是()A. 30B. 24C. 18D. 6二、填空题(本题包括4个小题)13. 如图,AD是△ABC的高,DE∥AC,DF∥AB,则△ABC满足条件________时,四边形AEDF 是菱形.14. 如图,在△ABC中,已知E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥AB,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是________就可以证明这个多边形是菱形15. 如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:_________,使四边形ABCD成为菱形.16. 如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是_________三、解答题(本题包括4个小题)17. 如图,已知在△ABC中,∠ACB=90°,CE是中线,△ACD与△ACE关于直线AC对称.(1)求证:四边形ADCE是菱形;(2)求证:BC=ED.18. 如图,△ABC与△CDE都是等边三角形,点E、F分别为AC、BC的中点.(1)求证:四边形EFCD是菱形;(2)如果AB=8,求D、F两点间的距离.19. 如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.20. 如图,由两个等宽的矩形叠合而得到四边形ABCD.试判断四边形ABCD的形状并证明答案1.【答案】B【解析】∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD,∴BC×AE=CD×AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°-30°-30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴AE=AB×sin60°=∴EF=AE=∴AM=AE•sin60°=3,∴△AEF的面积是:EF•AM=××3=.故选:B.2.【答案】C【解析】根据题意可得四边形AEOF和四边形CGOH为菱形,且OH=EB,设AE=x,则BE=8-x,根据菱形的周长之差为12,可得两个菱形的边长之差为3,即x-(8-x)=3,解得:x=5.5 3. 【答案】D【解析】根据菱形的性质,在菱形ABCD中,AB=BC,E为AB的中点,因此可知BE=,又由CE⊥AB,可知△BCA为直角三角形,∠BCE=30°,∠EBC=60°,再由菱形的对角线平分每一组对角,可得∠EBF=∠EBC=30°,因此可求∠BFE=60°,进而可得tan∠BFE=.故选D 4. 【答案】A【解析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD 的中位线,∴OE=AB=×7=3.5.故选A.5. 【答案】B【解析】过点A作AE⊥BC于E,如图,∵在菱形ABCD中,AB=6,∠ABD=30°,∴∠BAE=30°,∵AE⊥BC,∴AE=,∴菱形ABCD的面积是=,故选B.6. 【答案】C【解析】∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入得,4=,解得:k=﹣32.故选C.7. 【答案】D【解析】A、不正确,两组对边分别平行;B、不正确,两组对角分别相等,两者均有此性质正确;C、不正确,对角线互相平分,两者均具有此性质;D、菱形的对角线互相垂直但平行四边形却无此性质.故选D.8. 【答案】C【解析】如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=2.5(m)∴AB=BG+GF+AF=2.5×3=7.5(m),∴扩建后菱形区域的周长为7.5×4=30(m),故选C.9. 【答案】B【解析】如图,连接AP,∵在菱形ABCD中,∠ADC=72°,BD为菱形ABCD的对角线,∴∠ADP=∠CDP=∠ADC=36°.∵AD的垂直平分线交对角线BD于点P,垂足为E,∴PA=PD.∴∠DAP=∠ADP=36°.∴∠APB=∠DAP+∠ADP=72°.又∵菱形ABCD是关于对角线BD对称的,∴∠CPB=∠APB=72°.故选B.点睛:连接AP,利用线段垂直平分线的性质和菱形的性质求得∠APB的度数是解本题的基础,而利用通常容易忽略的“菱形是关于对称轴所在直线对称的”,由轴对称的性质得到∠CPB=∠APB才是解决本题的关键.10.【答案】C【解析】由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:×6×8=24.故选C.11. 【答案】D【解析】根据菱形的性质:“菱形的对角线互相垂直平分,每一条对角线平分一组对角”可知:选项A、B、C的结论都是正确的,只有选项D的结论不一定成立.故选D.12. 【答案】B【解析】∵P,Q分别是AD,AC的中点,∴PQ是△ADC的中位线,∴DC=2PQ=6.又∵在菱形ABCD中,AB=BC=AD=CD,∴C菱形ABCD=6+6+6+6=24.故选B.13. 【答案】AB=AC或∠B=∠C【解析】∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.所以当四边形AEDF中有一组邻边相等时,它就是菱形了.由此在△ABC中可添加条件:(1)AB=AC或(2)∠B=∠C.(1)当添加条件“AB=AC”时,∵AD是△ABC的高,AB=AC,∴点D是BC边的中点,又∵DE∥AC,DF∥AB,∴点E、F分别是AB、AC的中点,∴AE=AB,AF=AC,∴AE=AF,∴平行四边形AEDF 是菱形.(2)当添加条件“∠B=∠C”时,则由∠B=∠C可得AB=AC,同(1)的方法可证得:AE=AF,∴平行四边形AEDF是菱形.14. 【答案】AB=AC,答案不唯一【解析】根据DE∥AC,DF∥AB,可直接判断出四边形AEDF是平行四边形,要使其变为菱形,只要邻边相等即可,从而可以得出.条件AE=AF(或AD平分角BAC,等)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又AE=AF,∴四边形AEDF是菱形.15. 【答案】AB=AD,答案不唯一【解析】由已知条件可证四边形ABCD是平行四边形,而要使平行四边形是菱形,根据菱形的判定方法可添加:(1)四边形ABCD中,有一组邻边相等;(2)四边形ABCD的对角线互相垂直;因此,本题的答案不唯一,如可添加:AB=AD,证明如下:∵四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.∴四边形ABCD是平行四边形.又∵AB=AD,∴平行四边形ABCD是菱形.点睛:本题方法不唯一,由已知条件可证得四边形ABCD是平行四边形,结合菱形判定方法中的:①有一组邻边相等的平行四边形是菱形;②对角线相等的平行四边形是菱形;就可得到本题添加条件的方法有3种:(1)直接添加四组邻边中的任意一组相等;(2)直接添加对角线AC⊥BD;(3)在题中添加能够证明(1)或(2)的其它条件.16. 【答案】菱形【解析】∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC是菱形.故答案为:菱形.17. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由△ABC中,∠ACB=90°,CE是中线,可证得:CE=AE,再由△ACD与△ACE(2)由(1)可得DC∥BE,关于直线AC对称,可得AD=AE=CE=CD,从而可得四边形ADCE是菱形;DC=AE=BE,从而可证得:四边形BCDE是平行四边形,就可得到:BC=DE.(1)证明:∵∠C=90°,点E为AB的中点,∴EA=EC.∵△ACD与△ACE关于直线AC对称.∴△ACD≌△ACE,∴EA=EC=DA=DC,∴四边形ADCE是菱形;(2)∵四边形ADCE是菱形,∴CD∥AE且CD=AE,∵AE=EB,∴CD∥EB且CD=EB∴四边形BCDE为平行四边形,∴DE=BC.18. 【答案】(1)证明见解析;(2)【解析】(1)由△ABC是等边三角形,点E、F分别为AC、BC的中点可证得:EF=EC=FC;由△DEC是等边三角形可得:DE=DC=EC,从而可得EF=FC=CD=DE,由此可得:四边形EFCD是菱形;(2)连接DF交AC于点G,由已知易证EF=EC=4,再由菱形的对角线互相垂直平分,可得EG=2,再由勾股定理可得:FG=,从而可得DF=.解:(1)∵△ABC与△CDE都是等边三角形∴AB=AC=BC,ED=DC=EC∵点E、F分别为AC、BC的中点∴EF=AB,EC=AC,FC=BC∴EF=EC=FC,∴EF=FC=ED=DC,∴四边形EFCD是菱形.(2)连接DF,与EC相交于点G,∵四边形EFCD是菱形,∴DF⊥EC,垂足为G ,EG=EC,∴∠EGF=90°,又∵AB=8, EF=AB,EC=AC,∴EF=4,EC=4,EG=2,∴GF=,∴DF=2GF=.19. 【答案】(1)证明见解析;(2)直角三角形.解:(1)四边形ABCD中,AB∥CD,过C作CE∥AD交AB于E,则四边形AECD是平行四边形(两组对边分别平行的四边形是平行四边形),因为AB∥CD,所以;AC平分∠BAD,所以,因此,所以AD=CD,所以四边形AECD是菱形.(2)由(1)知四边形AECD是菱形,所以AE=CE;点E是AB的中点,AE=BE,所以CE=AE=BE,所以△ABC是直角三角形(斜边上的中线等于斜边的一半是直角三角形)20. 【答案】四边形ABCD是菱形.证明见解析.【解析】过点A作AR⊥BC于点R,AS⊥CD于点S,由已知可得:AD∥BC,AB∥CD,从而得到四边形ABCD是平行四边形;由矩形纸条等宽可得AR=AS,由面积法可证得:BC=DC,从而可得:平行四边形ABCD是菱形.解:四边形ABCD是菱形.理由如下:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵S平行四边形ABCD=AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形.点睛:本题第一步容易证得四边形ABCD是平行四边形;第二步抓住题中条件“等宽的矩形”通过作辅助线AR⊥BC,AS⊥CD,就可得AR=AS,再用“面积法”证得:BC=CD是解决本题的关键.1.2矩形的性质与判定一、选择题(本题包括11个小题.每小题只有1个选项符合题意)1. 如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. BD的长度增大C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变2. 如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD3. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A. 17B. 18C. 19D. 204. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A. 10cmB. 8cmC. 6cmD. 5cm5. 如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A. 4B. 3C. 2D. 16. 一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A. 602B. 702C. 1202D. 14027. 如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=,则OE=()A. 1B. 2C. 3D. 48. 矩形具有而菱形不具有的性质是()A. 对角线相等B. 两组对边分别平行C. 对角线互相平分D. 两组对角分别相等9. 矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A. 16cmB. 22cmC. 26cmD. 22cm或26cm10. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A. 57.5°B. 32.5°C. 57.5°,23.5°D. 57.5°,32.5°11. 过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A. 对角线相等的四边形B. 对角线垂直的四边形C. 对角线互相平分且相等的四边形D. 对角线互相垂直平分的四边形二、填空题(本题包括3个小题)12. 如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.13. 平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________14. 木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)三、解答题(本题包括5个小题)15. 如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形16. 如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积17. 如图,在平行四边形ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.求证:四边形ABCD是矩形18. 有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?19. 如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案1. 【答案】C【解析】由题意可知,当向右扭动框架时,BD可伸长,故BD的长度变大,四边形ABCD由矩形变为平行四边形,因为四条边的长度不变,所以四边形ABCD的周长不变.原来矩形ABCD 的面积等于BC乘以AB,变化后平行四边形ABCD的面积等于底乘以高,即BC乘以BC边上的高,BC边上的高小于AB,所以四边形ABCD的面积变小了,故A,B,D说法正确,C说法错误.故正确的选项是C.2. 【答案】D【解析】本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误3. 【答案】D【解析】∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=CD=2.5,AC==13,∵O是矩形ABCD 的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选D.4. 【答案】D【解析】∵四边形ABCD是矩形,∴OA=OC=AC,OD=OB=BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.5. 【答案】A【解析】在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.6. 【答案】A【解析】黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,故矩形的面积=21÷(50%-15%)=21÷35%=60(cm2).故选A.7.【答案】A【解析】∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=,∠OAD=60°,∴∠OAE=30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A.8.【答案】A【解析】∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.9. 【答案】D【解析】∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.10. 【答案】D【解析】∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=×(180°﹣∠AOB)=×(180°﹣65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°﹣57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.点睛:本题考查了矩形的性质,三角形的内角和定理,等腰三角形的性质的应用,能正确运用矩形的性质进行推理是解此题的关键,注意:矩形的对角线相等且互相平分.11. 【答案】B【解析】∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选B.12. 【答案】AC=BD.答案不唯一【解析】添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一.13.【答案】①⑤【解析】要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可;故答案为:①⑤.14. 【答案】合格【解析】勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.∵∴这个桌面合格.15. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由(1)知四边形HGFE是平行四边形,故四边形HGFE是矩形.证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°-α.∵AE=AH,∴∠AHE=∠AEH=.∵AD=AB=CD,AH=AE=CG,∴AD-AH=CD-CG,即DH=DG.∴∠DHG=∠DGH=.∴∠EHG=180°-∠DHG-∠AHE=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.16. 【答案】12.【解析】利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.在Rt△ADC 中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得CD(或BD)的长度,则矩形的面积=长×宽=AD•BD=AD•CD.解:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形,∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD,∴BD=AE,∴平行四边形AEBD是矩形.在Rt△ADC中,∠ADB=90°,AC=5,CD=BC=3,∴AD==4,∴四边形AEBD的面积为:BD•AD=CD•AD=3×4=12.17. 【答案】证明见解析.【解析】欲证明四边形ABCD是矩形,只需推知∠DAB是直角.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°,∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.18. 【答案】AD=140cm.【解析】过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM求出即可.解:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°﹣150°=30°,∴∠MCD=60°﹣30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.19. 【答案】证明见解析.【解析】先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC 的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论.证明:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.1.3正方形的性质与判定一、选择题(本题包括11个小题.每小题只有1个选项符合题意)(2)如果a≥0,1. 下列五个命题:(1)若直角三角形的两条边长为5和12,则第三边长是13;那么=a;(3)若点P(a,b)在第三象限,则点P(﹣a,﹣b+1)在第一象限;(4)对角线互相垂直且相等的四边形是正方形;(5)两边及第三边上的中线对应相等的两个三角形全等.其中不正确命题的个数是()A. 2个B. 3个C. 4个D. 5个2. 下列命题,真命题是()A. 两条对角线相等的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直平分的四边边是菱形D. 两条对角线平分且相等的四边形是正方形3. 如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A. ①②③B. ①④⑤C. ①③④D.③④⑤4. 如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,它是菱形B. 当AC⊥BD时,它是菱形C. 当∠ABC=90°时,它是矩形D. 当AC=BD时,它是正方形5. 已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A. ∠D=90°B. AB=CDC. AD=BCD. BC=CD6. 如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成()A. 22.5°角B. 30°角C. 45°角D. 60°角7. 在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A. AC=BD,AB∥CD,AB=CDB. AD∥BC,∠A=∠CC. AO=BO=CO=DO,AC⊥BDD. AO=CO,BO=DO,AB=BC8. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形,一定可以拼成的图形是()A. (1)(2)(5)B. (2)(3)(5)C. (1)(4)(5)D. (1)(2)(3)9. 四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则下列推理不成立的是()A. ①④⑥B. ①③⑤C. ①②⑥D. ②③④10. 下列说法中错误的是()A. 四个角相等的四边形是矩形B. 对角线互相垂直的矩形是正方形C. 对角线相等的菱形是正方形D. 四条边相等的四边形是正方形11. 矩形的四个内角平分线围成的四边形()A. 一定是正方形B. 是矩形C. 菱形D. 只能是平行四边形二、填空题(本题包括2个小题)12. 如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是.13. 把“直角三角形,等腰三角形,等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的拼合而成;(2)菱形可以由两个能够完全重合的拼合而成;(3)矩形可以由两个能够完全重合的拼合而成.三、解答题(本题包括6个小题)14. 如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:CE=CF;(2)点C运动到什么位置时,四边形CEDF成为正方形?请说明理由.15. 已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.16. 如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE 是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.17. 已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.18. 如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.19. 如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明:四边形AHBG是菱形;(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)答案1. 【答案】B【解析】(1)由于直角三角形的两条边长为5和12,这两条边没有确定是否是直角边,所以第三边长不唯一,故命题错误;(2)符合二次根式的意义,命题正确;(3)∵点P(a,b)在第三象限,∴a<0、b<0,∴﹣a>0,﹣b+1>0,∴点P(﹣a,﹣b+1).在第一象限,故命题正确;(4)正方形是对角线互相垂直平分且相等的四边形,故命题错误;(5)两边及第三边上的中线对应相等的两个三角形全等是正确的.故选A.2. 【答案】C【解析】A、两条对角线互相平分的四边形是平行四边形,故A错误;B、两条对角线平分且相等的四边形是矩形,故B错误;C、两条对角线互相垂直平分的四边边是菱形,故C正确;D、两条对角线平分、垂直且相等的四边形是正方形,故D错误;故选C.3. 【答案】B【解析】解此题的关键在于判断△DEF是否为等腰直角三角形,作常规辅助线连接CF,由SAS定理可证△CFE和△ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形.可证①正确,②错误,再由割补法可知④是正确的;判断③,⑤比较麻烦,因为△D EF 是等腰直角三角形DE=DF,当DF与BC垂直,即DF最小时,DE取最小值4,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③可知⑤是正确的.故只有①④⑤正确.连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形(故①正确).当D、E分别为AC、BC中点时,四边形CDFE是正方形(故②错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CEFD=S△AFC,(故④正确).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4(故③错误).当△CDE面积最大时,由④知,此时△DEF的面积最小.此时S△CDE=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8(故⑤正确).故选:B.4. 【答案】D【解析】A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC 时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.5.【答案】D【解析】由∠A=∠B=∠C=90°可判定为矩形,根据正方形的定义,再添加条件“一组邻边相等”即可判定为正方形,故选D.6. 【答案】C【解析】一张长方形纸片对折两次后,剪下一个角,是菱形,而出现的四边形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕成45°角,菱形就变成了正方形.故选C.7. 【答案】C【解析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.A,不能,只能判定为矩形;B,不能,只能判定为平行四边形;C,能;D,不能,只能判定为菱形.故选C.8. 【答案】A【解析】拿两个“90°、60°、30°的三角板一试可得:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(5)等腰三角形.而菱形、正方形需特殊的直角三角形:等腰直角三角形.故选A.9. 【答案】C【解析】A.符合邻边相等的矩形是正方形;B.可先由对角线互相平分,判断为平行四边形,再由邻边相等,得出是菱形;D.可先由对角线互相平分,判断为平行四边形,再由一个角为直角得出是矩形;故选C.10. 【答案】D【解析】A正确,符合矩形的定义;B正确,符合正方形的判定;C正确,符合正方形的判定;D不正确,也可能是菱形;故选D.11. 【答案】A【解析】矩形的四个角平分线将举行的四个角分成8个45°的角,因此形成的四边形每个。
北师大版九年级数学上册《1.1 菱形的性质与判定》同步练习题-附答案
北师大版九年级数学上册《1.1 菱形的性质与判定》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知菱形ABCD 的对角线AC ,BD 的长分别为6和8,则该菱形面积是( ).A .12;B .24;C .48;D .96.2.菱形对角线不.具有的性质是( ) A .对角线互相垂直B .对角线所在直线是对称轴C .对角线相等D .对角线互相平分3.如图,在菱形ABCD 中,AB =6cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB .CB 方向向点B 匀速移动,点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒∠DEF 为等边三角形,则t 的值为( )A .1B .1.3C .1.5D .24.如图,在菱形ABCD 中,对角线BD 、AC 交于点O ,AC=6,BD=4,CBE ∠是菱形ABCD 的外角,点G 是CBE ∠的角平分线BF 上任意一点,连接AG 、CG ,则AGC 的面积等于( )A .6B .9C .12D .无法确定5.菱形一个内角是120°,一边长是8,那么它较短的对角线长是( )A .3B .4C .8D .836.如图,已知菱形OBAC 的顶点()0,0O ,()2,2A --若菱形绕点O 顺时针旋转,每秒旋转45︒,则旋转30秒时,菱形的对角线交点D 的坐标为( )A .1,1B .()1,1-C .()1,0D .(0,2 7.如图在Rt ∠ABC 中,∠BAC =90,AD 是斜边BC 上的高,BE 为∠ABC 的角平分线交AC 于E ,交AD 于F ,FG ∠BD ,交AC 于G ,过E 作EH ∠CD 于H ,连接FH ,下列结论:∠四边形CHFG 是平行四边形,∠AE =CG ,∠FE =FD ,∠四边形AFHE 是菱形,其中正确的是( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠8.如图,四边形ABCD 是菱形,连接AC BD ,交于点O ,过点A 作AE BC ⊥,交BC 于点E ,若46AC BD ==,,则CE 的长度是( )A 1213B 513C 813D .759.如图,四边形 ABCD 是菱形,DH AB ⊥ 于点 H .若 AC=8,BD=6,则 DH 的长度为( )A .2.4B .3.6C .4.8D .7.210.菱形ABCD 的周长为32,其相邻两内角的度数比为15:,则此菱形的面积为( )A .8B .16C .32D .64二、填空题11.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 在AD 上,连接EO 并延长,交BC 于点F .若5AB =,OE=2,则四边形CDEF 的周长是 .12.如图,菱形ABCD 中135D ∠=︒,BE CD ⊥于E ,交AC 于F ,FG BC ⊥于G .若BFG 的周长为6,则菱形的边长为 .13.如图,两个长宽分别为7cm 、3cm 的矩形如图叠放在一起,则图中阴影部分的面积是 .14.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为边AD 的中点.若2OE =,则菱形ABCD 的周长为 .15.菱形的四条边都 .16.如图,菱形ABCD 的边长为17,对角线30AC =,点E 、F 分别是边CD 、BC 的中点,连接EF 并延长与AB 的延长线相交于点G ,则EG = .17.如图,四边形ABCD 是平行四边形,分别延长AD CB 、至点F 、E ,使得BE DF =,连接AE CF ,.请再添加一个条件: ,使得四边形AECF 是菱形,并说明理由.(不再添加任何线条、字母)18.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,E 、F 分别是AC 、AD 上的动点,连接DE 、EF ,若4AC =,BD=2,则DE EF +的最小值为 .19.在四边形 ABCD 中,对角线 AC , BD 交于点O .现存在以下四个条件:∠ AB CD ∥;∠ AO OC =;∠ AB AD =;∠ AC 平分DAB ∠.从中选取三个条件,可以判定四边形ABCD 为菱形. 则可以选择的条件序号是 (写出所有可能的情况).20.中国古代数学家刘徽在《九章算术》中,给出了证明三角形面积公式的出入相补法,如图所示,在ABC 中,分别取AB ,AC 的中点D ,E ,连接DE ,过点A 作AF DE ⊥,垂足为F ,ABC 分割后拼接成矩形BCHG ,若4DE =, 3.5AF =则ABC 的面积是 .三、解答题21.如图,某型号千斤顶的工作原理是利用四边形的不稳定性,图中的菱形ABCD 是该型号千斤顶的示意图,保持菱形边长不变,可通过改变AC 的长来调节BD 的长.已知30cm AB =,BD 的初始长为30cm ,如果要使BD '的长达到36cm ,那么AC 的长需要缩短多少cm .22.在平面直角坐标系中,直线AB 与x 轴交于点A ,与y 轴交于点B ,且30OAB ∠=︒,OA=9.(1)如图1,点C 为线段AB 上一点,若93AOC S =△C 的坐标;(2)如图2,点D 在线段OA 上,2,OD DA E F =、是直线AB 上的两个动点且43EF =G 是x 轴上任意一点,连接DE GF 、,求DE EF FG ++的最小值;(3)在(2)的条件下,当DE EF FG ++取最小值时,M 为直线FG 上一动点,N 是平面内任意一点,当A B M N 、、、四点构成的四边形是以AB 为边的菱形时,请直接写出点N 的坐标.23.如图,在菱形ABCD 中80ABC ∠=︒,且BA BE =,试求AED ∠的度数.参考答案 1.B2.C3.D4.A5.C6.A7.D8.B9.C10.C11.1412.613.2877cm .14.1615.相等16.1617.AE EC =(答案不唯一)184545519.∠∠∠,∠∠∠,∠∠∠,∠∠∠20.1221.AC 的长需要缩短()348cm22.(1)(3,23C 1532(3)点N 的坐标为151233232⎛-- ⎝⎭,或151233232⎛+- ⎝⎭,或21633472⎛-- ⎝⎭,或21633472⎛-+ ⎝⎭,. 23.110︒。
2012《一课一练_创新练习》7年级数学上册(人教版)参考答案
数学(人教版)7上• 1《一课一练创新练习》数学(人教版)7上正文部分参考答案第一章有理数1.1正数和负数第i 课时正数和负数的意义要点归纳2. 正数3. 负数4. 正数负数 题型归类例1 D例 2 (1)2.5, +-3,106,n_ 1,_1 72,_3I4,_1了(2)略 例3 - 80元 易错示例 例 +2米 分层作业 1.A 2.C 3.B4. -5 °C 5 0 6.略 7.(1)18 -20(2)解:第99个数、第100个数分别是198, -200; 第2 010个数、第2 011个数分别是-4 020,4 022.8. 解:(1)从表中可知粮食、能源、教育的价格上涨了, 而家用电器、电脑、汽车的价格都降低了.(2) 能源的价格上涨幅度最大,电脑的价格下降幅 度最大.(3) 如:家用电器的价格比2011年12月份下降了 3.8%.第2课时0的意义要点归纳1. -3 m2.负数 题型归类例 1 30. 1 m,28 m,26. 8 m,25 m,26 m,29 m 例2折回来行走280米表示向西行走280米;休息的地方在小华家的正东方向上,离小华家70 米;小华一共走了 350 +280 =630(米). 例3 (1)分别记为:+7分,+ 10分,+9分, + 15 分;(2)分别记为:-3分,0分,-1分,+5分. 易错示例 例 -4时 分层作业 1. B 2.D 3.B4. 1 60 元-40 元5. -4 时6.解:(1)用正负数表示分别为:+5, -7, -3, +10,-9,-15,+5;(2) 总产量为2 786辆,平均每日实际生产398辆.7.解:灯塔的高度表示为+35m ,潜水艇的高度表示 为 -40m8. 解:答案不唯一)问题(1):星期日的水位是多少米?73. 1 0 +0. 30 +0. 25 -0. 55 +0. 40 +0. 20 -0. 55 +0.05 =73. 2(米).问题(2):哪一■天的水位最高? 星期一 :73. 1 0 +0. 30 =73. 40, 星期二 :73. 40 +0. 25 =73. 65, 星期三:3. 65 -0. 55 =73. 10,星期四:73. 10 +0. 40 =73.50, 星期五:3.50 +0. 20 =73.70, 星期六:3. 70 -0. 55 =73. 15, 星期日:73. 15 +0. 05 =73. 20,的水 最高1. 2有理数1.2.1有理数要点归纳1. 正整数、0和负整数正分数和负分数有理数2.““正数非负数0正整数分数 题型归类例1 (1)B (2)D22例 2 52 012, +2 , 0.01,Y ,n,50%数学(人教版)7上25,,012,+25,0,2 012,+2,-1 -3.1,-3 +22502 012,+2,0.01,管,n ,50% 分层作业1.D 2. D 3.D 4. C 5.C 6.-6+ ,3. 142 592 6,20%) + ,7,0,3. 142 592 6,20%>1.2.2数 轴要点归纳1. 原点、单位长度和正方向2. 负数正数 题型归类例1 4点表Y 1,点表Y 1. 5 ,C 点表Y - 1 ,-D 点表 示-3.5,E 点表示-2.(2)8千米; (3)19千米.1.2. 3相反数要点归纳1. 相反数2. (1)相同(3)0 (4)相等--a 题型归类例 1 5 -3 -a -(a-b) 0 例 2 (1)-8 (2)| (3) -3.2 (4)9.6()jr (6 ) -3例3 表示的数分别为-2.5,2.5. 易错示例 例B 分层作业 1.C 2. B 3.C 4. A5. 夺-2 06. -67.解:2,-1. 5,,3,-3的相反数分别是:-2,1. 5, -^3,3.画数轴表示略.每对相反数所对应的点到原点的距离相等.8. 解:画数轴略.A ,B 两点所表示的数分别为4,-4.例2-3.5 1 -1 & 112 0 2 2.5 4 +5 I i-i 1 - 1 i-i 11 、-4 -3 -2 -1 0 1 2 3 4 5例3 (1)- -1 ()D易错示例 例C分层作业1. D2. B3.B4. D5. 20 或 216. -5 1 1)-3 & 0 & "4 1 1 & 1 1 l ‘l ▲ 1 > -5 -4-3 -2 -1 0 1 2 3 4 5 7.解:1)如图.1 1111 1 1 1 1 1 1 1 >w -3 • • • ^! 0 " (2)点B 表示的数是7. (3)点C 表示2.5.8 解:( 1 )小明家 ■* - 1~超市 小彬家小颖家——1 1 - 1 -- A - 1 -- 1 - A -- 1~1 -- y-5 -4 -3 -2 -1 0 1 2 3 4 5有理数 整数 分数 正整数 负分数 自然数 -9 V V-2. 35 VVV0 V VV 5 V VVV2TVV数学(人教版)7上3!-1 0 1-a1.2.4绝对值 第1课时求有理数的绝对值 要点归纳1.绝对值2.(1)本身(2)相反数(3)03. 相等 题型归类例 1 4 =4, | 0=0, | -3.5 I =3.5. 例2 (1)两 ±3 0无数正数和0(2)±5 ±6 ()5例3向右一共滚了 +7+ ( +4.5) =11. 5,向左一共 滚了 1.5 +3 +2=6.5.向右比向左多滚了 11.5-6.5 =5,5 -2 =3,因 此小球最终停在3处.因为-1.5 | + -3 | + +7 | + -2 | + +4.5 | = 18,所以小球共衮动了 18个单位长度. 分层作业 1.D 2.A 3.A4. -45. ±2,±36. a - 3 a -37.(1)解:原式=11. (2)解:原式=^|.8. 解:a = -1,6=1,c=2.9.解:1)向东走的路程为:+4 + 6 +10 = 29(km),向西走的路程为:+5+8+1 +6 +4 =27(km),29 -27 =2(km),因此将最后一个乘客送到目的地时, 出租车离鼓楼出发地2 km,在鼓楼的正东方向.(2) | +9| + | -3 | + | -5 | + | +4| + | -8 | ++ 6| + -1| + -6| + -4 | + +10| = 56 (km) . 总耗油量:6 x0. 1 =5.6(L). 第2课时有理数的大小比较要点归纳 1.0负数负数2.左边3.远4.大小 题型归类例1⑴因为-2.51=2.5,-夺=|,16 _15 16 3 4 还’而^^还’所以-T> -孓 例2 5-10 1 3.5 _I 1—------ 4——4——4 -------- 1 -- L _*_J_^ -4-3-2-10 1 2 3 4所以-+< -1 < 0 < 1 < 3.5.例3 (1)第4件样品的大小最符合要求.(2)因为 | +0. 1 | =0. 1 <0. 18,| -0.15 | =0. 15<0. 1 8, | -0. 05 | =0. 05 <0. 1 8,所以序号为1,2,4的样品是正品.因为 | -0. 2 | =0. 2,且0. 18 <0. 2 <0. 22,第 3 是 因为 | +0. 25 | =0. 25 >0. 22,所以第5件样品是废品. 易错示例例-| -2.9 | < -2 + < -2. 7 <0 < -( -2. 8 ) < I -3|. 分层作业1. C2. A3.C4. D5.C6. -1 0 7解:(”_^4< _寻;⑵_(-_1)>- .8. 解:画数轴略. -2 < -1 < -0.5<0<0.5<1<2.9.解:如图,由图可知:>-a>0>a> -6.____ 9 ____ I ___ I __ , I __ I_^一" ! 0 -a 1 "1. 3有理数的加减法1. 3 . 1有理数的加法 第1课时有理数的加法法则要点归纳 1. (1)符号相加(2)较大减去 (3)0 (4)这个数 2. 和绝对值 题型归类 例1 C例 2 (1)( +15) +( -17) = -(17-15) = -2;(2 ) ( -39) +( -21) = -(39 +21) = -60;(3)(-6 ) + | -10 | + ( -4) = ( - 6) +10 + (-4) =4 + ( -4) = 0;(4)-3 夺+ ( +3 夺)=0.而2.5 >夺,所以-2.5 < -|;3 3 154 "T 'T _ 20~T数学(人教版)7上• 4例3 的值分别为3,-3或-3,3. 易错示例加 3 , 2 9 ,10, 例 ——+ (-——)=——+ (-——) ⑴ 5 v 37 15 v 157_ (里!)_丄 _ (15 15) _ 15. 分层作业 1. B 2.D 3.B4. 2冬5. 16. -7 67. (1)解:原式=-9. (2) 解:原式=-12. (3) 解:原式=-2^3. (4) 解:原式=-4^.8. 解:现在存折中还有440兀.9. 解:由 a | =5,| b| =3 可得,a=±5,b=±3. 由 |a + ( - b) | = b + ( - a)得,b > a ,则 a = - 5, b = ±3.故 a + b) = -2 或-8.第2课时有理数加法的运算律 要点归纳 1. 加数和b + a2.后两个数相加不变a+ (+C )3. (1)分数(2 )整数与真分数(3)相加0 (4 )相加(6 )符号 题型归类例 1 (1)原式=15 + 18 + [( - 19) +(-12) + (-14) ]=33 + ( -45 ) = -12;(2 )原式=[(-3 争)+ (- 18 手)]+[(_15. 5 ) + ( +5了 ) ] = -22 + ( -10) = -32; (3)原式=(+18) + ( ++) + ( -71)+ ( -1)=(+ 1) + ( -71) + [ ( +^ ) + ( -士 )] =_53+( -+ ) = _53+.例 2 (1) (+5) +(-3) +(+10) +(-8) +(-6) + ( +12 )+( -10 ) =0,所以守门员回到了原 来的位置;(2 ) ( +5 ) +( -3) +( +1 0 ) =1 2(m ),守门员 离开球门的位置最远是1 2 m ;(3)| +5| + | -3|+ | +10| + | -8|+ | -6| + | +12 卜 | -10 | =54(m). 例 3 由题意得 |2*-3|+| y+3|=0,所以 2*-3 =0,+ 3 =0,则-3, 3 / 3 \ 3 ^ +r = ^ + ( _3) = _了, ^ +r 的相反数是I. 分层作业 1. A 2. C3. 0,±1,±2,±3,±4 04.(1)解:原式=0. (2 )解:原式=-2. ( 3 )解: 原 =05. 解:(1)0(提示:前99个数是-49,".,0,…,49);( 2 )50 6. 解:不足2千克;总质量为498千克. 0 ^ /1X 1 2 1 3 4 18.解:(1) -y+y=^,-t+T = 20; ⑵+ ^+= _______________ 1_____ .n + 1 n + 2 (n, + 1)(n,+2)1. 3 . 2有理数的减法 第1课时有理数减法法则要点归纳1. 等于加上这个数的相反数2. (1)加号(2)相反数(3)加法 题型归类/K ,, , 2 , 1 2 1 4 1 5 例1⑴了-(-t)= 了+T=m ; (2)( -2) -( +10) =( -2) +( -10) = -12;⑶(-1+) -+ = (-1+) +(-+)1 -32 1 0 -1 -23-1数学(人教版)7上• 5(2) -(4) 为2丄_丄丄丄 (4) 0-( -6. 3 ) =0 + ( +6.3) =6.3. 例 2 (1)另一个加数为-0. 8 1-1. 8 =-2. 6 1; (-手)=+.例3由表中数据可以看出,第一名得了 350分,第二名得了 150分,第五名得了 -400分.(1) 350 -150 =200(分);(2)350 -( -400) =750(分).易错示例例 0-( +5) = -5. 分层作业 1. D 2.B 3.C4. 35. -7 或-16. -1 0067.(1)解:原式=0. (2)解:原式=-47.( 3 )解: 原 =5128. 解:-2+8 + ( -6) =0( C). 9解: 原10第2课时有理数加减混合运算要点归纳1.和2.去掉3.和运算4. 一般步骤:(1)加法(2)加法 运算顺序:(1)左到右的(2)括号内的(3)小括 号中括号大括号 题型归类 例 1 原式=-3+5-7+2-9;读作:负3加5减7加2减9. 例 2 (1)原式=1-2+5-5=-1;(2)原式=-21 夺 + 夺+3 + -0. 25= -21 + 3 士 = -17.5. 例 3 25 +(1 -2 +2 -3 -2)=25 + ( -4) =21(C). 所以9月15日的最高气温是21 C.易错示例 1521例-——+——+——-—— ~ 4 6 32424 分层作业 1.D2. D3.-2.8 +9.5 -6. 2-9.5 -9 4. -105.(1)解:原式=-7+4-9+2+5= -5.(2)解:原式=-5-7+6+4=-2.6.(1)解:原式=-2. (2)解:原式=-3+.7.解:小明的结果为-4.5+3.2-1. 1+1. 4 =-1, 小红的结果为- 8- 2- (- 6)+(-7) = -11, -11 < -1,所以小红获胜. 8.解:原式=(-2 009 - 2 008 +4 018 - 1 ) + 52311. 4有理数的乘除法1. 4 . 1有理数的乘法 第1课时有理数的乘法法则要点归纳1.正负绝对值2.03. 倒数 14. 1 1a题型归类例 1 (1) -30;(2)0;(3)0.9;(4)1;(5) -2.1. 例2 (1)因为(-2) x( -+) =1,所以-2的倒数为4.(2){的倒数为{.(3)因为(-0. 2) = - + ,所以-0. 2的倒数为2-,所以2+的倒数为夺.例3 ( -1) x( -3) -2 = 1,所以输出的数值为1. 易错示例 例D分层作业 1.A 2.D 3.D 4-75.(1)解:原式=1. (2)解:原式=+.(3)解:原式=14. (4)解:原式=0.6.解:(-3)* ( +2) =( -3) x2 +2 + 1 =-3.数学(人教版)7上•67.解:规定向东为正,向西为负,则有4x( -2^) +6x2f =2f x2=5. 5 (m ),即最终离出发点的距离是5. 5 m.8.解:因为a,互为相反数,j互为倒数,m的绝对值是1,所以 a +6=0,cd = 1,m= ±1.所以当m = 1时,原式=-2012;当m = - 1时,原式=2012.第2课时多个因数相乘的有理数乘法要点归纳1.偶数奇数2. 0 题型归类例1 B例 2 (1) ( -4 ) x5 x( -0. 25) =4 x5 x0. 25 =5;(2)(-_5_) x( -~6~ ) x( _2 )35 2 ,=-7x7x2= -1.56例 3 因为 |a + 1 | 為 0,| 6+2 I 為 0,,c+3| 為 0,且|a+1| + | 6+2| + I c + 3 I = 0,所以 a + 1 =0,6 + 2 = 0,c + 3 = 0,即 a = -1,6= -2,= - 3.(a-1)(6+2)(c-3)=(-1-1)x(-2+2) x( -3 -3)=0.易错示例例 C分层作业 1.B2.C3.A4. 5.1206.-17.-108.(1)解:原式=-10. (2 )解:原式=0.(3)解:原式=-0. 2 .9.42 >第3课时有理数乘法的运算律要点归纳1.积6a2.积 a (6c )3.积相加a6+ac 题型归类例1分配律乘法交换律乘法结合律例2(1)原式= (-+ ) x( -24) +|x(-24 )= 20+ ( -9 )=11;例 3 原式=-+x(3.59+2.41-6 ) = -+x0=0.易错示例例-19H-x36 = ( -20 +-1-) x36 = -20 x36 +36 1818士-夏分层作业1. B2. D3. -0. 14.(1)解:原式=-2.(2)解:原式=10.(3)解:原式=45.5.解:当^ =5时,原式=10;当尤=-5时,原式=0.1. 4 . 2有理数的除法第1课时有理数的除法法则要点归纳1.倒数2.正负相除03题型归类例 1 (1) ( -15) -( -3 ) = +(15-3) =5;(2 ) ( -12) +( -+) = +(2+~1 ) =48;(3)( -0.75 ) +0.25 = -(0.75 +0.25 ) = -3;322 4 1(4 ) 3i + ( -2. 25) = —i x i = -1了.例 2 (1) J-42 = ( -42 ) +( -7 ) = +(42 +7 ) =6;(2)—1 = ( -16 ) +2= -8.例 3 (1)原式=-夺 x|x(-+)58 1 1=了 W1;(2)原式二夺父手x^~x士二1.易错示例例-2+3x+=-2x+x H分层作业 1. B 2.D 3.D4. 3.5 3.55.2,-2 或 06.(1)-^ (2)97.(1)解:原式=2.(2)解:原式=-4.⑶解:原式=_5 x ( --7) x去 x ( --4) X"1 = -1(4 )解:原式=(-j ) x ( - 24) + ( -+ ) x(-24 ) +士 x ( -24) =4 +6 -12 = -2.8.(1)差商数学(人教版)7上•7数学(人教版)7上• 8(2 )解:如与4,可用算式16-4=16+4表示以 上特征.第2课时有理数的加减乘除混合运算 要点归纳 乘除加减左右题型归类例 1 原式=-5 x5 -5 x3 x3 -7 =-25 -45 -7 = -77.例 2 原式=(士-+ + +) x+x24= (+x24 -+x24 ++x24 ) x += (12-8+6) x + =1°例3由题意得10x15+12x35 1A/). x me "—、 5 x (1+10%) =12. 54(兀).答:这种商品平均每件售价应不低于12. 54元. 易错示例例(-6) + (士++ ) =- 6+"6~ =- 6x_6_=-36 '~T* 分层作业1. D2.C3. A4. -45. -66. (1)解:原式=2. (2 )解:原式=-^3.(3)解:原式=16. (4 )解:原式=3.7. 解:由题意,这座山的高度为[1 -( -2 ) ] +0. 6xl00 =500(').第3课时计算器的使用题型归类例1按键顺序为:EZ3 0 □ 000 0 0 □ 00000 EZ3 @0回□ 0曰0 □囡0计算器显示的结果为-5. 例 2 (1)121 (2)12 321(3) 1 234 321 (4)123 454 321 分层作业 1. C 2. A 3.B4.囡□ 0[+0□因[^0回[=255. 解:1)-416;()-管;(3)20.6⑴-]!]1,-]1 () -2lnl ( )0 7.(1) 100 10 0001000 000 100 000 000 (2 ) 10 000000 0001. 5有理数的乘方1. 5 . 1乘 方 第1课时有理数的乘方运算 要点归纳 1. 乘方乘方幂底数指数2.(I 个a 3.负数正数正数0 题型归类例 1 (1) -43= -64;(2) ( -3)4=34=81; ()(-+) 3= -(| ) 3=-|;(4) 3-2x( -5)2= -47.例2 C例 3 因为 a-2=0,+3=0,所以 a =2,= -3.当 a=2, = -3 时,a =( -3 )2=9. 易错示例例(-2 )3 x0. 3 2=(-8 ) x0. 09 = -0. 72. 分层作业 1.B 2.C 3.B4 (-夺)35.-2 4 -2 的4 次方 16 2 4 2的4次方的相反数 -16 6.5 12 7. 18.(1)解:原式=-27. (2 )解:原式=-27数学(人教版)7上• 9川、! 1 14-10 ) = - +!5=-T5(3)解:原式=0.027. (4)解:原式=-13.(5)解:原式=-96.9.解:1)相等;(2) (ab ) "=a"b ";(3 ) 0. 25.第2课时有理数的混合运算 要点归纳(1)乘除加减(2 )左右(3 )内中括号、大括号 题型归类例 1 (1)原式=-1 -6+5 = -2;(2 )原式=-16-l 2x (— - 1) x ( - 了 ) =-16-(4-12 ) x( _+)=-16 + (3 -9 ) = -22. 例2 C 易错示例例原式=-1-+x+ + (-10 ) 分层作业 1.B 2. B 3.D4. ( -3 )2-2 x5 = -15.76. 7.(1) (3 ) (5)8.(1)解:原式=24.(2) 解:原式=18-27+3= -6.(3) 解:原式=92.(4 )解:原式=-6. 5 .9. 解:1)1 +3 +5 +7 + •…+19=100;(2) 原式=1 0072 =1 014 049;(3)原式=1 0072 - 5022 = 762 045.1. 5 . 2科学记数法 要点归纳1. a X10" 1 在 | a | < 102. 1 题型归类 例 1 (1) 2.012 x 103 (2) 106(3) -1.009 xl05(4)9. 876 5 x 102例 2 (1) 231 000 (2 )30 010(3) -1 280 (4) -75 680 000 例 3 70 x 60 x 24 x 365 x 5 = 183 960 000 1. 839 6 xl0s (次).易错示例例 2 011.8=2. 0 118xl03. 分层作业 1 . D 2.B 3.B4. 1. 95 x1091. 95 x107 5. (1) 104108(2)8 xl06-7. 65 x1076.3. 633 x10s4. 06 x10s7.解:1) 1 000 000; (2 )320 000;(3)-705 000 000.8.解:1. 44 x 103毫升.1. 5 . 3近似数要点归纳四舍五人 题型归类例1准确数有(3 ),5 );近似数有(1),2 ),(4 ). 例2 (1)精确到0.000 1(或万分位);(2)精确到0. 1(或十分位); (3) 精确到0. 1(或十分位);(4)精确到个位; (5)精确到万位.例 3 (1)0.080;(2)5. 0; (3)2 012; (4)2 千. 分层作业1. B2. D3.B4. D5.4.5 56.(1)千分(2)个(3)千7. 解:(1)3. 00;(2)0. 035;(3)13. 8. 解:购买彩色涂料的桶数为 16x2. 5+6.5=6.2(桶), 所以应购买7桶,付款7x21 =147(元).积累与提高要点归纳1.整数和分数正整数、负整数和0 正分数和负分数 3. 原点、正方向和单位长度4.-a =0相等5.倒数6.本身相反数0距离7. 19. 乘方乘除加减小括号中括号大括号 题型归类 例1因为a ,b 互为相反数,所以a+b=0, 又互为倒数,所以腿=1. 由*的绝对值是2,得* = ±2,*2=4. 所以 *2+2a - 3mra + 2b =4+0-3 =1.例2 [ - ( - 1 ) 2013 x 88 ] - [ - -2 | + ( -22) + (-3)3] =88+33 =121. 例 3 0. 5 + (-1)+(-1.5) +1 + ( -2) + ( -1) + (_2) + 0= _6(兀).总销售额:5x8 + ( -6) =34(元). 盈利:34 -32 =2(元). 答:彬彬卖完毛巾后盈利2元. 例4因为 | a + 1 |^0,(6-2)2&0,而 |a + 1|+(6-2)=0,所以 a + 1=0,6-2=0,即 a = -1,6=2.所以(a+6)9 + a6 = ( -1 +2)9 + ( - 1)6=1+1 =2. 例 5 365 x24 x60 x60 x3 xl08 +1 000=9. 460 8 xl012(千米). 例6 (1) -55 +100=45;(2)( -54) +( -53) + •…+ ( -45) + ( -44 )+ …+ ( -2 ) + ( -1) +0 + 1 +2 +…+44+45 =-54-53 -52 -51 -50 -49 -48 -47 -46 =(-54 -46)+ ( -53 -47 ) + ( -52 -48) + (-51 -49) +( -50)=-450.分层作业I. A 2. C 3.B 4. C 5. 11 6.如-0. 1 7. 3 8.万分 9.0 10.解:画数轴略;-—3 1 <_ 2 <- < 0 < 1 <1. 4<3. II. (1)解:原式=-29. (2 )解:原式=1 . (3 )解:原式=-26. (4)解:原式=1. 12.解:1 ) ( +5) +( -3 )+( +1 0 ) +( -8) +( -6 ) + ( +1 2 ) + ( -1 0 )=5-3+1 0-8-6+1 2-1 0 = 0.所以小虫最后回到了出发点4处. (2) | +5|+ | -3|+ | +10|+ | -8|+ | -6|+ | +1 2 | +| -1 0 | =54. 1 x54 =54(粒),所以小虫可得到54粒芝麻.(3)小虫离4点最远时是12厘米.1 3.解:(1 )AB=\ -1 . 4-0. 5 | =1 . 9;(2)m=0. 6或-3. 4;(3)| ^ - ( -1) | =5,=4 或-6.第二章整式的加减2.1整式第1课时用字母表示数要点归纳2题型归类例1 ((^a-2)岁.例2 ( a6 - mn,).例 3 (1)2a+^6; (2))3*-^;(3)(50-}a)元.易错示例例10a + 6 分层作业1. C2. A3.C4. B5. (a -2)6. (2ab +2ac +26c)7.解:(1)(3a-6)2;(2)(a -26)页;(3)(3a -36)千米.8.解:尤2-町(d:)2.9.解:(1)(a +6 +c)斤;(2)(2a+1.56 + 1.2c)元.第2课时单项式要点归纳1.单项式字母2.系数3.次数0 题型归类例1 -务:3y2,-1,例2 D例3 (1))2:y,系数是次数是3;(2)1.2:系数是1.2,次数是1;(3)14,系数是+,次数是2. 易错示例例-夺町 4分层作业1. C2. B3. A4. C5.- ~3~ 66. 3 a单项式6a 2mn 3-4a2b203 25 x y5Inx4系数62-4 27TIn次数1 4 4 3 4解:-ab3c,-ab2, -abc, - a2b222 ,-a be-a6c.数学(人教版)7上•109.解米2.第3课时多项式要点归纳1.几个单项式的和2.单项式常数项次数3题型归类例1单项式有:,.多项式有+ c,尤2 + 6: + c,^.整式有:ab + c,a:2 + 6: + e,0,,^.例2 (1)项是3:,-1;次数是2.(2)项是:2,-3:;次数是2.(3)项是4:2y, -5:3,2:y,3;次数是4.例 3 (1)(18 -:-:) (10-:)(2)(18 -:-:)(10-:)(3)当:=1米时,菜地的面积(18 -:-:)(10 )=(18 -1-1) x (10 -1) =144(米2).易错示例例-3:,,~:2,-5:分层作业1. C2. C3.D4. C5. 5 5 -a3b2 -16.(1)解:项分别是5,-:/,:/;系数分别为5,-1,1;次数分别是0,7,4.(2 )解:项分别是+:2,-7:,6y, -^;系数分别为+,-7,6,- + ;次数分别为3,2,1,0.7.解:m =2,= -2.8.( 1)解:(3a+26)元,[100-(3a+26)]元.(2)解::+ (3:+8) + (+: +6)]棵.9.解:当:=3 时,(+1) =3x(+1) =6;当:=6时?::11=6><(6+1) =21;当:=21 时,(:+1)=21x(1+1 =231.所以最后输出的结果是231.2.2整式的加减第1课时合并同类项要点归纳1.指数也相同2.指数题型归类例1 B例 2 7ab-3a2 b2 +7 +8ab2 +3a2 b2 -3 -7ab=(7-7)a + (3 -3)a2 b2 +7-3+8ab2 =8 ab+4例 3 3 -2:2+3:+3: -5:-:2-7 = ( -2 +3-1):2 + (3 -5): + (3 -7) = -2:-4.当:=-士时,原式=-2x ( -^) -4 = -3.易错示例例:2 - -2 - 8:2 + 12y2 = (: 2 - 8:2 ) + ( - -2 + 12y2 ) =-7:2 + 11- 2.分层作业1.C2.C3.D4.2:2- - 3:y -:-5.16. n(n, + 2) +1 = (n, + 1)27.( 1 )解:原式=-5mn2.(2 )解:原式=-8a + b.(3 )解:原式二 a2 b + ab2 - 6.8.(1)解:原式=-2: -2.当:=-{时,原式=-1.(2)解:原式=1. 5 52 + :2 -.当:=2,= -3+时,原式=-8.9.解:art=20+2(n-1).第2课时去括号要点归纳1.不变号改变符号2.ab + ac题型归类例 1 原式=-4ab +2a2 + 6a2 -3ab - 12a2 +8d =-4a2 + ab例2由题意得a = 1,= -2.原式=-d2,当a = 1,b = -2时,原式=-4.例 3 宽为:(2a+3b) -(b-a) =3a+2b,周长为:2[(2a+3b) +(3a+2b)] =1 0a + 1 0b. 分层作业l.D 2. C 3.C 4. B5.-36.(1)解:原式=*: -4.(2)解:原式=-2a3 +3a -3.7.解:原式=-*:2+2,当*= -1时,原式=1.8.解:因为第一条边长为a厘米,第二条边长为(2a +3)厘米,第三条边长为[a + (2a +3)] =(3a +3)厘米,第四条边长为[8 -a -(2a +3) -(3a +3)]= 48 -数学(人教版)7上■11■a -2a -3 -3a -3 =(42 -6a )厘米.所以第四条边长为(42-6a)厘米.第3课时整式的加减运算要点归纳1.同类项题型归类例 1 2(* -6*-2) -3(4*2 -7*-5)=2*2-12*-4 -12*2+21* + 15 =-10*2+ 9* +11.例 2 (1)2*+4y+6^;(2)1 300 cm.分层作业l.D2.C3.D4.- *2y - 2*2 + *y5.+26.327.解:原式=-6*2-2* +5.8.(1)解:原式=0.(2 )解:原式=9a2 + a - 6.9.(1)解:原式=3*2 +*-3.当* = - 1时,原式=-1.( ) 解: 原 =3 ab 〃当 a= -{,= 时,原式=-|.积累与提高要点归纳1.整式单项式多项式2.字母指数系数字母排列顺序系数字母指数3.同类项括号加法结合律分配律题型归类例1原式= b- a+ a+ c+ c- b= 2c.例2答案不唯一,o : (^2* +* -1)+(^2*2 -*) =* -1.当*= -2时,原式=3.例3 12例4由题意得,=-1,= 1.2 ( *y - 2* - 4*2) - ( 3*y - 8*2) = - *y -4*,当* = - 1,= 1时,原式=5.例 5 2 012例6 (1)第一种摆放方式能坐(4ra+2)人;第二种摆放方式能坐(n+4)人.(2)打算用第一种摆放方式来摆放餐桌. 因为,当«=25 时,4 x25 +2 = 102 >98;当«=25 时,2 x25 +4 =54 <98.,用第一种方 .易错示例例原式=6*y - 3 [ 3y2 - *2 + 2*y + 1 ] =6*y - 9y2 + 3*2 - 6*y -3 =-9y2 + 3*2 -3.当 * = _2,= _+时,原式=-9x(_+)2 +3x( -2 )2 -3=-9x-9+3 x4 -3 = -1+12 -3=8. 分层作业C 2. C 3.D 4. D 5. A5 -2*2y3 5 8.42.(1)解:原式=-* -8y.当 * = -5,= -1 时,原式=13.(2 )解:原式=222 -y2+2 y2 -3*2-2 y2-*2=-222 - y2.当 *= - 1,=2 时,原式=-2 -4 = -6.3.解:由题意得m = 3.原式=m3 -2m2 +4m -4 =17.4.解:(1)甲印刷厂收费为:(0.2*+500)元;乙印刷厂收费为4*元.(2)选择乙印届IJ厂.数学(人教版)7上■12■参考答案 • 13 ■第2课时有理数的运算 6理由:当:=2 400时,甲印刷厂的收费为0.2 :+500 =980(元); 乙印刷厂的收费为0. 4:=960(元). 因为980 >960,所以选择乙印刷厂比较合算.期中复习导航1有理数第1课时有理数的有关概念回顾整理在正数前面加上“-”链接1 C相反意义 链接2 A整数分数 接 3 B原点正方向单位长度右左大于小于大于接4 A 符号—a a+6=0 接5 A±1 a 6 =1接 6 D 原点大小 接 7 Ba xl 0"接 8 B题型归类 例1 ±3 例2 (1)如图所示;SCO答:-3.解:1) -4,-3,-2,-1;在数轴上的位置如图①示-6 -5 -4 -3 -2-10 1①-1,0;如图②所示.-2.②解:由已知可得:a+ 6 =0,c<i = 1,,m| =2.所以 m 2= | m |2=4,,^=0, m所以 m 2- —cd + a + 6= 4 - 2 x 1 +0=2 .m解:因为 a<0<6,a| <| 6|,所以 a + 6 >0. 为c < 6, c - 6 <0圆环的面积约为4 355 mm 2.例4由于每上升100米,气温就下降0. 6 t ,地球最回顾整理1 相加大的数链接1 B 2 数 链接2 0 3 异号 链接3 C4.倒数链接4 1 -25积的 底数指数 链接 4 -4 -86 方 乘除 括号里面的链接624题型归类例1原式=(_5) _( _5) x 1-25 =-30 所以 |a+6| - | c - 6 | = a + 6+ c- 6= a+c. 例2原式=0-7 x (吾+H _6-6 x (夺+今)=-5. 2 .例 3 3. 14 x462 -3. 14 x272.高点海拔高度为8 844.43米,而“珠峰大本营”的海拔高度为5 200米,所以峰顶的温度为48 844. 43 -5 200., 062/C-4- 1x0.6。
(含答案)九年级数学北师大版上册课时练第1章《菱形的性质与判定》(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第1单元菱形的性质与判定一、选择题(本大题共12小题,共36分)1.菱形不具备的性质()A.是轴对称图形B.是中心对称图形C.对角线互相垂直D.对角线一定相等2.菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5B.20C.24D.323.如图,在菱形ABCD中,对角线AC,BD相交于点O,则图中全等的直角三角形共有()A.3对B.4对C.5对D.6对4.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为()A.20B.30C.40D.505.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8,BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是()6.C.3D.4A.2B.527.已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.83B.8C.43D.238.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△'''.当点'与点C重合时,点A与点'之间的距离为()A.6B.8C.10D.129.下列条件中,不能判定一个四边形是菱形的是()A.一组邻边相等的平行四边形B.一条对角线平分一组对角的四边形C.四条边都相等的四边形D.对角线互相垂直平分的四边形10.下列条件中,能判定▱ABCD是菱形的是()A..=B.⊥.C.=D..⊥11.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠=90∘B.=C.=.D.=.12.如图,在△ABC中,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形13.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形二、填空题(本大题共7小题,共21分)14.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.15.16.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.17.18.如图,在菱形ABCD中,AB=6,∠ABC=60∘,M为AD的中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是。
人教版九年级数学上册一课一练专项训练含答案
人教版九年级数学上册一课一练第二十一章一元二次方程21.1 一元二次方程1.复习回顾(1)下列方程是一元一次方程的是()A.x-1x=0B.2x+7=3C.x2-1=0D.7x-5y=0(2)计算:①12x·(x-1); ②40(1+x)2; ③(40-x)(20+2x).2.问题提出第31届世界大学生夏季运动会于7月28日在成都开幕,于8月8日闭幕.适逢暑假,家在成都本地,热爱体育及数学的王梓同学收集到不少信息,他编成以下问题:(1)某球类赛制为单循环形式(每两队之间都赛一场),设有x支球队参加比赛,则共安排________场,若共安排了45场,可列方程为________________.(2)由于游客人数的增加,某些产品销售非常火爆;如熊猫头饰,一家店铺第1周销售了40件,设每周增长率为x,则第2周的销售量为________,第3周的销售量为________,若经过统计后,发现第3周的销售量为160件,则可列出方程:____________________.3.思考:(1)请结合第1题(2)的方法及等式的性质,将第2题中的方程化为等号右边为0的形式;(2)结合一元一次方程、二元一次方程(组)的定义,试从次数、未知数个数等角度,分析上述方程的特点.第二十一章一元二次方程21.2 解一元二次方程第1课时直接开平方法1.复习回顾(1)平方根:如果x2=a,则x叫做a的________.一个正数有________个平方根,这两个平方根互为________数,零的平方根是零,负数没有平方根.(2)开平方:求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“a”,负的平方根表示为“-a”. 零的算术平方根仍旧是________.(3)方程x2=9的解为________;方程12x2=2的解为________.2.问题提出王梓同学发现上一课时中的第2题(2)所列方程40(1+x)2=160,与上面复习回顾中的方程有些类似,又有不同,那么能否用开平方的方法来解这样的方程?怎样转化呢?下面是王梓同学的思路:(1)若解(x+3)2=9,可利用整体思想,若把括号中的式子x+3看成一个整体y,则原方程可转化为________,用开平方的方法得y=________,得原方程的解为________.(2)若解40(1+x)2=160,可参照解一元一次方程时先系数化为1,可得方程________;方程12(x-1)2-2=0,可先移项得____________,再把系数12化为1,可得方程______________.3.解方程:(1)(x+3)2=2.(2)(2x+1)2-5=0. (3)4(x-1)2=9.第二十一章一元二次方程21.2 解一元二次方程第2课时配方法1.复习回顾(1)解方程:①(x-4)2-9=0.②x2+4x+4=2.(2)填空:①x2+4x+________=(x+________)2;②x2-3x+________=(x-________)2;③x2+________x+16=(x+________)2;④x2-________x+________=(x-3)2.2.问题提出不是所有的方程都可通过移项或系数化为1后直接利用开平方的方法求解,如x2-6x+1=0,怎样解?王梓同学是这样思考的:(1)解方程x2+4x+4=2时,可整理成(x+2)2=2,就可直接开平方求解. 则根据完全平方公式将方程变形为x2=a的形式即可;解方程x2-6x+1=0时,利用移项转化为x2-6x=-1,根据等式的基本性质将方程变为______________,整理为(x-______)2=______,然后利用直接开平方的方法求解.(2)解方程2x2-6x+1=0,王梓认为本题只需用等式的基本性质,将二次项系数化为1,再利用(1)中思路求解,请你完成该方程的求解过程.3.解方程:(1)x2-4x+1=0;(2)x2+8x=9.第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法1.复习回顾(1)一元二次方程的一般式为____________________;(2)方程x 2-3x -3=2x +3化为一般式为__________,二次项系数a =______,b =______,c =________.2.问题提出(1)试利用配方法解方程ax 2+bx +c =0(a ≠0).解:系数化为1,得x 2+b a x +c a =0;移项,得x 2+b a x =________,两边同加一次项系数一半的平方,得x 2+b a x +________=________,即⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2,当b 2-4ac <0时,原方程无实数解; 当b 2-4ac ≥0时,原方程的解为x =-b ±b 2-4ac 2a. (2)请直接利用上述结论解一元二次方程2x 2+1=3x .先要把方程化为一般形式:______________,再确定a =________,b =________,c =________,再求出b 2-4ac =________,代入公式x =-b ±b 2-4ac 2a, 求出方程的解为________.3.解方程:(1)3x 2-5x +1=0. (2)2x 2+3x -5=0.第二十一章 一元二次方程21.2 解一元二次方程21.2.3 因式分解法1.复习回顾(1)因式分解:x2-2 2x=________;x(x-3)-2(x-3)=____________;(x-3)2-4=________;(2x+1)2-(x+3)2=______________.(2)若a·b=0则a=0或b=0. 由此可得若(x-2)(x+2)=0,则______=0或______=0,解得________________;(x-2)2=0的解为________.2.问题提出王梓同学发现用公式法解方程x(x+2)-(x+2)=0时,需先去括号,化为一般形式后,再用公式法求解,过程较繁琐.经观察发现,该方程的左边可因式分解,右边为0,则利用若a·b=0则a=0或b=0,可达到降次并求解的目的.在方程x(x+2)-(x+2)=0中,用提公因式法因式分解得____________=0,于是得________=0或________=0,解得________________.3.解方程:(1)(x-1)2-16=0.(2)(x-5)(x-6)=x-5.第二十一章一元二次方程21.2 解一元二次方程21.2.4一元二次方程的根与系数的关系1.复习回顾(1)填空:把方程的解填写在横线上:(2)若x1,x2是方程x2-3x-5=0的两根,则x1=______,x2=______;x12+x22=______.2.问题提出王梓在计算第1题(2)中x12+x22时发现计算过程较繁琐,但结果是有理数.于是他计算了x1+x2,x1 ·x2的结果,并又解了几个方程:(1)若x1,x2是方程x2-3x+2=0的两根,则x1=______,x2=______;x1+x2=______,x1 ·x2=______;(2)若x1,x2是方程x2+3x-4=0的两根,则x1=______,x2=______;x1+x2=______,x1 ·x2=______;(3)若x1,x2是方程2x2-3x+1=0的两根,则x1=______,x2=______;x1+x2=______,x1 ·x2=______.王梓发现x1+x2,x1 ·x2的结果与二次项系数、一次项系数和常数项有关系,于是,他联想一元二次方程的求根公式,经过计算得到以下结论:设x1,x2是方程ax2+bx+c=0的两根,得x1=-b+b2-4ac2a,x2=-b-b2-4ac2a,则x1+x2=______,x1 ·x2=______.王梓由此利用上述规律计算出1中的第(2)题,x1+x2=________,x1 ·x2=________,结合配方法得出x12+x22=(________)2-2 x1·x2=________. 3.已知x1,x2是方程3x2-x-1=0的两个实数根:(1)填空:x1+x2=________;x1·x2=________.(2)求代数式x12+x22的值.第二十一章一元二次方程21.3 实际问题与一元二次方程第1课时传播问题、循环问题与数字问题1.复习回顾(1)列方程解应用题的一般步骤:设________;列________;解________;检验并得出正确结果.(2)流行疾病一直是困扰人类的重要问题,往往传染性强,所以要加强预防.开始有2人患某种流行疾病,每轮一人传播x人,则第二轮传播后比第一轮增加了________人,第二轮后共有______________人患此病.(3)一次有n个人参加的聚会上,规定:相遇的两个人握手并交换名片.那么,每个人发出的名片数量和握手的次数分别是________张、________次,n个人一共发出的名片数量是________张,握手的总次数是________次.2.问题提出(1)王梓妈妈是社区服务志愿者,他们组三个人负责反诈骗宣传,知晓的人再宣传给其他未被知晓过的人,经社区统计得知,两天共有300人通过宣传知晓了反诈骗知识(包括王梓妈妈等3人).假设每人每天宣传的人数相同,那么每人每天宣传的人数是多少呢?请你帮助王梓同学完成以下求解的过程.解:设每人每天宣传的人数是x人,等量关系为:3+第一天被宣传的人数+第二天被宣传的人数=300,可列方程为________________=300,解得________________.答:每人每天宣传的人数是________人.(2)王梓发现某天妈妈他们宣传了224人,妈妈说224是两个连续偶数的积.让王梓求出这两个偶数.请帮助王梓同学完成以下求解的过程.解:设较小的偶数是x,则较大的偶数为x+2,可列方程为______________=224,解得____________.答:这两个连续偶数是__________________.第二十一章一元二次方程21.3 实际问题与一元二次方程第2课时平均变化率问题与销售问题1.复习回顾某酒店每个房间每天房价为300元,30间房可以全部租出,每个房间每涨10元,则平均每天少租出1间,据此规律,请回答:若每个房间每天房价为320元,则酒店可以租出________间客房,酒店总收入为________元;若每个房间定价为x元,则酒店可以租出________间客房.2.问题提出网络直播带货助力乡村振兴,作为一种新颖的销售“土特产”的方式,受到社会各界的追捧,王梓表姐作为回乡大学生,在某平台直播间销售某种“土特产”,每袋获利40元,每天可卖出20袋,通过调查发现:每袋“土特产”的售价每降低1元,每天的销售量就增加2袋.为尽快减少库存,表姐决定降价销售,表姐若要使得直播间每天获利1 200元,则每袋“土特产”的售价降低多少元?(1)王梓是这样想的:设每袋“土特产”的售价降低x元,则每袋“土特产”的销售利润为(40-x)元,每天可售出(20+2x)袋.请你帮他继续完成.(2)表姐发现随着这种“土特产”的大量上市,批发价由原来的每袋200元,两天后降至每袋128元,试帮她求出这两天每天平均降低的百分率.第二十一章一元二次方程21.3 实际问题与一元二次方程第3课时几何图形面积问题1.复习回顾底为a,底上的高为h的平行四边形面积为________;上底为a,下底为b,高为h的梯形面积为________;对角形长分别为m,n的菱形面积为________;长为a,宽为b的长方形面积为________;边长为a的正方形面积为________. 2.问题提出(1)如图,王梓暑假回农村的爷爷家,爷爷想用长为70 m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2 m宽的门.(建在EF处,另用其他材料)当CD长为20 m时,则BC长为________m,能围成一个面积为________m2的羊圈.若设矩形ABCD的边AB=x m,则边BC为________m时,能围成一个面积为________m2的羊圈.(2)研学是学生将所学知识与生活实践相结合的重要手段.王梓研学时遇到下列问题:如图①,农场有面积为650 m2的矩形空地,计划在矩形空地上一边增加4 m,另一边增加5 m构成一个正方形区域,作为学生栽种鲜花的劳动教育基地.请王梓与同学们一起计算正方形区域的边长;王梓解题过程如下,请你补全解题过程:解:设正方形区域的边长为x m,则矩形空地长为(x-4) m,宽为(x-5) m,由题意,得(x-4)(x-5)=650,整理,得____________________,解得______________.答:正方形区域的边长为________m.(3)在实际建造时,从美观和实用的角度考虑,按图②的方式进行改造,先在正方形区域一侧建成1 m宽的走廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812 m2,求小道的宽度.第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.复习回顾(1)一元二次方程的一般形式为________________,其中二次项系数是________,一次项系数是________,常数项是________.(2)一般地,形如____________________的函数叫做一次函数,其中比例系数是________,常数项是________.(3)下列函数中,是一次函数的是()A.y=(x-3)2-1B.y=1-2x2C.y=13(x+2)(x-2)D.y=(x-1)2-x22.问题提出(1)上题(3)的四个函数除了一次函数外,其余三个函数的共同点是____________________,模仿一元二次方程的一般形式对关系式进行整理. (2)要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场),那么比赛总场数y与参加的球队数x之间的关系为______________.(列出函数关系式)(3)为了改善小区环境,某小区决定要在一块一边靠墙(墙长25 m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另外三边用总长为40 m的栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2.则y与x之间的函数关系式是______________,自变量x的取值范围是________.思考:根据一次函数和一元二次方程的结构和定义,总结这类函数的结构特点,写出这类函数的一般形式.第二十二章二次函数22.1 二次函数的图象和性质22.1.2 二次函数y=ax2的图象和性质1.复习回顾(1)用描点法画函数图象的步骤依次是:________、________、________;(2)正比例函数y=kx(k≠0)的图象是经过________的一条________,k>0时,y随x的增大而________;k<0时,y随x的增大而________.2.问题提出根据函数图象与性质的探究方法,某兴趣小组计划对一次项系数和常数项为0的二次函数y=12x2和y=-12x2进行探究.(1)请完成画函数图象的过程.①列表:x…-2 -1 0 1 2 …y=12x2…1212…y=-12x2…-120 -12…②描点、连线:在如图所示的坐标系中描点并画出图象.(2)根据图象回答:两个函数图象有哪些共同点(至少写两条)?图象有哪些不同点(至少写两条)?第二十二章二次函数22.1 二次函数的图象和性质22.1.3 二次函数y =a (x -h )2+k 的图象和性质 第1课时 二次函数y =ax 2+k 的图象和性质1.复习回顾(1)一次函数y =-3x +3的图象是由y =-3x 向________平移________个单位长度得到的.(2)一般地,抛物线y =ax 2的对称轴是________轴,顶点是________.①当a >0时,抛物线的开口________,顶点是抛物线的最________点.当x >0时,y 随x 的增大而________.②当a <0时,抛物线的开口________,顶点是抛物线的最________点,当x >0时,y 随x 的增大而________.当|a |越________时,抛物线的开口越大. 2.问题提出类比一次函数y =ax 与y =ax +b 的图象关系,王梓同学猜想可同样利用平移由y =12x 2的图象得到y =12x 2+1的图象.请利用列表、描点、连线的方法画出函数y =12x 2+1的图象并验证王梓同学的猜想.请你完成以下过程. (1)①列表:x … -2 -1 0 1 2 … y…321…②描点、连线:在如图所示的坐标系中描点并画出图象.小结:该图象是一条抛物线,开口向______;对称轴为直线x =________,函数有最________值是________;x >0时,y 随x 的增大而________;x <0时,y 随x 的增大而________.(2)思考:函数y =12x 2+1的图象可以看作是由函数y =12x 2的图象平移得来的吗?如果是,又是怎样平移得到的?第二十二章二次函数22.1 二次函数的图象和性质22.1.3二次函数y=a(x-h)2+k的图象和性质第2课时二次函数y=a(x-h)2的图象和性质1.复习回顾2.问题提出王梓与同桌李响打算共同画二次函数y=(x-2)2的图象,列完表,描完图李响就说了自己的想法:“这个图象不对称,只有抛物线的一半”,并给王梓看列表和图象:列表:图象:(1)王梓看到李响的过程,说:“你选取的点不对,你可以左边少取两个点,右边多取两个点,就可以了”.请你按王梓的想法完成下表,并在方格纸中画出该函数的图象:x…0 1 2 3 4 …y…______ 1 0 1 ______ …(2)思考:根据图象,完成下列填空:①当x>________时,y随x的增大而增大;②x=________时,y有最________值,是________.③抛物线y=(x-2)2与抛物线y=x2有什么关系?第二十二章二次函数22.1 二次函数的图象和性质22.1.3二次函数y=a(x-h)2+k的图象和性质第3课时二次函数y=a(x-h)2+k的图象和性质1.复习回顾(1)抛物线y=ax2-1的顶点坐标是________,若a>0,当x=________时,y有最________值,是________.(2)抛物线y=m(x-2)2与y=3x2+1的形状相同,开口方向不同,则m=________,对称轴为________,顶点坐标为________,在对称轴的右侧,y随x 的增大而________.(3)抛物线y=-7(x-1)2的对称轴是________,顶点坐标是________,是由抛物线y=-7x2向________平移________个单位长度得到的.2.问题提出(1)王梓打算模仿前面所学画抛物线y=-(x-2)2+3的图象并研究其性质.请你也来参与:①列表:x…0 4 …y…-1 -1 …②描点、连线:在如图所示的坐标系中描点并画出图象.(2)根据前面所学,对照图象写出几条性质.(3)抛物线y=-(x-2)2+3与抛物线y=-x2有什么关系?第二十二章二次函数22.1 二次函数的图象和性质22.1.4二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+bx+c的图象和性质1.复习回顾(1) 填空:①x2+4x+______=(x+______)2;②x2-6x+______=(x-______)2.(2)抛物线y=-3(x-2)2+4有如下特点:开口________;对称轴是直线________;顶点坐标是________;x=________时,y有最________值,是________;在对称轴的右侧,y随x增大而________.(3)一般地,抛物线y=12(x-2)2-3是由抛物线y=12x2向________平移________个单位长度,再向________平移________个单位长度得到的.2.阅读材料:求函数y=3x2-6x-2的开口方向、对称轴和顶点坐标.王梓发现用顶点式表示的函数很快能得出图象性质,但形式为一般式的二次函数则无从下手,联想解一元二次方程的配方法,下面是王梓的解答过程,请你认真阅读,并解析问题:∵y=3x2-6x-2=3(x2-2x+1-1)-2=3(x-1)2-5,∴抛物线开口向上,对称轴为直线x=1,顶点坐标为(1,-5).(1)模仿上述配方的过程,将二次函数y=-12x2+x+4化为顶点式.(2)确定抛物线的开口方向、顶点坐标和对称轴.(3)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?第二十二章二次函数22.1 二次函数的图象和性质22.1.4二次函数y=ax2+bx+c的图象和性质第2课时用待定系数法求二次函数解析式1.复习回顾已知一次函数的图象与x轴,y轴分别交于A(-9,0),B(0,6)两点,则一次函数的解析式是________.2.问题提出王梓通过用待定系数法求一次函数的解析式,运用知识迁移,进行了以下的探究:(1)尝试一、已知二次函数y=-x2+bx+c的图象过(-1,0),(0,3).求此抛物线的解析式.他发现跟一次函数一样,把点的坐标直接代入可以列出方程(组),解出b,c即可,请你也来求一求.(2) 尝试二、抛物线的形状、开口方向与抛物线y=12x2-2x+3相同,顶点的坐标为(-2,1),求此抛物线的解析式.他是这样思考的:抛物线的形状、开口方向与抛物线y=12x2-2x+3相同,∴a=12.∵顶点的坐标为(-2,1),∴抛物线的解析式为______________.(3)尝试三、如图是二次函数y=a(x+1)2+4的图象的一部分,根据图象求解析式.(提示:由图象可求得A点的坐标,把A点坐标代入抛物线解析式可求得a的值;从而求出解析式)第二十二章二次函数22.2 二次函数与一元二次方程1.复习回顾(1)直线y=2x-4与y轴交于点________,与x轴交于点________.(2)解方程:①x2-2x-3=0的解为____________;②x2-6x+9=0解为______________;③x2-2x+3=0解为__________.(3)一元二次方程ax2+bx+c=0,当Δ________0时,方程有两个不相等的实数根;当Δ________0时,方程有两个相等的实数根;当Δ________0时,方程没有实数根.2.问题提出(1)观察下列二次函数的图象,请写出它们与x轴的交点坐标:与x轴的交点坐标:________________________(2)对比1中(2)的各方程的解,可以得出二次函数y=ax2+bx+c与x轴交点的横坐标是方程____________的解.(3)思考:二次函数y=ax2+bx+c与x轴交点的个数与一元二次方程ax2+bx+c =0的根的情况有什么关系?第二十二章二次函数22.3 实际问题与二次函数第1课时几何图形面积问题1.复习回顾(1)为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m,池底的面积是600 m2,则长为()A.20 m B.25 m C.30 m D.50 m (2)如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B时停止),在运动过程中,设点P的运动时间为x s,四边形P ABQ的面积为y cm2,用含x的代数式表示y为__________.(1)小军和小英在研学活动中,遇到这样的问题:某生物实验基地计划新建一个矩形的实验园,该实验园一边靠旧墙(墙足够长),另外三边用总长为69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使实验园的面积最大?下面是小军和小英的讨论:请根据上面的信息,解决问题:①设AB=x米(x>0),试用含x的代数式表示BC的长为________米;②请你判断谁的说法正确,并说明理由.(2)你能由上题归纳用二次函数求几何图形面积的最值问题的一般步骤吗?第二十二章二次函数22.3 实际问题与二次函数第2课时最大利润问题1.复习回顾(1)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件,要使利润为25元,每件的售价应为() A.24元B.25元C.28元D.30元(2)某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价金额x(元)之间满足函数关系式y=-2x2+60x+800,则y的最大值为()A.1 250 B.400 C.800 D.15(1)王梓表姐利用直播销售一种农特产,每千克成本价为40元.已知每千克售价不低于成本价,不超过80元.经调查,当每千克售价为50元时,每天的销量为100千克,且每千克售价每上涨1元,每天的销量就减少2千克.现在王梓表姐为使每天的销售利润最大,每千克的售价应定为多少元?王梓是这样思考的:设每千克的售价应定为x元,每天的销售利润为y元,先根据题意建立y与x的函数关系式,再根据二次函数的性质即可得到结论.请帮他完成以下解题过程:解:设每千克的售价应定为x元,每天的销售利润为y元,根据题意得,y=(x-40)[100-2________]=____________________(化为顶点式).∵-2<0,∴当x=70时,y取最大值1 800.答:为使每天的销售利润最大,每千克的售价应定为________元.(2)王梓认为本题还可先设每千克上涨的金额为自变量,再利用二次函数的性质求解.请根据此思路,解答上述问题.第二十二章二次函数22.3 实际问题与二次函数第3课时实际问题中的“抛物线”问题1.复习回顾(1)已知实心球运动的高度y(m)与成绩x(m)(水平距离)之间的函数关系式为y=-(x-1)2+4,则该同学此次投掷实心球的成绩是()A.2 m B.3 m C.3.5 m D.4 m(2)如图,某建筑物的屋顶设计成横截面为抛物线形(曲线ACB)的薄壳屋顶,已知它的拱宽AB为4米,拱CO高为0.8米,为了画出符合要求的模板,通常要先建立适当的平面直角坐标系,再求解析式,以AB所在的直线为x轴,OC所在的直线为y轴建立平面直角坐标系,则图中的抛物线的解析式为________ .2.问题提出如图是一架抛物线型拱桥,平时拱顶离水面2 m时,水面宽为4 m.若水面上升1.5 m,王梓想知道水面上升后水面宽度是多少.请结合以下设问完成解答.由于是抛物线型拱桥,所以需求抛物线的解析式,他的思路如下:(1)在图中建立合适的平面直角坐标系;(2)在(1)中所建坐标系中求抛物线的解析式和水面上升后水面的宽度.第二十三章旋转23.1 图形的旋转第1课时图形的旋转及其性质1.复习回顾(1)平移的性质:如果一个图形是由另一个图形平移得到的,那么对称点的连线__________,这两个图形是________图形.(2)轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的________线,两个图形是________图形.2.问题提出(1)①王梓与同桌李响一起观看由得到的四个图形,如下A. B. C. D.李响:我知道原图能够通过平移得到的是图案C.王梓:通对轴对称变换可以得到图案A和图案B.李响:图案D好像也是通过某种变换得到的,我猜可能是________.②由原图案得到图案D的这种变换中,发生改变的是图形的________,没有改变的是图形的________和________.(2)如图,△A′OB′是由△AOB绕点O按逆时针方向旋转45°得到的.①旋转中心是点________,旋转的方向是________,旋转的角度是________;②点B的对应点是点________;点A的对应点是点________;③线段OB的对应线段是线段________,所以OB=________;线段AB的对应线段是线段________,所以AB=________;④∠A的对应角是________,所以∠A=________;∠B的对应角是________,所以∠B=________.第二十三章旋转23.1 图形的旋转第2课时旋转作图1.复习回顾(1)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70°B.84°C.80°D.86°(2)轴对称作图,就是找出几个关键点的对称点.对称点的作法为:过点A作对称轴的垂线,垂足为O,在AO的延长线上截取OA′=________.2.问题提出如图,在平面直角坐标系中,已知点A(-1,5),B(-3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D 的坐标为________;(2)过点A作AE⊥AB,使AE=AB(点E在第一象限);线段AE可以看作是线段AB绕点A______时针旋转______度得到的.第二十三章旋转23.2 中心对称23.2.1 中心对称1.复习回顾(1)如图,△ABC与△A′B′C′关于直线l对称,连接AA′交对称轴l于点M,若∠A=50°,∠C′=30°,则下列说法不正确的是()A.△ABC与△A′B′C′的周长相等B.AM=A′M且AA′⊥lC.∠B=100°D.连接BB′,CC′,则AA′,BB′,CC′三条线段不仅平行而且相等(2)旋转的性质:①对应点到旋转中心的距离________;②对应点与旋转中心所连线段的夹角等于________;③旋转前、后的图形________.2.问题提出(1)如图,王梓打算将△AOB绕点O旋转180°得到△DOE,请你帮他画出这个图形.(2) O是线段________与________的中点;△AOB与△DOE是不是全等三角形?第二十三章旋转23.2 中心对称23.2.2中心对称图形1.复习回顾(1)下列四个图案中,可以看作是轴对称图形的是()(2)如果一个图形沿一条直线折叠,直线两旁的部分能够互相________,这个图形叫做轴对称图形.(3)如果某一个图形围绕某一点旋转180°后能与另一个图形________,那么就说这两个图形中心对称.2.问题提出下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成的图形绕自身某一点旋转180°后能够与自身重合.(请将两个小题依次作答在图①、图②中,均只需画出符合条件的一种情形)第二十三章旋转23.2 中心对称23.2.3关于原点对称的点的坐标1.复习回顾(1)点(x,y)关于x轴对称的点的坐标为(______,______);点(x,y)关于y轴对称的点的坐标为(______,______).(2)如图,在平面直角坐标系中,将点P(2,3)绕原点顺时针旋转90°得到点P′,则点P′的坐标为________.2.问题提出(1)如图,王梓打算在平面直角坐标系中画出△ABC关于原点O对称的△A1B1C1,请你也来画一画.(2)写出点A1,B1,C1的坐标.若△ABC上有点Q(x,y),你能写出对称点Q1的坐标吗?第二十三章旋转23.3 课题学习图案设计1.复习回顾(1)如图,在每组图下写出对应的图形变换.(2)下列图形之间的变换分别属于什么变换?2.问题提出(1)王梓认为利用图形轴对称和平移变换可以设计出许多美丽的图案,他也利用旋转作图试了一下旋转变换,如图②中的图案是由图①中的基本图形以点O为旋转中心,顺时针旋转________次而生成的,每一次旋转的角度均为α,则α最小为________°.(2)下列是李响借助旋转、平移或轴对称设计的四个图案,其中既是轴对称图形又是中心对称图形的是()第二十四章圆24.1 圆的有关性质24.1.1 圆1.复习回顾(1)如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做________对称图形.(2)下列图形:线段,角,矩形,平行四边形,圆,其中是中心对称图形的个数是()A.2个B.3个C.4个D.5个2.问题提出(1)如图,点B,E在半圆O上,四边形OABC,四边形ODEF均为矩形.若AB =3,BC=4,求DF的长.请你按王梓的思路进行思考,并填空.思路分析:由四边形OABC是矩形,得∠CBA=90°,根据勾股定理,在Rt△ABC 中,AB=3,BC=4,先求得AC=________.根据矩形____________的性质,可。