制药化工原理课后习题答案新编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪
论
2.解:
∴2321001325.1m J m N m N atm L ⨯=⋅⋅⋅⋅⋅⋅-
∴2
1001325.1J atm L ⨯=⋅
以J ·mol -1·K -1表示R 的值
R =××102 J ﹒mol -1﹒K -1
= J ﹒mol -1﹒K -1
第一章 流体流动
1. 表压=-真空度=-×104Pa 绝压=×104 Pa
2.解:设右侧水面到B ′点高为h 3,根据流体静力学基本方程可知P B =P B ′ 则ρ油gh 2=ρ水gh 3
h=h 1+h 3=892mm
3.解:正U 型管水银压差计 由图可知 P A =P 1+(x +R 1)ρ水g
P B =P 2+x ρ水g ∵P 1-P 2= ∴P A -P B =+ρ水gR 1
又有P A =P C P C = P B +ρHg gR 1
∴ρHg gR 1=+ρ水gR 1
∴mm m s m m kg R 00.200200.081.9)100013600( 2.472kPa
2
31==⋅⨯⋅-=
--
倒U 型压差计 设右侧管内水银高度为M
∵指示流体为空气∴P C =P D P 1=P C +ρ水g(R 2+M) P 2=P D +ρ水gM
∴mm m s m m kg R 0.2522520.081.91000 2.472kPa
2
32==⋅⨯⋅=
-
4.(1)P B =-(表) (2)R ′=0.178m 7.解:由公式A
Vs
u =
可得 Vs=uA=u πd 2/4=×π××2)2×10-6=×10-3m 3/s
Ws=Vs ρ=×10-3×1840=2.89kg/s
8.解:由题可知:
1—1′截面:P 1=×105Pa u=0
以2—2′截面为基准水平面∴z 1=3m
2—2′截面:设管内流速为u z 2=0 3—3′截面:u, z 3=3m 4—4′截面:u, z 4=3+=3.5m 5—5′截面:u, z 5=3m
6—6′截面:u, z 6=2m, P 6=×105Pa 根据伯努利方程:We=0, ∑h f =0
有ρ++=ρ+6
2611P 2u gz P gz
∵P 1=P 6 ∴u 2/2=g(z 1-z 6)=
有ρ
ρ2
221
12P u gz P gz ++=+
×3+×105/1000=+P 2/1000
∴P 2=×105Pa ×105/1000=+P 3/1000
∴P 3=×105Pa
×3+×105/1000=×++P 4/1000
∴P 4=×105Pa ∴P 5=×105Pa
9. (1)u=1.55m/s V h =10.95m 3/h (2)Δz=2.86m 解:η
Ne
N =
Ne=We ﹒Ws
取釜内液面为1—1′截面,高位槽内液面为2—2′截面
根据伯努利方程:f h P
u gz We u P gz ∑+++=+++ρρ22
22211
122
1—1′截面:z 1=0, P 1=-×104(表压), u 1=0 2—2′截面:z 2=15m, P 2=0(表压), A
Ws
u ρ=
2 A=πd 2/4=×π×[(76-4×2)×10-3]2=×10-3m 2
∴s m h m u /46.1/3.524710501063.31023
4
2==⨯⨯⨯=- 17374010
61050
46.11068Re 4
3=⨯⨯⨯⨯==--μρ
du >4000 湍流 又ε/d=×10-3/68×10-3
=×10-3
查图得λ=
查表1—3得,ξ全开闸阀= ξ半开截止阀= ξ90°标准弯头= ξ进= ξ出=1
∴h f ′=++3×+×2=kg
∴∑h f =+=kg
We=kg Ne=×2×104
/3600=
N==
12.解:1—1′:高位槽液面 2—2′:出口管内侧
列伯努利方程 f h P
u gz We u P gz ∑+++=+++ρρ22
22211
122
z 2=0, z 1=4m, P 1=P 2=0(表), u 1=0, We=0
∴∑h f +u 22/2=4g ∑h f = h f +h f ′
查表1—3得,ξ半开截止阀= ξ90°标准弯头= h f ′=∑ξ﹒u 22/2=++ ×u 22/2=×u 22/2
∴g d
u 4)75.10201(22
2=++
λ
化简得(400λ+×u 22/2=
20℃时μ水=
λ=f(Re)=f(u 2) 需试差 321075.49Re ⨯==u du μ
ρ
假设 u 0 Re λ → u 0
01.0=d
ε
76630 79600 82588
∴截止阀半开时该输水系统的u 0=1.66m/s
Vs=uA=×π×=0.00326m 3/s
∴Vs=11.73m 3/h
第二章 流体输送设备
1、解:分别取离心泵的进、出口截面为1-1′截面和2-2′截面,由伯努力方程得: 其中,12Z Z -=0.4 m ;41109.1⨯-=p Pa(表压);52107.4⨯=p Pa(表压);
21u u =;21,-f H =0;20℃时水的密度3m kg 2.998-⋅=ρ。
34.500081
.92.998109.1107.44.04
5=++⨯⨯+⨯+=⇒H m