核外电子的运动状态

合集下载

核外电子的运动状态

核外电子的运动状态
为解方程,将直角坐标ψ (x、y、z)转化为 球坐标ψ(r、θ 、φ)
2019/11/6 22
x r sin cos y r sin sin z r cos
r x2 y2 z2
ψ(x、y、z)→ψ(r、θ 、φ) =R(r) ·Y( θ 、φ)
波函数径 向部分
[思考题]:由公式能看出谱线频率有何特征? 氢原子光谱的谱线频率不是任意变化的,而
是随着两个正整数的改变而做跳跃式的变化, 即氢原子光谱为不连续光谱。
2019/11/6 8
3.玻尔理论 理论要点
2019/11/6 9
⑴稳定轨道:核外电子是在一些符合一定条件 的轨道上运动。这些轨道具有固定的能量 P=mυr= nh/2π,称稳定轨道。在此轨道上 运动的电子不放出能量,也不吸收能量。
1

6 .626 10 34
(
n
2 1

n
2 2
)

3 .289

10
15
(
1
n
2 1

1
n
2 2
)
理论推导与实验结果完全相同。即波尔理论能 较好地解释氢原子光谱产生的原因和规律性。
2019/11/6 13
32
3.289

1015
(
1 22

1 32 )
4.57 1014 (s1 )
到能量较低的轨道,并以光子的形式释放出能 量。所以激发态原子能发光。
可见光
紫外
2019/11/6 12
电子运动频率的理论推导
氢原子
E E2 E1 h
(
13 .6
n

核外电子的运动状态和排布规律

核外电子的运动状态和排布规律

结构理论(一)核外电子的运动状态和排布规律围绕在原子核外作高速运动的电子,有它特殊的运动状态。

早在本世纪初,科学实验已证明了电子是一种质量为9.11×10-28g的微小粒子,证明了电子的运动具有粒子性。

但是,以后科学实验又证明了电子的运动和光、X射线一样具有波动性。

这就是说,电子的运动具有波粒二象性。

电子运动的这种波粒二象性,使它难以用经典物理学的一些基本定律来描述。

现代研究核外电子运动状态的理论叫做原子波动力学。

它是在上世纪20年代末由奥地利物理学家薛定谔等人发展起来的。

它的基本方面是一些复杂的数学波动方程,叫做薛定谔方程。

核外电子的运动正是通过计算薛定谔方程的解来加以描述的。

这里,我们只能按照原子波动力学的基本观点,初步形象地去认识核外电子的运动状态,从而再寻找出原子核外电子的排布有着怎样的规律。

一、电子云在描绘核外电子运动时,只能指出它在原子核外空间各处出现机会的多少。

电子在核外空间一定范围内出现,好像是带负电荷的云雾笼罩在原子核的周围。

可以形象地称它为“电子云”。

核外电子出现机会愈多的区域,电子云的密度愈大。

下图描绘了氢原子处于基态时的电子云。

氢原子核外只有1个电子,图中的“雾状”,说明氢原子核外电子在一个球形的空间里作高速运动。

图中表示,黑点密集处是电子出现机会多的地方,黑点稀疏处是电子出现机会少的地方。

二、描述核外电子运动状态的四个方面对于原子核外的每一个电子的运动状态,都可以从以下四个方面来描述。

1.电子层原子核外的电子可以看作是分层排布的。

处于不同层次中的电子,离核的远近也不同。

离核愈近的电子层能量愈低,离核愈远的电子层能量愈高。

通常用n=1、2、3…等数值来表示电子层离核的远近。

n=1,即表示离核最近的电子层,其中的电子能量最小。

n=2,即表示为第二电子层。

有时也用K、L、M、N、O等分别表示1、2、3、4、5等电子层。

我们怎么知道含有多个电子的原子里核外电子的能量并不相同呢?根据对元素电离能数据的分析,可以初步得到这个结论。

4-2 核外电子运动状态的描述

4-2 核外电子运动状态的描述
如对于氢原子 E4s = E4p = E4d = E4f
3. 磁量子数 m m 称为磁量子数。 取值 磁量子数 m 取值 受角量子数 l 的影响。
对于给定的 l ,m 可取: 0, 1, 2, 3,… … , l
共 2 l + 1 个值。
若 l = 2,则 m = 0, 1, 2 共 5 个值。
px 和 py 轨道没有对 应的磁量子数。
以前讲过 波函数称为原子轨道。 有时波函数要经过线性组 合,才能得到有实际意义的原 子轨道。
l = 1,m 有 3 种取值,故 有 3 种不同空间取向的 p 轨道。
l = 2,m 有 5 种取值,故 有 5 种不同空间取向的 d 轨道。
m 取值的数目,与轨道不同 空间取向的数目是对应的。
角动量在 z 轴上的分量 Mz。
Mz 可以由如下公式求得
Mz =
m
h 2
轨道角动量在 z 轴上的分量
Mz =
m
h 2
由于 m 的取值只能是
0, 1, 2, 3,… … , l ,
所以 Mz 是量子化的。
如 l = 1 时,
h
h
| M | = l(l + 1) 2 = 2 2
m
0 +1 -1
例如 n = 4 时,l 有 4 种取 值,就是说核外第 4 层有 4 种形 状不同的原子轨道:
l = 0 表示 4s 轨道,球形
l = 0 表示 4s 轨道,球形 l = 1 表示 4p 轨道,哑铃形 l = 2 表示 4d 轨道,花瓣形 l = 3 表示 4f 轨道,
由此可知,在第 4 层上,共有 4 种不同形状的轨道。
主量子数 n 只能取 1,2,3,4 ……等正整数,故能量只有不连续的 几种取值,即能量是量子化的。

核外电子运动状态的描述

核外电子运动状态的描述
单电子原子:
多电子原子:
为屏蔽系数,其值的大小与l的取值相关
3.磁量子数m
m取值受l的影响,对于给定的l , m可取:
个值.
例如: l = 3,则 共7个值.意义:对于形状一定的轨道( l相同电子轨道), m决定其空间取向.例如: l = 1, 有三种空间取向(能量相同,三重简并).
简并轨道:能量相同的原子轨道,称为简并轨道
1.径向分布函数
首先,看波函数 与r之间的变化关系,亦即R(r) - r之间的关系,看几率密度随半径如何变化.
考察单位厚度球壳内电子出现的几率:即在半径 r的球壳内电子出现的几率.
令: D(r) = D(r)即为径向分布函数.用D(r)对r作图,考察单位球壳内的几率D(r)随r的变化:注意:离中心近的几率大,但半径小;离中心远的几率小,但半径大,所以径向函数不是单调的(即不单调上升或单调下降,有极限值)
从以上三个式子中可见,波函数被分为两项,即为径向部分R和角度部分Y .在此,并不要求我们去解薛定谔方程,只要了解薛定谔方程的形式以及其特殊的解即可.波函数 的下标1, 0, 0; 2, 0, 0; 2, 1, 0所对应的1s, 2s, 2pz是什么?意义如何?
二用四个量子数描述电子的运动状态
波函数 的下标1, 0, 0; 2, 0, 0; 2, 1, 0所对应的是n, l, m,称为量子数.
b.其它轨道的 比Y的图形“瘦”,比较苗条.因为三角函数的Sin和Cos的取值小于等于1,平方后的值必然更小.
c. 无正负,而Y有正负.这种正负只是Y计算中取值的正负(在成键中代表轨道的对称性,不是电荷的正负)
假如:知道了矢量的模|M|和矢量方向,以及其与z轴之间的夹角,则可求得矢量在z轴上的分量.

核外电子运动状态描述

核外电子运动状态描述

4d 4f
③磁量子数m: 描述电子云的空间取向,即原子 轨道态。 m可以取0、±1、±2 … ±l共(2l +1)个数值. n、 l 、m确定,原子轨道就确定了.


原子轨道的表示方法:
s能级只有1个原子轨道,可表示为s。 p能级有3个原子轨道,可表示为px、py、pz。 d能级有5个原子轨道,f能级有7个原子轨道。

悬疑一:下列是高一时我们学习过的原子结构示意图

2n2 第n层容纳的最多电子数=___________.此公式如何
而来?
悬疑问题二
在钠原子中
电子跃迁
n=4
n=3
在氢原子中
电子跃迁
n=2
n=1
也得到两条靠得很近的谱线…
由波尔理论相邻能层电子跃迁只会有一条谱线! 为什么会有两条或更多那?
问题延伸:单电子原子中第n能层的p能级向s能级跃 迁无外磁场时有一条谱线,有外磁场时却分裂成三 条,原因?
薛定谔方程 与原子轨道
1887-1961 E.Schrodinger , 奥地利物理学 家
了解: 薛定谔方程(1926年提出) Hψ=Eψ
8 m 2 2 2 ( E V ) 0 2 x y z h
2 2 2 2
-量子力学中描述核外电子
在空间运动的数学函数式,即原子轨道 E-轨道能量(动能与势能总和 ) m—微粒质量, h—普朗克常数 x,y, z 为微粒的空间坐标 (x,y,z) 波函数
结论:密闭箱中同时出现
衰变原子+未衰变原子 死猫+活猫!
科 学 界 反 应:

实验验证:1996年5月,美国科罗拉多州博尔德的国家标准 与技术研究所(NIST)的Monroe等人用单个铍离子作成了 “薛定谔的猫”并拍下了快照,发现铍离子在第一个空间位 置上处于自旋向上的状态,而同时又在第二个空间位置上处 于自旋向下的状态,而这两个状态相距80纳米之遥!(1纳 米为1米的十亿分之一)——这在原子尺度上是一个巨大的 距离。想像这个铍离子是个通灵大师,他在纽约与喜马拉雅 同时现身,一个他正从摩天楼顶往下跳伞;而另一个他则正 爬上雪山之巅!——量子的这种“化身博士”特点,物理学 上称“量子相干性”。

原子核外电子的空间运动状态

原子核外电子的空间运动状态

原子核外电子的空间运动状态原子核外电子的空间运动状态:(一)电子轨道1、电子轨道是电子沿着原子核外围运动的一条椭圆形轨迹。

这条椭圆形轨迹完全由电子和核间的电磁场相互作用决定。

2、电子轨道的轨道角动量是指电子在原子核外围空间运动的时候的角动量,它可以通过电磁场的膜位能准确的确定出来。

3、电子轨道的运动状态就是指电子在轨道中的运动状态,包括了单重态的电子轨道运动状态,以及双重态的电子轨道运动状态和三重态的电子轨道运动状态等。

(二)电子自旋1、电子自旋是电子在空间中自身运动的一个特征,通俗来说就是电子在原子核外围空间中以固定的角速度运动。

2、电子自旋具有两个独立的特性,即电子的线性自旋,也就是说电子的运动方向不断变化;另一个就是电子的角速度自旋,也就是说电子的具体自旋方向会一直保持不变。

3、自旋的结构包括两个自旋态,一个是有磁态,即自由自旋,它没有内部能量变化;对应的还有无磁态,即锁定自旋,它有内部能量变化。

(三)电子跃迁1、电子跃迁是指电子在原子核外围空间中运动时从一个轨道状态跃到另一个空间状态的过程,电子跃迁中包括了单重态电子跃迁,双重态电子跃迁和三重态电子跃迁等等。

2、电子跃迁的机理一般是由电磁场的膜位能决定的,这也是电子跃迁过程发生的根本原因。

电子跃迁过程中,电子原先处在的低能量状态会被电磁场膜位能引导,由低能量跃到其他的高能量状态之中。

3、电子跃迁过程还会受到外界的干扰,包括光辐射,热辐射等,外界的干扰可以使原子中电子从一个轨道跃到另一个轨道或空间状态,从而使原子转变为激发态,从而发生一系列使原子性质发生变化的现象。

(化学课件)原子核外电子的运动状态

(化学课件)原子核外电子的运动状态

讨论:见课本P5
一个小黑点仅表示电子在此出现了一次。
小黑点的疏密仅表示电子出现几率的大小。
即小黑点较稀的地方表示电子在此出现的机 会少;小黑点较密的地方表示电子在此出现 的机会多。
(三)、决定核外电子运动状态的因素
1、电子层: 在多电子的原子里,它们的运动区域 也不同。能量低的电子通常在离核较近的空间范 围运动,能量高的电子通常在离核较远的空间范 围内运动,
[说明]1、自左向右、自上而下,轨道能量依次递增。
2、每个能级组以ns轨道开始、以np轨道结束。
(3)为什么每个电子层所能容纳的电子数最 多为2n2(n为电子层数)?
1、4d轨道中最多容纳电子数为
A、2
B√ 、 10 C、 14 D、 18
2、下列轨道含有轨道数目为3的是
A、1s B√ 、2p √C、3p D、4d
3、第三电子层含有的轨道数为 A、3 B、 5 C、 7 D√ 、 9
五、电子亚层的能量比较规律
1、相同电子层上电子亚层能量的高低: ns<np<nd<nf
2、形状相同的电子亚层能量的高低: 1s<2s<3s<4s…… 2p<3p<4p<5p…… ……
3、电子层和形状相同的电子亚层的能量相等: 如2px = 2py =2pz
/ / / / / / 1s<—2s<—2p<3—s<3—p<—4s<3d<4—p<5—s<4d<5—p<—6s<4f<5d<6—p<7—s<5f<6d<—7p
结合电子云的形状及伸展方向显然可知:S亚层有 1个轨道,P亚层有3个轨道, d 亚层有5个轨道, f亚层有7个轨道。
四、电子自旋

核外电子运动状态的描述

核外电子运动状态的描述

核外电子运动状态的描述2-2 核外电子运动状态的描述一、波函数和原子轨道1.波动方程描述宏观物体运动状态的状态方程F=ma,即牛顿第二定律。

那么对微观粒子的运动,能不能也有个状态方程呢?1926年,奥地利物理学家薛定谔根据德布罗依预言,提出了描述微观粒子运动状态的波动方程,称为薛定谔方程其基本形式是:这是个高等数学中的二阶偏微分方程,式中x、y、z为粒子在空间的直角坐标,m可近似看作是电子质量,E为总能量即电子的动能和势能之和,V是势能即核与电子的吸引能,ψ为方程的解(ψ是希腊字母,读做普赛[Psi])。

薛定谔方程是用来描述质量为m的微观粒子,在势能为V的势场中运动,其运动状态和能量关系的定态方程。

因为薛定谔方程的每一合理的解ψ,都表示该粒子运动的某一稳定状态,与这个解相应的常数E,就是粒子处于这个稳定状态的能量。

由于有很多解,说明具有多种运动状态。

对于一定体系,能量最低的状态称为基态,能量较高的状态称为激发态。

粒子由一个状态跃迁到另一状态,能量的改变量是一定的,不能取任意的数值,即能量是量子化的由于薛定谔方程是高等数学中一个微分方程,与初等数学中方程不同,它的解ψ不是一些数而是些函数。

它是波的振幅与坐标的函数,因此称作波函数。

2.波函数(ψ)如上所述,波函数ψ就是薛定谔方程的解,是描述核外电子空间运动状态的数学函数式。

如同一般函数式有常量和变量一样,它包含三个常量和三个变量,它的一般形式为式中n、l、m为三个常量,x、y、z为三个变量。

电子在核外运动,有一系列空间运动状态。

每一特定状态就有一个相应的波函数ψ和相应的能量E。

如有1s、2s、2p、3d、4f……等等核外空间状态,就有ψ1s、ψ2s、ψ2p、ψ3d、ψ4f……和E1s、E2s、E2p、E3d、E4f……与其相对应。

或者说一个确定的波函数ψ就代表着核外电子的一个空间运动状态,电子处于这个空间状态运动时就具有确定的能量和其它一些相应的物理量。

核外电子的运动状态

核外电子的运动状态
等领域的应用。
核外电子的运动状态也是量子力 学的重要应用之一,对于物理学
的发展和深化具有重要意义。
02
核外电子的基本概念
电子云
01
电子云是用来描述电子在原子核外空间某处出现的概率密度分 布的概念。
02
电子云的大小和形状取决于电子的能级和量子数,能级越高,
电子云越小。
电子云可以用来描述电子的运动状态,但不能精确地描述电子
07
结论
研究成果总结
核外电子的运动状态是量子力 学的重要研究对象,其运动规
律与经典物理截然不同。
通过实验和理论计算,科学家 们发现电子在原子中的运动状 态受到原子核的吸引力和电子 之间的相互作用力共同影响。
电子的运动状态可以通过能级 、波函数等概念进行描述,这 些概念在量子力学中具有重要 地位。
06
核外电子运动状态的应用
在材料科学中的应用
电子结构与材料性质
通过研究核外电子的运动状态,可以深入了解材料的电子 结构,从而预测和解释材料的物理、化学和机械性质。
新型材料设计
基于电子结构的理论计算,可以预测和设计具有特定性质 的新型材料,如超导材料、磁性材料和光学材料等。
材料改性
通过改变材料的电子结构,可以实现材料的改性,优化其 性能,如通过掺杂、合金化等方法改变半导体的电学性质。
核外电子的运动状态受到原子核的吸引力和电子之间的相互作用力的影响,表现出 特定的运动规律和分布特点。
研究意义
核外电子的运动状态是理解元素 周期表和化学键合机制的基础, 对于化学反应和物质性质的研究
具有重要意义。
通过对核外电子运动状态的研究, 可以深入了解物质的物理、化学 性质以及其在材料科学、生物学
温度升高会使原子或分子的热运动加 剧,影响核外电子的平均动能,进而 影响其运动状态。

1.1.2原子核外电子的运动

1.1.2原子核外电子的运动

电子层
轨道
轨道能量顺序
7
P 核 外O 电 子N 填M 充 顺 L 序 图K
4s 3s 2s 1s
4p 3p 2p
4d 3d
4f
4 1998年诺贝尔化学奖授予科恩(美)和波普尔(英),以表 彰他们在理论化学领域做出的重大贡献。他们的工作使实 验和理论能够共同协力探讨分子体系的性质,引起整个化 学领域正在经历一场革命性的变化。下列说法正确的是 A.化学不做实验就什么都不知道 B.化学不再需要实验 C.化学不再是纯实验科学 D.未来化学的方向是经验化
二、原子核外电子的运动
2007年9月14日
原子核外电子的运动
复习要点
一、人类对原子结构的认识历史 二、原子核外电子的运动特征 三、原子核外电子的排布
课程标准
一、了解核外电子的运动状态
二、了解原子构造原理
三、知道原子核外电子的能级分布
四、能用电子排布式表示常见元素
(1—36号)原子核外电子的排布
D的原子第三电子层上有8个电子,第四电子层上只有1个电
子; E原子的价电子排布为3s23p6。 则各元素是何种元素?
体验高考
山东、
(1)前四周期元素中,基态原子中未成对电子数
与其所在周期数相同的元素有 种。 (2)第ⅢA、ⅤA族元素组成的化合物GaN、GaP 、GaAs等是人工合成的新型半导体材料,其晶体结 构与单晶硅相似。Ga原子的电子排布式为 。
(2)写出Y元素最高价氧化物水化物的电离方程式 (3)元素T与氯元素相比,非金属性较强的是 (用元素符号表示),下列表述中能证明这一事实的是
a 常温下氯气的颜色比T单质的颜色深 b T的单质通入氯化钠水溶液不能置换出氯气 c 氯与T形成的化合物中氯元素呈正价态 (4)探寻物质的性质差异性是学习的重要方法之—。T、X 、Y、Z四种元素的单质中化学性质明显不同于其他三种单质的 是 ,理由 。

核外电子运动状态

核外电子运动状态

•(1)电子层
• KLMNOPQ
•能量:低

4
(2)电子亚层
• 电子层中能量不同的空间 • ①用s、p、d、f分别表示不同的电子亚层 • ②各个电子层中电子亚层数与各电子层的序数相等 •1 2 3 4 • s sp spd spdf • ③同一电子层中,处于不同亚层的电子能量按照s、p、d、f的顺
三 原子核外电子运动状态
1
•电子运动的特征: •(1)质量小,带负电荷 •(2)速度大,接近光速 •(3)运动空间小 直径100pm以内
2
描述核外电子运动的方法:电子云
•电子在原子核外空间出现的几率, •小黑点的意义: •小黑点密的意义:
•电子云的形状与电子的运动状态有关。
3
二、核外电子运动状态
13
12
4.电子排布式的书写
• 结构示意图 • 电子式:电子式是在元素符号周围用小黑点或“×”
的数目表示该元素原子的最外层电子数的式子。 • 电子排布式: (最外层电子排布式,离子电子排布
式) • 表示出所处的电子亚层,右上角标示所排数目。 • 轨道排布式:用方框表示轨道,用箭头表示电子。 • 练习:1~18号电子排布式。
序递增
5
电子的能量由哪些因素决定?
•电子层和电子亚层 •比较下列电子亚层中的电子的能量高 低。 •E1s E2s E3s •E3s E3p E3d
6
(3)电子云伸展方向
• s电子云是球形对称的,在空间各个方向的 伸展程度相同,所以只有1个伸展方向; • p电子云是纺锤形的,在空间上有x、y、z3 个伸展方向,即px、py、pz; • d电子云有5个伸展方向; • f电子云有7个伸展方向; • 不同伸展方向上的电子能量是相同的。

无机化学-原子结构-核外电子的运动状态

无机化学-原子结构-核外电子的运动状态
正向(+1/2)和反向(-1/2) ★ 产生方向相反的磁场 ★ 相反自旋的一对电子, 磁场相互抵消.
28
由上面的讨论知道 n, l, m 一定, 轨道也确定
l
0
1
2
Orbital s
p
d
例如: n = 2, l = 0, m = 0,
n = 3, l = 1, m = 0,
n = 3, l = 2, m = 0,
核外电子运动 的运动状态
n 原子轨道 l
m
自旋运动 ms
3…… f…… 2s 3pz 3dz2
与一套量子数相对应(自然也有1个能量Ei)
29
六、波函数Ψ (r,θ,φ) 的图形描述
将SchrÖdinger n, l, m ( r, , ) = R n, l (r) Y l,m ( , )
方程变量分离:
氢原子光谱由五组线系组成, 任 何一条谱线的波数(wave number) 都满足简单的经验关系式:
~
RH
1 n12
1 n22
名字
n1
Lyman 系 1
Balmer系 2
Paschen系 3
Brackett系 4
Pfund系
5
n2 2, 3, 4,… 3, 4, 5,… 4, 5, 6,… 5, 6, 7,… 6, 7, 8,…
r h2 n2
4 2mze2
rn = 53n2 pm
对于氢原子,r = 53 pm, 这就 是著名的 波尔半径.
② 关于能量的吸收和发射
电子在不同轨道之间跃迁时,原子会吸收或辐射出光子。吸收或 辐射出光子能量的多少决定于跃迁前后两个轨道能量之差。即:
h E E2 E1

核外电子运动状态完整版

核外电子运动状态完整版

核外电子运动状态标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]ZK 高一化学K1 第四讲一、【知识梳理】 电子在原子核外很小的空间内作高速运动,其运动规律跟一般物体不同,它们没有确定的轨道。

因此,我们不能同时准确地测定电子在某一时刻所处的位置和运动的速度,也不能描画出它的运动轨迹。

那么,如何描述原子核外电子的运动状态呢?一、电子云科学上应用统计的原理,以每一个电子在原子核外空间某处出现机会的多少,来描述原子核外电子运动状态。

电子在核外空间一定范围内出现,好象带负电荷的云雾笼罩在原子核的周围,所以我们形象地称它为“电子云”。

见下图。

在电子云示意图中,小黑点表示电子出现的次数,小黑疏密(电子云密度)表示电子出现的几率。

氢原子电子云:①球形;②离核近,电子云密度大,表示电子出现几率大;③离核远,电子云密度小,表示电子出现几率小。

为了便于理解,我们假想有一架特殊的照相机给氢原子照相。

先给某个氢原子拍五张照片,得到下图所示的不同的图象。

图中⊕表示原子核,一个小黑点表示电子在这里出现一次。

给氢原子拍上成千上万张照片,研究每一张照片会使我们获得这现。

如果我们将这些照片叠印,就会看到如图所示的图象。

图象说明,对氢原子的照片叠印张数越多,就越能使人形成一团电子云雾笼罩原子核的印象,这团原子核外电子的运动状态可以从四个方面进行描述:1.电子层在含有多个电子的原子里,电子的能量并不相同,电子运动的区域也不相同,能量低的电子通常在离核近的区域运动,能量高的电子通常在离核远的区域运动。

根据电子的能量差异和通常运动区域离核的远近不同,可以将核外电子分成不同电子层。

离核最近的为第一层,离核稍远的为第二层,依次类推,由近及远为三、四、五、六、七层,用符号K、L、M、N、O、P、Q表示。

2.电子亚层和电子云的形状科学研究发现,在同一电子层中,电子的能量还稍有差别,电子云的形状也不相同。

根据这个差别,又可以把一个电子层分成一个或几个亚层,分别用s、p、d、f等符号表示。

基态原子的核外电子运动状态

基态原子的核外电子运动状态

基态原子的核外电子运动状态原子核外电子运动状态是指原子核外电子的能量和动量分布。

它是一个重要的物理概念,广泛应用于化学和物理学中。

在化学反应过程中,原子核外电子的运动状态是决定化学性质的关键因素。

原子核外电子的运动状态可以用量子力学来表示,它可以被划分为基态,也可以被划分为激发态。

基态是由最低能量组成的原子核外电子状态,它是原子核外电子最安静的状态,也是最常见的状态。

激发态是指原子核外电子脱离基态,由更高能量组成的状态,它是原子核外电子最活跃的状态,是化学反应的关键因素。

当原子核外电子的能量高于基态时,它们就处在激发态。

激发态的电子能量一般分布在原子核外部,而基态的电子能量则偏向原子核内部。

此外,激发态的电子动量要大于基态,因此它们拥有更多的运动能量,可以更快地进行化学反应。

原子核外电子的运动状态影响着原子核外电子在化学反应中的能量转移状态。

当原子核外电子以激发态显示时,它们可以与其他原子核外电子靠近,从而改变原子核外电子的能量分布,从而影响化学反应的结果。

原子核外电子的运动状态是化学反应的关键因素,但是,它们的运动状态也受到原子核外电子的粒子属性的影响,如质量、电荷和自旋等。

这些粒子属性决定了原子核外电子的运动状态,从而影响化学反应的特性。

由于原子核外电子的运动状态受到许多因素的影响,因此,在研究化学反应时,必须综合考虑原子核外电子的运动状态。

总之,原子核外电子的运动状态是一个重要的物理概念,它可以用量子力学来表示,并可以被划分为基态和激发态。

原子核外电子的运动状态和粒子属性都决定了其在化学反应中的能量转移状态,因此,在研究化学反应时,必须综合考虑原子核外电子的运动状态。

核外电子的运动状态

核外电子的运动状态

核外电子的运动状态电子在原子中的运动状态,可n,l,m,ms四个量子数来描述.(一)主量子数n主量子数n是用来描述原子中电子出现几率最大区域离核的远近,或者说它是决定电子层数的.主量子数的n的取值为1,2,3…等正整数. 例如,n=1代表电子离核的平均距离最近的一层,即第一电子层;n=2 代表电子离核的平均距离比第一层稍远的一层,即第二电子层•余此类推.可见n愈大电子离核的平均距离愈远.在光谱学上常用大写拉丁字母K,L,M,N,O,P,Q代表电子层数.主量子数(n)1 2 3 4 5 6 7电子层符号K L M N O P Q主量子数n是决定电子能量高低的主要因素•对单电子原子来说,n值愈大,电子的能量愈高.但是对多电子原子来说,核外电子的能量除了同主量子数n有关以外还同原子轨道(或电子云)的形状有关•因此,n 值愈大,电子的能量愈高这名话,只有在原子轨道(或电子云)的形状相同的条件下,才是正确的.(二)副量子数l副量子数又称角量子数•当n给定时,1可取值为0,1,2,3…(n-1 )•在每一个主量子数n中,有n个副量子数,其最大值为n-1.例如n=1时,只有一个副量子数,1=0,n=2时,有两个副量子数,l=0,l=1.余此类推.按光谱学上的习惯l还可以用s,p,d,f等符号表示.l 0 1 2 3光谱符号s p d F副量子数l的一个重要物理意义是表示原子轨道(或电子云)的形状丄=0时(称s轨道),其原子轨道(或电子云)呈球形分布(图4-5 ); l=1时(称p轨道),其原子轨道(或电子云)呈哑铃形分布(图4-6 );••• 图4-5 s电子云图4-6 p电子副量子数l的另一个物理意义是表示同一电子层中具有不同状态的亚层•例如,n=3时,l可取值为0,1,2.即在第三层电子层上有三个亚层,分别为s,p,d亚层•为了区别不同电子层上的亚层,在亚层符号前面冠以电子层数•例如,2s是第二电子层上的亚层,3p是第三电子层上的p亚层•表4-1列出了主量子数n,副量子数l及相应电子层、亚层之间的关系.表4-1主量子数n,副量子数l及其相应电子层亚层之间的关系n电子层l亚层0 1s2 2 0 2s1 2p3 3 0 3s1 3p2 3d444s14p24d34f对于单电子体系的氢原子来说,各种状态的电子能量只与n有关.但是对于多电子原子来说,由于原子中各电子之间的相互作用,因而当n相同,1不同时,各种状态的电子能量也不同,1愈大,能量愈高即同一电子层上的不同亚层其能量不同,这些亚层又称为能级•因此副量子数I的第三个物理意义是:它同多电子原子中电子的能量有关,是决定多电子原子中电子能量的次要因素.(三)磁量子数m磁量子数m决定原子轨道(或电子云)在空间的伸展方向.当I给定时,m的取值为从-I到+1之间的一切整数(包括0在内),即0, ±1, 士2, ±3,…士,共有2I+1个取值•即原子轨道(或电子云)在空间有2I+1 个伸展方向•原子轨道(或电子云)在空间的每一个伸展方向称做一个轨道.例如,1=0时,s电子云呈球形对称分布,没有方向性.m只能有一个值,即m=0,说明s亚层只有一个轨道为s轨道•当1=1时,m可有-1,0,+1三个取值,说明p电子云在空间有三种取向,即p亚层中有三个以x,y,z轴为对称轴的px,py,pz轨道.当1=2时,m可有五个取值,即d电子云在空间有五种取向,d亚层中有五个不同伸展方向的d轨道(图4-7).图4-7 s,p,d电子云在空间的分布n,l相同,m不同的各轨道具有相同的能量,把能量相同的轨道称为等价轨道.(四)自旋量子数ms原子中的电子除绕核作高速运动外,还绕自己的轴作自旋运动.电子的自旋运动用自旋量子数ms表示.ms的取值有两个,+1/2和-1/2.说明电子的自旋只有两个方向,即顺时针方向和逆时针方向•通常用“r 禾和“J ”表示.综上所述,原子中每个电子的运动状态可以用n,l,m,ms四个量子数来描述•主量子数n决定电子出现几率最大的区域离核的远近(或电子层),并且是决定电子能量的主要因素;副量子数l决定原子轨道(或电子云)的形状,同时也影响电子的能量;磁量子数m决定原子轨道(或电子云)在空间的伸展方向;自旋量子数ms决定电子自旋的方向•因此四个量子数确定之后,电子在核外空间的运动状态也就确定了量子数,电子层,电子亚层之间的关系每个电子层最多容纳的电子数 2 8 18 2n八2主量子数n12 3 4电子层K L M N角量子数I 0 1 2 3电子亚层s p d f每个亚层中轨道数目13 5 7每个亚层最多容纳电子数 2 6 10 14核外电子的分布:1.原子中电子分布原理:(两个原理一个规则):(1) 、泡利(Pauli)不相容原理在同一原子中,不可能有四个量子数完全相同的电子存在•即每一个轨道内最多只能容纳两个自旋方向相反的电子.(2) 、能量最低原理多电子原子处于基态时,核外电子的分布在不违反泡利原理前提下,总是尽先分布在能量较低的轨道,以使原子处于能量最低状态.(3) 、洪特(Hund)规则原子在同一亚层的等价轨道上分布电子时,尽可能单独分布在不同的轨道,而且自旋方向相同(或称自旋平行).基态原子中电子的分布1、核外电子填入轨道的顺序应用近似能级图,根据“两个原理一条规则”,可以准确地写出91种元素原子的核外电子分布式来.在110种元素中,只有19种元素原子层外电子的分布稍有例外:它们是若再对它们进一步分析归纳还得到一条特殊规律一一全充满, 半充满规则:对同一电子亚层,当电子分布为全充满(P6、d10、f14 )、半充满(P3、d5、f7 )或全空(P0、d0、f0)时,电子云分布呈球状, 原子结构较稳定,可挑出8种元素,剩余11种可作例外.多电子原子结构1、核外电子排布三原理(1)泡利不相容原理:解决各电子层电子数目问题.♦在任何一个原子中,决不可能有两个电子具有四个完全相同的量子数,即在同一个原子中,不可能有运动状态完全相同的电子.♦当n —定时丄可取(n-1)个值,而在L限定下,原子轨道可有(2L+1)个伸展方向,即(2L+1)个轨道,而每个轨道可容纳两个电子,所以每层最多容纳电子数为电子层1 2 3 4电子数2 8 18 32(2)最低能量原理:解决电子排布问题♦多电子原子在基态时,核外电子总是尽可能地先占据能量最低的轨道,以使体系能量最低.♦轨道能级规律①当角量子数相同时,随主量子数增加,轨道能级升高1s<2s<3s<4s; 2pv3p<4p<5p; 3d<4d<5d②当主量子数相同时,随角量子数增加,轨道能级升高ns<npvndvnf③当主量子数与角量子数都不同时,能级次序比较复杂,有时出现能级交错”现象,即某些主量子数较大的原子轨道其能级可以比主量子数较小的原子轨道低•如4s<3d, 5s<4d , 6s<4f<5d<6p♦鲍林近似能级图鲍林根据大量光谱数据以及某些近似的理论计算,得到了多电子原子的原子轨道能级的近似图能级组:按照能级高低的顺序,把能量相近的能级划成一组,称为能级组.按照1、2、3能级组顺序,能量依次增高.电子分布式:核外电子的分布表达式,如K:Ti:鲍林近似能级顺序并不是所有元素轨道能级的实际顺序,它只不过是表示在考虑电子分布时,随核电荷数的增加的一个电子应分布在一哪一个轨道的一般规律,它不代表核外电子的实际分布情况,如钛原子的近似能级顺序为:而其电子分布式为:(3)洪特规则:解决同一电子层电子排布问题♦处于主量子数和角量子数都相同的轨道中的电子,总是尽先占据磁量子数不同的轨道,而且自旋量子数相同(自旋平行)♦两个电子同占一个轨道,这时电子间的排斥作用会使系统能量升高, 两个电子只有分占等价轨道时,才有利于降低系统的能量,所以洪特规则可认为是最低能量原理的补充如P: 3P轨道上的3个电子分布应为:fff(4)特殊情况♦有19 种元素原子的电子分布式不完全符合近似能级顺序,如:它们的3d 轨道电子分别为10 和5 ,处于全满或半满状态,原子比较稳定, 对于p、f 轨道,半满状态为p3 和f7, 全满状态为p6 和f14♦外层电子构型即外层电子分布式,对于原子来说:主族元素:最外层的电子分布式,如:副族元素:最外层S电子和次外层d电子的分布式,如:♦元素离子的外层电子构型:当原子失去电子成为阳离子时,一般是能量较高的最外层的电子失去, 而且往往引起电子层数的减少.如:当原子得到电子成为阴离子时,电子总是分布在最外电子层上,如:元素离子的外层电子构型(1)8 电子构型2) 9~17 电子构型3) 18 电子构型4) 18+2 电子构型</np<nd<nf感谢下载!欢迎您的下载,资料仅供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核外电子的运动状态
电子在原子中的运动状态,可n,l,m,ms四个量子数来描述.
(一)主量子数n
主量子数n是用来描述原子中电子出现几率最大区域离核的远近,或者说它是决定电子层数的.主量子数的n的取值为1,2,3…等正整数.例如,n=1代表电子离核的平均距离最近的一层,即第一电子层;n=2代表电子离核的平均距离比第一层稍远的一层,即第二电子层.余此类推.可见n愈大电子离核的平均距离愈远.
在光谱学上常用大写拉丁字母K,L,M,N,O,P,Q代表电子层数.
主量子数(n)
1 2 3 4 5 6 7
电子层符号
K L M N O P Q
主量子数n是决定电子能量高低的主要因素.对单电子原子来说,n值愈大,电子的能量愈高.但是对多电子原子来说,核外电子的能量除了同主量子数n有关以外还同原子轨道(或电子云)的形状有关.因此,n 值愈大,电子的能量愈高这名话,只有在原子轨道(或电子云)的形状相同的条件下,才是正确的.
(二)副量子数l
副量子数又称角量子数.当n给定时,l可取值为0,1,2,3…(n-1).在每一个主量子数n中,有n个副量子数,其最大值为n-1.例如n=1时,只有
一个副量子数,l=0,n=2时,有两个副量子数,l=0,l=1.余此类推.按光谱学上的习惯l还可以用s,p,d,f等符号表示.
l 0 1 2 3
光谱符号s p d F
副量子数l的一个重要物理意义是表示原子轨道(或电子云)的形状.L=0时(称s轨道),其原子轨道(或电子云)呈球形分布(图4-5);l=1时(称p轨道),其原子轨道(或电子云)呈哑铃形分布(图4-6);…图4-5 s电子云图4-6 p电子
副量子数l的另一个物理意义是表示同一电子层中具有不同状态的亚层.例如,n=3时,l可取值为0,1,2.即在第三层电子层上有三个亚层,分别为s,p,d亚层.为了区别不同电子层上的亚层,在亚层符号前面冠以电子层数.例如,2s是第二电子层上的亚层,3p是第三电子层上的p亚层.表4-1列出了主量子数n,副量子数l及相应电子层、亚层之间的关系. 表4-1 主量子数n,副量子数l及其相应电子层亚层之间的关系
n
电子层
l
亚层
1
1
2 2 0 2s
1 2p
3 3 0 3s
1 3p
2 3d
4
4s
1
4p
2
4d
3
4f
对于单电子体系的氢原子来说,各种状态的电子能量只与n有关.但是对于多电子原子来说,由于原子中各电子之间的相互作用,因而当n相同,l不同时,各种状态的电子能量也不同,l愈大,能量愈高.即同一电子层上的不同亚层其能量不同,这些亚层又称为能级.因此副量子数l的第三个物理意义是:它同多电子原子中电子的能量有关,是决定多电子原子中电子能量的次要因素.
(三)磁量子数m
磁量子数m决定原子轨道(或电子云)在空间的伸展方向.当l给定时,m的取值为从-l到+l之间的一切整数(包括0在内),即0,±1,±2,
±3,…±l,共有2l+1个取值.即原子轨道(或电子云)在空间有2l+1个伸展方向.原子轨道(或电子云)在空间的每一个伸展方向称做一个轨道.例如,l=0时,s电子云呈球形对称分布,没有方向性.m只能有一个值,即m=0,说明s亚层只有一个轨道为s轨道.当l=1时,m可有-1,0,+1三个取值,说明p电子云在空间有三种取向,即p亚层中有三个以x,y,z 轴为对称轴的px,py,pz轨道.当l=2时,m可有五个取值,即d电子云在空间有五种取向,d亚层中有五个不同伸展方向的d轨道(图4-7).
图4-7 s,p,d电子云在空间的分布
n,l相同,m 不同的各轨道具有相同的能量,把能量相同的轨道称为等价轨道.
(四)自旋量子数ms
原子中的电子除绕核作高速运动外,还绕自己的轴作自旋运动.电子的自旋运动用自旋量子数ms表示.ms 的取值有两个,+1/2和-1/2.说明电子的自旋只有两个方向,即顺时针方向和逆时针方向.通常用“↑”和“↓”表示.
综上所述,原子中每个电子的运动状态可以用n,l,m,ms四个量子数来描述.主量子数n决定电子出现几率最大的区域离核的远近(或电子层),并且是决定电子能量的主要因素;副量子数l决定原子轨道(或电子云)的形状,同时也影响电子的能量;磁量子数m决定原子轨道(或电子云)在空间的伸展方向;自旋量子数ms决定电子自旋的方向.因此四个量子数确定之后,电子在核外空间的运动状态也就确定了.
量子数,电子层,电子亚层之间的关系
每个电子层最多容纳的电子数2 8 18 2n^2
主量子数n 1 2 3 4
电子层K L M N
角量子数l 0 1 2 3
电子亚层s p d f
每个亚层中轨道数目1 3 5 7
每个亚层最多容纳电子数2 6 10 14
核外电子的分布:
1. 原子中电子分布原理:
(两个原理一个规则):
(1)、泡利(Pauli)不相容原理
在同一原子中,不可能有四个量子数完全相同的电子存在.即每一个轨道内最多只能容纳两个自旋方向相反的电子.
(2)、能量最低原理
多电子原子处于基态时,核外电子的分布在不违反泡利原理前提下,总是尽先分布在能量较低的轨道,以使原子处于能量最低状态. (3)、洪特(Hund)规则
原子在同一亚层的等价轨道上分布电子时,尽可能单独分布在不同的轨道,而且自旋方向相同(或称自旋平行).
基态原子中电子的分布
1、核外电子填入轨道的顺序
应用近似能级图,根据“两个原理一条规则”,可以准确地写出91种元素原子的核外电子分布式来.
在110种元素中,只有19种元素原子层外电子的分布稍有例外:
它们是若再对它们进一步分析归纳还得到一条特殊规律——全充满,半充满规则:对同一电子亚层,当电子分布为全充满(P6、d10、f14)、半充满(P3、d5、f7)或全空(P0、d0、f0)时,电子云分布呈球状,原子结构较稳定,可挑出8种元素,剩余11种可作例外.
多电子原子结构
1、核外电子排布三原理
(1)泡利不相容原理:解决各电子层电子数目问题.
◆在任何一个原子中,决不可能有两个电子具有四个完全相同的量子数,即在同一个原子中,不可能有运动状态完全相同的电子.
◆当n一定时,L可取(n-1)个值,而在L限定下,原子轨道可有(2L+1)个伸展方向,即(2L+1)个轨道,而每个轨道可容纳两个电子,所以每层最多容纳电子数为
电子层1 2 3 4
电子数2 8 18 32
(2)最低能量原理:解决电子排布问题
◆多电子原子在基态时,核外电子总是尽可能地先占据能量最低的轨道,以使体系能量最低.
◆轨道能级规律
①当角量子数相同时,随主量子数增加,轨道能级升高1s<2s<3s<4s;
2p<3p<4p<5p; 3d<4d<5d
②当主量子数相同时,随角量子数增加,轨道能级升高ns<np<nd<nf
③当主量子数与角量子数都不同时,能级次序比较复杂,有时出现“能级交错”现象,即某些主量子数较大的原子轨道其能级可以比主量子数较小的原子轨道低.如4s<3d, 5s<4d , 6s<4f<5d<6p
◆鲍林近似能级图
鲍林根据大量光谱数据以及某些近似的理论计算,得到了多电子原子的原子轨道能级的近似图
能级组:按照能级高低的顺序,把能量相近的能级划成一组,称为能级组.按照1、2、3能级组顺序,能量依次增高.
电子分布式:核外电子的分布表达式,如
K:
Ti:
鲍林近似能级顺序并不是所有元素轨道能级的实际顺序,它只不过是表示在考虑电子分布时,随核电荷数的增加的一个电子应分布在一哪一个轨道的一般规律,它不代表核外电子的实际分布情况,如钛原子的近似能级顺序为:
而其电子分布式为:
(3)洪特规则:解决同一电子层电子排布问题
◆处于主量子数和角量子数都相同的轨道中的电子,总是尽先占据磁量子数不同的轨道,而且自旋量子数相同(自旋平行)
◆两个电子同占一个轨道,这时电子间的排斥作用会使系统能量升高,两个电子只有分占等价轨道时,才有利于降低系统的能量,所以洪特规则可认为是最低能量原理的补充
如P:3P轨道上的3个电子分布应为:↑↑↑
(4)特殊情况
◆有19种元素原子的电子分布式不完全符合近似能级顺序,如:它们的3d轨道电子分别为10和5,处于全满或半满状态,原子比较稳定,对于p、f轨道,半满状态为p3和f7,全满状态为p6和f14
◆外层电子构型即外层电子分布式,对于原子来说:
主族元素:最外层的电子分布式,如:
副族元素:最外层S电子和次外层d电子的分布式,如:
◆元素离子的外层电子构型:
当原子失去电子成为阳离子时,一般是能量较高的最外层的电子失去,而且往往引起电子层数的减少.如:
当原子得到电子成为阴离子时,电子总是分布在最外电子层上,如:
元素离子的外层电子构型(1)8电子构型
(2)9~17电子构型
(3)18电子构型
(4)18+2电子构型</np<nd<nf。

相关文档
最新文档