轴向力径向力及其平衡 PPT
轴向力径向力及平衡

第10讲:轴向力径向力及平衡10.1 轴向力产生的原因1. 泵在运转时,叶轮前后盖板压力不对称产生轴向力,其力的方向指向吸入口方向。
2. 动反力:液体从吸入口到排出口改变方向时作用在叶片上的力,该力指向叶轮后面。
3. 泵内叶轮进口压力与外部大气压不同在轴端和轴台阶上产生的轴向力。
4. 立式泵转子重量引起的轴向力,力的方向指下面。
5. 其它因素:泵腔内的径向流动影响压力分布;叶轮二侧密封环不同产生轴向力。
10.2 轴向力的计算10.2.1 叶轮前后盖板不对称产生的盖板力A 1假设盖板二侧腔的液体无泄漏流动,并以叶轮旋转角速度之半ω/2旋转,则任意半径R 处的压头h ‘为:h ‘=(ω2/8g )(R 22-R 2) R 2-叶轮外径半径假定叶轮进口轴面速度与出口轴面速度相等,V m1=V m2, 进口圆周分速度V u1=0叶轮出口势扬程H P =H T -((g H T /u 2)2/2g )= H T (1-(g H T //2u 22)叶轮后盖板任意半径处,作用的压头差为:h =H P -h ‘=H P -(ω2/8g )(R 22-R 2)将上式二侧乘以液体密度ρ和重力加速度g ,并从轮毂半径积分到密封环半径,则得盖泵轴向力A 1=πρg(R m 2-R h 2)[H P -(ω2/8g )((R 22-(R m 2+R h 2)/2))] 10.2.2 动反力A 2A 2=ρQ t (V mo -V m3COO α) (N )其中ρ-流体密度 (Kg/m 3) Q t -泵理论流量V mo V m3 -叶片进口稍前和出口稍后的轴面流速 α-叶轮出口轴面速度与轴线方向的夹角 10.2.3 总的轴向力:A= A 1-A 2 对多级泵:A =(i -1)(A C )+ A S i -叶轮级数 A C -次级叶轮轴向力 A S -首级叶轮轴向力按上述方法计算得到的轴向力,通常比实际的要小15~20%。
轴受力分析80页PPT

2. 尽量避免在轴上开横孔、切口或凹槽;
3. 重要结构可增加卸载槽B、过渡肩环、凹切圆角、 增大圆角半径。也可以减小过盈配合处的局部应力。
30˚
d/4 d
B位置 d/4
过渡肩环
r 凹切圆角
第三节、轴的工作能力分析
一、对于只传递扭转的圆截面轴,强度条件为:
T
T WT
9.55 106 P 0.2d 3n
设计公式: d3 Md
0.1[1]
mm
材料 碳素钢
合金钢 铸钢
轴的许用弯曲应力
σb
[σ+1]
[σ0]
[σ-1]
400
对称13循0 环状态下7的0
40
500
许17用0 弯曲应力75
45
600
200
95
55
700
230
110
65
800
270
130
75
900
300
140
80
1000
330
150
90
400
F1v M’av Mav
F2v
M'aVF1VM L/a2V212 0.1 39/23
205Nm
F1H
Ft MaH F2H
M aVF2VL M /a 2V 42 8 0.1 79 /23 F1F 414Nm
F F2F
5) 绘制水平面的弯矩图
MaHF1HM L/a2V 87 0 0.1 09/23 840Nm
(5) 若各轴段具有较高同轴度,在轴两端开设中心孔
五、提高轴的强度和刚度的常用措施
1)改进轴上零件结构,减小轴的载荷
2.合理布置轴上零件,减小轴上的载荷
各种结构类型轴承径向与轴向力的关系

普通
70%
轴承不宜单独用来承受纯轴向负荷
大锥角
150%
轴承不宜单独用来承受纯径向负荷
双内圈,双列
40%
径向负荷为相应单列的170%
四列
20%
径向负荷为相应单列的300%
推力调心滚子轴承
Fa/X=15%见备注
径向负荷在与轴向负荷Fa同时作用时,可达未被利用的允许轴向负荷X的15%
成对双联使用
—
轴承组承受的Fr为单套的1.8倍,轴向负荷同单列,但任一方向
四点接触球轴承(内或外圈两半)
—
轴向负荷=100%Cr
双列角接触球轴承
整体内、外圈
80%
与成对使用相比,在同样负荷作用下,能使轴在轴向更加紧密地固定
分离型双内圈
分离型双外圈
—
轴向负荷=100%Cr
轴承类型
Fa/F,%备注圆锥来自滚子径向力与轴向力的关系
Fr:轴承承受的径向负荷,kN
Fa:轴承能够承受的一方向轴向负荷,kN
Cr:轴承的额定动负荷,kN
F:F=Cr-Fr,表示未被利用的径向负荷,kN
轴承类型
Fa/F,%
备注
单列向心球轴承
70%
外圈带止动环,承受轴向负荷的能力降低。不带密封,可在转速很高,不宜采用推力球轴承时,用来承受纯轴向负荷
调心滚子轴承
25%
—
角接
触球
轴承
分离型,α=12°
30%
—
不可
分
离型
锁口外圈
α=12°
70%
—
α=26°
150%
—
α=36°
200%
用来承受纯轴向负荷;在直径尺寸相同时,转速允许比推力球轴承
轴向力径向力及其平衡

添加标题 添加标题 添加标题 添加标题
汽车轮胎:在汽车行驶过程中,轮胎与地面接触产生的径向力使汽车得 以行驶平稳。
电梯:电梯的升降过程中,导轨对电梯的轴向力保证了电梯的运行稳定。
不平衡的径向力 会影响机器的性 能和寿命
轴向力不平衡:导致旋转轴弯曲或扭曲,影响旋转精度和机械效率 径向力不平衡:引起旋转轴振动,加速轴承磨损,降低机械寿命 产生原因:设计缺陷、制造误差、安装不当等 解决措施:优化设计、提高制造精度、精确安装等
轴向力在旋转机械中起到平衡作用, 防止设备发生轴向窜动。
径向力的作用点:沿着垂直 于轴线方向作用,通常作用 于物体与轴线相交的圆周上
轴向力方向:沿 着转子轴线方向
径向力方向:垂 直于转子轴线, 指向圆心
轴向力与径向力的平衡是指两种力在大小和方向上相互抵消,使物体保持稳定状态。
平衡的概念是物理学中一个重要的概念,它描述了物体在力的作用下保持静止或匀速直线运动 的状态。
力。
径向力在旋转机械 中常常被提及,例 如在轴承、齿轮和 转子等旋转部件中, 径向力会导致轴承 磨损、齿轮振动和 转子失衡等问题。
在轴向力与径向 力的平衡问题中, 径向力的平衡通 常是通过轴承、 支撑和平衡装置
等来实现的。
径向力的计算方 法有多种,可以 根据具体问题选 择适合的方法进
行计算。
轴向力的作用点:沿着轴线 方向作用,通常作用于物体 的两端
自行车:自行车轮胎与地面接触产生的径向力使自行车能够稳定行驶, 而车架受到的轴向力保证了自行车的刚度和稳定性。
各种结构类型轴承径向与轴向力的关系

径向力与轴向力的关系Fr:轴承承受的径向负荷,kNFa:轴承能够承受的一方向轴向负荷,kN Cr:轴承的额定动负荷,kNF:F=Cr-Fr,表示未被利用的径向负荷,kN标签:杂谈1. 问:WORD 里边怎样设置每页不同的页眉?如何使不同的章节显示的页眉不同?答:分节,每节可以设置不同的页眉。
文件――页面设置――版式――页眉和页脚――首页不同。
2. 问:请问word 中怎样让每一章用不同的页眉?怎么我现在只能用一个页眉,一改就全部改了?答:在插入分隔符里,选插入分节符,可以选连续的那个,然后下一页改页眉前,按一下“同前”钮,再做的改动就不影响前面的了。
简言之,分节符使得它们独立了。
这个工具栏上的“同前”按钮就显示在工具栏上,不过是图标的形式,把光标移到上面就显示出”同前“两个字来。
3. 问:如何合并两个WORD 文档,不同的页眉需要先写两个文件,然后合并,如何做?答:页眉设置中,选择奇偶页不同与前不同等选项。
4. 问:WORD 编辑页眉设置,如何实现奇偶页不同比如:单页浙江大学学位论文,这一个容易设;双页:(每章标题),这一个有什么技巧啊?答:插入节分隔符,与前节设置相同去掉,再设置奇偶页不同。
5. 问:怎样使WORD 文档只有第一页没有页眉,页脚?答:页面设置-页眉和页脚,选首页不同,然后选中首页页眉中的小箭头,格式-边框和底纹,选择无,这个只要在“视图”――“页眉页脚”,其中的页面设置里,不要整个文档,就可以看到一个“同前”的标志,不选,前后的设置情况就不同了。
6. 问:如何从第三页起设置页眉?答:在第二页末插入分节符,在第三页的页眉格式中去掉同前节,如果第一、二页还有页眉,把它设置成正文就可以了●在新建文档中,菜单―视图―页脚―插入页码―页码格式―起始页码为0,确定;●菜单―文件―页面设置―版式―首页不同,确定;●将光标放到第一页末,菜单―文件―页面设置―版式―首页不同―应用于插入点之后,确定。
轴向

1.叶轮对称排列
使叶轮背靠背排列,可以大大减少生于轴向力,故通常总是在气体中间冷却后,变更叶轮进口的朝向。这种 平衡轴向力的缺点是机壳的结构和管路布置较为复杂,但是平衡结果十分可靠。
2.
感谢观看
轴承
轴向轴承 ,其用于自由端纺纱装置的、以无轴向推力的方式安装在盘式支承装置的支承空隙内的纺纱转子, 该轴向轴承具有静态轴承部件、动态轴承部件以及保护装置,其中,静态轴承部件具有至少两个在轴向上被极化 的永磁环,这些永磁环在两侧由极性片限定并以使得安装状态下同向的极性(N/N或S/S)彼此相对的方式布置在 轴承壳体内;动态轴承部件由以所述极性片的间距布置在所述纺纱转子的转子杆上的铁磁性连接片形成;保护装 置防止所述两个轴承部件彼此接触。根据本发明,各极性片被设置成具有这样的净空横截面,该净空横截面在极 性片安装状态下竖直设置的轴线的区域中,相比于在垂直于竖直轴线设置的轴线的区域中具有更大的度量。
轴向
圆柱体旋转中心轴的方向
01 位移
03 因素
目录
02 轴承 04 平衡装置
轴向通常是针对圆柱体类物体而言,就是圆柱体旋转中心轴的方向,即与中心轴共同的方向。“径向”垂直 于“轴向”,即圆柱体端面圆的半径或直径方向。径向与轴向空间垂直。物理中分析物体受力或运动时也会用到 这个概念。
位移
轴向压力表(12张)又叫串轴,就是沿着轴的方向上的位移。总位移可能不在这一个轴线上,我们可以将位移 按平行、垂直轴两个方向正交分解,在平行轴方向上的位移就是轴向位移。轴向位移反映的是汽轮机转动部分和 静止部分的相对位置,轴向位移变化,也是静子和转子轴向相对位置发生了变化。全冷状态下一般以转子推力盘 紧贴推力瓦为零位.向发电机为正,反之为负,汽轮机转子沿轴向向后移动的距离就叫轴向位移。
演示模板轴向力径向力及其平衡.ppt

F1 (R22h Rh2 )gH p
1 2
( R22h
Rh2 )g
2 8g
( R22h
Rh2 )
(
R22h
Rh2
) g [
H
p
2
16 g
(
R22h
Rh2
)]
F2 (R220 Rm2 )gH p
1 2
( R220
Rm2 )g
2 8g
( R220
Rm2 )
(
R220
Rm2
)g[ H
p
2
16 g
优选
13
四.背叶片平衡轴向力
已知未加背叶片的时候轴向力大小为
A1
g ( Rm2
Rh2 )[ H
p
2
8g
( R22
Rm2
2
Rh2
)]
加背叶片后,背叶片强迫液体旋转,液体的旋转角度增加。后侧的压力 水头如曲线AGK所示,它和线AGF相差的曲线既为背叶片平衡的轴向力。
计算方法:(设液体以 旋转)
bc = ac- ab
任意半径R 处的压头 h
h h h
(u2 )2 2 2g
(u)2 2
2g
1 8g
(u
2 2
u2) 2 8g
(R22
R2)
假设:vm1 vm2 vu1 0
Hp
p2 p1 g
Ht
v22 v2 2g
Ht
(vm2 2
vu22 ) (vm21 vu21 ) 2g
Ht
vu22 2g
优选
12
二.平衡孔或者平衡管
在叶轮后盖板上附设密封环,密封环所在直径 一般与前密封环相等,同时在后盖板下部开 孔,或设专用连通管与吸入侧连通。由于液 体流经密封环间隙的阻力损失,使密封下部的 液体的压力下降,从而减小作用在后盖板上 的轴向力。
轴向力径向力及其平衡PPT课件

5.影响轴向力的其它因素。
.
2
一.产生盖板力 A1 的原因
离心泵工作时,由于叶轮两侧液体压力分 图1离心泵轴向力示意图 布不均匀,如图1所示,而产生一个与轴线 平行的轴向力,其方向指向叶轮入口。
.
3
计算过程
假设: 1.盖板两侧腔的液体无泄漏径 向流动 2.盖板两侧液体以叶轮旋转角
2gp ( H R m 2 2 R h 2 )2 2 8 g g 2 2 ( R m 2 2 R h 2 ) 2 8 g g 2 ( R m 4 4 R h 4 )
A 1 g(R m 2R h 2)H [p8g 2(R 2 2R m 2 2R h 2)]
按压力体体积来计算
A1 =圆柱体重量十抛物体重量
A3p(AhAs2)
P g H
H为单级扬程
.
10
四.影响轴向力的其它因素
1.叶轮前后盖板泵腔内的径向流
前泵腔总是存在着内向径向流,后泵 腔的惰况有所不同,一般无平衡孔的单 级泵则无径向流,有平衡孔时存在内向径向流,多级泵因级间泄漏而存 在外向的径向流。对不同的泵,按内向流压力减小,外向流压力增加来 分析对轴向力的影响。
一、推力轴承 对于轴向力不大的小型泵,采用推力轴承承受轴向力,通常是简单而经济 的方法。即使采用其它平衡装置,考虑到总有一定的残余轴向力,有时也 装设推力轴承。
.
12
二.平衡孔或者平衡管
在叶轮后盖板上附设密封环,密封环所在直径 一般与前密封环相等,同时在后盖板下部开 孔,或设专用连通管与吸入侧连通。由于液 体流经密封环间隙的阻力损失,使密封下部的 液体的压力下降,从而减小作用在后盖板上 的轴向力。
三.双吸叶轮
使用双吸叶轮由于结构对称,能平衡轴向力。 但由于制造误差,或者两边密封环 磨损不同会存在一定的残余轴向力。
轴向力径向力及其平衡20页PPT

▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
轴向力径向力及其平衡
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!Βιβλιοθήκη 20
电动机的轴向力与径向力控制

电动机的轴向力与径向力控制电动机作为现代工业生产中不可或缺的设备之一,承担着将电能转化为机械能的重要任务。
在电动机运行过程中,轴向力和径向力的控制是非常关键的。
本文将从轴向力和径向力的定义、产生机理以及控制方法等方面进行讨论。
1. 轴向力的定义和产生机理轴向力指的是电动机输出轴上的力在轴向上的分量,即沿着电机轴线的方向产生的力。
轴向力的大小和方向对电动机的安装和运行具有重要影响。
轴向力的产生主要源于以下几个方面:(1)电磁力:在电机运行时,电磁场的作用下会产生电磁力,这些电磁力会作用于转子和定子之间,从而产生轴向力。
电磁力的大小和方向受电流和磁场的影响。
(2)机械不平衡:电机转子的不平衡会引起轴向力的产生。
这可能是由于转子质量分布不均匀、转子轴心线位置误差等造成的。
(3)轴承力:轴承在电机运行过程中承受着转子的重力和离心力,这些力会导致轴向力的产生。
2. 轴向力的控制方法为了保证电动机的正常运行和延长其使用寿命,需要对轴向力进行适当的控制。
下面介绍几种常用的轴向力控制方法:(1)合理电机设计:在电机设计过程中,可以通过合理选择转子和定子的结构参数,减小不平衡质量和偏心距离,从而减小轴向力的产生。
(2)磁极分布优化:通过优化磁极分布,可以减小电磁力的大小和方向,从而减小轴向力。
(3)使用轴向磁力轴承:将传统的机械轴承改为轴向磁力轴承可以有效地降低轴向力的大小,同时提高轴承的寿命和运行稳定性。
(4)安装补偿装置:通过在电机上安装补偿装置,如补偿盘或对轴,可以对产生的轴向力进行补偿,达到控制轴向力的目的。
3. 径向力的定义和控制径向力指的是电动机输出轴上的力在垂直于轴向的方向上的分量,即沿着电机轴线垂直方向产生的力。
径向力的存在会对轴承和齿轮等部件造成不利影响,因此需要进行有效的控制。
径向力的产生主要源于以下几个方面:(1)离心力:电机转子在高速旋转时会产生离心力,这会导致发电机出现径向力。
离心力的大小和方向与转子的质量、转速和几何结构等因素有关。
轴向力径向力及其平衡

ab
R22
Re
2
)
ac
H
P
2
8g
( R2 2
R2
)
ab
HG
2
8g
( Re 2
R2
)
可以得bc……省略
将bc从轮毂Rh
积Re 分到 得到平衡方程
F1
Re Rh
bc
g
2R
dR
3 2
16 g
g
Re 2
Rh2
2
或
F1
3 8
(
Ae
Ah
)
1 2g
(ue 2
uh2 )g
上面的计算是基于叶片端部和壳体的间隙很小时,但间隙大时 液体转'速 (应1该t ) 为
Ht
(gHt u2 )2 2g
Hp
H t (1
gHt 2u22
)
叶轮后盖板任意半径处,作用的压头差为
h
H
p
h
H
p
2
8g
( R22
R2)
将上式两侧乘以液体密度和重力加速度 ,并从轮毂半径积分到密
封环直径,则得盖板轴向力
A1
Rm 2RdRhg
Rh
2 g
[ H Rm
Rh
p
2 8g
( R22
R 2 )]RdR
双吸泵从理论上讲无轴向力作用,由于上述原因,当两侧密封环 长度不同、磨损不同时,会产生指向泄漏大的一侧的附加轴向力
第二节 轴向力的平衡
危害:如果不设法消除或平衡作用在叶轮上(传到轴上)的轴向力,此 将拉动转子轴向串动,与固定零件接触,造成泵零件的损坏以至不
一、推力轴承 对于轴向力不大的小型泵,采用推力轴承承受轴向力,通常是简单 的方法。即使采用其它平衡装置,考虑到总有一定的残余轴向力, 装设推力轴承。
轴向力径向力及其平衡ppt课件

四.背叶片平衡轴向力
已知未加背叶片的时候轴向力大小为
A1
g ( Rm2
Rh2 )[ H
p
2
8g
( R22
Rm2
2
Rh2
)]
加背叶片后,背叶片强迫液体旋转,液体的旋转角度增加。后侧的压力 水头如曲线AGK所示,它和线AGF相差的曲线既为背叶片平衡的轴向力。
计算方法:(设液体以 旋转)
bc = ac- ab
任意半径R 处的压头 h
h h h
(u2 )2 2 2g
(u)2 2
2g
1 8g
(u
2 2
u2) 2 8g
(R22
R2)
假设:vm1 vm2 vu1 0
Hp
p2 p1 g
Ht
v22 v2 2g
Ht
(vm2 2
vu22 ) (vm21 vu21 ) 2g
Ht
vu22 2g
R 2 )]RdR
2 gH
p
( Rm2
2
Rh2
)
2 2gR22 8g
( Rm2
2
Rh2
)
2g 2 8g
( Rm4
4
Rh4
)
A1
g(Rm2
Rh2 )[ H p
2 8g
( R22
Rm2
2
Rh2
)]
按压力体体积来计算
A1 =圆柱体重量十抛物体重量
( Rm2
Rh2 ) g(H p
2 8g
R22
R1h )2 (R1h
2 3
(R2h
R1h ))
8
二.动反力 A2 的计算
动反力;液体通常沿轴向进入叶轮,受到叶 轮作用力沿径向或斜向流出。反之,液体 给叶轮一个大小相等方向相反的反作用 力,该力即为动反力
第七章轴向力径向力及其平衡

第七章轴向⼒径向⼒及其平衡图7—1 轴向⼒计算原理图第七章轴向⼒径向⼒及其平衡第⼀节产⽣轴向⼒的原因及计算⽅法泵在运转中,转⼦上作⽤着轴向⼒,该⼒将拉动转⼦轴向移动。
因此,必须设法消除或平衡此轴向⼒,⽅能使泵正常⼯作。
泵转⼦上作⽤的轴向⼒,由下列各分⼒组成:1.叶轮前、后盖板不对称产⽣的轴向⼒,此⼒指向叶轮吸⼊⼝⽅向,⽤1A 表⽰;2.动反⼒,此⼒指向叶轮后⾯,⽤2A 表⽰;3.轴台、轴端等结构因素引起的轴向⼒,其⽅向视具体情况⽽定,⽤3A 表⽰;4.转⼦重量引起的轴向⼒,与转⼦的布置⽅式有关,⽤4A 表⽰;5.影响轴向⼒的其它因素。
下⾯分别计算各轴向⼒。
⼀. 盖板⼒1A 的计算(图17—1)由图可知,叶轮前后盖板不对称,前盖板在吸⼊眼部分没有盖板。
另⼀⽅⾯,叶轮前后盖板象轮盘⼀样带动前后腔内的液体旋转,盖板侧腔内的液体压⼒按抛物线规律分布。
作⽤在后盖板上的压⼒,除⼝环以上部分与前盖板对称作⽤的压⼒相抵消外,⼝环下部减去吸⼊压⼒1P 所余压⼒,产⽣的轴向⼒,⽅向指向叶轮⼊⼝,此⼒即是1A 。
假设盖板两侧腔的液体⽆泄漏流动,并以叶轮旋转⾓速度之半2ω旋转,则任意半径R 处的压头h '为(推导见⼗⼋章))R R (g)u u (g g )u (g )u (h h h 22222222228812222-=-=-='''-''='ω(7—1)叶轮出⼝势扬程,当假定21m m v v =,01=u v 时,为 g)v v ()v v (H g v v H g p p H u m u m t t p 222121222222212+-+-=--=-=ρ g)u gH (H g v H t u t 2222122-=-= 即 )u gH (H H t t p 2221-= (7—2)叶轮后盖板任意半径处,作⽤的压头差为)R R (g H h H h p p 22228--='-=ω将上式两侧乘以液体密度ρ和重⼒加速度g ,并从轮毂半径积分到密封环直径,则得盖板轴向⼒1A--==m h m h R R p R R RdR )]R R (gH [g g RdRh A 22221822ωπρρπ )R R (g g )R R (g gR )R R (gH h m h m h m p 482282224422222222-+---=ωπρπρωπρ即 )]R R R (g H )[R R (g A h m p h m 2822222221+---=ωπρ(7—3)这部分轴向⼒也可很⽅便地按压⼒体体积来计算。
各种结构类型轴承径向与轴向力的关系

Fr:轴承承受的径向负荷,kN
Fa:轴承能够承受的一方向轴向负荷,kN
Cr:轴承的额定动负荷,kN
F:F=Cr-Fr,表示未被利用的径向负荷,kN
轴承类型
Fa/ F,%
备注
单列向心球轴承
70%
外圈带止动环,承受轴向负荷的能力降低。不带密封,可在转速很高,不宜采用推力球轴承时,用来承受纯轴向负荷
成对双联使用
—
轴承组承受的Fr为单套的1.8倍,轴向负荷同单列,但任一方向
四点接触球轴承(内或外圈两半)
—
轴向负荷=100%Cr
双列角接触球轴承
整体内、外圈
80%
与成对使用相比,在同样负荷作用下,能使轴在轴向更加紧密地固定
分离型双内圈
分离型双外圈
—
轴向负荷=100%Cr
轴承类型
Fa/ F,%
备注
圆锥
滚子
轴承
普通
70%
轴承不宜单独用来承受纯轴向负荷
大锥角
150%
轴承不宜单独用来承受纯径向负荷
双内圈,双列
40%
径向负荷为相应单列的170%
四列
20%
径向负荷为相应单列的300%
推力调心滚子轴承
Fa/X=15%见备注
径向负荷在与轴向负荷Fa同时作用时,可达未被利用的允许轴向负荷X的15%
调心滚子轴承
25%
—
角接
触球
轴承
分离型,α=12°
30%
—
不可
分
离型
锁口外圈
α=12°
70%
—Hale Waihona Puke α=26°150%
—
α=36°
轴的径向力和轴向力

轴的径向力和轴向力轴的径向力和轴向力,听起来是不是有点高大上?其实它们就像是机器里的一对“老朋友”,你看不见摸不着,却无时无刻不在影响着它的工作状态。
就好比我们生活中,不管做什么事儿,肯定得有人推一把,或者有人顶一顶,是吧?这两股力,其实就是在默默推着、拉着机器转动,保持着它的正常运转。
简单来说,径向力就像是从侧面对轴施加的力量,而轴向力呢,更多的是从轴的两端方向来“发力”。
听起来像是两个“力”的较量,其实它们和机器里的工作方式密不可分。
轴在转动的时候,这两种力是一直在相互博弈的。
比如说你想象一下,车轮转动的时候,轴就像是车轮的“骨架”,要承受车轮转动时产生的压力和摩擦力。
径向力就像是从旁边压过来的,“哎,别转那么快,太晃了!”轴向力则更多像是“嘿,快点,别停下!”的那种推力。
大家都知道,车轮没了轴,就像人没了骨头一样,啥都不能干。
轴的径向力和轴向力也都是为了让轴能够更好地支撑工作,保持运动轨迹不偏离。
再说一下,径向力和轴向力之间的关系,也挺有意思的。
你可别觉得它们是敌人,实际上它们是好搭档。
径向力在轴承里起着支撑作用,帮助轴不被侧面压力压垮。
而轴向力呢,主要作用是推动轴的转动,保持动力传递的稳定性。
有点像是篮球队里的两名球员,一个负责在场上保护篮筐,另一个则负责得分。
两个人分工合作,谁都不能少。
没有径向力,轴可能就会因为侧向压力而变形;没有轴向力,机器的运动就会不连贯,功率传递也会受影响。
所以,这两者就像是一对好搭档,虽然各司其职,但在关键时刻必须联手出击。
但是说到实际应用,轴的径向力和轴向力也不是没有麻烦的。
你看看那些跑得飞快的高铁,或者说是那些重型机械,它们的轴就必须要承受很大的压力。
径向力大了,轴可能会因为受力不均而发生弯曲或者变形,甚至会导致设备的损坏。
轴向力大了,就会让机器产生过多的震动,长时间下来,设备容易磨损。
就像是两个人在扯绳子,力量太大了,绳子可能会断,力量太小了,绳子又拉不动。
径向和轴向

径向和轴向
1.轴向。
从轴向力产生的方向可知,受力点总是位于物体上某一个特定的点。
当受力面积为正时,力对该点的矩最大;而当受力面积为负时,所有作用在该点的力都将平衡。
根据这两条性质,我们可以判断出物体受到哪些方向的力。
轴向与面积无关,只要把分析的对象固定在某一点,那么沿着这个点的直线去画受力图就行了。
因此我们通常采用的是线段图来描述受力情况。
如果需要研究多个方向,则选择其中两个主要方向,按照对称原理进行分解,然后逐步求解。
2.径向。
它与轴向不同之处:(1)与旋转运动相联系;(2)与平移运动相联系;(3)由于地球自转的影响,使得物体受到的摩擦力方向随纬度变化。
当物体做匀速圆周运动或者静止时,径向受力是零。
2.径向。
在分析时应注意,虽然物体受到各个方向的合力,但并非所有的力都必须垂直于物体的表面才能够形成压强,还有一种力也会产生压强,这种力叫法向压强。
当压力的大小与被压物体的接触面积无关时,这种压力叫做均匀压力。
例如,你把手放在桌子上,那么你手下的桌面受到了压力,这里有一个大小相等、方向相反的压力和手一起构成了一个力偶,这个力偶的方向就是手指向的方向,也就是物体受到的压力方向。
- 1 -。
蜗轮蜗杆轴向力径向力圆周力

蜗轮蜗杆轴向力径向力圆周力蜗轮蜗杆传动是一种常见的机械传动方式,通过蜗轮和蜗杆之间的啮合,将输入轴的转动转化为输出轴的转动。
在传动过程中,蜗轮和蜗杆会受到各种力的作用,包括轴向力、径向力和圆周力。
首先,我们来了解一下蜗轮蜗杆传动中的轴向力。
轴向力是指蜗轮和蜗杆在传动过程中沿轴线方向所产生的力。
在正常工作条件下,蜗轮和蜗杆之间的啮合使得轴向力保持在一个较小的范围内。
然而,当负载增大或者传动结构不合理时,轴向力也会增大,甚至导致传动故障。
因此,在设计和使用蜗轮蜗杆传动时,我们需要合理计算和控制轴向力,以确保传动系统的正常运行。
其次,径向力是蜗轮蜗杆传动中另一个重要的力。
径向力是指蜗轮和蜗杆在传动过程中的啮合面上相互作用的力。
当蜗轮和蜗杆啮合时,由于啮合点处的接触压力,会产生一个径向力,使得蜗轮和蜗杆在径向上受到一定的约束和支撑。
合理控制径向力的大小,既可以减少轴承的磨损和振动,又可以提高传动的效率和稳定性。
最后,圆周力是蜗轮蜗杆传动中的第三个力。
圆周力是指蜗轮和蜗杆在传动过程中沿啮合圆周方向所产生的力,也称为切向力。
圆周力的主要作用是保证蜗轮和蜗杆的牢固啮合,防止相对滑动和轴向脱离。
在传动设计中,通常需要考虑圆周力对轴承和传动零部件的影响,以确保其正常运行,避免损坏或故障的发生。
综上所述,蜗轮蜗杆传动中的轴向力、径向力和圆周力是影响传动系统正常运行的重要因素。
合理的设计和控制这些力,既可以提高传动的效率和稳定性,又可以延长传动的使用寿命。
因此,在进行蜗轮蜗杆传动的设计和选择时,必须充分考虑这些力的影响,合理配置和调整传动参数,确保传动系统的正常运行和提高使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意半径R 处的压头 h h h h (u 2 2 2 g )2(2 u 2 g )28 1 g(u 2 2u2)8 g 2(R 2 2R 2)
假设:vm1 vm2 vu1 0
H p p 2 g p 1 H t v 2 2 2 g v 2 H t (v m 2 2 v u 2 2 ) 2 g (v m 2 1 v u 2 1 )
ห้องสมุดไป่ตู้
混流泵叶轮轴向力 的计算 当原动机带动叶轮旋转后,对液体 的作用既有离心力又有轴向推力, 是离心泵和轴流泵的综合,液体斜向流出叶轮。
A1F3F1F2
F3(R220R22h)g H p
F1 (R22h Rh2)gHp 12(R22h Rh2)g8g2 (R22h Rh2)
2
(R 2 2hR h 2) g[H p1g 6(R 2 2hR h 2)]
( R m 2 R h 2 )g ( H p 8 g 2 R 2 2 8 g 2 R h 2 ) 1 2 ( R m 2 R h 2 )g 8 g 2 ( R m 2 R h 2 )
(R m 2R h 2) g[H p8g 3(R 2 2R m 2 2R h 2)]
半开式叶轮轴向力 的计算
三.双吸叶轮
使用双吸叶轮由于结构对称,能平衡轴向力。 但由于制造误差,或者两边密封环 磨损不同会存在一定的残余轴向力。
四.背叶片平衡轴向力
已知未加背叶片的时候轴向力大小为
A 1 g(R m 2R h 2)H [p8g 2(R 2 2R m 2 2R h 2)]
加背叶片后,背叶片强迫液体旋转,液体的旋转角度增加。后侧的压力 水头如曲线AGK所示,它和线AGF相差的曲线既为背叶片平衡的轴向力。
2gp ( H R m 2 2 R h 2 )2 2 8 g g 2 2 ( R m 2 2 R h 2 ) 2 8 g g 2 ( R m 4 4 R h 4 )
A 1 g(R m 2R h 2)H [p8g 2(R 2 2R m 2 2R h 2)]
按压力体体积来计算
A1 =圆柱体重量十抛物体重量
式有关,用 A4 表示;
5.影响轴向力的其它因素。
一.产生盖板力 A1 的原因
离心泵工作时,由于叶轮两侧液体压力分 图1离心泵轴向力示意图 布不均匀,如图1所示,而产生一个与轴线 平行的轴向力,其方向指向叶轮入口。
计算过程
假设: 1.盖板两侧腔的液体无泄漏径 向流动 2.盖板两侧液体以叶轮旋转角
2
(R 2 2hR h 2) g[H p1g 6(R 2 2hR h 2)]
F 2 1 2 H P g(R 2 h R 1 h )2(R 1 h 3 2 (R 2 h R 1 h ))
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
二.动反力 A2 的计算
动反力;液体通常沿轴向进入叶轮,受到叶 轮作用力沿径向或斜向流出。反之,液体 给叶轮一个大小相等方向相反的反作用 力,该力即为动反力
轴向力径向力及其平衡
第一节 产生轴向力的原因及其计算方法
1.叶轮前、后盖板不对称产生的轴向力,此
力指向叶轮吸入口方向,用 A1 表示;
2.叶轮推动液体运动产生的动反力,此力指向叶轮
后面,用 A2 表示;
3.轴台、轴端等结构因素引起的轴向力,其
方向视具体情况而定,用 A3 表示;
4.转子重量引起的轴向力,与转子的布置方
2.叶轮两侧密封环不同
双吸泵从理论上讲无轴向力作用,由于上述原因,当两侧密封环间隙 长度不同、磨损不同时,会产生指向泄漏大的一侧的附加轴向力。
第二节 轴向力的平衡
危害:如果不设法消除或平衡作用在叶轮上(传到轴上)的轴向力,此轴向力 将拉动转子轴向串动,与固定零件接触,造成泵零件的损坏以至不能工作。
作用于后盖板的轴向力(抛物体的重量) 为
F 1(R 2 2R h 2) gp H 1 2(R 2 2R h 2) gh
h
2
8g
(R22
Rh2)
作用在前侧的轴向力(三角形压力体重量)为
F 2 1 2 H pg (R 2 R m )2[R m 3 2 (R 2 R m )]
总的轴向力
A1 F1F2
Ht v2u2g2 Ht (gH 2tgu2)2
Hp Ht (1g2uH22t )
叶轮后盖板任意半径处,作用的压头差为
hHphHp 8g2(R2 2R2)
将上式两侧乘以液体密度和重力加速度 ,并从轮毂半径积分到密 封环直径,则得盖板轴向力
A 1R R h m 2Rdg R 2h gR R h m [H p8 g 2(R 2 2R 2)R ] d R
A3p(AhAs2)
P g H
H为单级扬程
四.影响轴向力的其它因素
1.叶轮前后盖板泵腔内的径向流
前泵腔总是存在着内向径向流,后泵 腔的惰况有所不同,一般无平衡孔的单 级泵则无径向流,有平衡孔时存在内向径向流,多级泵因级间泄漏而存 在外向的径向流。对不同的泵,按内向流压力减小,外向流压力增加来 分析对轴向力的影响。
一、推力轴承 对于轴向力不大的小型泵,采用推力轴承承受轴向力,通常是简单而经济 的方法。即使采用其它平衡装置,考虑到总有一定的残余轴向力,有时也 装设推力轴承。
二.平衡孔或者平衡管
在叶轮后盖板上附设密封环,密封环所在直径 一般与前密封环相等,同时在后盖板下部开 孔,或设专用连通管与吸入侧连通。由于液 体流经密封环间隙的阻力损失,使密封下部的 液体的压力下降,从而减小作用在后盖板上 的轴向力。
由动量定理得
A 2Q 1(vm 0vm 3co)s
对于一般离心泵,可按下式估算轴向力
Akg1 H (R m 2R h 2)i
三.轮毂轴端等结构引起的轴向力 A3 的计算
1.悬臂式叶轮轴头吸入压力和大气压力不同 引起的轴向力
A3
dh2 4
(p1
pa)
2.对称布置叶轮由于轴细部结构不同引起 的轴向力
F2 (R220Rm2)gHp 12(R220Rm2)g8g2 (R220Rm2)
2
(R 2 20 R m 2) g[H p1g 6(R 2 20 R m 2)]
半开式混流泵叶轮的轴向力
A1F3F1F2
F3(R220R22h)g H p
F1 (R22h Rh2)gHp 12(R22h Rh2)g8g2 (R22h Rh2)