红外图谱特征

合集下载

苯环红外谱图的特点及其原因

苯环红外谱图的特点及其原因
⒊芳环骨架的面外变形振动δ(环)
只有当苯环为单取代、1,3取代、1,2,3-取代和1,3,5-取代时是红外活性 的,因此可以根据δ(环)在690cm-1~710cm-1吸收峰的存在与否来区分取代 类型。
Ar—H面外变形振动γ(=C-H)
芳烃在650~900cm-1 吸收峰的位置和数目以及1650~2000cm-1倍频区域峰的形 状是表征苯环上取代位置和数目的主要依据,可以确定苯环化合物是单取代 还是双取代,是邻、间位取代还是对位取代等不同的取代类型。
带有正丙基或丙基以上烷基侧链的芳烃经麦氏重 排产生C7H8+离子(m/z92)。正丁基苯的EI-MS 图
如何确定未知物中存在苯环
苯环碎片离子顺次失去C2H2: m/z91→ m/z65→ m/z39 m/z77→ m/z51
因此当化合物含有苯环时,一般可在谱图 中看到m/z39/、m/z51、 m/z65、 m/z77等峰。
65 78
63
60
70
80
134
105
103
115
90
100 110 120 130 140 150
乙酰丙酮的核磁共振C谱
IR
在讨论芳烃的红外谱图前有两个要注意的问题 ①分子的对称性。具有对称性的分子在振动时分子对称 性
不变面只是分子大小变化称为呼吸振动,一般为红外非活 性振动(芳环的骨架伸缩振动);只有当取代破坏了对称 性或偶极矩矢量和不为零时,才有红外活性振动。 ②苯环具有刚性,不能产生旋转构象。所以芳烃的红外吸 收都是尖锐的针状谱带。
苯环的3 J 大于饱和碳键3 J ,典型的为3 J =8Hz。由于苯 环的共扼体系,在氢上存在远程偶合,甲基分别与邻、 对芳环上氢偶合的J为0.6~0.9Hz、0.5~0.6Hz,间位的则 较小。

红外光谱的四大特征

红外光谱的四大特征

红外光谱的四大特征
红外光谱的四大特征包括谱带的数目、谱带的位置、谱带的强度以及谱带的形状。

这四大特征可以帮助科学家们在鉴定化合物时确定化合物的类型。

具体来说,
1. 谱带的数目:不同的化合物在红外光谱中表现出不同数量的吸收谱带。

2. 谱带的位置:每个基团都有其特征振动频率,在红外光谱中表现出特定的吸收谱带位置,通常用波数表示。

在鉴定化合物时,谱带位置是最重要的参数之一。

3. 谱带的强度:谱带的强度可以反映化合物中相关基团的含量,也可以反映基团间的相互作用。

4. 谱带的形状:如果所分析的化合物较纯,其谱带较尖锐、对称性好;若是混合物,有时会出现谱带的重叠、加宽,对称性被破坏。

对于晶体固态物质,其结晶的完整性程度也影响谱带形状。

醇、酚红外图谱分析

醇、酚红外图谱分析
1234 C-O 伸 缩振动
3229 分子间氢键展 宽的 O-H 伸缩
3023 芳基 C-H 伸 缩振动
1336 O-H 弯曲振动
754 C-H 面外伸缩振 动
图 4 苯酚红外波谱图
---精品---
(3)在醇类化合物中强极性的 C-O 键的伸缩振动在 1000--1130 产生强吸收峰,其
中,伯醇 1050 ,仲醇 1100 ,叔醇 1130 ,酚 1200 。
表 1 醇、酚特征吸收位置
强 基团类型 峰位/

归属与注释
醇(非极性 1300-1000 s
稀溶液中)
C-O 键的极性很强,故强度强,图中最强的吸收
羟基(醇、酚)红外谱图特征总结: 1, 结构
2, 特征吸收带:
(1)醇、酚以游离态存在时(浓度低于 0.005 度吸收带。
),在 3650--3590 范围内中等强
游离态羟基伸缩振动的频率:伯醇(3640 )>仲醇(3630 )>叔醇(3620 )
>酚(3620 ) (2)由于羟基是强极性基团,由于氢键的作用,醇、酚通常都是以缔合状态存在,吸收 带向低频区位移,二聚体 3450--3550 、多聚体 3200--3400 ,且峰型变宽。
-3640
w
游离-OH 的尖峰
伯醇
-1050
s
C-O 峰宽
1350-1260 m
O-H 峰宽
仲醇
-3630
w
游离-OH 的尖峰
---精品---
-1100
s
1350-1260 m
3615
w
叔醇
1150
s
1410-1310 m
3610
w
酚(非极性

红外光谱谱图解析完整版

红外光谱谱图解析完整版
双键伸缩振动区 (4)1500 670 cm-1
X—Y伸缩, X—H变形振动区
2020/4/1
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;
中红外区: 远红外区:纯转动能 级跃迁,变角、骨架 振动;异构体、金属 有机物、氢键
2020/4/1
一、认识红外光谱图
2020/4/1
1、红外光谱图
峰强:Vs(Very strong): 很强;s(strong):强; m(medium):中强; w(weak):弱。 峰形:表示形状的为宽峰、尖峰 、肩峰、双峰等类型
变形振动 亚甲基
2020/4/1
甲基的振动形式
伸缩振动 甲基:
对称 υs(CH3) 2870 ㎝-1
变形振动 甲基
2020/4/1
对称δs(CH3)1380㎝-1
不对称 υas(CH3) 2960㎝-1
不对称δas(CH3)1460㎝-1
二、解析红外光谱图
2020/4/1
一个未知化合物仅用红外光谱解析结构是十分困难的。一般在光谱解析
前,要做未知物的初步分析 红外光谱谱图的解析更带有经验性、灵活性。 解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱
带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关 峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合, 确证其结构。
2020/4/1

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

红外谱图基础知识

红外谱图基础知识

第一节:概述1、红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。

红外光的能量(△E=0.05-1.0ev)较紫外光(△E=1-20ev)低,当红外光照射分子时不足以引起分子中价电子能级的跃迁,而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱又称为分子振动光谱或振转光谱。

2、红外光谱的特点:特征性强、适用范围广。

红外光谱对化合物的鉴定和有机物的结构分析具有鲜明的特征性,构成化合物的原子质量不同、化学键的性质不同、原子的连接次序和空间位置不同都会造成红外光谱的差别。

红外光谱对样品的适用性相当广泛,无论固态、液态或气态都可进行测定。

3、红外光谱波长覆盖区域:0.76 mm ~ 1000mm.红外光按其波长的不同又划分为三个区段。

(1)近红外:波长在0.76-2.5mm之间(波数12820-4000cm-1)(2)中红外:波长在2.5-25mm(在4000-400 cm-1)通常所用的红外光谱是在这一段的(2.5-15mm,即4000-660 cm-1)光谱范围,本章内容仅限于中红外光谱。

(3)远红外:波长在25~1000mm(在400-10 cm-1)转动光谱出现在远红外区。

4、红外光谱图:当物质分子中某个基团的振动频率和红外光的频率一样时,分子就要吸收能量,从原来的振动能级跃迁到能量较高的振动能级,将分子吸收红外光的情况用仪器记录,就得到红外光谱图。

5、红外光谱表示方法:(1)红外光谱图红外光谱图以透光率T %为纵坐标,表示吸收强度,以波长l ( mm) 或波数s (cm-1)为横坐标,表示吸收峰的位置,现主要以波数作横坐标。

波数是频率的一种表示方法(表示每厘米长的光波中波的数目)。

通过吸收峰的位置、相对强度及峰的形状提供化合物结构信息,其中以吸收峰的位置最为重要。

(2)将吸收峰以文字形式表示:如下图可表示为,3525cm-1(m),3097cm-1(m),1637cm-1(s)。

这种方法指出了吸收峰的归属,带有图谱解析的作用。

乙烯的红外光谱特征

乙烯的红外光谱特征

乙烯(乙烯烷)是一种简单的不饱和烃,其分子式为C2H4。

乙烯的红外光谱特征主要体现在其分子中碳-碳双键(C=C)和碳-氢键(C-H)的振动模式上。

以下是乙烯的红外光谱特征:
1. C=C双键伸缩振动:乙烯的红外光谱中最显著的特征是在1650-1600 cm-1范围内的C=C双键伸缩振动峰。

这个峰通常呈现为强烈的吸收峰或吸收带。

2. C-H伸缩振动:乙烯中的碳-氢键(C-H)也会在红外光谱中表现出吸收峰。

乙烯的C-H伸缩振动通常在3100-3000 cm-1范围内,以强烈的吸收峰或吸收带的形式出现。

除上述主要特征,乙烯的红外光谱还可能包含其他振动模式的吸收峰,如碳-碳单键(C-C)振动、碳-氢弯曲振动等。

这些特征的位置和强度可能会受到结构和环境的影响。

因此,在分析乙烯的红外光谱时,需要结合其他实验数据和文献参考进行准确的解释和归属。

需要注意的是,乙烯的红外光谱特征仅供参考,具体的红外光谱图谱应根据实验仪器和条件的不同而有所差异。

因此,在实际分析中,建议参考相关的文献和数据库,以获取更准确和可靠的乙烯红外光谱特征数据。

红外(IR)谱图解析基础知识

红外(IR)谱图解析基础知识

红外谱图解析基础知识(一)、基团频率区和指纹区1、基团频率区中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。

最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。

区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。

在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。

这种振动基团频率和特征吸收峰与整个分子的结构有关。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

基团频率区可分为三个区域:(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。

O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。

当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。

当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。

胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。

C-H的伸缩振动可分为饱和和不饱和的两种。

饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。

如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。

各类化合物的红外光谱特征

各类化合物的红外光谱特征

各类化合物的红外光谱特征各类化合物的红外光谱特征有机化合物的数⽬⾮常⼤,但组成有机化合物的常见元素只有10种左右,组成有机化合物的结构单元即称为基团的原⼦组合数⽬约有⼏⼗种。

根据上述讨论,基团的振动频率主要取决于组成基团原⼦质量(即原⼦种类)和化学键⼒常数(即化学键的种类)。

⼀般来说,组成分⼦的各种基团如C-H、C-N 、C=C、C=O 、C-X等都有特定的红外吸收区域(特征吸收峰),根据特征吸收峰可以推断物质的结构。

所以,有必要对各类有机化合物的光谱特征加以总结。

⼀、烷烃1. νC-H 3000~2840 C-H伸缩振动频率2. δC-H 1460 和1380 C-H弯曲振动频率3.C-C 1250-800当化合物具有四个以上邻接的CH2基团时,⼏乎总是在(715-725,通常在720cm-1处)有谱带(CH2以内摇摆),它在鉴别上是有⽤的。

⼆、烯烃1. ν=C-H 3010-31002.νC=C1680-16003. δC-H1000-700三、炔烃1. ν≡C-H 3300-3250 峰形较窄,易于OH和NH区别开。

2. δ≡C-H 900-610 宽的谱带3. ν C≡C2140-2100 ⼀元取代炔烃RC≡CH|| 2260-2190 ⼆元取代炔烃四、芳⾹烃1.νC-H 3080-30102.νC-C 1650-1450 2~4个吸收峰3. ⾯外弯曲振动(g=C-H ) 900-650五、醇和酚羟基化合物1. νO-H 3700-3500(游离的醇和酚,峰尖、强)|| 3500-3200(缔和的羟基,峰形强⽽宽)2. δO-H 1500~13003. νC-O 1250~1000六、醚1.脂肪醚1150-10602.芳⾹醚1270 ~ 1230(为Ar-O 伸缩)1050 ~ 1000 cm-1(为R-O 伸缩)3.⼄烯醚:1225-12005、在环氧⼄烷类中有三条特征谱带可作为这种基团的存在的标志:1280-1240 环的不对称伸缩振动|| 950-810cm-1 环的对称伸缩振动|| 840-750cm-1七、羰基化合物(包括醛、酮、羧酸、酯、酸酐和酰胺等)1.酮1725-17052.醛1740-1720 2820-2720出现两个强度相等的吸收峰3.羧酸(1)νO-H 3200-2500(液体及固体羧酸)|| 3550(在⽓相或极稀的⾮极性溶剂溶液中)(2)nC=O 1730-1700(2)νC-O 1250附近(强峰)(3)δO-H 1400cm-1和920cm-1区域有两个强⽽宽的吸收峰(4)羧酸盐1580cm-1 和1400cm-1 之间的两个谱带4.酯(1) νC=O1750-1735(2) νC-O-C 1330-10305.酸酐(1)n C=O 在1860-1800cm-1和1800-1750cm-1出现两个强的吸收峰(2) n C-O-C 开链的在1180-1045cm-1,⽽环状酸酐在1310-1200cm-16.酰胺: 兼有胺和羰基化合物的特点(1)νN-H稀溶液中伯酰胺出现两个中等强度的峰,分别在3500cm-1和3400cm-1附近,浓溶液和固体中由于有氢键发⽣,将移向3350-3180cm-1低频区仲酰胺在很稀溶液中,在3460-3420cm-1处只出现⼀个谱带,浓溶液中或固体中缔和体出现在3330cm-1(3)δN-H弯曲振动(酰胺II带)伯酰胺游离态在1600cm-1处,缔合态在1650-1620处,仲酰胺游离态在1550-1510处;缔和体在1570-1515处(4)酰胺还有C-N吸收带(酰胺III带),它们的吸收位置如下:伯酰胺1420-1400cm-1(中);仲酰胺1305-1200cm-1(中)叔酰胺700-620cm-1(中)⼋、胺和胺盐1.胺:胺有三个特征吸收带即:nNH、δ N-H和nC-N吸收带(1)nNH 3550-3250(2)δ N-H 1650-15402.铵盐伯胺和仲胺的νNH νNH3+ 伯胺盐在3000-2800cm-1之间出现强和宽的吸收带伯胺盐的δNH3+出现在1600-1575cm-1和1550-1504cm-1处两个吸收带仲胺盐的νNH2+ 出现在2700-2250cm-1 区域;δ NH2+ 出现在1620-1560cm-1区域叔胺盐的νNH+ 在2700-2250cm-1 区域出现⼀个强的宽带或⼀组较尖的谱带。

红外谱图解析综述

红外谱图解析综述


as13501290cm-1 s11651120cm-1 (强)
亚砜
10701030cm-1 (强)
(6)P=O:(图15A峰3,4) P=O 13001140cm-1 (接近单键区)
9
红外谱图解析综述
4. X-Y键伸缩振动和X-H键变形振动区(1650650cm-1) X,Y为除了H以外的其它原子,主要包括C-O,Si-O,C-C,C-N,
有机酸OH和CH伸缩振动偶合引起的一系列多重峰(32002500cm-1) (图8C峰1,图16C峰1)
O-H的伸缩振动可作为判断醇,酚,酸的重要依据。 (2)C-H的伸缩振动频率
饱和的 C-H在3000cm-1以下(30002700cm-1) 不饱和的 C-H在3000cm-1以上(33003000cm-1)
1C峰 CH CH3
CH3
3)。叔丁基 1D峰
C
CCC HHH 333
sCH3裂分成1395(m),1365(s)(图
3)。以此可判断化合物的支化情况。
D:-CH2-n的面外摇摆峰,n4时出现720cm-1吸收峰。可判断是 否是长链化合物。(图1A、B峰4,图7C峰6、D峰5,图9C峰4、D峰
5)
12
O R-C-OH
O R -C -H
1740 1730 1700缔合1760游离
O R-C-OM
O R -C-N H 2
1650(酰胺谱带I) 16001500和1400
O= =O
1667
8
红外谱图解析综述
如果C=O基与双键,苯环共轭。C=O基的伸缩振动频率比上述相应位置 要低,强度增加。在解析光谱时必须注意。(图8A峰2,B峰4,C峰2,D峰 1酮羰基,峰2羧酸盐羰基,图9A峰2,B峰3,C峰2,D峰3,图10A峰2,B峰1,C 峰2,D峰1,图11A峰3,B峰3,C峰2酰胺谱带Ⅰ,图16B峰3,C峰2)

(完整版)红外主要官能团对应谱图

(完整版)红外主要官能团对应谱图

主要基团的红外特征吸收峰基团振动类型波数(cm-1)波长(μm)强度备注一、烷烃类CH伸CH伸(反称)CH伸(对称)CH弯(面内)C-C伸3000~28432972~28802882~28431490~13501250~11403.33~3.523.37~3.473.49~3.526.71~7.418.00~8.77中、强中、强中、强分为反称与对称二、烯烃类CH伸C=C伸CH弯(面内)CH弯(面外)单取代双取代顺式反式3100~30001695~16301430~12901010~650995~985910~905730~650980~9653.23~3.335.90~6.137.00~7.759.90~15.410.05~10.1510.99~11.0513.70~15.3810.20~10.36中、弱中强强强强强C=C=C为2000~1925 cm-1三、炔烃类CH伸C≡C 伸CH弯(面内)CH弯(面外)~33002270~21001260~1245645~615~3.034.41~4.767.94~8.0315.50~16.25中中强四、取代苯类CH伸泛频峰骨架振动(CC)CH弯(面内)CH弯(面外)3100~30002000~16671600±201500±251580±101450±201250~1000910~6653.23~3.335.00~6.006.25±0.086.67±0.106.33±0.046.90±0.108.00~10.0010.99~15.03变弱强三、四个峰,特征确定取代位置单取代邻双取代间双取代对双取代1,2,3,三取代1,3,5,三取代1,2,4,三取代﹡1,2,3,4四取代﹡1,2,4,5四取代﹡1,2,3,5四取代﹡五取代CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)770~730770~730810~750900~860860~800810~750874~835885~860860~800860~800860~800865~810~86012.99~13.7012.99~13.7012.35~13.3311.12~11.6311.63~12.5012.35~13.3311.44~11.9811.30~11.6311.63~12.5011.63~12.5011.63~12.5011.56~12.35~11.63极强极强极强中极强强强中强强强强强五个相邻氢四个相邻氢三个相邻氢一个氢(次要)二个相邻氢三个相邻氢与间双易混一个氢一个氢二个相邻氢二个相邻氢一个氢一个氢一个氢五、醇类、酚类OH伸OH弯(面内)C—O伸O—H弯(面外)3700~32001410~12601260~1000750~6502.70~3.137.09~7.937.94~10.0013.33~15.38变弱强强液态有此峰OH伸缩频率游离OH分子间氢键分子内氢键OH弯或C—O伸伯醇(饱和)仲醇(饱和)叔醇(饱和)酚类(ФOH)OH伸OH伸OH伸(单桥)OH弯(面内)C—O伸OH弯(面内)C—O伸OH弯(面内)C—O伸OH弯(面内)Ф—O伸3650~35903500~33003570~3450~14001250~1000~14001125~1000~14001210~11001390~13301260~11802.74~2.792.86~3.032.80~2.90~7.148.00~10.00~7.148.89~10.00~7.148.26~9.097.20~7.527.94~8.47强强强强强强强强强中强锐峰钝峰(稀释向低频移动*)钝峰(稀释无影响)六、醚类C—O—C伸1270~1010 7.87~9.90 强或标C—O伸脂链醚脂环醚芳醚(氧与芳环相连)C—O—C伸C—O—C伸(反称)C—O—C伸(对称)=C—O—C伸(反称)=C—O—C伸(对称)CH伸1225~10601100~1030980~9001270~12301050~1000~28258.16~9.439.09~9.7110.20~11.117.87~8.139.52~10.00~3.53强强强强中弱氧与侧链碳相连的芳醚同脂醚O—CH3的特征峰七、醛类(—CHO)CH伸C=O伸CH弯(面外)2850~27101755~1665975~7803.51~3.695.70~6.0010.2~12.80弱很强中一般~2820及~2720cm-1两个带饱和脂肪醛α,β-不饱和醛芳醛C=O伸C=O伸C=O伸~1725~1685~1695~5.80~5.93~5.90强强强八、酮类OC C=O伸C—C伸泛频1700~16301250~10303510~33905.78~6.138.00~9.702.85~2.95极强弱很弱脂酮饱和链状酮α,β-不饱和酮β二酮芳酮类Ar—CO C=O伸C=O伸C=O伸C=O伸C=O伸1725~17051690~16751640~15401700~16301690~16805.80~5.865.92~5.976.10~6.495.88~6.145.92~5.95强强强强强C=O与C=C共轭向低频移动谱带较宽二芳基酮1-酮基-2-羟基(或氨基)芳酮脂环酮四环元酮五元环酮六元、七元环酮C =O 伸C =O 伸C =O 伸C =O 伸C =O 伸1670~1660 1665~1635~1775 1750~1740 1745~1725 5.99~6.02 6.01~6.12~5.63 5.71~5.75 5.73~5.80 强强强强强九、羧酸类(—COOH )OH 伸C =O 伸OH 弯(面内)C —O 伸OH 弯(面外)3400~2500 1740~1650 ~1430 ~1300 950~9002.94~4.00 5.75~6.06 ~6.99 ~7.69 10.53~11.11中强弱中弱在稀溶液中,单体酸为锐峰在~3350cm -1;二聚体为宽峰,以~3000cm -1为中心脂肪酸R —COOH α,β-不饱和酸芳酸C =O 伸C =O 伸C =O 伸1725~1700 1705~1690 1700~16505.80~5.88 5.87~5.91 5.88~6.06强强强氢键十、酸酐链酸酐C =O 伸(反称)C =O 伸(对称)C —O 伸1850~1800 1780~1740 1170~1050 5.41~5.56 5.62~5.75 8.55~9.52 强强强共轭时每个谱带降20 cm-1环酸酐(五元环)C =O 伸(反称)C =O 伸(对称)C —O 伸1870~1820 1800~1750 1300~1200 5.35~5.49 5.56~5.71 7.69~8.33 强强强共轭时每个谱带降20cm-1十一、酯类C OR OC =O 伸(泛频)C =O 伸C —O —C 伸~3450 1770~1720 1280—1100~2.90 5.65~5.81 7.81~9.09弱强强多数酯C =O 伸缩振动正常饱和酯α,β-不饱和酯δ-内酯γ-内酯(饱和)β-内酯C =O 伸C =O 伸C =O 伸C =O 伸C =O 伸1744~1739 ~1720 1750~1735 1780~1760 ~1820 5.73~5.75 ~5.81 5.71~5.76 5.62~5.68 ~5.50 强强强强强十二、胺NH 伸NH 弯(面内)C —N 伸NH 弯(面外)3500~3300 1650~1550 1340~1020 900~650 2.86~3.03 6.06~6.45 7.46~9.80 11.1~15.4 中中强伯胺强,中;仲胺极弱伯胺类仲胺类叔胺类NH 伸(反称、对称)NH 弯(面内)C —N 伸NH 伸NH 弯(面内)C —N 伸C —N 伸(芳香)3500~3400 1650~1590 1340~1020 3500—3300 1650—1550 1350—1020 1360~10202.86~2.94 6.06~6.29 7.46~9.80 2.86—3.03 6.06—6.45 7.41—9.80 7.35~9.80中、中强、中中、弱中极弱中、弱中、弱双峰一个峰十三、酰胺(脂肪与芳香酰胺数据类似)NH伸C=O伸NH弯(面内)C—N伸3500~31001680~16301640~15501420~14002.86~3.225.95~6.136.10~6.457.04~7.14强强强中伯酰胺双峰仲酰胺单峰谱带Ⅰ谱带Ⅱ谱带Ⅲ伯酰胺仲酰胺叔酰胺NH伸(反称)(对称)C=O伸NH弯(剪式)C—N伸NH2面内摇NH2面外摇NH伸C=O伸NH弯+C—N伸C—N伸+NH弯C=O伸~3350~31801680~16501650~16201420~1400~1150750~600~32701680~16301570~15151310~12001670~1630~2.98~3.145.95~6.066.06~6.157.04~7.14~8.701.33~1.67~3.095.95~6.136.37~6.607.63~8.335.99~6.13强强强强中弱中强强中中两峰重合两峰重合十四、氰类化合物脂肪族氰α、β芳香氰α、β不饱和氰C≡N伸C≡N伸C≡N伸2260~22402240~22202235~22154.43~4.464.46~4.514.47~4.52强强强十五、硝基化合物R—NO2 Ar—NO2NO2伸(反称)NO2伸(对称)NO2伸(反称)NO2伸(对称)1590~15301390~13501530~15101350~13306.29~6.547.19~7.416.54~6.627.41~7.52强强强强。

红外光谱(最全-最详细明了)、、

红外光谱(最全-最详细明了)、、
(6)位阻效应:共轭效应会使基团吸收频率移动。若分子结构中存在空间阻碍,共轭受到限制,基团吸收接近正值。
υC=O(cm–1) 1663 1686 1693
(7)振动偶合效应:分子内有近似相同频率且位于相邻部位的振动基团彼此相互作用,产生两种以上基团参加的混合振动。
波数即波长的倒数,表示单位(cm)长度光中所含光波的数目。波长或波数可以按下式互换:
一般扫描范围在4000~400cm-1。
4.红外吸收光谱产生的条件
满足两个条件: (1)辐射应具有能满足物质产生振动跃迁所需的能量 (2)辐射与物质间有相互偶合作用。
对称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。 非对称分子:有偶极矩,红外活性。
*
(3) 检测器 真空热电偶;不同导体构成回路时的温差电现象 涂黑金箔接受红外辐射; 傅立叶变换红外光谱仪采用热释电(TGS)和碲镉汞(MCT)检测器; TGS:硫酸三苷肽单晶为热检测元件;极化效应与温度有关,温度高表面电荷减少(热释电); 响应速度快;高速扫描;
如乙酰乙酸乙酯有酮式和烯醇式结构,两者的吸收皆能在红外谱图上找到,但烯醇式的υC=O较酮式υC=O弱,说明稀醇式较少。
CH3-CO-CH2-COO-C2H5 CH2-C(OH)=CH-COOC2H5 υC=O 1738(s),1717(s) υC=O与υC=C在1650cm-1(w) υOH3000cm-1
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
*
日本岛津公司的 DT-40 FT-IR
*
干涉仪
光源
样品室
检测器
显示器
绘图仪
计算机
干涉图
光谱图
FTS
*

常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析1. 红外光谱的基本原理1)红外光谱的产生能量变化ννhch==E-E=∆E12ννh∆E=对于线性谐振子μκπνc21=2)偶极矩的变化3)分子的振动模式多原子分子振动伸缩振动对称伸缩不对称伸缩变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆AX3:对称变形、反对称变形. 不同类型分子的振动线型XY2:对称伸缩不对称伸缩弯曲弯曲型XY2:不对称伸缩对称伸缩面内弯曲(剪式)面内摇摆面外摇摆卷曲平面型XY3:对称伸缩不对称伸缩面内弯曲面外弯曲角锥型XY3:对称弯曲不对称弯曲面内摇摆4)聚合物红外光谱的特点1、组成吸收带2、构象吸收带3、立构规整性吸收带4、构象规整性吸收带5、结晶吸收带2 聚合物的红外谱图1)聚乙烯各种类型的聚乙烯红外光谱非常相似。

在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。

要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。

这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。

低压聚乙烯(热压薄膜)中压聚乙烯(热压薄膜)高压聚乙烯(热压薄膜)2.聚丙烯无规聚丙烯等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。

这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。

3.聚异丁烯CH3H2C CnCH3丁二烯聚合可以生成多种结构不同的异构体。

H2 CHCHC CH2C CHCH2HH2CC CHCH2H2CH 1,2- 顺式1,4- 反式1,4-990、910 cm-1 775、741、690 cm-1 970 cm-1 1,2-聚丁二烯顺式1,4-聚丁二烯用于橡胶的顺式1,4-丁二烯的光谱中,730 cm-1的宽强吸收很特征,但反式1,4-和1,2-结构的吸收虽弱但仍很明显。

红外谱图分析

红外谱图分析

(4)X-Y伸缩振动及X-H变形振动区 (单键区)(含指纹区):
<1650cm-1。
这个区域的光谱比较复杂,主要包括CH,N-H变形振动,C-O,C-X(卤素) 等伸缩振动,以及C-C单键骨架振动等。
1 烷烃
烷烃化合物含有CH3、CH2和CH等基 团,其红外吸收带主要由C—H键和C—C键 的振动引起。见下图。
正庚烷的红外光谱(CH3(CH2)5CH3)
(1)C-H键不对称和对称分别在2960cm-1和 2870cm-1附近。一般σ as>σ s。当分子中同 时存在CH3和CH2时, C-H键在3000~ 2800cm-1附近间一般有4个吸收峰。
(2) C-H键不对称和对称弯曲振动分别在 1470cm-1和1380cm-1附近。 a 孤立CH3在1380cm-1附近出现单峰, CH3越多,峰强越强; b 偕二甲基(=C(CH3)2)的2个CH3 对称 弯曲振动偶合,裂分为双峰,在1385cm-1和 1375cm-1附近,强度几乎相等。 c 叔丁基(-C(CH3)3)的3个CH3 对称弯 曲振动偶合,裂分为双峰,在1395cm-1和 1370cm-1附近,强度后者是前者的2倍,以此 与(=C(CH3)2)相区别。
(2)叁键和累积双键区: 2500-1900cm-1。
主要包括炔键-C≡C-,腈键 -C≡N、丙二烯基-C=C=C-、烯酮基C=C=O、异氰酸酯基 -N=C=O等的反对称伸缩振动。
(3)双键伸缩振动区:
1900-1200cm-1。 主要包括C=C,C=O,C=N, -NO2等的伸缩振动,芳环的骨架振动 (skeletal vibration)等。
7 羰基化合物
羰基伸缩振动频率( cm-1 ) 酸酐 1820 1760 酰卤 1800 酯 1740 醛 1730 酮 1715 羧酸 1700 酰胺 1690

醇、酚红外图谱分析

醇、酚红外图谱分析

羟基(醇、酚)红外谱图特征总结:1,结构HO−CH2−−CH−OH−C−OH2,特征吸收带:(1)醇、酚以游离态存在时(浓度低于0.005mol/L),在3650--3590cm−1范围内中等强度吸收带。

游离态羟基伸缩振动的频率:伯醇(3640cm−1)>仲醇(3630cm−1)>叔醇(3620cm−1)>酚(3620cm−1)(2)由于羟基是强极性基团,由于氢键的作用,醇、酚通常都是以缔合状态存在,吸收带向低频区位移,二聚体3450--3550cm−1、多聚体3200--3400cm−1,且峰型变宽。

(3)在醇类化合物中强极性的C-O键的伸缩振动在1000--1130cm−1产生强吸收峰,其中,伯醇1050cm−1,仲醇1100cm−1,叔醇1130cm−1,酚1200cm−1。

表1 醇、酚特征吸收位置图1 甲醇(伯醇)红外波谱图图2 2-丁醇(仲醇)红外波谱图3347-3336 O-H 的伸缩振动2945,2833−CH 3的伸缩振动1030−CH 3的弯曲振动1460吸附水中O-H 变形振动3363 O-H 伸缩振动,分子间氢键2968-2734 C-H 伸缩振动1457,1376 C-H 弯曲振动1110 仲醇C-O 伸缩振动777 亚甲基面内摇摆图3 异戊醇(叔醇)红外波谱图图4 苯酚红外波谱图3614-3371 O-H 伸缩振动2974-2883 C-H 伸缩振动1188 –C (CH 3)2-伸缩振动1466,1379 C-H 弯曲振动3229 分子间氢键展宽的O-H 伸缩3023 芳基C-H 伸缩振动1933-1713 倍频与组频带1336 O-H 弯曲振动1234 C-O 伸缩振动754 C-H 面外伸缩振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、基团频率区和指纹区
(一)基团频率区中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。

最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。

区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。

在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。

这种振动与整个分子的结构有关。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

基团频率区可分为三个区域:LT7U 键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。

若分子中含有C、H、N原子,-C ≡N基吸收比较强而尖锐。

若分子中含有O原子,且O原子离-C ≡N 基越近,-C ≡N基的吸收越弱,甚至观察不到。

1900~1200 cm-1为双键伸缩振动区该区域重要包括三种伸缩振动:
①C=O伸缩振动出现在1900~1650 cm-1 ,是红外光谱中很特征的且往往是最强的吸收,以此很容易判断酮类、醛类、酸类、酯类以及酸酐等有机化合物。

酸酐的羰基吸收带由于振动耦合而呈现双峰。

②C=C伸缩振动。

烯烃的C=C伸缩振动出现在1680~1620 cm-1 ,一般很弱。

单核芳烃的C=C伸缩振动出现在1600 cm-1和1500 cm-1附近,有两个峰,这是芳环的骨架结构,用于确认有无芳核的存在。

③苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围,是C-H面外和C=C面内变形振动的泛频吸收,虽然强度很弱,但它们的吸收面貌在表征芳核取代类型上是有用的。

(二)指纹区d 1. 1800(1300)~900 cm-1区域是C-O、C-N、C-F、C-P、C-S、P-O、Si-O 等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。

其中≈1375 cm-1的谱带为甲基的δC-H对称弯曲振动,对识别甲基十分有用,C-O的伸缩振动在1300~1000 cm-1 ,是该区域最强的峰,也较易识别。

900~650 cm-1区域的某些吸收峰可用来确认化合物的顺反构型。

例如,烯烃的=C-H面外变形振动出现的位置,很大程度上决定于双键的取代情况。

对于RCH=CH2结构,在990 cm-1和910 cm-1出现两个强峰;为RC=CRH结构是,其顺、反构型分别在690 cm-1和970 cm-1出现吸收峰,可以共同配合确定苯环的取代类型。

二、常见官能团的特征吸收频率
三、影响基团频率的因素
基团频率主要是由基团中原子的质量和原子间的化学键力常数决定。

然而,分子内部结构和外部环境的改变对它都有影响,因而同样的基团在不同的分子和不同的外界环境中,基团频率可能会有一个较大的范围。

因此了解影响基团频率的因素,对解析红外光谱和推断分子%( 结构都十分有用。

影响基团频率位移的因素大致可分为内部因素和外部因素。

内部因素:
1. 电子效应包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子分布不均匀引起的。

(1)诱导效应(I 效应)由于取代基具有不同的电负性,通过静电诱导作用,引起分子中电子分布的变化。

从而改变了键力常数,使基团的特征频率发生了位移。

例如,一般电负
性大的基团或原子吸电子能力强,与烷基酮羰基上的碳原子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了C=O键的力常数,使C=O的振动频率升高,吸收峰向高波数移动。

随着取代原子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度越显著。

(2)中介效应(M效应)当含有孤对电子的原子(O、S、N等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。

由于含有孤对电子的原子的共轭作用,使C=O 上的电子云更移向氧原子,C=O双键的电子云密度平均化,造成C=O键的力常数下降,使吸收频率向低波数位移。

对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。

当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。

2 . 氢键的影响氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。

游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体,C=O键频率出现在1700 cm-1 。

分子内氢键不受浓度影响,分子间氢键受浓度影响较大。

3. 振动耦合当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一个键的振动通过公共原子使另一个键的长度发生改变,产生一个“微扰”,从而形成了强烈的振动! 相互作用。

其结果是使振动频率发生感变化,一个向高频移动,另一个向低频移动,谱带分裂。

振动耦合常出现在一些二羰基化合物中,如,羧酸酐。

4.Fermi共振当一振动的倍频与另一振动的基频接近时,由于发生相互作用而产生很强的吸收峰或发生裂分,这种现象称为Fermi共振。

外部因素外部因素主要指测定时物质的状态以及溶剂效应等因素。

同一物质的不同状态,由于分子间相互作用力不同,所得到光谱往往不同。

分子在气态时,其相互作用力很弱,此时可以观察到伴随振动光谱的转动精细结构。

液态和固态分子间作用力较强,在有极性基团存在时,可能发生分子间的缔合或形成氢键,导致特征吸收带频率、强度和形状有较大的改变。

例如,丙酮在气态时的 C-H为1742 cm-1 ,而在液态时为1718 cm-1 。

在溶液中测定光谱时,由于溶剂的种类、溶剂的浓度和测定时的温度不同,同一种物质所测得的光谱也不同。

通常在极性溶剂中,溶质分子的极性基团的伸缩振动频率随溶剂极性的增加而向低波数方向移动,并且强度增大。

因此,在红外光谱测定中,应尽量采用非极性的溶剂。

相关文档
最新文档