小学数学六年级列方程解应用题的类型

合集下载

六年级上册数学解方程应用题

六年级上册数学解方程应用题

六年级上册数学解方程应用题
以下是一些六年级上册数学解方程应用题的例子:
1.果园里种了苹果树和梨树共360棵,苹果树的棵树是梨树的3倍,问苹果树和梨树各有多少棵?
解:设梨树有x棵,则苹果树有3x棵。

x+3x=360
4x=360
x=90
3x=270
答:梨树有90棵,苹果树有270棵。

2.甲、乙两桶油共重40千克,甲桶油的重量是乙桶油的4倍,问甲、乙两桶油各重多少千克?
解:设乙桶油有x千克,则甲桶油有4x千克。

x+4x=40
5x=40
x=8
4x=32
答:甲桶油重32千克,乙桶油重8千克。

3.一个长方形的周长是36厘米,长是宽的2倍,求这个长方形的面积。

解:设长方形的宽为x厘米,则长为2x厘米。

2(x+2x)=36
6x=36
x=6
2x=12
面积=6×12=72(平方厘米)
答:这个长方形的面积是72平方厘米。

这些应用题只是一些示例,解方程应用题的关键是找到适当的未知数,并根据题目中的条件建立方程,然后通过解方程求出未知数的值。

小学六年级数学方程应用题100道及答案解析

小学六年级数学方程应用题100道及答案解析

小学六年级数学方程应用题100道及答案解析1. 商店原来有一些水果,又进货20 千克,卖出35 千克后,还剩15 千克,商店原来有水果多少千克?解:设商店原来有水果x 千克。

x + 20 - 35 = 15x - 15 = 15x = 30答:商店原来有水果30 千克。

2. 小明买了5 个练习本和2 支铅笔,共用去3.9 元,已知每个练习本0.6 元,每支铅笔多少元?解:设每支铅笔x 元。

5×0.6 + 2x = 3.93 + 2x = 3.92x = 0.9x = 0.45答:每支铅笔0.45 元。

3. 学校买了18 个篮球和20 个足球,共付出490 元,每个篮球14 元,每个足球多少元?解:设每个足球x 元。

18×14 + 20x = 490252 + 20x = 49020x = 238x = 11.9答:每个足球11.9 元。

4. 一辆汽车从甲地开往乙地,每小时行48 千米,5 小时到达,如果要4 小时到达,每小时要行多少千米?解:设每小时要行x 千米。

4x = 48×54x = 240x = 60答:每小时要行60 千米。

5. 食堂运来150 千克大米,比运来的面粉的3 倍少30 千克。

食堂运来面粉多少千克?解:设食堂运来面粉x 千克。

3x - 30 = 1503x = 180x = 60答:食堂运来面粉60 千克。

6. 果园里有苹果树270 棵,比梨树的3 倍多30 棵,梨树有多少棵?解:设梨树有x 棵。

3x + 30 = 2703x = 240x = 80答:梨树有80 棵。

7. 某工厂有男工180 人,比女工人数的2 倍少40 人,这个工厂有女工多少人?解:设这个工厂有女工x 人。

2x - 40 = 1802x = 220答:这个工厂有女工110 人。

8. 学校买了8 张办公桌和20 把椅子,一共花了1860 元,已知每张办公桌120 元,每把椅子多少元?解:设每把椅子x 元。

小学数学六年级下册列方程解应用题精选例题及答案解析

小学数学六年级下册列方程解应用题精选例题及答案解析

列方程解应用题(一)同学们在解答数学问题时,经常遇到一些数量关系较复杂的,或较隐蔽的逆向问题。

用算术方法解答比较困难,如果用方程解就简便得多。

它可以进一步培养我们分析问题和解决问题的能力,抽象思维能力,列方程解应用题一般分为五步:(一)审题;(弄清已知数和未知数以及它们之间的关系)(二)用字母表示未知数;(通常用“x”表示)(三)根据等量关系列出方程;(四)解方程求出未知数的值;(五)验算并答题。

例1. 金台小学学生参加申奥植树活动,六年级共植树252棵,比五年级植树总数的114倍少8棵,五年级植树多少棵?思路分析:六年级比五年级植树总数的114倍少8棵,就是六年级的114倍的数少8,等于六年级植树的总数。

等量关系是:五年级的114倍-8=六年级的植树总数。

解:设五年级植树x棵,根据题意列方程,得1148252x-=1142528x=+114260x=xx=÷=260114208验算:把x=208代入原方程左边=⨯-=1142088252右边=252左边=右边x=208是原方程的解。

答:五年级植树208棵。

例2. 一瓶农药700克,其中水比硫磺粉的6倍还多25克,含硫磺粉的重量是石灰的2倍,这瓶农药里,水、硫磺粉和石灰粉各多少克?思路分析:这是道比较复杂的“和倍应用题”,硫磺粉和水有直接关系,硫磺粉和石灰也有直接关系,因此应设未知数硫磺粉为x克。

水的重量是硫磺的6倍还多25克,也就是(6x+25)克,石灰的重量就是硫磺粉的重量除以2,也就是12x 克。

等量关系式表示为:水+硫磺粉+石灰=农药重量解:设硫磺粉的重量是x 克,那么,水的重量是(625x +)克,石灰重量是12x克。

根据题意列方程,解。

62512700x x x +++= 71270025x =-75675.x = x =90 验算:把x =90代入原方程左边=⨯+++⨯=69025901290700右边=700左边=右边x =90是原方程的解。

完整版)六年级列方程解分数应用题

完整版)六年级列方程解分数应用题

完整版)六年级列方程解分数应用题例1:已知一个分数约分后将是$\frac{4}{9}$,如果将这个分数的分子减少$\frac{5}{124}$,分母减少11,所得的新分数约分后将是$\frac{4}{9}$。

那么原分数是多少?解:设原分数为$\frac{a}{b}$,则有$\frac{a}{b}=\frac{4}{9}$,约分后得到$\frac{a}{b}=\frac{4k}{9k}$,其中$k$为正整数。

根据题意,得到$\frac{a-\frac{5}{124}}{b-11}=\frac{4}{9}$,约分后得到$\frac{a-\frac{5}{124}}{b-11}=\frac{4k-1}{9k-11}$。

将两个等式联立,得到$\frac{a-\frac{5}{124}}{b-11}=\frac{a}{b}$,解得$a=\frac{20}{3}$,$b=45$。

所以原分数为$\frac{20}{45}$。

例2:某小学有学生530人,其中20位女生和$\frac{9}{20}$的男生去参加“迎春数学学竞赛”。

剩下的男、女生人数正好相等。

这所学校的女生有多少人?解:设男生总人数为$mx$,女生总人数为$nx$,则有$m+n=530$,$n-20=\frac{9}{20}(mx-20)$,$m=n$。

解得$n=300$,所以女生有$300$人。

例3:两块地共72亩,第一块地的$\frac{2}{5}$种西红柿,第二块地的$\frac{5}{9}$种西红柿,两块地余下的$\frac{5}{39}$共39亩种茄子,每一块地是多少亩?解:设第一块地的面积为$x$,第二块地的面积为$y$,则有$x+y=72$,$\frac{2}{5}x+\frac{5}{9}y=\frac{33}{39}(x+y)-39$。

解得$x=24$,$y=48$。

所以第一块地是$24$亩,第二块地是$48$亩。

例4:某小学的在校学生是850人。

六年级数学下册列方程解应用题

六年级数学下册列方程解应用题

六年级数学下册列方程解应用题一、“求一个数的几分之几(百分之几)的数是多少”应用题1.张大爷的果园里共种果树500棵,其中25﹪是苹果树,苹果树有多少棵?2.从甲地到乙地180千米,某人骑车从甲地到乙地去办事,行了全程的2/5 ,这时离乙地还有多少千米?3.油菜籽的出油率是42%,200吨油菜籽可出油多少吨?4.制造一种机器,原来用钢1440千克,改进工艺后,每台比原来节约15% ,现在每台比原来节约多少千克?5.2001年我国手机拥有量大约1.3亿户,根据“十五”规划,2002年我国手机拥有量将比2001年增长20%,2002年我国手机拥有量大约达到多少亿户?6.某种产品原来售价1560元,现在降价15%出售,这种产品现在售价多少元?7.长乐公园计划栽树240棵,第一天栽了总棵树的 2/5 ,第二天栽了总棵树的1/4 ,第一天比第二天多栽树多少棵?8.华联超市以每枝8.5元购进120枝钢笔,加价20%后卖出,卖完后,可得到利润多少元?9.甲班有男生25人,女生20人,乙班学生的人数比甲班的10%,乙班有学生多少人?10.小华有50元钱,买书用去15元后,用余下的15%买了一枝笔,这枝笔是多少元?11.张丽看一本书80页,第一天看了全书的10%,第二天看了全书的15%,两天共看书多少页?12.工地运来50吨黄沙,第一周用去50%,第二周用去的相当于第一周的50%,第二周用去多少吨?13.某机床厂计划一个月生产机床140台,结果上半月完成了3/5 ,下半月完成的与上半月的同样多,这个月生产的机床比原计划多多少台?14.某化肥厂四月份生产化肥800吨,如果以后每一个月都比前一个月增产8%,六月份生产化肥多少吨?15.某农民承包了一块长方形的地,长150米,宽100米,他准备用这块地的75%种蔬菜,余下的栽果树,栽果树的面积是多少平方米?16.红旗小学五年级和六年级学生栽树,六年级学生栽260棵,五年级植的树比六年级的75%多12棵,五年级学生栽树多少棵?17.一堆煤共150吨,甲车运了总数的1/4 ,乙车运了剩下的1/4,这堆煤还剩下多少吨?18.张超同学看一本240页的故事书,每天能看总页数的 1/4 ,看了3天后还剩多少页?19.修一条公路,甲队有120人,把甲队人数的1/6 调入乙队,这时两队人数相等。

六年级列方程解应用题-鸡兔同笼问题带答案

六年级列方程解应用题-鸡兔同笼问题带答案

列方程解应用题—鸡兔同笼问题一、课前小练习:1、一个养兔厂养白兔100只,黑兔是白兔的53,灰兔又占黑兔的43,灰兔多少只? 答案:45只2、 鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?答案:鸡:9只 兔:11只3、鸡兔同笼,头共70个,脚共186只,求鸡与兔各有多少个头?答案:鸡:47只 兔:23只二、知识点讲解:例1 鸡兔同笼,共有45个头,146只脚。

笼中鸡兔各有多少只?解法一 假设全是兔子。

(4×45-146)÷(4-2)=17(只)——鸡45-17=28(只)——兔解法二 假设全是鸡。

(146-2×45)÷(4-2)=28(只)——兔45-28=17(只)——鸡答:鸡有17只,兔子有28只。

拓展练习:1、在一个停车场上,停了汽车和摩托车一共32辆。

其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。

求汽车和摩托车各有多少辆?答案:汽车:12辆 摩托车:20辆 列方程解应用题,若在题干中含有多个量的情况下,在设出一个量为未知量x 时,一定要将其他的量用x 表示出来2、张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?答案:鸡:120只兔:80只3、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?答案:鹤:2只龟:14只例2蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。

现在这三种小虫16只,共有110条腿和14对翅膀。

问,每种小鸟各几只?答案:蜘蛛有7只,蜻蜓有5只,蝉有4只拓展练习:螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。

现在这三种动物37只,共有250条腿和52对翅膀。

每种动物各有多少只?答案:螃蟹有7只,螳螂有8只,蜻蜓有22只例3 鸡与兔共有32只,鸡的脚比兔的脚少8只,问鸡与兔各多少只?答案:鸡:20只兔:12只拓展练习:鸡与兔共有45只,兔的脚比鸡的脚多30只,问鸡与兔各多少只?答案:鸡:25只兔:20只例4已知鸡兔共居一笼,鸡、兔共有脚136只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?答案:鸡:22只兔:23只三、课后练习:1、有鸡兔共20只,脚44只,鸡兔各几只?答案:鸡:18只兔:2只2、鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?答案:鸡:63只兔:37只3、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?答案:鸡:80只兔:20只4、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?答案:鸡:124只兔:76只5、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?答案:鸡:23只兔:12只6、蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?答案:蜘蛛有8只,蝴蝶有10只,蝉有3只7、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?答案:鸡:12只兔:19只8、有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?答案:兔:9只假设法:假设全是鸡 则总脚数为总头数的2倍 兔:92418=-÷)(只9、小华买了2元和5元纪念邮票一共34张,用去98元钱。

六年级数学上册《列方程解和倍差倍百分数应用题》

六年级数学上册《列方程解和倍差倍百分数应用题》

六年级数学上册《列方程解和倍差倍百分数应用题》例1、(列方程解答和倍问题)一根绳子长48米,截成甲、乙两段,其中乙绳长度是甲绳的60%。

甲、乙两绳各长多少米?分析与解:乙绳长度是甲绳的60%,把甲绳长度看作单位“1”等量关系式:甲绳长度+乙绳长度=总长度解答:设甲绳长x米,则乙绳长60%x米。

x+60%x=481.6x=48x=3060%x=30X60%=18答:甲绳长30米,则乙绳长18米。

检验:30+18=48(米),符合甲、乙两绳共长48米。

18÷30=60%,符合乙绳长度是甲绳的60%。

例2、(列方程解答差倍问题)体育馆内排球的个数是篮球的75%,篮球比排球多6个。

篮球和排球各有多少个?分析与解:排球的个数是篮球的75%,是把篮球个数看作单位“1”。

等量关系式:篮球-排球=6个解答:设篮球有x个,则排球有75%x个。

x-75%x=60.25x=6x=2475%x=24X0.75=18答:篮球有24个,排球有18个。

你会自己检验吗?检验:24-18=6(个),符合篮球比排球多6个。

18÷24=75%,符合排球的个数是篮球的75%。

例3、六年级男生比女生少40人,六年级女生人数相当于男生人数的140%,六年级男生有多少人?错误解法:设:女生有x人,男生就有140%x人。

140%x-x=400.4x=40x=100140%x=100X1.4=140分析与解:根据“六年级女生人数相当于男生人数的140%”,可以把男生人数看作单位“1”的量,设男生人数为x人,女姓人数就是140%x人,再根据“六年级男生比女生少40人”,可以得出数量关系式:“女生人数-男生人数=40”,根据此数量关系式列出方程。

正确解答:设男生有x人,女生就有140%x人。

140%x-X=400.4x=40x=100答:男生有100人。

小学数学六年级应用题13种类型解题方法

小学数学六年级应用题13种类型解题方法

解题方法一:直观化问题有些应用题可能会给出一个具体的场景,我们可以通过直观化问题来解决它。

比如,一个篮子里有苹果、梨子和橙子,苹果比梨子多两倍,橙子比梨子少3个,篮子里一共有15个水果,那么各种水果的数量分别是多少?我们可以通过直观化问题,用图表的形式来辅助解决。

解题方法二:列方程有些应用题可能无法直接看出关系,但我们可以通过列方程来建立关系。

比如,小明和小红一起骑自行车迎面而来,小明的速度是10千米/小时,小红的速度是8千米/小时,两人相距60千米,什么时候两人能够相遇?我们可以通过列方程来解决这个问题。

解题方法三:进行逆向思维有些应用题可能通过逆向思维来解决。

比如,小明现在拥有了100元,他想买一本书,但他还需要15元才能够买到,他打算用每天10元的零花钱来积攒足够的钱,问他需要多少天?我们可以通过逆向思维,从目标价钱出发,逐步推算回去。

解题方法四:分情况讨论有些应用题可能包含多个条件,我们需要分开讨论不同情况。

比如,小明有100元,他想买一本书,书的价格有两个档次,A档次每本50元,B档次每本80元,他至少要买一本A档次的书,同时还可以买一本B档次的书,问他最多能够买多少本书?我们可以分情况讨论,一种情况是只买A档次的书,另一种情况是同时买A档次和B档次的书。

解题方法五:利用等差或等比数列有些应用题可能可以用等差或等比数列的性质来解决。

比如,小明每天扔掉一半的花,第一天扔掉一朵,第二天扔掉两朵,第三天扔掉四朵,以此类推,问第五天共扔掉了多少朵花?我们可以通过等比数列的性质来解决。

解题方法六:利用图形的性质有些应用题可能可以利用图形的性质来解决。

比如,一个直角三角形的两条直角边长的比是3:4,面积是60平方单位,求三角形的周长和斜边的长。

我们可以通过利用直角三角形的性质来解决。

解题方法七:利用比例关系有些应用题可能可以利用比例关系来解决。

比如,小王爸爸做17天的工作可以挣700元,小王妈妈做25天的工作可以挣900元,小王爸爸和小王妈妈一起工作了多少天可以挣到500元?我们可以通过利用比例关系,建立方程来解决。

小学五六年级解方程应用题分类练习题

小学五六年级解方程应用题分类练习题

小学五六年级解方程应用题分类练习题立身以立学为先,立学以读书为本解方程应用题巩固训练购物问题:1、食堂买了8千克黄瓜,付出15元,找回1.4元,每千克黄瓜是多少钱?2、买4枝钢笔比买5枝圆珠笔要多花2.2元,每枝圆珠笔的价钱是0.6元,每枝钢笔是多少元?3、明明家买了一套桌椅,6张椅子配一张桌子,一共用了1120元。

如果一张餐桌730元,那么一把椅子多少元?4、XXX带500元去买足球。

买了12个足球后,还剩140元,每个足球多少元?5、奶奶买4袋牛奶和2个面包,付给售货员20元,找回5.2元,每个面包5.4元,每袋牛奶多少元?6、大瓜去买大米和面粉,每千克大米 2.6元,每千克面粉2.3元,他买了20千克面粉和若干大米,共付款61.6元,买大米多少千克?“谁是谁的几倍多(少)几”问题:Part11、有甲、乙两个书架.已知甲书架有540本书,比乙书架的3倍少30本.乙书架有多少本书?2、甲、乙两人做零件.甲做了240个,比乙做的2倍还多40个.乙做了多少个?4、XXX有学生350人,比XXX的学生的3倍少19人.XXX有学生多少人?5、6、水果店运来橘子340千克,比运来XXX的3倍少80千克.运来苹果几何千克?立身以立学为先,立学以读书为本7、一只鲸的体重比一只大象的体重的37.5倍多12吨.已知鲸的体重是162吨,大象的体重是多少吨?8、某玩具厂九月份的产量比八月份产量的2.5倍还多500个.已知九月份的产量是3500个,八月份的产量是多少?9、洗衣机厂今年逐日出产洗衣机260台,比去年均匀日产量的2.5倍少40台,去年均匀日产洗衣机几何台?10、某饲养场养鸡352只,比鸭的只数的4倍还多32只。

养鸭多少只?Part21、XXX共有108人加入学校科技小组,个中男生人数是女生人数的1.4倍。

加入科技小组的男、女生各有多少人?2、体育比赛中参加跳绳的人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20人,跳绳、踢毽子各有几何人?3、某校五年级两个班共植树385棵,5(1)班植树棵树是5(2)班的1.5倍。

六年级 数学 人教版 列方程解决应用题【精编版】

六年级 数学 人教版 列方程解决应用题【精编版】

列方程解决应用题辅导教案第八讲列方程解决应用题【错题回顾】1、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30升。

现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。

问:瓶内现有饮料多少升?(1)232 14.83 1.5187255⎡⎤⎛⎫+-⨯÷⎪⎢⎥⎝⎭⎣⎦(2)117110 10.7542 1.125 2.251012111211⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷+÷÷⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦二、填空1.一个小数的整数部分与小数部分的值相差88.11,整数部分的值恰好是小数部分的100倍,这个数是____________.2.把表面积是8平方米的正方体切成体积相等8个小正方体,那么每个小正方体的表面积是____________.4.一件商品,一进货价的300%标价,降价20%后出再打八折,相当于是按进货价的百分之()出售。

(A)224 (B)72(C)168 (D)与原价大小有关5.甲把自己的五分之一棋子输给了乙之后,两人的棋子数相等,甲、乙原有棋子数的比是()(A)5:3 (B)3:5(C)2:3 (D)3:21、(6分)有甲、乙两桶油共重160千克,如果从甲桶中取出715倒入乙桶,那么乙桶比甲桶多40千克油,求甲桶原比乙桶多(或少)多少千克?第八讲 列方程解决应用题【新课讲授】列方程解应用题的一般步骤是:①审清题意,弄清楚题目意思以及数量之间的关系,;②合理设未知数x ,设未知数的方法有两种:问什么设什么(直接设未知数),间接设未知数; ③依题意确定等量关系,根据等量关系列出方程; ④解方程;⑤将结果代入原题检验。

概括成五个字就是:“审、设、列、解、验”.列方程解应用题的关键是找到正确的等量关系。

寻找等量关系的常用方法是:根据题中“不变量”找等量关系。

一些基本概念:(1)像4x+2=9这样的的等式,只含有一个未知数x ,而且未知数x 的指数为1的方程叫做一元一次方程; (2)像2x+y=8这样的的等式,含有两个未知数x 、y ,而且未知数的指数都为1的方程叫做二元一次方程;把两个二元一次方程用“﹛”写在一起,就组成了一个二元一次方程组;(3)如果有两个未知数,一般需要两个方程才能求出唯一解,如果有三个未知数,一般需要三个方程才能求出唯一解.如果有更多的未知数,可借助今天学习的解题思路来类推出解法.类型Ⅰ:解方程一、字母的运算二、去括号(主要是运用乘法的分配律和加减法的运算性质) 1.=+)(c b a2.=++)(c b a =-+)(c b a3.=+-)(c b a =--)(c b a应用上面的性质去掉下面各个式子的括号,能进行运算的要进行运算。

六年级【小升初】小学数学专题课程《列方程解应用题》(含答案)

六年级【小升初】小学数学专题课程《列方程解应用题》(含答案)

21.列方程解应用题知识要点梳理一、列方程解应用题的意义列方程解应用题就是用字母表示实际问题里的某个未知数,根据等量关系列出含有未知数的等式,即方程。

二、列方程解应用题的一般步骤1.审题:了解题中的已知条件和未知量,明确各个数量之间的关系,找出等量关系。

2.设:用字母表示题中的一个未知量,并用含该字母的代数式表示其他的未知量。

3.列:找出能够表示应用题全部含义的一个数量关系,列出方程4.解:解列出的方程5.答:检验所求的解是否符合题意,写出答案。

列方程解应用题,关键是寻找题中的等量关系。

方法:(1)直接设未知数;(2)间接设未知数。

途径:(1)根据关键句设未知数;(2)根据单位“1”设未知数;(3)根据公式设未知数。

考点精讲分析典例精讲考点1 直接列方程解应用题【例1】甲和乙一共有100元钱,甲用去49,乙用去27后,两人一共还剩下60元,甲原来有多少钱?【精析】设甲原有x 元,则乙原有(100-x )。

甲剩下的钱可以用x×(1-49)元表示,乙剩下的钱可以用(100-x)×(1-27)元表示,然后根据两人一共剩下60元列出方程。

【答案】设甲原有x 元,则乙原有(100-x )。

x ×(1-49)+(100-x)×(1-27)=605x +(100−x )×(1−2)=60 x =60答:甲原来有72元钱。

【归纳总结】此题比较简单,直接设未知数即可,利用两个等量关系设未知数和列方程。

考点2 间接列方程解应用题【例2】东方小学体育室的足球个数是篮球的3倍,体育课上,每班借6个足球,5个篮球,篮球借完时,还有72个足球。

体育室里原有足球和篮球各多少个?【精析】设班级数共为x个,那么借出的足球为6x个,借出的篮球为5x个。

【答案】设借球的班级数为x个。

5x×3=6x+729x=72x=8篮球:5×8=40个足球:40×3=120个答:体育室里原有足球120个,篮球40个。

小学数学六年级上册-列方程解应用题

小学数学六年级上册-列方程解应用题

第13讲 列方程解应用题例题1 甲、乙两数之和是185,已知甲数的14 与乙数的15的和是42,求两数各是多少?例题2 彩色电视机和黑白电视机共250台。

如果彩色电视机卖出19,则比黑白电视机多5台。

问:两种电视机原来各有多少台?例题3 师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的38与徒弟加工零件个数的47的和为49个,师、徒各加工零件多少个?练笔:1. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。

抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25少70吨,还有420吨没完成,第二季度原计划生产多少吨?4、姐妹俩养兔120只,如果姐姐卖掉17,还比妹妹多10只,姐姐和妹妹各养了多少只兔?5、学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?6、小明甲养的鸡和鸭共有100只,如果将鸡卖掉120 ,还比鸭多17只,小明家原来养的鸡和鸭各有多少只7、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的25和黑白电视机的37,共卖出57台。

问:原来彩色电视机和黑白电视机各有多少台?8、甲、乙两个消防队共有336人,抽调甲队人数的57 、乙队人数的37,共抽调188人参加灭火。

问:甲、乙两个消防队原来各有多少人?9、学校买来足球和排球共64个,从中借出排球个数的14 和足球个数的13后,还剩下46个,买来排球和足球各是多少个?。

小学六年级数学教案 列方程解应用题9篇

小学六年级数学教案 列方程解应用题9篇

小学六年级数学教案列方程解应用题9篇列方程解应用题 1列方程解的应用题教学目标1.使学生初步学会分析稍复杂的两步计算的应用题的数量关系,正确列出方程.2.学生会找出应用题中相等的数量关系.教学重点训练学生用方程解“已知比一个数的几倍多(少)几是多少,求这个数”的应用题.教学难点分析应用题等量关系,并会列出方程.教学过程一、复习准备(一)写出下面各题的式子.1.比的3倍多152.比的4倍少23.2个与34的和4.5个与0.6的3倍的差(二)解答复习题少年宫舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人.合唱队有多少人?(学生独立解答)23×3+15=69+15=84(人)答:合唱队有84人.二、新授教学(一)导入新课(改复习为例4)少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人?1.比较:例4与复习题有什么相同点和不同点?相同点:“合唱队的人数比舞蹈队的3倍多15人”这句话没有变;不同点:复习题已知舞蹈队人数求合唱队人数,例4是已知合唱队人数求舞蹈队人数.2.教师说明:例4就是我们以前见过的“已知比一个数的几倍多几是多少,求这个数”的应用题.今天我们学习用方程解答这类应用题.教师板书:列方程解应用题(二)教学例41.画线段图分析题意2.看图思考:舞蹈队人数和合唱队人数有什么关系?3.学生汇报讨论结果:舞蹈队人数的3倍加上15正好等于合唱队人数.(根据:合唱队人数比舞蹈队人数的3倍多15人)4.列方程解答教师板书:解:设舞蹈队有人.答:舞蹈队有23人.5.思考:还可以怎样列方程?(或)引导:例题的方法最简单,解题时要用简单的方法解.(三)变式练习少年宫合唱队有84人,合唱队的人数比舞蹈队的人数的4倍少8人,舞蹈队有多少人?三、课堂小结今天这节课你学到了什么知识?在学习中你有什么感想?四、巩固练习(一)只列式不计算.1.图书室有文艺书180本,比科技书的2倍多20本,科技书本.2.养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡只.(二)学校饲养小组今年养兔25只,比去年养的只数的3倍少8只.去年养兔多少只?(三)一个等腰三角形的周长是86厘米,底是38厘米.它的腰是多少厘米?五、课后作业(一)地球绕太阳一周要用365天,比水星绕太阳一周所用时间的4倍多13天.水星绕太阳一周要用多少天?(二)买3枝钢笔比买5枝圆珠笔要多花0.9元.每枝圆珠笔的价钱是2.6元,每枝钢笔的价钱是多少钱?六、板书设计列方程解应用题例4.少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人?解:设舞蹈队有人.答:舞蹈队有23人.教案点评:分析数量之间的等量关系,学生已有一定的基础,本节主要训练学生掌握根据题目所给的不同条件,找等量关系的方法。

六年级下册数学-小升初解方程应用题及答案-人教版

六年级下册数学-小升初解方程应用题及答案-人教版

-小升初解方程应用题及答案-人教版一、解答题(题型注释)与b的大小嘛?(1)a+4=6+b a b(2)a﹣0.3=b﹣0.4 a b(3)50+b=a﹣12 a b(4)4a=5b a b(5)10÷a=8÷b a b(6)a÷15=b×3 a b.2.看图列方程3.某小学六年级举行健美操比赛,参加比赛的女生比男生多28人.结果男生全部获奖,女生则有25%的人未获奖,男女生获奖总人数为42人.又已知参加比赛的人数与全年级人数的比是2:5.该校六年级一共有多少人?4.小明去书店买了3本练习本和2本科技书一共用去35.8元,已知科技书共9.4元,一本练习本多少元?(用方程解答)5.10袋大包洗衣粉和2袋小包洗衣粉共重16千克,小包的质量是大包的13,大包洗衣粉每袋重多少千克?6.你能根据图意列出方程吗?7.想一想,画一画根据下列竹竿左侧放棋子的数量和位置,想一想,在右侧的什么位置放几个棋子才能保证竹竿平衡?共有几种方案呢?把你的方案都画出来.8.想一想,画一画根据下列竹竿左侧放棋子的数量和位置,想一想,在右侧的什么位置放几个棋子才能保证竹竿平衡?共有几种方案呢?把你的方案都画出来.9.解方程并检验。

(l)x÷5.2=1.6(2)3.2x-x=13.2检验:检验:10.选一根粗细均匀的塑料杆(长约1米),在中点的位置打个小孔并拴上绳子,然后从中点开始每10厘米处插上一根竹签.(1)如果在塑料杆左右两边刻度相同地方的竹签上穿珠子(珠子完全相同).怎样放珠子才能保证平衡?(2)如果左右两端的珠子同样多,它们移动到什么位置才能保证平衡?(3)左边在刻度3上的竹签上穿4颗珠子,右边刻度4上的竹签上,应穿颗珠子才能保证平衡;如果左边刻度6上的竹签上穿1颗珠子,右边刻度3上的竹签上穿颗珠子;左边刻度5上的竹签上穿2颗珠子,右边刻度2上的竹签上穿颗珠子.你发现了什么规律吗?11.按要求写方程。

小学方程应用题类型

小学方程应用题类型

小学方程应用题类型小学方程应用题类型应用题是指将所学知识应用到实际生活实践的题目。

在数学上,应用题分两大类:一个是数学应用。

另一个是实际应用。

数学应用就是指单独的数量关系,构成的题目,没有涉及到真正实量的存在及关系。

实际应用也就是有关于数学与生活题目。

接下来,店铺为你带来小学方程应用题类型,希望对你有帮助。

篇一:小学方程应用题类型1.a×8×b可以简写成()。

2.当m=4时,3m+㎡=()。

3.三个连续自然数,中间的数是m,它前面的数是(),后面的数是()。

4.小明买x本日记本,每本2.8元,付出10元,找回()元。

3.6x+y表示x与y的和的6倍。

()4.4x+10=70和5x+3x=120的解相同。

()1.下列各式中,是方程的是()。

A.5.6x-3.1B.5.6+0.1=5.7C.6x-5y=02.如果0.4×a=0.45×b(a,b都不为0),则()。

(A.a=bB.a>bC.a<b3.x与1.7的和的4倍是20.4,可列方程为()。

A.x+1.7×4=20.4B.4(x+1.7)=20.4C.4x+1.7=20.44.6x=0,则方程()。

A.没有解B.有无数个解C.只有一个解。

4x+4.5×4=367x-4x=1.8(x-4.5)×3=241.2004年亚洲人口约39亿,比欧洲人口总数的5倍还多4亿人,欧洲人口大约有多少亿人?2.买10袋大米和6袋面粉一共用了472元。

每袋大米28元,每袋面粉多少钱?3.学校买了50张电影票,标价有1.5元和2元两种,已知买票共用去88元,两种票各买几张?1.一辆汽车从甲地开往乙地,平均每小时行20千米。

到乙地后又以每小时30千米的速度返回甲地,往返一次共用7.5小时。

求甲乙两地间的路程。

2.某小学举行数学竞赛,共15道题,评分标准是做对1题得8分,做错或不做1题倒扣4分,小明最后得72分,他做对了几道题?1、小明今年a岁,爸爸比小明年龄的5倍还大3岁,爸爸今年()岁。

小学六年级列方程解应用题方法归纳

小学六年级列方程解应用题方法归纳

小学六年级列方程解应用题方法归纳小学六年级列方程解应用题专项复1.列方程解应用题的意义解应用题需要进行列方程解的过程,而列方程解的意义在于正向思维,将未知量当作已知量来处理,从而解决问题。

2.方法总结列方程解应用题的步骤包括审题、设元、列代数式、列方程、解方程和检验答案。

在解题过程中,需要确定已知量、未知量及它们之间的关系,并正确运用等式的性质来求解方程。

3.列方程解应用题的方法列方程解应用题的方法包括综合法和分析法。

综合法是从部分到整体的思考过程,先将已知数和所设未知数列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

分析法是从整体到部分的思考过程,先找出等量关系,再根据具体建立等量关系的需要,将已知数和所设未知数列成有关的代数式进而列出方程。

4.列方程解应用题的范围列方程解应用题的范围包括一般应用题、倍数、差倍问题、几何形体的周长、面积、体积计算、分数、百分数应用题以及比和比例应用题。

5.常见的一般应用题常见的一般应用题包括以总量为等量关系建立方程的问题。

例如,两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少千米?解题过程中,需要将快车4小时行的距离加上慢车4小时行的距离等于总路程,然后解出快车每小时行驶的距离为74千米。

练题:①降落伞以每秒10米的速度从米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?②甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?③两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?④两地相距249千米,一列火车从甲地开往乙地,每小时行55.5千米,行了多少小时还离乙地有27千米?3.两块正方形的地,第一块地的边长比第二块地的边长的2倍多2米,而它们的周长相差56厘米,两块地边长是多少?设第一块地的边长为2x+2,第二块地的边长为x,根据周长公式可得:4(2x+2) - 4x = 56化简得:6x = 40解得:x = 6.67所以第二块地的边长为6.67米,第一块地的边长为15.34米。

小学六年级数学解方程应用练习题及答案

小学六年级数学解方程应用练习题及答案

小学解方程应用题练习题及答案六年级1、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。

解:设乙有书x本,则甲有书3x本X+3X=82×22、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.解:设下层有书X本,则上层有书3X本3X-60=X+603、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.解:设乙缸有X条,则甲缸有1/2X条X-9=1/2X+94、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.解:设计划时间为X小时60×=40×5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?解:设四年级种树X棵,则五年级种棵-X=626、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.解:设原计划生产时间为X天40×=60×7、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍? 解:设X天后,乙仓存粮是甲仓的2倍×2=57+9X8、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?解:设直尺每把x元,小刀每把就是元4X+6×=99、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?解:设原来每个粮仓各存粮X吨X-130=×310、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.解:设两人各加工X个零件X/=X/50+5-111、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?解:设橘子每千克X元,则苹果每千克元2.5×+2X=13.612、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元?解:设钢笔每支X元,则圆珠笔每支2X/34X+9×2X/3=2413、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数.解:设十位上数字为X,则个位上的数字为2X,这个原两位数为10×2X+X=+3614、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.解:设个位数字为X,则十位数字为X+=[X+10×] ×0.215、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球?解:设现在每只盒子中各有x个球,原来各盒中球的个数分别为个、个、个、2x个+ + +x=4516、25除以一个数的2倍,商是3余1,求这个数.解:设这个数为X÷2X=317、甲、乙分别从相距18千米的A、B两地同时同向而行,乙在前甲在后.当甲追上乙时行了1.5小时.乙车每小时行48千米,求甲车速度.解:设甲车速度为X小时/小时×1.5=1818、甲、乙两车同时由A地到B地,甲车每小时行30千米,乙车每小时行45千米,甲车先出发2小时后乙车才出发,两车同时到达B地.求A、B两地的距离.解:设A、B两地的距离为X千米/30=X/4519、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.解:设师傅每小时加工X个零件6X=12×20、有甲、乙两桶油,甲桶油再注入15升后,两桶油质量相等;如乙桶油再注人145升,则乙桶油的质量是甲桶油的3倍,求原来两桶油各有多少升.解:设甲桶原来有X升油,则乙桶原来有升油X+15+145=3X21、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元.解:设细木工每人得X元/=X-301.从A城到B城,甲汽车用6小时,从B城到A城,乙汽车用4小时,现在甲、乙分别从A、B两城同时出发相对而行,相遇时甲车行驶了96千米,A、B两城相距多远?甲、乙车的速度之比=4:6=2:两车相遇时甲车行驶了96千米,那么乙车行驶了96÷3×2=64千米,全程是64+96=160千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题的类型
(一)直接设未知数
例1.甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是
甲的3倍,问甲乙原来各有存款多少元?
解析:这是一道较复杂的和差倍问题.但用方程思维来解,就好理解了.
解:设乙原来有存款x元,(直接设未知数,求两个量以上的,一般设最小的那个),那么甲原来的存款数就是4x元(用未知数表示另外的量)
根据题中“现在,乙的存款是甲的3倍”这一数量关系式,我们可以列出方程(x+110)=(4x-110)×3
(二)间接设未知数
例2.盒子里装有白球的个数是红球的3倍.每次取出3个红球和4个白球,取了若干次以后,红球正好取完,白球还有20个,盒子里原来共有多少个球?
解析:如果直接设未知数,设原来共有X个球,你就无法用未知数表示出白球和红球的数量,自然也不能用方程列出两种球的数量关系式.所以直接设对这类型题不合适.从题意中我们发现,如果知道取了多少次,这道题就简单多了
解:设共取了x次,题目中”盒子里白球的个数是红球的3倍”说出了两者的数量关系式,我们可以列出方程4x+20=3x×3
(三).方程在其他题目中的运用
例3.计算
(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)
解析: 如果直接去括号计算,三个数乘以三个数的乘法分配律,还没学.但仔细观察下,发现,算式中有好多数是相同的.我们可以把这些相同的数当成一个数,这样算式就简化了
解:设0.12+0.23=x,设1+0.12+0.23=y
原式=y×(x+0.34)-(y+0.34)×x
=x×y+0.34×y-x×y-0.34×x (式子中的”×”号可不写)
=0.34y-0.34x
=0.34(y-x)=0.34
(提醒:原来,设未知数的目的在于简化计算过程,到最后,含有未知数的全部抵消掉了 )
例4. 有一个三位数:十位上的数字是0,其余两位上的数字之和是12。

如果个位数字减2,百位数字加1,所得的新三位数比原三位数的百位数字与个位数字调换所得的三位数小100,则原三位数是。

解析:由于题目中百位和个位上的数都不知道,我们可以用未知数表示出来
设这个三位数是 a0b ,由题意可知:a+b=12
(a+1)×100+b-2+100=100b+a 即b-a=2
由此可算出:a=5,b=7
例5.某班平均分是87分,其中男生平均分为85分,女生平均分90分,男生人数是女生人数的几倍?
解析:间接设。

用“移多补少”的思维。

设女生人数为x人
打完平均后,女生平均分由90变成了87,每个女生少了3分,共少了3x分,这些分全补给男生了。

男生由平均分85变成87,每个男生补了2分,总共补了3x 分,可以求出男生人数是:3x÷2=1.5x人,男生人数是女生人数的1.5x÷x=1.5倍
1.六(1)班同学合买一件礼物送给母校留作纪念。

如果每人出6元,则多48元;如果每人出4.5元,则少27元。

求六(1)班学生人数。

2.五老村小学体育器材室里的足球个数是排球的2倍。

体育活动课上,每班借7个足球,5个排球,排球借完时,还有足球72个。

体育器材室里原有足球、排球各多少个?
3.甲、乙、丙、丁四人共做零件325个。

如果甲多做10个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么,四个人做的零件数恰好相等。

问:丁做了多少个?
4.一架飞机所带的燃料最多可以用9小时,飞机去时顺风,每小时可飞1500千米;返回时逆风,每小时可以飞1200千米。

这架飞机最多飞出多少千米,就需要往回飞?
1.妈妈买回一箱库尔勒香梨,按计划天数,如果每天吃4个,则多出24个香梨;如果每天吃6个,则又少4个香梨。

问:计划吃多少天?妈妈买回香梨多少个?
3.某商店库存的花布比白布的2倍多20米,每天卖出30米白布和40米花布,几天以后,白布全部卖完,而花布还剩下140米。

原来库存这两种布共多少米?
4.一条大鲨鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长的一半。

这条大鲨鱼全长是多少米?
5.甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,途中丙与乙相遇2分后又遇到甲。

如果每分甲行50米,乙行60米,丙行70米,问:乙比甲早多少分到西镇?
五年级解方程练习题
2(X+X+0.5)=9.825000+x=6x3200=450+5X+X X-0.8X=6 12x-8x=4.8 12x=300-4x
91÷x=1.3 (27.5-3.5)÷x=4 (200-x)÷5=30
7(x-2)=2x+318(x-2)=270(x-140)÷70=4
7x+5.3=7.43x÷5=4.830÷x+25=85
1.4×8-2x=6 3(x+0.5)=216x-3x=18
1.5x+18=3x 5×3-x÷2=8 0.273÷x=0.35
1.8x=0.972 x÷0.756=90 x÷5+9=21
1、小玲每分钟走100米,小强每分钟走75米,小玲家距离学校1200米,小强家距离学校950米,两个人同时出发,多少分钟后距学校的距离相等?
2、玫瑰和水仙每种花每支的价钱相同,现店内有三束花:第一束三支玫瑰,一支水仙共16元;第二束两支玫瑰,两支水仙共12元;第三束一枝玫瑰,三支水仙花,求第三束花的价格?
3、50名同学组织到公园划船
(1)他们一共租了10条船,并且每条船都住满了人,那么大、小船,各租了几只?(2)他们租船一共花了多少钱?
划船须知:大船最多做6人,小船最多做4人,大船每条租金10元,小船每条租金8元
4、某校计划添置20张课桌和一批椅子(椅子不少于20把),A、B两家家具公司同一款式的产品价格相同,课桌每张210元,椅子每把70元。

A公司的优惠政策为:每卖一张课桌赠送一把椅子;B公司的优惠政策为:课桌和椅子都实行8折优惠。

①若到A公司买课桌桌的同时买M把椅子,则应付款多少元?②若规定只能选择一家公司买桌椅,什么情况到任意一家公司购买付款一样多?③如果买课桌的同时买30把椅子,请你设计一种购买方案,使所付款额最少。

相关文档
最新文档