天大化工原理-英文版课件-CHAPTER 4 Basic Equations of Fluid Flow
合集下载
天津大学版 化工原理 第一章1流体静力学
当管水平放置时:
pA pB (0 )Rg 1
•B
h2
R 2
(b) 倒置 U 型管压差计(Up-side down manometer)
a—b为等压面,则Pa=Pb
0
•P1=Pa+ρg ( h+R) •P2=Pb+ρ0gR+ρgh
a
b
R
得 p1 p2 R 0 g
若 >>0 p1 p2 Rg
m (1-1)
V
当ΔV→0时,Δm/ΔV 的极限值称为流体
内部的某点密度。
1. 液体的密度
(1)纯液体的密度:可由实验测定或用手册查找。
(2)混合液体的密度:以1kg混合液为基准,即
1
m
a1
1
a2
2
an
n
(1-2)
2. 气体的密度
(1)纯气体的密度:当压强不太高、温度不 太低时,可按理想气体来换算:
p1
p2
B
C R
A
例题
• 例1-4 用U形压差计测量某气体流经水平管道两截面 的压力差,指示液为水,密度为1000kg/m3,读数R 为12mm。为了提高测量精度,改为双液体U管压差 计,指示液A为含40%乙醇的水溶液,密度为920 kg/m3,指示液C为煤油,密度为850 kg/m3。问读数 可以放大多少倍?此时读数为多少?
(3)向下作用的重力, gAdz
由于流体处于静止,其
垂直方向所受到的各力代数
和应等于零,简化可得:
dp
gdz
在图中的两个垂直位置2 和
1 之间对上式作定积分
p p g(z z )
p1 p2
dp
z1- gdz
化工原理课程(全英文)教学课件 5
Quasi-steady state assumption (准稳态假设): Assume steady state during a small time interval [������, ������ + ������������], and apply the Bernoulli Equation.
9 © 2015 Yanwei Wang
Tank Draining Through a Pipe (5/6)
Continuity: ������������ =
������ 2 ������������ − 2 ������ ������������
Under the quasi-steady state assumption, Bernoulli Eq. gives ������������ =
Fluid flow
Pages 33-43 of textbook Basic equations of fluid flow Mass balance in fluid flow Energy balance and Bernoulli’s equation
2 © 2015 Yanwei Wang
14 © 2015 Yanwei Wang
Siphon (4/5)
Clearly there is a limit to how low we can go below atmospheric pressure. At first glance, you might think that we can increase the height difference between the lowest and highest points in the siphon pipe up to the value where the absolute pressure at location 2 will be zero. This would be an incorrect conclusion. Actually, when the pressure is gradually lowered in a liquid, it will first reach a value where it equals the vapor pressure (蒸 汽压) at room temperature. When it goes slightly below this value, vapor bubbles will begin to form, typically at locations on the pipe wall that contain crevices with trapped air, a process known as heterogeneous nucleation (异相成核).
化工原理课件(天大版)
利用液体混合物中各组分挥发性的差异,通 过加热使部分组分汽化,再经过冷凝使汽化 物重新液化,从而实现混合物分离的过程。
蒸馏分类
根据操作方式的不同,蒸馏可分为简单蒸馏 、平衡蒸馏和精馏三种类型。
二元系气液平衡关系及相图表示方法
二元系气液平衡关系
在一定温度和压力下,二元混合物中某一组分在气相 中的分压与该组分在液相中的浓度之间的关系。这种 关系可以用相平衡常数或活度系数来表示。
流动阻力与能量损失
讲解流体在管道中流动时的阻力来源和能量损失情况,以及如何降 低流动阻力和减少能量损失。
管路内流体流动阻力
沿程阻力
介绍沿程阻力的概念、计 算方法和影响因素,以及 如何利用沿程阻力系数计 算沿程阻力。
局部阻力
阐述局部阻力的概念、计 算方法和影响因素,以及 如何利用局部阻力系数计 算局部阻力。
压力
降低压力可以降低溶液的沸点,从而减少加热蒸 汽的消耗量。但是过低的压力可能导致设备泄漏 和安全问题。
设备结构
设备的结构形式、加热方式、搅拌方式等都会对 蒸发操作产生影响。合理的设备结构可以提高传 热效率和汽液分离效果,降低能耗和减少设备结 垢的风险。
基本原理
离心泵性能参数与特性曲线
性能参数
离心泵的主要性能参数包括流量、扬程、转速、功率、效率等。这些参数反映了 泵的工作能力和经济性。
特性曲线
离心泵的特性曲线是表示泵的性能参数之间关系的曲线,如Q-H曲线、Q-η曲线 等。通过分析特性曲线,可以了解泵的工作范围、最佳工况点以及不同工况下的 性能表现。
离心泵选择与操作
有流量大、压力适中的特点。
螺杆式压缩机
通过一对相互啮合的螺杆进行气 体的压缩,具有结构简单、运转
平稳、噪音低等优点。
蒸馏分类
根据操作方式的不同,蒸馏可分为简单蒸馏 、平衡蒸馏和精馏三种类型。
二元系气液平衡关系及相图表示方法
二元系气液平衡关系
在一定温度和压力下,二元混合物中某一组分在气相 中的分压与该组分在液相中的浓度之间的关系。这种 关系可以用相平衡常数或活度系数来表示。
流动阻力与能量损失
讲解流体在管道中流动时的阻力来源和能量损失情况,以及如何降 低流动阻力和减少能量损失。
管路内流体流动阻力
沿程阻力
介绍沿程阻力的概念、计 算方法和影响因素,以及 如何利用沿程阻力系数计 算沿程阻力。
局部阻力
阐述局部阻力的概念、计 算方法和影响因素,以及 如何利用局部阻力系数计 算局部阻力。
压力
降低压力可以降低溶液的沸点,从而减少加热蒸 汽的消耗量。但是过低的压力可能导致设备泄漏 和安全问题。
设备结构
设备的结构形式、加热方式、搅拌方式等都会对 蒸发操作产生影响。合理的设备结构可以提高传 热效率和汽液分离效果,降低能耗和减少设备结 垢的风险。
基本原理
离心泵性能参数与特性曲线
性能参数
离心泵的主要性能参数包括流量、扬程、转速、功率、效率等。这些参数反映了 泵的工作能力和经济性。
特性曲线
离心泵的特性曲线是表示泵的性能参数之间关系的曲线,如Q-H曲线、Q-η曲线 等。通过分析特性曲线,可以了解泵的工作范围、最佳工况点以及不同工况下的 性能表现。
离心泵选择与操作
有流量大、压力适中的特点。
螺杆式压缩机
通过一对相互啮合的螺杆进行气 体的压缩,具有结构简单、运转
平稳、噪音低等优点。
化工原理精馏英文PPT课件
component
15
第15页/共94页
• Heat balance(te—equilibrium temperature of separator)
ignoring the heat loss
• The equilibrium relationship(ideal system)
16
第16页/共94页
• 1.3.1 Principle of rectifying
Partial vaporizing and condensing several times Basic principle of the fraction distillation: the liquid mixture can separate completely through partially vaporizing and condensing several times.
• High-pressure, Atmospheric, Reduced distillation
3
第3页/共94页
1.1 The equilibrium relationship between gas a•n1.d1.1liTqhueiiddeal system
• (a) The liquid is ideal solution, following Raoult`s law (拉乌尔定律).
When the total pressure is not high, the gas is the ideal gas, the equilibrium constitution of gas is
10
第10页/共94页
1.1.3 Volatility and relative volatility
15
第15页/共94页
• Heat balance(te—equilibrium temperature of separator)
ignoring the heat loss
• The equilibrium relationship(ideal system)
16
第16页/共94页
• 1.3.1 Principle of rectifying
Partial vaporizing and condensing several times Basic principle of the fraction distillation: the liquid mixture can separate completely through partially vaporizing and condensing several times.
• High-pressure, Atmospheric, Reduced distillation
3
第3页/共94页
1.1 The equilibrium relationship between gas a•n1.d1.1liTqhueiiddeal system
• (a) The liquid is ideal solution, following Raoult`s law (拉乌尔定律).
When the total pressure is not high, the gas is the ideal gas, the equilibrium constitution of gas is
10
第10页/共94页
1.1.3 Volatility and relative volatility
天大化工原理-英文版课件-review-2345-11Fluid mechanics
Review for Chapter 2,3,4,5 Fluid mechanics
• I. Fluid statics and its application • II. Fluid dynamics and its application
1
I. Fluid statics and its application
7
• 4.3 Measurement of liquid level • 4.4 Liquid seal of equipment
8
II. Fluid dynamics and its application
• • • • • 1. Potential flow and viscous flow 2.Viscosity of fluid 3. Rheological properties of fluids 4. Laminar flow and turbulent flow 5. Boundary layer content of chapter 3
27
2. Compound pipes in parallel • (a)
hfAB hf 1 hf 2
J/kg
q q1 q2
28
• (b)
pB
gZB
BVB2
2
h fB
pC
gZC
CVC2
2
h fC
q qB qC
29
• 5.6. A liquid with a specific gravity of 2.6 and a viscosity of 2.0 cP flows through a smooth pipe of unknown diameter, resulting in a pressure drop of 0.183 lbf/in.2 for 1.73 mi(英里,1km = 0.62137mi). What is the pipe diameter in inches if the mass rate of flow is 7,000 lb/h?
• I. Fluid statics and its application • II. Fluid dynamics and its application
1
I. Fluid statics and its application
7
• 4.3 Measurement of liquid level • 4.4 Liquid seal of equipment
8
II. Fluid dynamics and its application
• • • • • 1. Potential flow and viscous flow 2.Viscosity of fluid 3. Rheological properties of fluids 4. Laminar flow and turbulent flow 5. Boundary layer content of chapter 3
27
2. Compound pipes in parallel • (a)
hfAB hf 1 hf 2
J/kg
q q1 q2
28
• (b)
pB
gZB
BVB2
2
h fB
pC
gZC
CVC2
2
h fC
q qB qC
29
• 5.6. A liquid with a specific gravity of 2.6 and a viscosity of 2.0 cP flows through a smooth pipe of unknown diameter, resulting in a pressure drop of 0.183 lbf/in.2 for 1.73 mi(英里,1km = 0.62137mi). What is the pipe diameter in inches if the mass rate of flow is 7,000 lb/h?
天大化工原理-英文版课件-Chapter 1-11Definitions and Principles
18
4. Course objectives
• Understand the basic principles of and equipment of the unit operations. • Include designing or selection of devices. operatioroubleshooting of various unit operations.
• The international steam table calorie (calIT), used in heat power engineering, is defined by • 1 calIT=4.1868*×107 ergs = 4.1868* J (1.22)
25
• The standard gravity acceleration
gn 980.665cm / s
2
26
3. FPS Units
• The standard for mass is the avoirdupois pound (lb), • 1 lb = 0.45359237* kg (1.26) • The standard for length is the inch (in.), • 1 ft= 12× 2.54×10–2m= 0.3048* m (1.27) • The standard for time remains the second (s). • The thermodynamic temperature scale is called the Rankine scale,
9
1.1 UNIT OPERATIONS
• • • • 1. Unit operations 2. Classification of unit operations 3. Course description 4. Course objectives
4. Course objectives
• Understand the basic principles of and equipment of the unit operations. • Include designing or selection of devices. operatioroubleshooting of various unit operations.
• The international steam table calorie (calIT), used in heat power engineering, is defined by • 1 calIT=4.1868*×107 ergs = 4.1868* J (1.22)
25
• The standard gravity acceleration
gn 980.665cm / s
2
26
3. FPS Units
• The standard for mass is the avoirdupois pound (lb), • 1 lb = 0.45359237* kg (1.26) • The standard for length is the inch (in.), • 1 ft= 12× 2.54×10–2m= 0.3048* m (1.27) • The standard for time remains the second (s). • The thermodynamic temperature scale is called the Rankine scale,
9
1.1 UNIT OPERATIONS
• • • • 1. Unit operations 2. Classification of unit operations 3. Course description 4. Course objectives
化工原理学培训(英文版)(ppt 12页)
Final Exam for theory course Participation (including attendance,
Assignments) and Midterm Exam) Experiment grade based on test and
experimental behavior as well as report.
3 Third period: from 1950-1960, Transport Phenomena appeared.
4 Fourth period: in 1970s, Knowledge exposition, many subjects joined together. Lots of new subjects appeared, such as environmental chemical engineering, biochemical engineering, energy chemical engineering.
Unit Operation Of Chemical Engineering
Fluid Mechanics and Heat Transfer来自Introduction
About the Courses and time scheduling Lecturing (theory): 14 weeks, 4 classes each week
5 Fifth period: from 1980s-1990s, MIT suggested Integrated chemical engineering, and regressive engineering.
6 Sixth period: in the 21st century. Green chemistry, biochemorphic Chem. Eng. ideas was put forward.
Assignments) and Midterm Exam) Experiment grade based on test and
experimental behavior as well as report.
3 Third period: from 1950-1960, Transport Phenomena appeared.
4 Fourth period: in 1970s, Knowledge exposition, many subjects joined together. Lots of new subjects appeared, such as environmental chemical engineering, biochemical engineering, energy chemical engineering.
Unit Operation Of Chemical Engineering
Fluid Mechanics and Heat Transfer来自Introduction
About the Courses and time scheduling Lecturing (theory): 14 weeks, 4 classes each week
5 Fifth period: from 1980s-1990s, MIT suggested Integrated chemical engineering, and regressive engineering.
6 Sixth period: in the 21st century. Green chemistry, biochemorphic Chem. Eng. ideas was put forward.
化工原理完整教材课件 PPT
基本原理及其流动规律解决关问题。以
图1-1为煤气洗涤装置为例来说明: 流体动力学问题:流体(水和煤气)
在泵(或鼓风机)、流量计以及管道中 流动等;
流体静力学问题:压差计中流体、 水封箱中的水
图1-1 煤气洗涤装置
1.1 概述
确定流体输送管路的直径, 计算流动过程产生的阻力和 输送流体所需的动力。
根据阻力与流量等参数 选择输送设备的类型和型号, 以及测定流体的流量和压强 等。
流体流动将影响过程系 统中的传热、传质过程等, 是其他单元操作的主要基础。
图1-1 煤气洗涤装置
1.1.1 流体的分类和特性
气体和流体统称流体。流体有多种分类方法: (1)按状态分为气体、液体和超临界流体等; (2)按可压缩性分为不可压流体和可压缩流体; (3)按是否可忽略分子之间作用力分为理想流体与粘
化工原理完整教材课件
第一章 流体流动
Fluid Flow
--内容提要--
流体的基本概念 静力学方程及其应用 机械能衡算式及柏努 利方程 流体流动的现象 流动阻力的计算、管路计算
1. 本章学习目的
通过本章学习,重点掌握流体流动的基本原理、管 内流动的规律,并运用这些原理和规律去分析和解决流 体流动过程的有关问题,诸如:
气体的密度必须标明其状态。 纯气体的密度一般可从手册中查取或计算得到。当压
强不太高、温度不太低时,可按理想气体来换算:
(1-3)
式中
p ── 气体的绝对压强, Pa(或采用其它单位); M ── 气体的摩尔质量, kg/kmol;
性流体(或实际流体); (4)按流变特性可分为牛顿型和非牛倾型流体;
流体区别于固体的主要特征是具有流动性,其形状随容器形状 而变化;受外力作用时内部产生相对运动。流动时产生内摩擦从而 构成了流体力学原理研究的复杂内容之一
天津大学化工原理第4讲流体在管内的流动
4Vs 得到管径: d u
↓,流动阻力↑,动力消耗↑,操作费↑。因而适宜流速需通 过操作费和基建费之间的经济权衡来确定。某些流体在管 道中的常用流速范围可参考教材表1-1。
例1-10 某厂精馏塔进料量为50000kg/h,料液的密度为960 kg/m3,其他性质与水相近。试选择适宜的进料管管径。 解: Vs ws 50000 0.0145m3 / s 3600 960 料液的性质与水相近,管内实际流速可选为: u 1.8m / s
⑤功 ⑥热
p2v2
we
Qe
根据能量守恒定律:输入=输出,得: 2 u12 u2 U1 gz1 p1v1 we Qe U 2 gz2 p2v2 2 2 u 2 g z pv Qe we ……(Ⅰ) 整理,得:U 2
说明:静压能(压强能)
Ne C、效率η: N
Ne
Байду номын сангаас
——实际消耗的功率
——反映了泵对外加能量的利用程度。
4) 对于可压缩流体,若所取系统两截面间的绝对压强变化小
于原来绝对压强的20%(即
仍然适用,此时式中的流体密度ρ取两截面间的平均密度ρm。 5) 对于非定态流动系统的任一瞬间,伯努利方程仍成立。 6) 若系统里的流体是静止的,则u=o, 则:
2 u12 p1 u2 p2 E gz1 gz2 2 2
常数
2) 若流动体系的 We 0 ,则:
2 u12 p1 u2 p2 ( gz1 ) ( gz2 ) h f 2 2
※结论:流体从截面1-1流入,至截面2-2流出,要消耗一部分机械
we 0
时,由:
化工原理课件(天大版)
反应热与反应焓
反应方向与平衡常数
反应速率与活化能
反应熵与反应吉布斯能
05
化工动力学基础
反应速率方程
添加标题
添加标题
添加标题
添加标题
反应速率方程:描述反应速率与反应物浓度及其他因素关系的数学表达式
反应速率定义:单位时间内反应物浓度的减少量或生积成正比的比例系数
催化剂:使用催化剂可以降低反应活化能,提高反应速率
反应物浓度:反应物浓度增大,反应速率加快
06
分离过程原理及应用
分离过程分类与特点
分离过程的分类:根据不同的原理和操作方式,分离过程可以分为多种类型,如蒸馏、萃取、结晶、过滤等。
R
分离过程的特点:不同的分离过程具有不同的特点和应用范围,需要根据具体需求进行选择。
A
分离过程的原理:每种分离过程都有其特定的原理和操作方式,需要掌握其基本原理和操作方法。
C
分离过程的应用:分离过程在化工、医药、食品等领域有着广泛的应用,需要根据具体需求进行选择和应用。
I
单击此处输入你的智能图形项正文
文字是您思想的提炼
单击此处输入你的智能图形项正文
文字是您思想的提炼
单击此处输入你的智能图形项正文
07
化学反应器原理及应用
化学反应器分类与特点
塔式反应器的特点:适用于气液相反应,具有较大的接触面积和适宜的停留时间
固定床反应器的特点:催化剂固定在反应器内,适用于气固相或液固相反应
流化床反应器的特点:催化剂悬浮在反应器内,适用于气固相或液固相反应
反应器分类:釜式反应器、管式反应器、塔式反应器、固定床反应器、流化床反应器等
化学反应器的设备:介绍反应器的主要设备,如搅拌器、换热器、塔器等。
化工原理课件(天大版)
综合计算
涉及多个物理过程和化学反应的复杂传质过程的计算,需要对各个过程进行分别 处理,并综合考虑各过程之间的相互影响。
分子扩散传质及传质过程的计算
分子扩散
物质分子在运动过程中,从高浓度区 域向低浓度区域的定向迁移,产生物 质传递现象。
传质过程计算
根据分子扩散定律,通过求解浓度场 和扩散系数等参数,实现对传质过程 的模拟和预测。
01
流体的密度、压强、黏度等物理 性质的定义和测量方法。
02
流体静力学基本方程的推导和应 用,包括压力、重力和惯性力对 流体平衡状态的影响。
流体流动的基本方程及流量测量仪表
流体流动的基本方程,如质量守恒、 动量守恒和能量守恒方程。
流量测量仪表的工作原理和应用,如 节流式、涡轮式、电磁式和超声波式 流量计等。
化工原理课件(天大版)
汇报人:
2023-12-10
目录
• 化工原理绪论 • 流体流动 • 传热学 • 传质学 • 化工设备 • 化学反应工程 • 化工过程的控制与优化
01
化工原理绪论
化工原理的研究对象和内容
化工原理研究对象
以化学工程中各种单元操作(动 量传递、热量传递和质量传递) 为研究对象,研究其原理、方法 和过程。
05
化工设备
化工设备的基本类型及结构特点
分离设备
用于将混合物中的不同组分分 离出来的设备,如离心机、过 滤器等。
储罐和容器
用于储存和容纳液体的设备, 如储罐、水池等。
反应设备
用于化学反应的设备,如反应 釜、反应塔等。
换热设备
用于将热能从一个物质传递到 另一个物质的设备ห้องสมุดไป่ตู้如热交换 器、蒸发器等。
输送设备
涉及多个物理过程和化学反应的复杂传质过程的计算,需要对各个过程进行分别 处理,并综合考虑各过程之间的相互影响。
分子扩散传质及传质过程的计算
分子扩散
物质分子在运动过程中,从高浓度区 域向低浓度区域的定向迁移,产生物 质传递现象。
传质过程计算
根据分子扩散定律,通过求解浓度场 和扩散系数等参数,实现对传质过程 的模拟和预测。
01
流体的密度、压强、黏度等物理 性质的定义和测量方法。
02
流体静力学基本方程的推导和应 用,包括压力、重力和惯性力对 流体平衡状态的影响。
流体流动的基本方程及流量测量仪表
流体流动的基本方程,如质量守恒、 动量守恒和能量守恒方程。
流量测量仪表的工作原理和应用,如 节流式、涡轮式、电磁式和超声波式 流量计等。
化工原理课件(天大版)
汇报人:
2023-12-10
目录
• 化工原理绪论 • 流体流动 • 传热学 • 传质学 • 化工设备 • 化学反应工程 • 化工过程的控制与优化
01
化工原理绪论
化工原理的研究对象和内容
化工原理研究对象
以化学工程中各种单元操作(动 量传递、热量传递和质量传递) 为研究对象,研究其原理、方法 和过程。
05
化工设备
化工设备的基本类型及结构特点
分离设备
用于将混合物中的不同组分分 离出来的设备,如离心机、过 滤器等。
储罐和容器
用于储存和容纳液体的设备, 如储罐、水池等。
反应设备
用于化学反应的设备,如反应 釜、反应塔等。
换热设备
用于将热能从一个物质传递到 另一个物质的设备ห้องสมุดไป่ตู้如热交换 器、蒸发器等。
输送设备
化工原理英文教材流体流动的基本方程Basic equations of fluid flow
S o, S S, p p 0
F Mb Ma
The momentum flow rate M of a fluid tream having a mass flow rate m and all moving at a velocity u equals mu
F mub ua
It is true if the velocity u is an average velocity at the cross section.
Ma a
Mb b
Assuming that the flow is steady and flows in the x direction.
The sum of forces acting in the x direction equals the difference between the momentum leaving with the fluid per unit time and that brought in per unit time by the fluid or
If u varies from point to point in the cross section of stream, however, the total momentum flow does not equal the product of mass flow rate and average velocity
the component of the gravity in the direction of flow
Fg cos A 0
From this equation, noting that A=bL and Fg=ρrLbg
So
F Mb Ma
The momentum flow rate M of a fluid tream having a mass flow rate m and all moving at a velocity u equals mu
F mub ua
It is true if the velocity u is an average velocity at the cross section.
Ma a
Mb b
Assuming that the flow is steady and flows in the x direction.
The sum of forces acting in the x direction equals the difference between the momentum leaving with the fluid per unit time and that brought in per unit time by the fluid or
If u varies from point to point in the cross section of stream, however, the total momentum flow does not equal the product of mass flow rate and average velocity
the component of the gravity in the direction of flow
Fg cos A 0
From this equation, noting that A=bL and Fg=ρrLbg
So
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17
A vertical surface:
3 2g
1/ 3
Deviation of predicted values from that of measurements For Re ≈ 1000, predicted value is approximately correct For Re < 1000, predicted value is larger For Re > 1000, predicted value is smaller
18
• Alternate form of Reynolds number
Re DeV
De : equivalent diameter当量直径
19
hydraulic radius水力半径: rH
S rH Lp
where S = cross section area of channel流通截面 Lp = perimeter of channel in contact with liquid 润湿周边
D / Dt 0
u w 0 x y z
2
Integrated form of continuity equation
aVa Sa bVb Sb V S m
The flow in channels of circular cross section
g cos 2 2 u ( r ) 2
u
rdr
(4.47)
r
velocity distribution is parabolic
14
• The total mass flow rate of the fluid then is
0 ubdr m
g cos 2 2 u ( r ) 2
16
• Discussion of the assumptions: • 1. No shear stress acting on the interface of liquid and gas(air) • Shear force will increase if the vapor(or gas) shear exist. • 2. Laminar flow • A critical Re number of 2100 has often been used for layer flow, but film thickness measurements indicated a transition at Re around 1200.
equivalent diameter当量直径: De
S De 4rH 4 Lp
20
• For circular pipe
D / 4 D D 4 r D e H rH D 4 For layer flow with free surface of a cylinder or a flat plate L p D rH S D Cylinder:
aVa Db bVb Da
2
2
• If density is taken as constant, thus
Va Db Vb Da
3
The equations of motion
u u u u t u x y w z
4
Euler equation : constant density and zero viscosity
u u u u p u w gx t x y z x
p g y t u x y w z y
2 u 2 u 2 u p x 2 y 2 z 2 x g x
2 2 2 p x 2 y 2 z 2 y g y t u x y w z
(3)the appropriate component of the force of gravity.
8
• One-dimensional flow in the x direction, where
F pa Sa pb Sb Fw Fg
(4.43)
Fw = net force of wall of channel on fluid Fg = component of force of gravity (written for flow in upward direction)
13
Fg cos A 0
A = bL
(4.44)
Fg mg rdu / dr
g cos
Rearranging eq. (4.44) and integrating between limits give
0 du
22
3. Angular-momentum equation(角动量方程)
• Analysis of the performance of rotating fluidhandling machinery such as pumps, turbines, and agitators is facilitated by the use of force moments and angular momentum. force moment 力矩
Review
( u ) ( ) ( w) ( V ) t y z x u w u w t x y z x y z
u w D ( V ) Dt x y z
------------Continuity equation
连续性方程
1
At steady state / t 0 ( u ) ( ) ( w) ( V ) 0 x y z For incompressible fluid,density is a constant.
angular momentum 角动量
23
Impeller(叶轮) of a centrifugal pump (离心泵) or turbine
24
25
(r2u 2 r1u 1 ) T F r2 m
(4.53)
• Equation (4.53) is the angular momentum equation for steady two-dimensional flow. • Applications of Eq. (4.53) are given in Chaps. 8 and 9.
Control volumn L, b, r
film-wise condensation
12
the shear on the upper surface of the element is neglected.
Fg cos A 0
(4.44)
• where Fg = gravity force • = shear stress on lower surface • of control volume • A = area of lower surface of control volume
w w w w t u x y w z
2 w 2 w 2 w p x 2 y 2 z 2 z g z
------------ Navier-Stokes equations
(2) shear stress at the boundary between the fluid stream and the conduit or (if the conduit itself is considered to be part of the system) external forces acting on the solid wall.
2
Flat plate:
S L p
rH
21
• The Reynolds number for flow down a flat plate is defined by the equation.
4 m Re 4rH V 4 L p
(4.51)
p w w w w t u x y w z z g z
5
4.3 MACROSCOPIC MOMENTUM BALANCES
• 1. Momentum of total stream; momentum correction factor • 2. Layer flow with free surface • 3. Angular-momentum equation
g cos m b 3
3 2
(4.48) (4.47)
1/ 3
3 2 g cos
15
3 2 g cos m b 3
(4.49)
/b m
• where Γ is called the liquid loading(凝液负荷). • The units of Γ are kg/m.s or lb/ft.s. • b is called perimeter of channel in contact with liquid 润湿周边
9
( bVb aVa ) F m
F pa Sa pb Sb Fw Fg
(4.43)
Macroscopic momentum balance equation