钢结构第五章_轴心受力构件详解
轴心受力构件
第4章 轴心受力构件4.1 概述轴心受力构件广泛地应用于钢结构承重构件中,如钢屋架、网架、网壳、塔架等杆系结构的杆件,平台结构的支柱等。
这类构件,在节点处往往做成铰接连接,节点的转动刚度在确定杆件计算长度时予以适当考虑,一般只承受节点荷载。
根据杆件承受的轴心力的性质可分为轴心受拉构件和轴心受压构件。
一些非承重构件,如支撑、缀条等,也常常由轴心受力构件组成。
轴心受力构件的截面形式有三种:第一种是热轧型钢截面,如图4-1(a )中的工字钢、H 型钢、槽钢、角钢、T 型钢、圆钢、圆管、方管等;第二种是冷弯薄壁型钢截面,如图4-1(b )中冷弯角钢、槽钢和冷弯方管等;第三种是用型钢和钢板或钢板和钢板连接而成的组合截面,如图4-1(c )所示的实腹式组合截面和图4-1(d ) 所示的格构式组合截面。
轴心受力构件的截面必须满足强度、刚度要求,且制作简单、便于连接、施工方便。
因此,一般要求截面宽大而壁厚较薄,能提供较大的刚度,尤其对于轴心受压构件,承载力一般由整体稳定控制,宽大的截面因稳定性能好从而用料经济,但此时应注意板件的局部屈曲问题,板件的局部屈曲势必影响构件的承载力。
4.2 轴心受力构件的强度轴心受力构件的强度计算是以构件的净截面达到屈服应力为限ynf A N ==σ根据概率极限状态设计法,N 取设计值(标准值乘以荷载分项系数),yf 也去设计值(除以抗力分项系数087.1=Rγ)即f,钢材设计强度见附表1.1,P313。
表达式为fA N n≤ (4.1)nA 为轴心受力构件的净截面面积。
在螺栓连接轴心受力构件中,需要特别注意。
4.3 轴心受力构件的刚度为满足正常使用要求,受拉构件(包括轴心受拉、拉弯构件)、受压构件(轴心受压构件、压弯构件)不宜过分细长,否则刚度过小,制作、运输、安装过程中易弯曲(P118列出四种不利影响)。
受拉和受压构件的刚度通过长细比λ控制][),max(max λλλλ≤=y x (4.4) 式中x x x i l /0=λ,yy y i l /0=λ;][λ为容许长细比,见表4.1,4.2。
轴心受力构件(五)
第四章轴心受力构件一、轴心受力构件的特点和截面形式轴心受力构件包括轴心受压杆和轴心受拉杆。
轴心受力构件广泛应用于各种钢结构之中,如网架与桁架的杆件、钢塔的主体结构构件、双跨轻钢厂房的铰接中柱、带支撑体系的钢平台柱等等。
实际上,纯粹的轴心受力构件是很少的,大部分轴心受力构件在不同程度上也受偏心力的作用,如网架弦杆受自重作用、塔架杆件受局部风力作用等。
但只要这些偏心力作用非常小(一般认为偏心力作用产生的应力仅占总体应力的3%以下。
)就可以将其作为轴心受力构件。
轴心受力的构件可采用图中的各种形式。
其中a)类为单个型钢实腹型截面,一般用于受力较小的杆件。
其中圆钢回转半径最小,多用作拉杆,作压杆时用于格构式压杆的弦杆。
钢管的回转半径较大、对称性好、材料利用率高,拉、压均可。
大口径钢管一般用作压杆。
型钢的回转半径存在各向异性,作压杆时有强轴和弱轴之分,材料利用率不高,但连接较为方便,单价低。
b) 类为多型钢实腹型截面,改善了单型钢截面的稳定各向异性特征,受力较好,连接也较方便。
c) 类为格构式截面,其回转半径大且各向均匀,用于较长、受力较大的轴心受力构件,特别是压杆。
但其制作复杂,辅助材料用量多。
二、轴心受拉杆件轴心受拉杆件应满足强度和刚度要求。
并从经济出发,选择适当的截面形式,处理好构造与连接。
1、强度计算轴心拉杆的强度计算公式为:(6-1)式中:N——轴心拉力;A n——拉杆的净截面面积;f ——钢材抗拉强度设计值。
当轴心拉杆与其它构件采用螺栓或高强螺栓连接时,连接处的净截面强度计算如连接这一章所述。
公式(6-1)适用于截面上应力均匀分布的拉杆。
当拉杆的截面有局部削弱时,截面上的应力分布就不均匀,在孔边或削弱处边缘就会出现应力集中。
但当应力集中部分进入塑性后,内部的应力重分布会使最终拉应力分布趋于均匀。
因而须保证两点:(1)选用的钢材要达到规定的塑性(延伸率)。
(2)截面开孔和消弱应有圆滑和缓的过渡,改变截面、厚度时坡度不得大于1:4。
钢结构设计原理——轴心受力构件
截面设计算例
ix
l0 x
1200 8c m 150
iy
l0 y
400 2.67 c m 150
(3)确定工字钢型号 初选I20a,且b/h=100/200=0.5<0.8,截面类别:对x轴为a类; 对y轴为b类。查表得A=35.5cm2,ix=8.15cm,iy=2.12cm。 (4)验算支柱的整体稳定性和刚度
截面型式
型钢和钢板连接而成实腹式组合截面
格构式组合截面
4.1.2 轴心受拉构件的强度计算和刚度验算
强度计算
N f An
式中,N—轴拉力设计值(基本组合值) An—截面的净面积
(4-1)
f—抗拉强度设计值,p336,附录一,对圆钢需乘以
折减系数0.95。
算例
验算图所示双角钢截面的轴心拉杆强度。轴心拉力设计值N=650kN。钢材为 Q235钢,角钢截面为L100×100mm,角钢两肢上各有一排交错排列的螺栓孔, 孔径d=21.5mm。 40 40 60 40 60+50=110 40 60 解:先将其中的一个角 钢截面展开,并比较截 面Ⅰ-Ⅰ和Ⅱ-Ⅱ哪个危 险截面,两截面厚度均 为10mm。 Ⅰ-Ⅰ 净截面宽度
强度计算
N f An
式中,N—轴压力设计值
An—截面的静面积
(4-3)
f —抗压强度设计值,p336,附录一
4.1.3 轴心受压构件强度、稳定计算和刚度验算
整体稳定性
N f A
(4-6)
式中 A---截面的毛面积 ---稳定系数,与(λ,截面分类,钢材屈服强度)有关, 按附录三取用。
《钢结构设计原理》苏州科技学院教材配套第5章轴心受力构件
最大强度准则:以有 初始缺陷的压杆为模型, 考虑截面的塑性发展, 以最终破坏的最大荷载 为其极限承载力。
第5章 轴心受力构件
1. 轴心受压构件的柱子曲线
Suzhou University of Science & Technology
y
t
h
x
x
kb b
t
第5章 轴心受力构件
Suzhou University of Science & Technology
对x x轴屈曲时:
crx
2E 2x
I ex Ix
2E 2x
2t ( kb)h2 2tbh2 4
4
2E 2x
k
对y y轴屈曲时:
cry
2E 2y
I ey Iy
2 E 2t(kb)3 12 2y 2tb3 12
λ l0 [ λ] i
l0 构件的计算长度; i I A 截面的回转半径;
[ λ] 构件的容许长细比
第5章 轴心受力构件
5.2 轴心受压构件的整体稳定
Suzhou University of Science & Technology
所谓的稳定是指结构或构件受载变形后,所处平 衡状态的属性。
使构件整体屈曲前其板件不发生局部屈曲,即局部屈曲 临界应力大于或等于整体临界应力,称作等稳定性准则。
σcr f y
第5章 轴心受力构件
板件宽厚比限值
Suzhou University of Science & Technology
工字形截面:
翼缘为三边简支、一边自由的均匀受压板 腹板为四边支承板
钢结构轴心受力构件
钢结构轴心受力构件在钢结构的世界里,轴心受力构件是其中一类至关重要的组成部分。
它们在建筑结构、桥梁工程以及各类工业设施中都扮演着不可或缺的角色。
那么,什么是钢结构轴心受力构件呢?简单来说,就是在承受外力作用时,构件的截面形心与外力的作用线重合,从而使构件沿着其轴线方向承受拉力或压力的钢结构部件。
钢结构轴心受力构件主要包括轴心受拉构件和轴心受压构件两种类型。
先来说说轴心受拉构件。
这类构件在实际应用中非常常见,比如钢结构中的吊车梁、屋架中的下弦杆等。
当构件受到拉力作用时,其内部的应力分布相对均匀,主要承受拉应力。
在设计轴心受拉构件时,我们需要重点考虑的是材料的抗拉强度。
因为一旦拉力超过了材料的抗拉极限,构件就会发生破坏。
为了保证轴心受拉构件的可靠性和安全性,我们在选材上要格外谨慎。
一般会选择高强度的钢材,以充分发挥其抗拉性能。
同时,在连接节点的设计上也不能马虎,要确保连接牢固,避免出现松动或断裂的情况。
接下来谈谈轴心受压构件。
轴心受压构件在钢结构中也有着广泛的应用,例如柱子、桁架中的受压弦杆等。
与轴心受拉构件不同,轴心受压构件的受力情况要复杂得多。
当受到压力作用时,构件可能会发生整体失稳或者局部失稳的现象。
整体失稳是指整个构件突然发生弯曲变形,失去承载能力。
而局部失稳则是指构件的某个局部区域出现了屈曲现象。
为了防止这些失稳情况的发生,我们在设计轴心受压构件时,需要考虑很多因素。
首先,要合理选择构件的截面形状和尺寸。
常见的截面形状有圆形、方形、矩形等。
对于较大的压力,通常会选择回转半径较大的截面形状,以提高构件的稳定性。
其次,要控制构件的长细比。
长细比是指构件的计算长度与截面回转半径的比值。
长细比越大,构件越容易失稳。
因此,在设计时要通过合理的布置和支撑,减小构件的计算长度,从而降低长细比。
此外,还需要考虑材料的抗压强度和屈服强度。
在实际工程中,为了提高轴心受压构件的稳定性,常常会采用一些加强措施,比如设置纵向加劲肋、横向加劲肋等。
中南大学《钢结构原理》课件第五章 轴心受力构件
y (x ) 5.07b / t
☆长细较大时,弯曲失稳起控制作用,作弯曲失稳验算。
中南大学桥梁工程系
第五章 轴心受力构件
5.5 轴心受压构件局部稳定性
1、局部稳定的概念
轴心受压柱局部屈曲变形
轴心受压构件翼缘的凸曲现象
中南大学桥梁工程系
第五章 轴心受力构件
1916年因施工问题又发生一次倒塌事故。
前苏联在1951~1977年间共发生59起重大钢结构事故,有17起 属稳定问题。
(设计、制作、安装或使用不当都可能引发稳定事故)
例如:
1957年前苏联古比雪夫列宁冶金厂锻压车间,7榀1200m2屋盖塌落。 起因是一对尺寸相同的拉压杆装配颠倒。 1974年,苏联一个俱乐部观众厅24×39m钢屋盖倒塌。起因是受力 较大的钢屋架端斜杆失稳。
中南大学桥梁工程系
第五章 轴心受力构件
•荷载初始偏心降低稳定承载力
vm e0 (sec
2
N 1) NE
中南大学桥梁工程系
第五章 轴心受力构件
•残余应力降低稳定承载力
中南大学桥梁工程系
第五章 轴心受力构件
(1)使部分截面提前进入塑性状态,截面的弹性区域减少, 干扰后只有弹性区产生抗力增量,故降低了稳定承载力。
N 1 fy A Ry
N 1 fu An Ru
偏安全简化处理
N 1 fy f An Ry
中南大学桥梁工程系
第五章 轴心受力构件
2、刚度计算
•刚度计算的目的:保证在安装、使用过程中正常使用要求
•实例1:九江桥主拱吊杆涡振现象
中南大学桥梁工程系
第五章 轴心受力构件
第五章轴心受力构件_钢结构
21. 焊接组合工字形截面轴心受压柱,如图所示,轴心压力设计值 N= 2000 kN 。 柱 计 算 长 度 l 0 x 6m , l 0 y 3m , 钢 材 为 Q345 钢 , f 315 N/mm 2 ,翼缘为焰切边,截面无削弱。试验算该柱的安全性。
1
20.9
[28a
1
300
20.9
300
图 5-2
12. 设某工业平台承受轴心压力设计值N=5000KN,柱高 8m,两端铰接。要求设计焊接工字形截
面组合柱。
l1
13. 试设计一桁架的轴心压杆,拟采用两等肢角钢相拼的T型截面,角钢间距为 12mm,轴心压
力设计值为 380KN,杆长 lox 3.0m , loy 2.47 m ,Q235 钢材。
- 10 × 160
I18
b 94mm , A=30.6 cm
, I x 1660cm
, I y 122cm
,
上、下翼缘焊接钢板
rx 7.36 cm, ry 2.0 cm)
附表 1 长细比 f y / 235 稳定系 数
a 类截面 b 类截面 c 类截面
轴心受压构件稳定系数 40 0.941 0.899 0.839 110 0.563 0.493 0.419 50 0.916 0.856 0.775 115 0.527 0.464 0.399 60 0.883 0.807 0.709 120 0.494 0.437 0.379 70 0.839 0.751 0.643 130 0.434 0.387 0.342 80 0.783 0.688 0.578 140 0.383 0.345 0.309 85 0.750 0.655 0.547 150 0.339 0.308 0.280
钢结构基本原理第五章轴心受力构件
y
缀板柱
x
y (实轴)
l01 =l1
柱肢
l0 l 1
格构式柱
缀条柱
实腹式截面
格构式截面
5.1.4 轴心受力构件的计算内容 轴 心 受 力 构 件 强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态) 强度 (承载能力极限状态) 轴心受压构件 稳定 刚度 (正常使用极限状态)
第5.2节 轴心受力构件的设计 本节目录
I
并列布置
II I N
An
II I
错列布置
例: 一块—400×20的钢板用两块拼接板—400×12进 行拼接.螺栓孔径为22mm,排列如图所示钢板轴心受拉, N=1350 kN(设计值)。钢材为Q235钢,解答下列问题: (1)钢板1—1截面的强度够否? (2)假定N力在13个螺栓中平均分配,2—2截面应如何验算? (3)拼接板的强度是否足够?
I N
I
截面无削弱
N —轴心力设计值; A—构件的毛截面面积; f —钢材抗拉或抗压强度设计值。
截面有削弱
计算准则:轴心受力构件以截面上的平均应
力达到钢材的屈服强度。
N
s0
sm = s0
ax
N
N
N
I N
3
fy
(a)弹性状态应力
有孔洞拉杆的截面应力分布
(b)极限状态应力
I
截面有削弱
计算准则:轴心受力构件以截面上的平均应
第5.1节
5.1.1 轴心受力构件类型
概述
概念 轴心受力构件是指承受通过截面形心轴线的轴向力作 用的构件。 轴心受力构件包括: 轴心受拉构件和轴心受压构件
轴心受拉 :桁架、拉杆、网架、塔架(二力杆)
《钢结构轴心受力》课件
03
轴心受力构件的设计
截面设计
01
02
03
截面形式
根据受力特点,选择合适 的截面形式,如实腹式、 格构式等。
截面尺寸
根据承载力要求,计算截 面的尺寸,确保构件的承 载能力。
截面材料
选择合适的材料,如钢材 、混凝土等,以满足承载 力和耐久性要求。
连接设计
连接方式
根据构件的连接要求,选 择合适的连接方式,如焊 接、螺栓连接等。
保持钢结构轴心受力构件的清洁 ,定期清除表面污垢和尘埃,防
止腐蚀。
防腐涂层保护
定期检查并重新涂覆防腐涂层,以 增强钢结构的耐久性和防腐蚀能力 。
紧固件检查
定期检查所有连接螺栓、铆钉等紧 固件,确保其紧固且无松动。
定期检测与评估
外观检查
定期对钢结构轴心受力构件进行 外观检查,观察是否有变形、裂
纹、锈蚀等现象。
《钢结构轴心受力》 PPT课件
目录
• 钢结构轴心受力概述 • 轴心受力构件的特性 • 轴心受力构件的设计 • 轴心受力构件的施工与安装 • 轴心受力构件的维护与检测
01
钢结构轴心受力概述
定义与特点
定义
轴心受力是指钢结构的受力状态 ,其中力的作用线与杆件轴线重 合,使杆件既不发生弯曲也不发 生扭曲。
04
轴心受力构件的施工与安装
施工方法选择
施工方法选择应根据工程实际情况和设计要求进行,综合考虑安全、质量、进度和 成本等因素。
常用的施工方法包括预制施工法、整体吊装法、高空拼装法等,选择时应根据构件 的尺寸、重量、安装高度和场地条件等因素进行选择。
施工方法的确定还应考虑施工机械设备的性能和数量,以及施工人员的技能水平。
5 轴向受力构件 课件
表中建议值系实际工程和理想条件间的差距而提出的
5 轴向受力构件
压杆失稳时临界应力cr 与长细比之间的关系曲线 称为柱子曲线。可以作为设 计轴心受压构件的依据。
短粗杆
细长杆
欧拉及切线模量临界应力 与长细比的关系曲线
Euler公式从提出到轴心加载试验证实花了约100年时间, 说明轴心加载的不易。因此目前世界各国在研究钢结构轴心 受压构件的整体稳定时,基本上都摒弃了理想轴心受压构件 的假定,而以具有初始缺陷的实际轴心受压构件(多曲线关 系、弹性微分方程、数值法)作为研究的力学模型。
柱头 柱头
支承屋盖、楼盖或工作平台的竖向 受压构件通常称为柱。柱由柱头、 柱身和柱脚三部分组成。
缀板
l =l
传力方式: 上部结构→柱头→柱身→柱脚→基础
实腹式构件和格构式构件
柱身
l l
柱身
缀
条
实腹式构件具有整体连通的截面。
柱脚 柱脚
x y x y y
1
x (虚轴) y
(实轴)
1 y 1
x (虚轴) y
5 轴向受力构件
5.1.2 轴心受力构件的截面形式
型 钢 截 面
型钢截面
组 合 截 面
实腹式组合截面
型钢截面制造方 便,省时省工; 组合截面尺寸不 受限制;而格构 式构件容易实现 两主轴方向的等 稳定性,刚度较 大,抗扭性能较 好,用料较省。
格构式组合截面
5.1.2 轴心受力构件的截面形式
5 轴向受力构件
临界状态平衡方程
2
EIy Ny 0
2
y
弹性 临界力
弹塑性 临界力
式中: EI EI Ncr N cr 2 (5.1.3) Ncr ——欧拉临界力, 2 l0 cr ——欧拉临界应力, l M=Ncr·y E ——材料的弹性模量 2 N cr E N (5.1.4) t ——切线模量临界力 z cr 2 t ——切线模量临界应力 A Et ——压杆屈曲时材料的切线模 2 2 Et I Et A A ——压杆的截面面积 N tcr Ncr 2 l0 2 —— 构件的计算长度系数 ——杆件长细比( = l0/i) 2 Et i ——回转半径( i2=I/A)
轴向受力构件
压溃准则 实际压杆,当N增大到某一值时,弯曲变 形增长使得压杆失去承载力,计算指标为压溃荷载。
考虑残余应力、初弯曲、初偏心情况压杆的极限承 载力计算复杂,须利用数值积分用计算机求解。
5. 整体稳定计算公式
柱子曲线与稳定系数
轧制宽翼缘H型
选择截面的几个原则
面积分布应尽量开展,以增加截面的惯性矩和回转 半径,提高柱的整体稳定性和刚度。在满足局部稳定
和使用等条件下,尽量加大截面轮廓尺寸而减小板厚,在工 字形截面中取腹板较薄而翼缘较厚。
使两个主轴方向等稳定性 便于与其他构件进行连接 尽可能构造简单、制造省工、取材方便
3. 用填板连接而成的双角钢或双槽钢构件,可按实 腹式构件进行计算,但填板之间的间距不应超过 下列数值:受拉构件,80i;受压构件40i。i为截面 的回转半径,按下列规定采用:当为双角钢或双 槽钢截面时,取一个角钢或一个槽钢对于填板平 行的形心轴的回转半径;当为十字形截面时,取 一个角钢的最小回转半径。同时,受压构件的两 个侧向支撑点之间的填板数不得少于两个。
当为缀条时
0x 2x 40A / A1x 0 y 2y 40A / A1 y
当为缀板时 0x 2x 12
0 y 2y 12
缀件为缀条的三肢组合构件
0x
2x
42A
A1(1.5 cos 2 )
0y
2y
42A
A1 cos 2
受压构件板件的局部稳定以板件屈服不先于构件的 整体屈服为条件,并以限制构件的宽厚比来实现。
截面及板件尺寸
宽厚比限值
3. 局部稳定不满足要求时采取的措施
钢结构设计原理-轴心受力构件
所以在验算轴心受力构件强度时,不必考虑残余应力的 影响。
钢结构设计原理
铜仁学院 土木工程专业
§5.2.2 轴心受力构件的刚度计算
1) 进行刚度计算的原因
因此轴心受力构件是以截面的平均应力达到钢材的屈服强 度fy作为强度计算准则的,而不是fu。
钢结构设计原理
铜仁学院 土木工程专业
2) 有截面削弱时的极限状态
对有孔洞等削弱的轴心受力构件,存在应力集中现象。孔 壁边缘的应力可能达到构件毛截面平均应力的3倍。
继续加载,孔壁边缘应力达到材料的屈服强度以后,应力 不再继续增加而截面发展塑性变形,应力渐趋均匀。到达极 限状态时,净截面上的应力为均匀屈服应力。
N cr
2 EIe
l2
cr
N cr A
2 EI Ie
l2A I
1947年Shanley指出切线模量临界应力是轴心受压构件弹 塑性屈曲应力的下限,双模量临界应力是其上限,切线模 量临界应力更接近实际的弹塑性屈曲应力。因此,切线模 量理论更有实用价值。
钢结构设计原理
铜仁学院 土木工程专业
§5.3.3 力学缺陷对轴心受压构件弯曲屈曲的影响
1) 残余应力的产生与分布规律
①热轧型钢截面,如圆钢、圆管、方管、角钢、工字钢、 T型钢、宽翼缘H型钢和槽钢等,最常用工字形或H形截面;
②第二种是冷弯型钢截面,如卷边和不卷边的角钢或槽 钢与方管;
③第三种是型钢或钢板连接而成的组合截面。
钢结构设计原理
铜仁学院 土木工程专业 格构式构件:一般由两个或多个分肢用缀件联系组成,采 用较多的是两分肢格构式构件。 通过分肢腹板的为实轴,通过分肢缀件的为虚轴。 分肢采用轧制槽钢或工字钢。缀件的作用是将各分肢连成 整体,使其共同受力,并承受绕虚轴弯曲时产生的剪力。 缀件有缀条或缀板两种。 缀条由斜杆组成、或斜杆与横杆共同组成,缀条常采用单 角钢,与分肢翼缘组成桁架体系,使承受横向剪力时有较 大的刚度。缀板常采用钢板,与分肢翼缘组成刚架体系, 刚度略低。
第5章 轴心受力构件分析
轴心受力构件的设计:
➢ 承载能力的极限状态:
轴心受拉构件—强度控制 轴心受压构件—强度和稳定控制
➢ 正常使用的极限状态:
通过保证构件的刚度——限制其长细比
§5-2 轴心受力构件的强度和刚度
5.2.1 强度计算
➢ 轴心受力构件强度承载力以截面平均应力达到钢 材屈服应力fy为极限。
➢ 对有削弱的截面,虽然存在应力集中现象,但应 力高峰区会率先屈服使应力塑性重分布,最终达 到均匀分布。
NE
2EA 2
E
2E 2
N
——欧拉临界力;
E
——受压构件的最大长细比;
A ——受压构件的截面面积;
E——材料的弹性模量;
➢ 实际轴心受压柱的整体稳定临界应力的影响因素:
长细比λ、残余应力水平及分布情况、初弯曲、初偏心、截 面形状等。
➢ 压杆失稳时临界应力σcr与长细比λ之间的关系曲线
称为柱子曲线。
➢ 为了保证轴心受压构件的局部稳定,通常 采用限制其板件宽(高)厚比来实现
➢ 确定板件宽(高)厚比限值所采用的原则:
一是使构件应力达到屈服前其板件不发生局部 屈曲,即局部屈曲临界应力不低于屈服应力;
二是使构件整体屈曲前其板件不发生局部屈曲, 即局部屈曲临界应力不低于整体屈曲临界应力, 常称作等稳定性准则。 后一准则与构件长细比发生关系,对中等 或较长构件似乎更合理,前一准则对短柱比较 适合。规范规定轴心受压构件宽(高)厚比限 值时,主要采用后一准则,在长细比很小时参 照前一准则予以调整 。
摩擦型高强度螺 栓连接拉杆尚需 验算毛截面强度
5.2.2 刚度计算
➢ 按正常使用极限状态的要求,轴心受力构件均应 具有一定的刚度,保证构件不会产生过度的变形
第五章轴心受压钢柱
以双肢缀条柱为例,其换算长细比计算如下:
设一个节间两侧斜缀条面积之和为A1;节间长度为l1 单位剪力作用下斜缀条长度及其内力为:
V
ld
l1
cos
1
N d sin
V
a V=1 b △ b’
α γ1
γ1
c
d
V=1
因此,斜缀条的轴向变形为:
d
Nd EA1
ld
l1
EA1 sin cos
假设变形和剪切角有限微小,故水平变形为:
横向加劲肋
造选定焊脚尺寸即可。
bs
二、格构式构件的设计----稳定性
(1)对实轴(y-y轴)的整体稳定
因 1 很小,因此可以忽略剪切变形,λo=λy,
其弹性屈曲时的临界应力为:
y 实轴
x
x
虚
轴
y
则稳定cr计y 算 :π2yE2
N f
yA
y 由 y并按相应的截面分类查得。
对实轴的整体稳定性考虑,与实腹式构件完全相同
2.轴心受压杆件的弹性弯曲屈曲
N
N
A 稳 定 平F 衡 状 态
B 随 遇 平F 衡 状 态
l
N
N
Ncr Ncr C 临 界 状F 态
Ncr
下面推导临界力Ncr
设M作用下引起的变形为y1,剪力作用下引起的变形 为y2,总变形y=y1+y2。
由材料力学知:
d 2 y1 M
dx 2
EI
剪力V产生的轴线转角为:
轴心受力构件
强度 (承载能力极限状态) 稳定 刚度 (正常使用极限状态)
一、强度计算(承载能力极限状态)
N f
An
N—轴心压力设计值; An—构件的净截面面积; f—钢材的抗拉强度设计值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得欧拉临界力和临界应力:
Ncr
NE
2 EI l2
2 EA
2
cr
E
2E 2
(4 7) (4 8)
上式中,假定材料满足虎克定律,E为常量,因此当
截面应力超过钢材的比例极限 fp 后,欧拉临界力公式不 再适用。
第五章 钢柱与钢压杆
3、初始缺陷、加工条件和截面形式对压杆稳定都有影响
初
力学缺陷:残余应力、材料不均匀等
钢结构中理想的轴心受压构件的失稳,也叫发生屈 曲。理想的轴心受压构件有三种屈曲形式,即:弯曲屈 曲,扭转屈曲,弯扭屈曲。
第五章 钢柱与钢压杆
(1)弯曲屈曲——只发生弯曲变形,截面只绕一个 主轴旋转,杆纵轴由直线变为曲线,是双轴对称截面常 见的失稳形式。
图14
第五章 钢柱与钢压杆
图15整体弯曲屈曲实例
图1桁架
第五章 钢柱与钢压杆
图2 网架
图3 塔架
第五章 钢柱与钢压杆
图4 临时天桥
第五章 钢柱与钢压杆
图5 固定天桥
第五章 钢柱与钢压杆
图6 脚手架
第五章 钢柱与钢压杆
图7 桥
第五章 钢柱与钢压杆
5.1.2 轴心受力构件类型 轴心受力构件包括轴心受压杆和轴心受拉杆。 轴心受拉 :桁架、拉杆、网架、塔架(二力杆) 轴心受压 :桁架压杆、工作平台柱、各种结构柱
第五章 钢柱与钢压杆
5.1钢柱与钢压杆的应用和构造形式
本节目录
1. 轴心受力构件的应用 2. 轴心受力构件类型 3. 轴心受力构件的截面形式 4. 轴心受力构件的计算内容
基本要求
了解轴心受力构件的类型、应用。
掌握计算内容
第五章 钢柱与钢压杆
5.1.1 轴心受力构件的应用
轴心受力构件是指承受通过截面形心轴线的轴向力作 用的构件。
度极限状态 ,则
Nf
A
(4 1)
N —轴心力设计值;
ቤተ መጻሕፍቲ ባይዱ
A—构件的毛截面面积;
f —钢材抗拉或抗压强度设计值。
第五章 钢柱与钢压杆
对有孔洞等削弱截面,以净截面平均应力达到屈服强
度为强度极限状态 ,则
N f
An
(4 2)
An——构件的净截面面积
第五章 钢柱与钢压杆
5.2.2 刚度计算
通过限制长细比来保证,即
第五章 钢柱与钢压杆
5.1.3 轴心受力构件截面形式
轴心受力构件 常用的截面形式 可分为实腹式与 格构式两大 类。
柱头
柱身
柱脚
y
xy
x
图8 实腹式柱
第五章 钢柱与钢压杆
缀板柱 柱头 缀条柱
柱肢 缀板
l01 l1
柱身 柱脚
l01 =l1
截面由两个 或多个型钢肢件 通过缀材连接而 成。
x (虚轴)
x (虚轴)
外,还使得构件极限承载力显著降低,同时初弯曲和自 重产生的挠度也将对构件的整体稳定带来不利影响。
第五章 钢柱与钢压杆
5.3 轴心受压实腹构件的稳定性 本节目录
1. 整体稳定计算 2. 局部稳定计算
基本要求
掌握轴心受压构件整体稳定和局部稳定的验算方法
第五章 钢柱与钢压杆
5.3.1 整体稳定的计算
1、理想轴心受压构件的失稳形式
第五章 钢柱与钢压杆
本章目录
5.1 钢柱与钢压杆的应用和构造形式 5.2 钢柱与钢压杆的强度和刚度 5.3 轴心受压实腹构件的稳定性 5.4 轴心受压实腹柱设计 5.5 轴心受压格构柱设计
基本要求
1.了解轴心受力构件的构 造特点和计算内容。 2.掌握轴心受力构件的强 度和刚度计算方法。 3.掌握轴压构件的整体稳 定和局部稳定计算。 4.掌握轴心受压柱的设计 方法。
我国的柱子曲线
第五章 钢柱与钢压杆
5、轴心受压构件的整体稳定计算 轴心受压构件不发生整体失稳的条件为,截面应
力不大于临界应力,考虑抗力分项系数γR后,即为:
N cr cr f y f A R fy R
即: N f
A
cr / fy 稳定系数,可按截面分类和构件
长细比查表得到。
件
刚度 (正常使用极限状态)
第五章 钢柱与钢压杆
第5.2节 轴心受力构件的强度和刚度
本节目录
1. 强度计算 2. 刚度计算
基本要求
掌握轴心受力构件强度和刚度的计算方法
第五章 钢柱与钢压杆
5.2.1 强度计算
轴心受力构件以截面上的平均应力达到钢材的屈服强 度作为强度计算准则。
对无削弱截面,以全截面平均应力达到屈服强度为强
max
l0 i
[]
(4 4)
max——构件的最大长细比
l0——构件计算长度,取决于其两端支承情况 i——截面回转半径
[]——容许长细比
第五章 钢柱与钢压杆
轴心受力构件对刚度提出限值要求的原因
当构件的长细比太大时,会产生下列不利影响: (1)在运输和安装过程中产生弯曲或过大的变形; (2)使用过程中因自重而发生挠曲变形; (3)在动力荷载作用下发生较大的振动; (4)压杆的长细比过大时,除具有前述各种不利因素
第五章 钢柱与钢压杆
公式使用说明:
y
y
y
y
(实轴)
(实轴)
x
x
图9 格构式柱
第五章 钢柱与钢压杆
缀板柱
缀条柱
图10 格构式柱实例
第五章 钢柱与钢压杆
图11 实腹式截面 图12 格构式截面
第五章 钢柱与钢压杆
5.1.4 轴心受力构件的计算内容
轴 心
强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态)
受 力 构
强度 (承载能力极限状态) 轴心受压构件 稳定
第五章 钢柱与钢压杆
(2)扭转屈曲——失稳时除杆件的支撑端外,各截 面均绕纵轴扭转,是某些双轴对称截面可能发生的失稳 形式。
图16
第五章 钢柱与钢压杆
(3)弯扭屈曲——单轴对称截面绕对称轴屈曲时, 杆件发生弯曲变形的同时必然伴随着扭转。
图17
第五章 钢柱与钢压杆
理想轴心受压构件可能发生的屈曲形式与截面特点 有关,一般情况下:
(1)双对称轴截面,如工字型、箱型截面,绕对称 轴失稳形式为弯曲屈曲,而“十”字型截面还有可能发 生扭转失稳。
(2)单对称轴截面 绕对称轴弯扭屈曲 绕非对称轴弯曲屈曲
(3)无对称轴截面 弯扭屈曲
第五章 钢柱与钢压杆
2、理想轴心压杆的弹性弯曲屈曲计算公式
对实腹式构件剪切变形的影响较小,可忽略不计,即
始
缺 陷
几何缺陷:初弯曲、加载初偏心等
加工条件和截面形式
第五章 钢柱与钢压杆
4、轴心受压构件的柱子曲线
压杆失稳时临界应力σcr与长细比λ之间的关系曲线称 为柱子曲线。
规范将这些曲线分成四组,也就是将分布带分成四个 窄带,取每组的平均值曲线作为该组代表曲线,给出a、 b、c、d四条柱子曲线。
第五章 钢柱与钢压杆