初三中考数学 中考每日一练 (8)
中考数学每日一练:方差练习题及答案_2020年综合题版
年级
平均数
中位数
众数
方差
八年级
78.3
77.5
75
33.6
九年级
78
80.5
a
52.1
(1) 表格中a的值为;
(2) 请你估计该校九年级体质健康优秀的学生人数为多少?
(3) 根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断
的合理性)
考点: 众数;方差;
答案
~~第4题~~ (2020绍兴.中考模拟) 在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意 图.请你用所学过的有关统计的知识,回答下列问题:(图中的数字表示每一级台阶的高度(单位: )).
(1) 请分别求出甲、乙两段路段每一级台阶高度的平均数. (2) 哪段台阶路走起来更舒服?为什么?
结果正确吗?如果错误,直接写出你认为正确的结果.
考点: 总体、个体、样本、样本容量;频数与频率;平均数及其计算;方差;
答案
2020年 中 考 数 学 : 统 计 与 概 率 _数 据 分 析 _方 差 练 习 题 答 案
1.答案:
2.答案:
3.答案: 4.答案: 5.答案:
(1) 你认为哪种农作物长得高一些?说明理由;
(2) 你认为哪种农作物长得更整齐一些?说明理由.
考点: 平均数及其计算;方差;
答案
~~第3题~~ (2020台州.中考模拟) (2019·长春模拟) 某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况 ,进行了抽样调查,具体过程如下: 收集数据
考点: 平均数及其计算;方差;
答案
~~第5题~~ (2019呼和浩特.中考真卷) 镇政府想了解对王家村进行“精准扶贫”一年来村民的经济情况,统计员小李用简单随机抽样 的方法,在全村 户家庭中随机抽取 户,调查过去一年的收入(单位:万元),从而去估计全村家庭年收入情况. 已知调查得到的数据如下:
初三数学试卷中招模拟题
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √-92. 若x=2,则代数式3x^2 - 4x + 1的值为()A. 1B. 3C. 5D. 73. 已知一元二次方程ax^2 + bx + c = 0(a≠0)的判别式△=b^2 - 4ac,若△=0,则方程有两个()A. 两个不相等的实数根B. 两个相等的实数根C. 一个实数根D. 没有实数根4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 + 2D. y = 2x^25. 已知等腰三角形ABC中,AB=AC,AD是BC边上的高,则∠BAC的大小为()A. 45°B. 60°C. 90°D. 120°6. 在平面直角坐标系中,点A(-2,3),点B(2,-3),则线段AB的中点坐标为()A. (0,0)B. (-1,-1)C. (-1,3)D. (1,-1)7. 若a、b、c、d为实数,且a^2 + b^2 + c^2 + d^2 = 0,则()A. a = b = c = d = 0B. a、b、c、d中至少有一个为0C. a、b、c、d中至多有一个为0D. a、b、c、d中最多有一个为08. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形9. 若sinα = 1/2,则α的取值范围是()A. 0° < α < 90°B. 0° < α < 180°C. 90° < α < 180°D. 180° < α < 270°10. 下列各式中,正确的是()A. 3^2 = 9B. 2^3 = 8C. (-2)^2 = 4D. (-3)^2 = 9二、填空题(每题5分,共20分)11. 若x = 3,则代数式2x^2 - 5x + 2的值为______。
中考数学每日一练:相反数及有理数的相反数练习题及答案_2020年填空题版
中考数学每日一练:相反数及有理数的相反数练习题及答案_2020年填空题版答案答案答案答案答案答案答案答案答案答案2020年中考数学:数与式_有理数_相反数及有理数的相反数练习题~~第1题~~(2020云南.中考模拟) 的相反数是________.考点: 相反数及有理数的相反数;~~第2题~~(2020遵化.中考模拟) 已知a 与b 的和为2,b 与c 互为相反数,若 =1,则a=________.考点: 相反数及有理数的相反数;绝对值及有理数的绝对值;~~第3题~~(2020广西壮族自治区.中考模拟) 的相反数的倒数是________考点: 相反数及有理数的相反数;有理数的倒数;二次根式的性质与化简;~~第4题~~(2019广州.中考模拟) 的相反数是________.考点: 相反数及有理数的相反数;~~第5题~~(2019泸西.中考模拟) ﹣4的绝对值是________.考点: 相反数及有理数的相反数;~~第6题~~(2019湖南.中考真卷) ﹣2019的相反数是________.考点: 相反数及有理数的相反数;~~第7题~~(2019南京.中考真卷) ﹣2的相反数是________; 的倒数是________.考点: 相反数及有理数的相反数;有理数的倒数;~~第8题~~(2019扬中.中考模拟) 如果5x+3与﹣2x+9是互为相反数,则x ﹣2的值是________.考点: 相反数及有理数的相反数;~~第9题~~(2019丹阳.中考模拟) 化简﹣(﹣ )的结果是________.考点: 相反数及有理数的相反数;~~第10题~~(2019南浔.中考模拟) 2019的相反数是________ 。
考点: 相反数及有理数的相反数;2020年中考数学:数与式_有理数_相反数及有理数的相反数练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:。
河南初三中考数学每日练习题
河南初三中考数学每日练习题今天我们来进行一些关于数学的练习题,这些题目旨在帮助你巩固数学知识,提高解题能力。
请认真思考并尽量独立解答每个题目。
如果你遇到了困难,也不要灰心,可以参考下面的解析。
祝你好运!练习题一:已知三个数的和是800,且第一个数是第二个数的二倍,第二个数是第三个数的三倍。
求这三个数分别是多少?解析一:设第一个数为x,则第二个数为2x,第三个数为6x。
根据题意,我们可以列出方程:x + 2x + 6x = 800合并同类项,得到:9x = 800解方程,得到:x = 800 ÷ 9 ≈ 88.89所以,第一个数约为 88.89,第二个数约为 177.78,第三个数约为533.34。
练习题二:一块矩形菜地,长为12米,宽为8米。
现在要在菜地的周边围上一圈木板作为围栏,每块木板长度为1.5米。
问一共需要多少块木板?解析二:首先我们计算出矩形菜地的周长:周长 = 2(长 + 宽)= 2(12 + 8)= 2 × 20 = 40 米然后,我们计算出需要的木板的数量:木板数量 = 周长 ÷木板长度= 40 ÷ 1.5 ≈ 26.67(取整数)因为木板不能切割,所以我们应该向上取整,所以需要27 块木板。
练习题三:已知两条平行线l₁和l₂,l₁的斜率为3/4,l₂的斜率为-2/3。
求l₁与l₂的夹角的正弦值。
解析三:两条平行线的夹角为0度,正弦值为0:sin(0°) = 0。
练习题四:已知正方形ABCD的边长为4cm,E是线段BC上的一个点,且AE ⊥ BC。
求AE的长度。
解析四:由于正方形的边长均相等,所以我们可以知道线段BC的长度为4cm。
根据题意,AE ⊥ BC,所以AE与BC垂直相交。
根据勾股定理,我们可以得到AE的长度:AE² = AB² + BE²= 4² + 2²= 16 + 4= 20∴ AE = √20 ≈ 4.47练习题五:已知函数f(x) = x² + 2x + 3,求f(3)的值。
初三试卷数学每日一练
一、选择题(每题4分,共40分)1. 下列数中,不是有理数的是()A. -3.14B. $\sqrt{2}$C. $\frac{1}{3}$D. 02. 已知a,b是实数,且a+b=0,那么a和b的关系是()A. a和b都是正数B. a和b都是负数C. a和b互为相反数D. a和b相等3. 下列方程中,解为整数的是()A. 2x+3=7B. 3x-5=2C. 5x+2=10D. 4x-1=74. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 20cmB. 21cmC. 22cmD. 24cm5. 在一次数学竞赛中,甲、乙、丙三人的平均分分别为80分、85分和90分,那么他们的总分为()A. 255分B. 255.5分C. 256分D. 257分6. 下列函数中,y是x的二次函数的是()A. y=x^2+3x+2B. y=x^2+2x-1C. y=2x^2-3x+1D. y=3x^2-2x+47. 已知等差数列{an}的公差为d,首项为a1,第n项为an,则第n项和为()A. n(a1+an)/2B. n(a1+an)C. n(an-a1)/2D. n(an-a1)8. 在直角坐标系中,点A(2,3)关于x轴的对称点为()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)9. 若一个正方体的体积为64立方厘米,则它的对角线长为()A. 4厘米B. 8厘米C. 12厘米D. 16厘米10. 下列命题中,正确的是()A. 平行四边形的对边相等B. 矩形的对角线相等C. 等腰三角形的底角相等D. 直角三角形的两条直角边相等二、填空题(每题5分,共50分)11. 计算:$\frac{5}{6} - \frac{2}{3} + \frac{1}{2}$12. 简化:$(a^2 - b^2)(a^2 + b^2)$13. 已知x+y=10,x-y=2,求x和y的值。
中考数学每日一练:由三视图判断几何体练习题及答案_2020年单选题版
中考数学每日一练:由三视图判断几何体练习题及答案_2020年单选题版答案答案答案2020年中考数学:图形的变换_投影与视图_由三视图判断几何体练习题~~第1题~~(2017荆门.中考真卷) 已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A . 6个B . 7个C . 8个D . 9个考点: 由三视图判断几何体;~~第2题~~(2020遵化.中考模拟) 由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是( )A . 5B . 6C . 7D . 8考点: 由三视图判断几何体;~~第3题~~(2020温岭.中考模拟) 如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( ) A . B . C . D .考点: 由三视图判断几何体;~~第4题~~(2020迁安.中考模拟) 下图是某圆锥的主视图和左视图,该圆锥的全面积是( )答案答案答案答案答案A . 36π B . 24π C . 20π D . 15π考点: 勾股定理;圆锥的计算;由三视图判断几何体;~~第5题~~(2019荆州.中考模拟) 如图,是从不同的方向看一个物体得到的平面图形,该物体的形状是( )A . 圆锥B . 圆柱C . 三棱锥D . 三棱柱考点: 由三视图判断几何体;~~第6题~~(2017平谷.中考模拟) 如图是某几何体从不同角度看到的图形,这个几何体是( )A . 圆锥B . 圆柱C . 正三棱柱D . 三棱锥考点: 由三视图判断几何体;~~第7题~~(2019通州.中考模拟) 如图是某个几何体的三视图,该几何体是( )A . 圆锥B . 四棱锥C . 圆柱D . 四棱柱考点: 由三视图判断几何体;~~第8题~~(2018青海.中考真卷) 由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( )A . 3块B . 4块C . 6块D . 9块考点: 由三视图判断几何体;~~第9题~~(2019呼和浩特.中考真卷) 如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是( )答案答案 A . B . C . D .考点: 几何体的表面积;由三视图判断几何体;~~第10题~~(2019阜新.中考真卷) 如图所示的主视图和俯视图对应的几何体(阴影所示为右)是( )A .B .C .D .考点: 由三视图判断几何体;2020年中考数学:图形的变换_投影与视图_由三视图判断几何体练习题答案1.答案:B2.答案:A3.答案:A4.答案:A5.答案:A6.答案:A7.答案:B8.答案:B9.答案:B10.答案:C。
中考数学每日一练:平行线分线段成比例练习题及答案_2020年填空题版
答案
~~第3题~~ (2020长兴.中考模拟) 如图,P是▱ABCD内一点,连结P与▱ABCD各顶点,▱EFGH各顶点分别在线段BP,CP,DP, AP上,若2BE=3PE,且EF∥BC,图中阴影部分的面积为2,则▱ABCD的面积为________.
考点: 三角形的面积;平行四边形的性质;平行线分线段成比例;
,则
的值为________.
考点: 平行线分线段成比例;
答案
~~第10题~~ (2019吴兴.中考模拟) 如图,在△ABC中,DE∥BC,
,AD=2,则BD长为________.
考点: 平行线分线段成比例;
答案
2020年 中 考 数 学 : 图 形 的 变 换 _图 形 的 相 似 _平 行 线 分 线 段 成 比 例 练 习 题 答 案
考点: 平行线分线段成比例;
~~第8题~~ (2019德惠.中考模拟) 如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么 ___.
答案
=_____
考点: 三角形的角平分线、中线和高;平行线分线段成比例;
答案
~~第9题~~
(2019长春.中考模拟) 如图,l1∥l2∥l3 , 两条直接与这三条平行线分别交于点A、B、C和D、E、F,若
考点: 探索数与式的规律;平行线分线段成比例;
答案
~~第7题~~ (2019通州.中考模拟) 如图所示,某地三条互相平行的街道a,b,c与两条公路相交,有六个路口分别为A,B,C,D ,E,F.路段EF正在封闭施工.若已知路段AB约为270.1米,路段BC约为539.8米,路段DE约为282.0米,则封闭施工的 路段EF的长约为________米.
答案
初三中考数学每日练习题
初三中考数学每日练习题练习一:1. 某数与它的五倍之和等于12,求这个数。
解析:设这个数为x,则根据题意可以得到方程:x + 5x = 12。
化简得6x = 12,再整理得到x = 2。
因此,这个数为2。
2. 甲、乙两人同时从A地出发,甲的速度是乙的1.5倍。
甲行驶1小时后,甲、乙相距90千米。
求甲与乙的速度分别是多少。
解析:设甲的速度为x千米/小时,则乙的速度为1.5x千米/小时。
根据题意可以得到方程:x × 1 + 1.5x × 1 = 90。
化简得到2.5x = 90,再整理得到x = 36。
因此,甲的速度为36千米/小时,乙的速度为54千米/小时。
练习二:3. 已知函数y = 2x² - 3x + 1,求函数在x = 2处的值。
解析:将x = 2代入函数表达式中,得到y = 2(2)² - 3(2) + 1 = 9。
因此,函数在x = 2处的值为9。
4. 若把正整数x的百位、十位和个位数字分别记作a、b和c,则x 的逆序数是c × 100 + b × 10 + a。
已知x的逆序数比x大2倍,求x。
解析:根据题意可以得到方程:c × 100 + b × 10 + a = 2 × (a × 100 + b × 10 + c)。
化简得到198a + 18b = 198c。
由于a、b和c都是0~9的整数,且a不等于0,因此a、b和c只能等于1。
代入方程中得到198 + 18 = 198c,再整理得到c = 1。
所以,x = 111。
练习三:5. 设平行四边形ABCD中,对角线AC交对角线BD于O点。
已知BO与OD的比例为3:4,求平行四边形ABCD的面积。
解析:设平行四边形ABCD的底边为a,高为h。
由题意可知,DO = 3,OB = 4。
通过相似三角形的性质可以得到:(a - 4) / (a - 3) = h / (a -h)。
中考数学每日一练:含30度角的直角三角形练习题及答案_2020年压轴题版
中考数学每日一练:含30度角的直角三角形练习题及答案_2020年压轴题版答案答案2020年中考数学:图形的性质_三角形_含30度角的直角三角形练习题~~第1题~~(2019扬州.中考真卷) 如图,已知等边△ABC 的边长为8,点P 事AB 边上的一个动点(与点A 、B 不重合),直线l 是经过点P 的一条直线,把△ABC 沿直线l 折叠,点B 的对应点是点B’.(1) 如图1,当PB=4时,若点B’恰好在AC 边上,则AB’的长度为;(2) 如图2,当PB=5时,若直线l ∥AC ,则BB’的长度为;(3) 如图3,点P 在AB 边上运动过程中,若直线l 始终垂直于AC ,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4) 当PB=6时,在直线l 变化过程中,求△ACB’面积的最大值。
考点: 等边三角形的性质;含30度角的直角三角形;轴对称的性质;~~第2题~~(2019衡阳.中考真卷) 如图,在等边中,,动点从点出发以的速度沿匀速运动.动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点同时停止运动.设运动时间为以.过点作于 ,连接交边于.以为边作平行四边形 .(1) 当 为何值时,为直角三角形;(2) 是否存在某一时刻,使点在的平分线上?若存在,求出的值,若不存在,请说明理由;(3) 求的长;(4) 取线段 的中点 ,连接 ,将 沿直线 翻折,得 ,连接 ,当 为何值时, 的值最小?并求出最小值.考点: 全等三角形的判定与性质;等边三角形的性质;含30度角的直角三角形;勾股定理;~~第3题~~(2019润州.中考模拟) 如图,在菱形ABCD 中,边长为2,∠BAD =120°,点P 从点B 开始,沿着B→D 方向,速度为每秒1个单位,运动到点D 停止,设运动的时间为t (秒),将线段AP 绕点A 逆时针旋转60°,得到对应线段的延长线与过点P 且垂直AP 的垂线段相交于点E ,( ≈1.73,sin11°≈0.19,cos11°≈0.98,sin19°≈0.33,tan19°≈0.34,sin41°≈0.65,tan41°≈0.87)答案答案答案(1) 当t =0时,求AE 的值.(2) P 点在运动过程中,线段PE 与菱形的边框交于点F.(精确到0.1)问题1:如图2,当∠BAP =11°,AF =2PF ,则OQ =.问题2:当t 为何值时,△APF 是含有30°角的直角三角形,写出所有符合条件的t 的值.(3) 当点P 在运动过程中,求出△ACE 的面积y 关于时间t 的函数表达式.(请说明理由)考点: 等边三角形的判定与性质;含30度角的直角三角形;菱形的性质;旋转的性质;相似三角形的判定与性质;~~第4题~~(2019浙江.中考模拟) △ABC 和△ADE 是有公共顶点的三角形,∠BAC =∠DAE =90°,点P 为射线BD ,CE 的交点.(1) ①如图1,∠ADE =∠ABC =45°,求证:∠ABD =∠ACE.②如图2,∠ADE =∠ABC =30°,①中的结论是否成立?请说明理由.(2) 在(1) ①的条件下,AB =6,AD =4,若把△ADE 绕点A 旋转,当∠EAC =90°时,画图并求PB 的长度.考点: 等腰直角三角形;全等三角形的判定与性质;含30度角的直角三角形;相似三角形的判定与性质;~~第5题~~(2019瓯海.中考模拟) 如图,AB 是⊙O 的直径,弦BC =OB,点D 是上一动点,点E 是CD 中点,连接BD 分别交OC ,OE 于点F ,G .(1) 求∠DGE 的度数;(2) 若 =,求的值;(3) 记△CFB ,△DGO 的面积分别为S ,S ,若 =k ,求 的值.(用含k 的式子表示)考点: 等边三角形的判定与性质;含30度角的直角三角形;勾股定理;相似三角形的判定与性质;2020年中考数学:图形的性质_三角形_含30度角的直角三角形练习题答案1.答案:122.答案:3.答案:4.答案:5.答案:。
初三数学每日一练
初三数学小测验
2024年 月 日 星期 姓名: 成绩:
18-2
一、单选题
1.顺次连结任意四边形各边中点所得的四边形必定是( )
A .任意四边形
B .平行四边形
C .菱形
D .矩形
二、填空题
2.如图所示,四边形PONM 是平行四边形.则x = .
2题图 3题图 4题图
三、解答题
3.如图,在正方形网格由,每个小正方形的边长部是1,点A ,B ,C 都在格点上,点D ,E 分别是线段AC ,BC 的中点.
(1)图中的△ABC 是不是直角三角形?答:______;(填“是”或“不是”)
(2)计算线段DE 的长.
4.如图,在5×5的网格中,△ABC 的三个顶点都在格点上.
(1)在图1中画出一个以AB 为边的▱ABDE ,使顶点D ,E 在格点上.
(2)在图2中画出一条恰好平分△ABC 周长的直线l (至少经过两个格点).
5.如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED∥BC,EF∥AC.求证:BE=CF .。
中考数学每日一练:解直角三角形练习题及答案_2020年填空题版
中考数学每日一练:解直角三角形练习题及答案_2020年填空题版答案答案答案答案答案答案2020年中考数学:图形的变换_锐角三角函数_解直角三角形练习题~~第1题~~(2020青浦.中考模拟) 在△ABC 中,∠C =90°,如果tan B =2,AB =4,那么BC =________.考点: 解直角三角形;~~第2题~~(2020湖州.中考模拟) 在△ABC 中,AC=6,点D 为直线AB 上一点,且AB=3BD,直线CD 与直线BC 所夹锐角的正切值为 ,并且CD ⊥AC ,则BC 的长为________.考点: 解直角三角形;~~第3题~~(2020上海.中考模拟) 如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在Rt △AB C 中,∠C=90°,若Rt △ABC 是“好玩三角形”,则tanA=________.考点: 解直角三角形;~~第4题~~(2020松江.中考模拟) 如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米.那么斜面AB 的坡度为________.考点: 解直角三角形;解直角三角形的应用﹣坡度坡角问题;~~第5题~~(2020上海.中考模拟) 如图,在四边形ABCD 中,∠B =∠D =90°,AB =3, BC=2,tanA =,则CD =________.考点: 锐角三角函数的定义;解直角三角形;~~第6题~~(2020虹口.中考模拟) 公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角θ的正切为,那么大正方形的面积是________.考点: 锐角三角函数的定义;解直角三角形;~~第7题~~答案答案答案答案(2020上海.中考模拟) 一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m ,已知木箱高BE=m ,斜面坡脚为30°,则木箱顶端E 距离地面AC 的高度EF 为________m 。
中考数学每日一练:列表法与树状图法练习题及答案_2020年综合题版
中考数学每日一练:列表法与树状图法练习题及答案_2020年综合题版答案答案答案2020年中考数学:统计与概率_概率_列表法与树状图法练习题~~第1题~~(2019常州.中考真卷)将图中的 型(正方形)、型(菱形)、型(等腰直角三角形)纸片分别放在个盒子中,盒子的形状、大小、质地都相同,再将这 个盒子装入一只不透明的袋子中.(1) 搅匀后从中摸出 个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2) 搅匀后先从中摸出个盒子(不放回),再从余下的个盒子中摸出个盒子,把摸出的 个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)考点: 几何概率;列表法与树状图法;~~第2题~~(2020长春.中考模拟) 一个不透明的口袋中装有三个小球,上面分别标有数字3、4、5,这些小球除数字不同外其余均相同.(1) 从口袋中随机摸出一个小球,小球上的数字是偶数的概率是.(2) 从口袋中随机摸出一个小球,记下数字后放回,再随机摸出一个小球,记下数字,请用画树状图(或列表)的方法,求两次摸出的小球上的数字都是奇数的概率.考点: 概率公式;列表法与树状图法;~~第3题~~(2020宁波.中考模拟) 目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1) 根据图中信息求出m=,n=;(2) 请你帮助他们将这两个统计图补全;(3) 根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4) 已知A 、B 两位同学都最认可“微信”,C 同学最认可“支付宝”D 同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.考点: 用样本估计总体;扇形统计图;条形统计图;列表法与树状图法;~~第4题~~(2020长葛.中考模拟) 有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.答案答案(1) 从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2) 小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.考点: 列表法与树状图法;游戏公平性;~~第5题~~(2020温州.中考模拟) 随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1) 这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2) 将条形统计图补充完整;(3) 该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4) 某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.考点: 用样本估计总体;扇形统计图;条形统计图;概率公式;列表法与树状图法;2020年中考数学:统计与概率_概率_列表法与树状图法练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。
中考数学每日一练:一次函数的实际应用练习题及答案_2020年单选题版
中考数学每日一练:一次函数的实际应用练习题及答案_2020年单选题版答案答案答案2020年中考数学:函数_一次函数_一次函数的实际应用练习题~~第1题~~(2019齐齐哈尔.中考真卷) “六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计).下列图象能大致反映战士们离营地的距离S 与时间t 之间函数关系的是( ) A . B . C . D .考点: 一次函数的实际应用;~~第2题~~(2019松北.中考模拟) (2019·松北模拟) 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m )与挖掘时间x (h )之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m 时,用了3h ;②挖掘6h 时甲队比乙队多挖了10m ;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x =4.其中一定正确的有( )A . 1个B . 2个C . 3个D . 4个考点: 一次函数的实际应用;~~第3题~~(2019萧山.中考模拟) 已知A ,B 两地相距120千米,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:千米),则y 关于t 的函数图象是( ) A . B . C . D .考点: 一次函数的实际应用;~~第4题~~(2019萧山.中考模拟) 小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km;②小路的车比小带的车晚出发1 h ,却早到1 h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t = 或t = .其中正确的结论有( )答案答案答案答案A . ①②③④ B . ①②④ C . ①② D . ②③④考点: 通过函数图象获取信息并解决问题;一次函数的实际应用;~~第5题~~(2019浙江.中考模拟) 用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( ) A . B . C . D .考点: 一次函数的实际应用;~~第6题~~(2019永康.中考模拟) 王爷爷上午8:00从家出发,外出散步,到老年阅览室看了一会儿报纸,继续以相同的速度散步一段时间,然后回家.如图描述了王爷爷在散步过程中离家的路程s (米)与所用时间t (分)之间的函数关系,则下列信息错误的是( )A . 王爷爷看报纸用了20分钟B . 王爷爷一共走了1600米C . 王爷爷回家的速度是80米/分D . 上午8:32王爷爷在离家800米处考点: 通过函数图象获取信息并解决问题;一次函数的实际应用;~~第7题~~(2019婺城.中考模拟) 从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进,已知小明骑车上坡的速度比在平路上的速度每小时少5km ,下坡的速度比在平路上的速度每小时多5km.设小明出发xh 后,到达离甲地ykm 的地方,图中的折线OABCDE 表示y 与x 之间的函数关系.①小明骑车在平路上的速度为15km/h ②小明途中休息了0.1h ;③小明从甲地去乙地来回过程中,两次经过距离甲地5.5km 的地方的时间间隔为0.15h 则以上说法中正确的个数为()A . 0B . 1C . 2D . 3考点: 通过函数图象获取信息并解决问题;一次函数的实际应用;~~第8题~~(2019柳州.中考真卷) 己知A ,B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/小时,若用x 表示行走的时间(小时),y 表示余下的路程(千米),则y 关于x 的函数解析式是( ) A . y=4x(x≥0) B . y=4x-3(x≥ ) C . y=3-4x(x≥0) D . y=3-4x(0≤x≤ )答案答案答案考点: 一次函数的实际应用;~~第9题~~(2019重庆.中考真卷) 按如图所示的运算程序,能使输出y 值为1的是( )A . m =1,n =1B . m =1,n =0C . m =1,n =2D . m =2,n =1考点: 一次函数的实际应用;~~第10题~~(2019云南.中考模拟) 如图,△ABC 的两条内角平分线BD 与CD 交于点D ,设∠A 的度数为x,∠BDC 的度数为y ,则y 关于x 的函数图象是( )A .B .C .D .考点: 一次函数的实际应用;2020年中考数学:函数_一次函数_一次函数的实际应用练习题答案1.答案:B2.答案:C3.答案:B4.答案:C5.答案:A6.答案:D7.答案:D8.答案:D9.答案:D10.答案:B。
九年级中考数学模拟试卷含参考答案(八)
九年级中考数学模拟试卷含参考答案(八)一.选择题(共12小题,满分48分,每小题4分)1.四个数0,1,,中,无理数的是()A.B.1C.D.02.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°3.如图,AB⊥数轴于A,OA=AB=BC=1,BC⊥OB,以O为圆心,以OC长为半径作圆弧交数轴于点P,则点P表示的数为()A.B.2C.D.24.如图,在△ABC中,∠C=35°,以点A,C为圆心,大于AC长为半径画弧交于点M,N,作直线MN,交BC于点D,连接AD,∠BAD =60°,则∠ABC的度数为()A.50°B.65°C.55°D.60°5.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和是360°B.任意抛一枚图钉,钉尖着地C.通常加热到100℃时,水沸腾D.太阳从东方升起6.多项式3x2y﹣6y在实数范围内分解因式正确的是()A.B.3y(x2﹣2)C.y(3x2﹣6)D.7.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1B.2C.﹣1D.﹣28.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分9.如图所示,表示两棵小树在同一时刻阳光下的影子的图形可能是()A.B.C.D.10.无人机在A处测得正前方河流两岸B、C的俯角分别为α=70°、β=40°,此时无人机的高度是h,则河流的宽度BC为()A.h(tan50°﹣tan20°)B.h(tan50°+tan20°)C.D.11.如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为6cm,AB=6cm,则阴影部分的面积为()A.B.C.D.12.如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c =﹣1,则b2=4a.其中正确的个数为()A.1B.2C.3D.4二.填空题(共5小题,满分20分,每小题4分)13.如果二次根式在实数范围内有意义,那么x的取值范围是.14.已知两个角的和是67°56′,差是12°40′,则这两个角的度数分别是.15.如图,△ABC外接圆的圆心坐标是.16.如图,在△ABC中,∠ABC=24°,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,若点E在BD的垂直平分线上,则∠C的度数为.17.有七张正面分别标有数字﹣1、﹣2、0、1、2、3、4的卡片,除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为m,则使关于x的方程x2﹣2(m﹣1)x+m2﹣3m=0有实数根,且不等式组无解的概率是.三.解答题(共5小题,满分32分)18.计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.19.先化简,再求值:﹣3x2﹣[x(2x+1)+(4x3﹣5x)÷2x],其中x是不等式组的整数解.20.在平行四边形ABCD中,E、F分别是AD、BC上的点,将平行四边形ABCD沿EF所在直线翻折,使点与点D重合,且点A落在点A′处.(1)求证:△A′ED≌△CFD;(2)连结BE,若∠EBF=60°,EF=3,求四边形BFDE的面积.21.某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.22.如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.四.填空题(共2小题,满分10分,每小题5分)23.当﹣1<a<0时,则=.24.请同学们做完上面考题后,再认真检查一遍,估计一下得分情况.如果你全卷得分低于60分(及格),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过60分;如果你全卷得分已经达到或超过60分,则本题的得分不计入总分.(1)=;(2)当x=2时,函数y=x﹣1的值,y=;(3)相似三角形的对应边的比为0.4,那么相似比为;(4)抛一枚硬币出现正面向上的机会是;(5)如果直角三角形的两直角边长为5和12,那么利用勾股定理可求得斜边为.五.解答题(共4小题,满分40分)25.已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.26.阅读材料:基本不等式≤(a>0,b>0),当且仅当a=b时,等号成立.其中我们把叫做正数a、b的算术平均数,叫做正数a、b的几何平均数,它是解决最大(小)值问题的有力工具.例如:在x>0的条件下,当x为何值时,x+有最小值,最小值是多少?解:∵x>0,>0∴≥即是x+≥2∴x+≥2当且仅当x=即x=1时,x+有最小值,最小值为2.请根据阅读材料解答下列问题(1)若x>0,函数y=2x+,当x为何值时,函数有最值,并求出其最值.(2)当x>0时,式子x2+1+≥2成立吗?请说明理由.27.结合西昌市创建文明城市要求,某小区业主委员会决定把一块长80m,宽60m的矩形空地建成花园小广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的直角三角形),空白区域为活动区,且四周出口宽度一样,其宽度不小于36m,不大于44m,预计活动区造价60元/m2,绿化区造价50元/m2,设绿化区域较长直角边为xm.(1)用含x的代数式表示出口的宽度;(2)求工程总造价y与x的函数关系式,并直接写出x的取值范围;(3)如果业主委员会投资28.4万元,能否完成全部工程?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(4)业主委员会决定在(3)设计的方案中,按最省钱的一种方案,先对四个绿化区域进行绿化,在实际施工中,每天比原计划多绿化11m2,结果提前4天完成四个区域的绿化任务,问原计划每天绿化多少m2.28.如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B 重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.参考答案一.选择题(共12小题,满分48分,每小题4分)1.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:0,1,是有理数,是无理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.【解答】解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.【点评】本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.3.【分析】根据勾股定理分别求出OB、OC的长,再由作图可得答案.【解答】解:∵OA=AB,AB⊥数轴于A,∴OB2=OA2+AB2=12+12=2,∵BC=1且BC⊥OB,∴OC===,由作图知OP=OC=,所以点P表示的数为,故选:C.【点评】本题考查的是实数与数轴、勾股定理等知识,熟知实数与数轴上各点是一一对应关系是解答此题的关键.4.【分析】由作图可知MN是AC的垂直平分线,可得DA=DC,据此可知∠DAC=∠C=35°,再根据∠B=180°﹣∠BAD﹣∠DAC﹣∠C可得答案.【解答】解:由作图可知MN是AC的垂直平分线,∴DA=DC,则∠DAC=∠C=35°,∵∠BAD=60°,∴∠B=180°﹣∠BAD﹣∠DAC﹣∠C=180°﹣60°﹣35°﹣35°=50°,故选:A.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段中垂线的尺规作图及等腰三角形的性质、三角形的内角和定理.5.【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:A、任意画一个三角形,其内角和是360°是不可能事件,故本选项错误;B、任意抛一枚图钉,钉尖着地是随机事件,故本选项正确;C、通常加热到100℃时,水沸腾是必然事件,故本选项错误;D、太阳从东方升起是必然事件,故本选项错误;故选:B.【点评】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.【分析】利用提公因式法、平方差公式进行因式分解即可.【解答】解:3x2y﹣6y=3y(x2﹣2)=3y(x+)(x﹣)故选:A.【点评】本题考查的是实数范围内因式分解,掌握提公因式法、平方差公式进行因式分解的一般步骤是解题的关键.7.【分析】把x=n代入方程得出n2+mn+2n=0,方程两边都除以n得出m+n+2=0,求出即可.【解答】解:∵n(n≠0)是关于x的方程x2+mx+2n=0的根,代入得:n2+mn+2n=0,∵n≠0,∴方程两边都除以n得:n+m+2=0,∴m+n=﹣2.故选:D.【点评】本题考查了一元二次方程的解的应用,能运用巧妙的方法求出m+n的值是解此题的关键,题型较好,难度适中.8.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.9.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】解:A、影子的方向不相同,故本选项错误;B、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;C、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;D、影子的方向不相同,故本选项错误;故选:B.【点评】本题考查了平行投影特点,难度不大,注意结合选项判断.10.【分析】利用角的三角函数定义求出CD,BD,从而可得BC.【解答】解:过A作CB延长线的高,垂足为D,由题意可知∠ABD=α,∠ACB=β,AD=h,∴BD=h•tan20°,CD=h•tan50°,∴BC=CD﹣BD=h(tan50°﹣tan20°).故选:A.【点评】本题考查了解三角形的应用,关键是利用角的三角函数定义求出CD,BD.11.【分析】连接OC,如图,先根据切线的性质得OC⊥AB,再根据等腰三角形的性质得AC=BC=AB=3,∠A=∠B,接着利用锐角三角函数计算出∠A=30°,从而得到∠AOB=120°,然后根据扇形面积公式,利用阴影部分的面积=S△AOB﹣S扇形进行计算即可.【解答】解:连接OC,如图,∵AB与⊙O相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC=AB=3,∠A=∠B,在Rt△AOC中,tan A===,∴∠A=30°,∴∠AOB=120°,﹣S扇形=•6•3﹣=(9﹣3π)∴阴影部分的面积=Scm2.故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了扇形的面积公式.12.【分析】①首先根据抛物线开口向上,可得a>0;然后根据对称轴为x=﹣>0,可得b<0,据此判断即可;②根据抛物线y=ax2+bx+c的图象,可得x=﹣1时,y>0,即a﹣b+c>0,据此判断即可;③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可;④根据函数的最小值是,判断出c=﹣1时,a、b的关系即可.【解答】解:∵抛物线开口向上,∴a>0,又∵对称轴为x=﹣>0,∴b<0,∴结论①不正确;∵x=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax2+bx+c的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;∵=﹣2,c=﹣1,∴b2=4a,∴结论④正确.综上,结论正确的是:③④,共2个,故选:B.【点评】此题主要考查了二次函数的图象与几何变换,二次函数的图象与系数的关系,熟练掌握平移的规律和二次函数的性质,解答此类问题的关键.二.填空题(共5小题,满分20分,每小题4分)13.【分析】根据二次根式有意义的条件可得x﹣2≥0,再解不等式即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.【分析】设这两个角的度数为x、y,根据题意列出方程组,求出方程组的解即可.【解答】解:设这两个角的度数为x、y,则,解得:x=40°18′,y=27°38′,故答案为:40°18′、27°38′.【点评】本题考查了角的计算和度、分、秒之间的换算,能根据题意列出方程组是解此题的关键,注意:1°=60′.15.【分析】因为BC是线段,AB是正方形的对角线,所以作AB、BC 的垂直平分线,找到交点O即可.【解答】解:作线段BC的垂直平分线,作AB的垂直平分线,两条线相交于点O所以O的坐标为(4,6)故答案为:(4,6)【点评】本题考查了线段的垂直平分线及三角形的外心.三角形三边的垂直平分线的交点是三角形的外心.解决本题需仔细分析三条线段的特点.16.【分析】过点E作EF⊥BD于点F,由点E在BD的垂直平分线上可知,直线EF必过圆心,再根据直角三角形的性质求出∠BOF的度数,进而得出的度数,根据∠ABC=24°得出∠AOE的度数,根据等腰三角形的性质得出∠CEF的度数,由三角形内角和定理即可得出结论.【解答】解:过点E作EF⊥BD于点F,连接AD,∵点E在BD的垂直平分线上,∴,直线EF必过圆心,EF⊥BD,∵∠ABC=24°,∴∠BOF=∠AOE=∠BAD=66°,∵AO=OE,∴∠OEA=(180°﹣66°)=57°,∴∠C=180°﹣90°﹣∠OEA=180°﹣57°﹣90°=33°.故答案为:33°【点评】本题考查了垂径定理以及垂直平分线的性质.解题的关键是知道题干的条件可得点E在BD的垂直平分线上.17.【分析】根据判别式的意义得到∴△=4(m﹣1)2﹣4(m2﹣3m)≥0,解得m≥﹣1;解不等式组得到﹣1≤m≤3,满足条件的a的值为﹣1,0,1,2,3,然后根据概率公式求解.【解答】解:∵一元二次方程x2﹣2(m﹣1)x+m2﹣3m=0有实数根,∴△=4(m﹣1)2﹣4(m2﹣3m)≥0,解得m≥﹣1,∵无解,∴m≤3,∴﹣1≤m≤3,∴满足条件的a的值为﹣1,0,1,2,3,∴使关于x的一元二次方程x2﹣2(m﹣1)x+m2﹣3m=0有实数根,且不等式组无解的概率=.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0.三.解答题(共5小题,满分32分)18.【分析】原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可求出值.【解答】解:原式=+1﹣2×+=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.【分析】先根据整式的混合运算顺序和运算法则化简原式,再解不等式组求得其整数解,代入计算可得.【解答】解:原式=﹣3x2﹣(2x2+x+2x2﹣2.5)=﹣3x2﹣2x2﹣x﹣2x2+2.5=﹣7x2﹣x+2.5,解不等式组得:1≤x<2,则不等式组的整数解为x=1,所以原式=﹣7﹣1+2.5=﹣5.5.【点评】本题主要考查整式的化简求值和解一元一次不等式,解题的关键是掌握整式混合运算顺序和运算法则.20.【分析】(1)利用翻折找到相等的边和角,再证明DE=DF,可证全等三角形;(2)证明四边形BFDE为菱形,利用锐角三角函数求四边形BFDE面积.【解答】(1)证明:由翻折可知:AB=A′D,∠ABC=∠A′DF,∠EFB=∠EFD∵四边形ABCD是平行四边形∴AB=CD,∠ABC=∠ADC∴∠ADC=∠A′DF∴∠FDC=∠A′DE∵AB=A′D,AB=CD∴A′D=CD∵AD∥BC∴∠DEF=∠EFB∵∠EFB=∠EFD∴∠DEF=∠EFD∴ED=DF∴△A′ED≌△CFD(2)解:∵AD∥BC,A′B∥DF∴四边形EBFD为平行四边形由(1)DE=DF∴四边形EBFD为菱形∵∠EBF=60°∴△BEF为等边三角形,∵EF=3∴BE=BF=3过点E作EH⊥BC于点H∴四边形BFDE的面积为:sin60°AE•BF=【点评】本题为几何综合题,考查了三角形全等、轴对称性质、菱形证明和利用特殊角解直角三角形.21.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.22.【分析】(1)把A(﹣1,n)代入y=﹣2x,可得A(﹣1,2),把A(﹣1,2)代入y=,可得反比例函数的表达式为y=﹣,再根据点B与点A关于原点对称,即可得到B的坐标;(2)观察函数图象即可求解;(3)设P(m,﹣),根据S梯形MBPN=S△POB=1,可得方程(2+)(m﹣1)=1或(2+)(1﹣m)=1,求得m的值,即可得到点P 的横坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x,可得n=2,∴A(﹣1,2),把A(﹣1,2)代入y=,可得k=﹣2,∴反比例函数的表达式为y=﹣,∵点B与点A关于原点对称,∴B(1,﹣2).(2)∵A(﹣1,2),∴y≤2的取值范围是x<﹣1或x>0;(3)作BM⊥x轴于M,PN⊥x轴于N,∵S梯形MBPN=S△POB=1,设P(m,﹣),则(2+)(m﹣1)=1或(2+)(1﹣m)=1整理得,m2﹣m﹣1=0或m2+m+1=0,解得m=或m=,∴P点的横坐标为.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.四.填空题(共2小题,满分10分,每小题5分)23.【分析】根据题意得到a+<0,a﹣>0,根据完全平方公式把被开方数变形,根据二次根式的性质计算即可.【解答】解:∵﹣1<a<0,∴a+<0,a﹣>0,原式=﹣=a﹣+a+=2a,故答案为:2a.【点评】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.24.【分析】(1)直接根据二次根式的加法进行计算即可;(2)把x=2代入函数y=x﹣1即可;(3)根据相似比的定义解答即可;(4)根据概率公式即可得出结论;(5)直接根据勾股定理即可得出结论.【解答】解:(1)原式=(1+2)=3;(2)当x=2时,y=2﹣1=1;(3)∵相似三角形的对应边的比为0.4,∴相似比为0.4;(4)∵一枚硬币只有正反两面,∴抛一枚硬币出现正面向上的机会是;(5)∵直角三角形的两直角边长为5和12,∴斜边===13.故答案为:3;1;0.4;;13.【点评】本题考查的是相似三角形的性质,涉及到二次根式的加减法、概率公式、勾股定理及函数值等知识,比较简单.五.解答题(共4小题,满分40分)25.【分析】(1)连接OC,如图,利用圆周角定理得到∠2+∠3=90°,再证明∠1=∠3得到∠1+∠2=90°,即∠OCM=90°,然后根据切线的判定定理可得到结论;(2)利用EG⊥AB得到∠B+∠BFH=90°,利用对顶角相等得到∠4+∠B=90°,而根据切线的性质得到∠5+∠3=90°,从而得到∠4=∠5,然后根据等腰三角形的判定定理可得结论.【解答】证明:(1)连接OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵OB=OC,∴∠B=∠3,而∠1=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM=90°,∴OC⊥CM,∴MC是⊙O的切线;(2)∵EG⊥AB,∴∠B+∠BFH=90°,而∠BFH=∠4,∴∠4+∠B=90°,∵MD为切线,∴OC⊥CD,∴∠5+∠3=90°,而∠3=∠B,∴∠4=∠5,∴△DCF是等腰三角形.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.26.【分析】(1)利用基本不等式即可解决问题.(2)利用基本不等式即可判断.【解答】解:(1)∵x>0,∴2x>0,∴2x+≥2=2,当且仅当2x=即x=时,2x+有最小值,最小值为2.(2)式子不成立.理由:∵x>0,∴x2+1>0,>0,∴x2+1+≥2=2,当且仅当x2+1=即x=0时,不等式成立,∵x>0,∴不等式不能取等号,即不成立.【点评】本题考查基本不等式的应用,解题的关键是理解题意,学会模仿解决问题.27.【分析】(1)根据图形可得结论;(2)根据面积×造价可得绿化区和活动区的费用,相加可得y与x的关系式,根据所有长度都是非负数列不等式组可得x的取值范围;(3)业主委员会投资28.4万元,列不等式,结合二次函数的增减性可得结论;(4)先计算设计的方案中,最省钱的一种方案为x=22时,计算绿化面积,根据题意列分式方程可得结论,注意方程要检验.【解答】解:(1)由题意可得,出口的宽度为(80﹣2x)cm;(2)由题意可得,BC=EF=80﹣2x,∴AB=CD==x﹣10,y=50×4×x(x﹣10)+60×[60×80﹣4×x(x﹣10)]=﹣20x2+200x+288000,∵36≤80﹣2x≤44,∴18≤x≤22,(3)﹣20x2+200x+288000≤284000,x2﹣10x﹣200≥0,设y=x2﹣10x﹣200=(x﹣5)2﹣225,当y=0时,x2﹣10x﹣200=0,x=20或﹣10,∴当y≥0时,x≤﹣10或x≥20由(2)知:18≤x≤22,∴20≤x≤22,所以业主委员会投资28.4万元,能完成全部工程,所有工程方案如下:①较长直角边为20m,短直角边为10m,出口宽度为40m;②较长直角边为21m,短直角边为11m,出口宽度为38m;③较长直角边为22m,短直角边为12m,出口宽度为36m;(4)y=﹣20x2+200x+288000=﹣20(x﹣5)2+288450,在20≤x≤22中y随x的增大而减小,∴当x=22时,y有最小值,绿化面积=4××22×(22﹣10)=528,设原计划每天绿化xm2,则在实际施工中,每天绿化(x+11)m2,则﹣=4,解得:x=33或﹣44(舍),经检验x=33是原方程的解,答:原计划每天绿化33m2.【点评】本题是有关几何图形的应用问题,考查了一元一次不等式、分式方程、二次函数的应用,此题关键是求得短边的长度,再利用矩形的面积求得各部分面积,进一步列不等式(组)解决问题.28.【分析】(1)根据待定系数法得出a,k,b的值,进而得出不等式的解集即可;(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.根据三角形的面积公式解答即可;(3)根据平行四边形的性质和坐标特点解答即可.【解答】解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,解得:,所以a=﹣1,k=﹣1,b=﹣2,关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.∵A(﹣1,﹣1),B(2,﹣4),∴C(﹣1,﹣4),AC=BC=3,设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),∴PD=m+1,PE=﹣m2+4.∴S△APB=S△APC+S△BPC﹣S△ABC===.∵<0,,﹣1<m<2,∴当时,S△APB的值最大.∴当时,,S△APB=,即△PAB面积的最大值为,此时点P的坐标为(,)(3)存在三组符合条件的点,当以P,Q,A,B为顶点的四边形是平行四边形时,∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),可得坐标如下:①P′的横坐标为﹣3,代入二次函数表达式,解得:P'(﹣3,﹣9),Q'(0,﹣12);②P″的横坐标为3,代入二次函数表达式,解得:P″(3,﹣9),Q″(0,﹣6);③P的横坐标为1,代入二次函数表达式,解得:P(1,﹣1),Q(0,﹣4).故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.31。
初中数学中考每日一练试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 2/3D. 无理数2. 已知 a > b > 0,则下列不等式中正确的是()A. a² > b²B. a³ > b³C. a² < b²D. a³ < b³3. 下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)³ = a³ + 3a²b + 3ab² + b³D. (a-b)³ = a³ - 3a²b + 3ab² - b³4. 在△ABC中,∠A=45°,∠B=60°,则∠C的度数是()A. 75°B. 105°C. 135°D. 150°5. 下列各图中,是轴对称图形的是()A. ①B. ②C. ③D. ④6. 若a、b是方程2x²-5x+2=0的两个根,则a+b的值是()A. 2B. 3C. 4D. 57. 若x是方程3x²-2x-5=0的根,则3x³-2x²-5x的值是()A. 0B. 1C. 2D. 38. 已知a=√2+√3,b=√2-√3,则a²-b²的值是()A. 2B. 4C. 6D. 89. 下列各式中,正确的是()A. (a+b)(a-b) = a² - b²B. (a+b)(a+b) = a² + 2ab + b²C. (a-b)(a+b) = a² - 2ab + b²D. (a-b)(a-b) = a² + 2ab + b²10. 若x是方程2x²-5x+2=0的根,则方程2x²-5x+3=0的根是()A. x+1B. x-1C. 2xD. x/2二、填空题(每题5分,共30分)11. 若a、b是方程2x²-5x+2=0的两个根,则a+b的值是______。
2022中考数学基础题每天一练(含10份练习)
(2@6)@8
.
三、开心用一用
第 14 题
7.如图,已知 AB∥CD,AD 与 BC 相交于点 P,AB=4,CD=7,AD=10,则 AP
的长等于【 】
A
40
A.
11
40
B.
7
70
C.
11
70
D.
4
8.挂钟分针的长 10cm,经过 45 分钟,它的针尖转过的弧长是【 】
C
B P
第7题图
16、先化简,再求值: x2 6x 9 ·(x+3),其中 x= 5 . 2x 6
8.不等式组
x x
0 1
的解集的情况为(
)A.x<-1 B.x<0 C.-1<x<0
D.无解
三、开心用一用 19、如图,某海军基地位于 A 处,其正南方向 200 海里处有一个重要目标 B,在 B 的正东方向 200
海里处有一重要目标 C.小岛 D 位于 AC 的中点,岛上有一补给码头;小岛 F 位于 BC 上且恰 好处于小岛 D 的正南方向,一艘军舰从 A 出发,经 B 到 C 匀速巡航,一艘补给船同时从 D 出 发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰. (1)小岛 D 和小岛 F 相距多少海里? (2)已知军舰的速度是补给船速度的 2 倍,军舰在由 B 到 C 航行的途中与补给船相遇于 E 处,
A
y D
2
C
A
1
BB
C
第 14 题图
第 12 题图
O 第 15 题图
度. x
第 16 题图
13.2007 年 4 月 27 日,我国公布了第一批 19 座著名风景名胜山峰高程数据,其中“五岳”山峰
中考数学每日一练:三角形中位线定理练习题及答案_2020年解答题版
中考数学每日一练:三角形中位线定理练习题及答案_2020年解答题版答案答案答案2020年中考数学:图形的性质_三角形_三角形中位线定理练习题~~第1题~~(2020长春.中考模拟) 如图,在⊙O 中,点C 为OB 的中点,点D 为弦AB 的中点,连结CD 并延长,交过点A 的切线于点E.求证:AE ⊥CE.考点: 平行线的性质;三角形中位线定理;切线的性质;~~第2题~~(2019丹阳.中考模拟) 在△ABC 中,点D 、E 、F 分别是BC 、AB 、AC 边的中点.求证:△BED ≌△DFC.考点: 三角形全等的判定;三角形中位线定理;~~第3题~~(2019乐陵.中考模拟) 如图,在⊙O 中,C , D 分别为半径OB , 弦AB 的中点,连接CD 并延长,交过点A 的切线于点E .(1) 求证:AE ⊥CE .(2) 若AE = ,sin ∠ADE = ,求⊙O 半径的长.考点: 勾股定理;三角形中位线定理;~~第4题~~(2019中山.中考模拟) 如图,在直角坐标系中,点A 的坐标为(0,8),点 B (b ,t )在直线x=b 上运动,点D 、E 、F 分别为OB 、OA 、AB 的中点,其中b 是大于零的常数.答案答案(1) 判断四边形DEFB 的形状.并证明你的结论;(2) 试求四边形DEFB 的面积S 与b 的关系式;(3) 设直线x=b 与x 轴交于点C ,问:四边形DEFB 能不能是矩形?若能.求出t 的值;若不能,说明理由.考点: 三角形中位线定理;矩形的判定与性质;相似三角形的判定与性质;~~第5题~~(2018夷陵.中考模拟) 如图所示,PA 、PB 为⊙O 的切线,M 、N 是PA 、AB 的中点,连接MN 交⊙O 点C ,连接PC 交⊙O 于D,连接ND 交PB 于Q ,求证:MNQP 为菱形.考点: 三角形中位线定理;菱形的判定;切线的性质;相似三角形的判定与性质;2020年中考数学:图形的性质_三角形_三角形中位线定理练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。
中考数学九年级下册专题训练50题含答案
中考数学九年级下册专题训练50题含答案_一、单选题1.从正面看如下几何体,看到的平面图形是()A.B.C.D.2.如图,空心圆柱的俯视图是()A.B.C.D.3.“十•一”假期,某超市为了吸引顾客,设立了一个转盘游戏进行摇奖活动,并规定顾客每购买200元商品,就获得一次转盘机会,小亮根据摇奖情况制作了一个统计图(如图),请你求出每转动一次转盘获得购物券的平均数是()A.43.5元B.26元C.18元D.43元4.如图,从正面看这个几何体得到的图形是()A.B.C .D .5.下列事件中,属于必然事件的是( ). A .明年元旦会下雨 B .三角形三内角的和为180︒C .抛一枚硬币正面向上D .在一个没有红球的盒子里,摸到红球6.反比例函数10y x=-的图象经过点A (﹣3,y 1),B (﹣4,y 2),C (5,y 3),则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3B .y 3>y 1>y 2C .y 2>y 1>y 3D .y 3>y 2>y 17.如图所示的几何体的俯视图是( )A .B .C .D .8.已知A (0,y 1),B (1,y 2),C (4,y 3)是抛物线y =x 2﹣3x 上的三点,则y 1,y 2,y 3的大小关系为( ) A .y 1>y 2>y 3B .y 3>y 1>y 2C .y 3>y 2>y 1D .y 2>y 1>y 39.若抛物线2y ax bx c =++的项点在第一象限,与x 轴的两个交点分布在原点两侧,则点,a b b ⎛⎫⎪⎝⎭在( )A .第一象限B .第二象限C .第三象限D .第四象限10.若反比例函数的图像经过点(1,2)-,则它的解析式是( ) A .12y x=-B .2y x=-C .2y x=D .12y x=11.如图,反比例函数ky x=的图象经过点A ,则k 的值是( )A .2B .1.5C .﹣3D .32-12.如图是二次函数y=ax2+bx+c 的图象,则下列结论错误的是( )A .ab 0<B .2b 4ac 0->C .4a 2b c 1++=D .9a 3b c 1++>13.下列事件中,属于不确定事件的是( )A .用长度分别是2cm ,3cm ,6cm 的细木条首尾顺次相连可组成一个三角形;B .角平分线上的点到角两边的距离相等;C .如果两个图形关于某条直线对称,则这两个图形一定全等;D .三角形一边上的高线与这条边上的中线互相重合.14.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx+c 的大致图象为( )A .B .C .D .15.已知反比例函数1y x=的图象上有一点Q ,过点Q 分别作x 轴,y 轴的平行线,若两条平行线与两坐标轴所围成的矩形面积为S ,则( ) A .S=1 B .S=2 C .1<S<2D .S>216.已知函数y =(m +1)25mx -是反比例函数,且该图象与y =x 图象无交点,则m 的值是 ( ) A .2B .-2C .±2D .-1217.如图,抛物线2y ax bx c =++经过点(1,0)-,与x 轴的另一个交点在点(1,0)和(2,0)之间,对称轴l 如图所示,则下列结论:①0abc >;①0a b c -+=;①0a c +>;①20a c +<,其中正确的结论个数是( )A .1B .2C .3D .418.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和cy x=的图象为( )A .B .C .D .19.函数ky x=和2(0)y kx k =-+≠在同一平面直角坐标系中的大致图象可能是( )A .B .C .D .20.抛物线y=ax 2+bx+c 的顶点为D (-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论不正确的是( )A .b 2-4ac <0B .a+b+c <0C .c-a=2D .方程ax 2+bx+c-2=0有两个相等的实数根二、填空题21.在平面直角坐标系xOy 中,抛物线245y x x =-+与y 轴交于点C ,则点C 的坐标为_________. 22.若反比例函数32my x -=的图象在二、四象限,则m 的取值范围是_______. 23.过反比例函数()0ky k x=>图象上一点A ,分别作x 轴、y 轴的垂线,垂足分别为B C 、,如果ABC ∆的面积为3,则k 的值为______.24.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形依次是_______.25.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,当转盘停止时,指针落在有阴影的区城内的概率为a(若指针落在分界线上,则重新转动),如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a,b的大小关系是____________.26.若一组数据的样本容量为40,把它分成6组,前5组数据的频数分别是9,5,8,6,8.则第6组数据的频率是______.27.为全力抗战疫情,积极响应国家“停课不停学”号召,某市教育局发布关于疫情防控期间开展线上教学通知,自2020年2月17日开始,该市某中学借助直播云平台,有序开展网上授课教学,据老师数据统计显示,八年级(1)班2月17日六科师生互动次数如下表:那么,这一天地理学科师生互动的频率是______. 28.函数131y x =-中,自变量x 的取值范围是______. 29.下列函数中,图象位于第一、三象限的有________;在图象所在象限内,y 的值随x 值的增大而增大的有_______. (1)23y x =;(2)0.1y x =;(3)5y x=;(4)275y x -=. 30.如图,在平面直角坐标系中,O 为坐标原点,OABC 的顶点A 在反比例函数2(0)y x x=>的图像上,顶点B 在反比例函数8(0)y x x =>的图像上,顶点C 在x 轴的正半轴上,则OABC 的面积是______________.31.若反比例函数y =(2m -1)22m x - 的图象在第一、三象限,则函数的解析式为____________32.二次函数228y x mx =++的图象顶点在x 轴上,则m 的值是_______________. 33.将二次函数223y x x =-++的图象在x 轴上方的部分沿x 轴翻折后,所得新函数的图象如图所示.当直线y x b =+与新函数的图象恰有3个公共点时,b 的值为___34.已知点P 的坐标为(m ,0),点Q 在x 轴上(不与P 重合),以PQ 为边,①PQM=60°作菱形PQMN ,使点M 落在反比例函数y (1)如图所示,若点P 的坐标为(1,0),则图中点M 的坐标是_____.(2)随着m 的取值不同,这样的菱形还可以画出三个和四个,当符合上述条件的菱形刚好能画出三个时,则点M 的坐标是:______________________.35.抛物线2222y x bx b b=++-+与x轴没有交点,则b的取值范围为_____.36.如图,点A为函数y=4x(x>0)图象上一点,连结OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为__.37.如图,在地板的环形图案上,OA AB BC CD a====,任意抛出一个乒乓球,落在阴影区域的概率是_________.38.将x=23代入反比例函数y=-1x中,所得的函数值记为1y,又将x=1y+1代入反比例函数y=-1x中,所得的函数值记为2y,又将x=2y+1代入反比例函数y=-1x中,所得的函数值记为3y,…,如此继续下去,则y2020=______________39.如图,将半径为6的圆形纸片沿半径OA OB、将其裁成1:3两个部分,用所得扇形围成圆锥的侧面,则圆锥的底面半径为________.40.如图,已知抛物线y=49-(x-1)(x-7)与x轴交于两点,对称轴与抛物线交于点C,与x轴交于点D,①C的半径为2,G为①C上的一动点,P为AG的中点,则DP的最大值为_________.三、解答题41.如果从半径为5 cm的圆形纸片上剪去15圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),求这个圆锥的高.42.当前疫情防控处于常态化,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现从7:00开始,在校门口的学生人数(单位:人)随时间x(单位:分钟)的变化情况的图象是二次函数的一部分,如图所示,(1)求x与y之间的函数解析式.(2)从7:00开始,需要多少分钟校门口的学生才能全部进校.(3)现学校通过调整校门口的入校通道,提高体温检测效率,经过调整,现在每分钟可以多通过3人,请问所有学生能够在7点30分完成进校吗?请说明理由.43.已知抛物线y=2x2﹣4x﹣6与x轴交于点A、B(A在B的的左侧),与y轴交于点C.(1)分别求出点A、B、C的坐标;(2)如果该抛物线沿x轴向右平移2个单位后得到的新抛物线的顶点坐标为点D,求四边形ABDC的面积.44.每年的6月8日是“世界海洋日”,某校决定在这一天开展系列海洋知识的宣传活动,活动有A.唱歌、B.舞蹈、C.绘画,D.演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,给制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:(1)本次抽查的学生共________人,=a ________,并将条形统计图补充完整; (2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这项宣传方式的学生约有__________人.(直接在横线上填答案)(3学校采用抽签方式让每班在A 、B 、C 、D 四项宣传方式中随机抽取两项进行展示,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率. 45.已知抛物线的顶点坐标是(2,1),且该抛物线经过点A (3,3),求该抛物线解析式.46.二次函数23y ax bx =++的图象与x 轴交于()2,0A ,()6,0B 两点,与y 轴交于点C ,顶点为E .(1)求这个二次函数的表达式:(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图①,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当CEQ的面积为12时,求点P的坐标.47.如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数y2=kx图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)求△MOB的面积.48.如图,在平面直角坐标系中,O为原点,四边形OABC为平行四边形,点A、C 的坐标分别为(2,0)和(1,,抛物线y=ax2经过点A,点D是该抛物线的顶点.(1)求a的值;(2)判断点B是否在抛物线上,并说明理由;(3)连接AD,在线段OA上找一点P,使①APD=①OAB,求点P的坐标;(4)若点Q是y轴上一点,以Q、A、D为顶点作平行四边形,该平行四边形的另一顶点在抛物线y=ax2上,写出点Q的坐标(直接写出答案即可).49.已知二次函数y=﹣mx2﹣4mx﹣4m+4(m为常数,且m>0).(1)求二次函数的顶点坐标;(2)设该二次函数图象上两点A(a,ya)、B(a+2,yb),点A和点B间(含点A,B)的图象上有一点C,将点C纵坐标的最大值和最小值的差记为h.①当m =1时,若点A 和点B 关于二次函数对称轴对称,求h 的值;①若存在点A 和点B 使得h 的值是4,则m 的取值范围是 .50.如图,在直角坐标系中,直线113y x =+与x 轴、y 轴的交点分别为A 、B ,以=1x -为对称轴的抛物线2y x bx c =-++与x 轴分别交于点A 、C .(1)求抛物线的解析式;(2)若点P 是第二象限内抛物线上的动点,其横坐标为t .设抛物线的对称轴l 与x 轴交于点D ,连接PD ,交AB 于E ,求出当以A 、D 、E 为顶点的三角形与AOB ∆相似时点P 的坐标;(3)点M 是对称轴上任意一点,在抛物线上是否存在点N ,使以点A 、B 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出点N 的坐标;若不存在,说明理由.参考答案:1.A【分析】找到从正面看所得到的图形,即主视图即可.【详解】解:A、主视图,符合题意;B、左视图,不符合题意;C、右视图,不符合题意;D、俯视图,不符合题意;故选:A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的图形.2.D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是三个水平边较短的矩形,中间矩形的左右两边是虚线,故选:D.【点睛】本题考查了三视图,俯视图是指从上往下看得到的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学试卷-解析版一、选择题(本大题共12小题,每小题3分,共36分)1、(•湛江)﹣5的相反数是()A、﹣5B、5C、﹣D、考点:相反数。
分析:根据相反数的概念解答即可.解答:解:﹣5的相反数是5.故选B.点评:本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.2、(•湛江)四边形的内角和为()A、180°B、360°C、540°D、720°考点:多边形内角与外角。
分析:根据多边形的内角和公式即可得出结果.解答:解:四边形的内角和=(4﹣2)•180°=360°.故选B.点评:本题主要考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.3、(•湛江)数据1,2,4,4,3的众数是()A、1B、2C、3D、4考点:众数。
专题:应用题。
分析:根据众数的定义,从数据中找出出现次数最多的数解答即可.解答:解:1,2,4,4,3中,出现次数最多的数是4,故出现次数最多的数是4.故选D.点评:此题考查了众数的定义,一组数据中出现次数最多的数叫做众数.4、(•湛江)下面四个几何体中,主视图是四边形的几何体共有()A、1个B、2个C、3个D、4个考点:简单几何体的三视图。
分析:仔细观察图象,根据主视图的概念逐个分析即可得出答案.解答:解:仔细观察图象可知:圆锥的主视图为三角形,圆柱的主视图也为四边形,球的主视图为圆,只有正方体的主视图为四边形;故选B.点评:本题主要考查三视图的主视图的知识;考查了学生地空间想象能力,属于基础题.5、(•湛江)第六次人口普查显示,湛江市常住人口数约为6990000人,数据6990000用科学记数法表示为()A、69.9×105B、0.699×107C、6.99×106D、6.99×107考点:科学记数法—表示较大的数。
专题:常规题型。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6 990 000用科学记数法表示为6.99×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、(•湛江)在下列图形中,既是轴对称图形,又是中心对称图形的是()A、直角三角形B、正五边形C、正方形D、等腰梯形考点:中心对称图形;轴对称图形。
分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中性对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.7、(•湛江)下列计算正确的是()A、a2•a3=a5B、a+a=a2C、(a2)3=a5D、a2(a+1)=a3+1考点:单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
分析:根据同底数幂的乘法法则:底数不变,指数相加,以及合并同类项:只把系数相加,字母及其指数完全不变.积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘,分别求出即可.解答:解:A.a2•a3=a5,故此选项正确;B.a+a=2a,故此选项错误;C.(a2)3=a6,故此选项错误;D.a2(a+1)=a3+a2,故此选项错误;故选:A.点评:此题主要考查了整式的混合运算,根据题意正确的掌握运算法则是解决问题的关键.8、(•湛江)不等式的解集x≤2在数轴上表示为()A、B、C、D、考点:在数轴上表示不等式的解集。
专题:探究型。
分析:根据在数轴上表示不等式解集的方法表示出不等式的解集x≤2,再得出符合条件的选项即可.解答:解:不等式的解集x≤2在数轴上表示为:故选B.点评:本题考查的是在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9、(•湛江)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A、甲B、乙C、丙D、丁考点:方差。
分析:本题须根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小则谁的成绩最稳定.解答:解:∵S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故选D.点评:本题主要考查了方差的意义,在解题时要能根据方差的意义和本题的实际,得出正确结论是本题的关键.10、(2009•重庆)如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A、70°B、80°C、90°D、100°考点:平行线的性质;对顶角、邻补角。
专题:计算题。
分析:在题中∠AEC和∠DEB为对顶角相等,∠DEB和∠D为同旁内角互补,据此解答即可.解答:解:因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.点评:本题比较容易,考查平行线的性质及对顶角相等.11、(•湛江)化简的结果是()A、a+bB、a﹣bC、a2﹣b2D、1考点:分式的加减法。
分析:根据同分母的分式相加的法则:分母不变,分子相加减.解答:解:原式===a+b.故选A.点评:本题是基础题,考查了分式的加减,同分母的分式相加的法则:分母不变,分子相加减.12、(2010•湘潭)在同一坐标系中,正比例函数y=x与反比例函数的图象大致是()A、B、C、D、考点:反比例函数的图象;一次函数的图象。
分析:根据正比例函数与反比例函数图象的性质进行选择即可.解答:解:∵正比例函数y=x中,k=1>0,∴此图象过一、三象限;∵反比例函数中,k=2>0,∴此函数图象在一、三象限.故选B.点评:此题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题共8小题,每小题4分,其中17~20小题每空2分,共32分)13、(•湛江)分解因式:x2+3x=x(x+3).考点:因式分解-提公因式法。
分析:观察原式,发现公因式为x;提出后,即可得出答案.解答:解:x2+3x=x(x+3).点评:主要考查提公因式法分解因式,此题属于基础题.14、(•湛江)已知∠1=30°,则∠1的补角的度数为150度.考点:余角和补角。
专题:计算题。
分析:若两个角的和等于180°,则这两个角互补.根据已知条件直接求出补角的度数.解答:解:∵∠1=30°,∴∠1的补角的度数为=180°﹣30°=150°.故答案为:150.点评:本题考查了补角的定义,解题时牢记定义是关键.15、若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于﹣1.考点:方程的解。
专题:计算题。
分析:使方程左右两边的值相等的未知数的值是该方程的解.将方程的解代入方程可得关于m的一元一次方程,从而可求出m的值.解答:解:根据题意得:4+3m﹣1=0解得:m=﹣1,故填﹣1.点评:已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于m字母系数的方程进行求解,注意细心.16、(•湛江)如图,A,B,C是⊙O上的三点,∠BAC=30°,则∠BOC=60度.考点:圆周角定理。
分析:利用圆周角定理,同弧所对的圆周角等于圆心角的一半,可得∠COB=2∠BAC,即可得到答案.解答:解:∵∠BAC=30°,∴∠COB=2∠BAC=30°×2=60°.故答案为:60.点评:此题主要考查了圆周角定理,关键是找准同弧所对的圆周角和圆心角.17、(•湛江)多项式2x2﹣3x+5是二次三项式.考点:多项式。
专题:计算题。
分析:根据单项式的系数和次数的定义,多项式的定义求解.解答:解:由题意可知,多项式2x2﹣3x+5是二次三项式.故答案为:二,三.点评:本题主要考查多项式的定义,解答此次题的关键是熟知以下概念:多项式中的每个单项式叫做多项式的项;多项式中不含字母的项叫常数项;多项式里次数最高项的次数,叫做这个多项式的次数.18、函数y=中自变量x的取值范围是x≥3,若x=4,则函数值y=1.考点:函数自变量的取值范围;二次根式有意义的条件。
专题:计算题。
分析:根据二次根式有意义的条件求解即可.即被开方数是非负数.直接把x=4代入函数解析式即可求y 的值.解答:解:依题意,得x﹣3≥0,解得x≥3;若x=4,则y=4-3=1=1.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数是非负数.19、(•湛江)如图,点B,C,F,E在同直线上,∠1=∠2,BC=EF,∠1不是(填“是”或“不是”)∠2的对顶角,要使△ABC≌△DEF,还需添加一个条件,可以是AC=FD(只需写出一个)考点:全等三角形的判定;对顶角、邻补角。
专题:开放型。
分析:根据对顶角的意义可判断∠1不是∠2的对顶角.要使△ABC≌△DEF,已知∠1=∠2,BC=EF,则只需补充AC=FD或∠BAC=∠FED都可,答案不唯一.解答:解:根据对顶角的意义可判断∠1不是∠2的对顶角故填:不是.添加AC=FD或∠BAC=∠FED后可分别根据SAS、AAS判定△ABC≌△DEF,故答案为:AC=FD,答案不唯一.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.20、(•湛江)若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A73=210(直接写出计算结果),并比较A103<A104(填“>”或“<”或“=”)考点:规律型:数字的变化类。