工程材料力学性能第4章总结
工程力学C 第4章 材料力学的基本假设和基本概念
![工程力学C 第4章 材料力学的基本假设和基本概念](https://img.taocdn.com/s3/m/98b0d61516fc700abb68fca7.png)
拉-弯组合变形
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
静载荷 交变载荷 即: 外力 动载荷 冲击载荷
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
应力 强度 外力 内力 应变 刚度
4.3.2 内力与截面法
F1
M1 F3
为什么?
Fn
答:它们的应力不同,细杆的应力大。
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
4.4
应力的概念
4.4.1 应力: 分布内力的集度或单位面积上的内力。 4.4.2 应力的定义 1. 截面上任一点C的全应力
DEPARTMENT OF ENGINEERING MECHANICS KUST
第二篇
Mechanics of Materials
材料力学
DEPARTMENT OF ENGINEERING MECHANICS KUST
第四章 材料力学的基本假设 和基本概念
Basic Assumptions and Concepts of Material Mechanics
FS FN M
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
2. 截面法: 显示并求内力的方法。 步骤:P97 • 分二留一; • 内力代弃; • 内外平衡。 例4.1 :P97 注意: 内力与截面的形状和大 小无关,只与外力有关。
工程材料力学性能每章重要知识点
![工程材料力学性能每章重要知识点](https://img.taocdn.com/s3/m/9dc89802ff00bed5b9f31d29.png)
第一章1.应力-应变曲线(拉伸力-伸长曲线)。
拉伸力在Fe以下阶段,为弹性变形阶段,到达Fa后,试样开始发生塑性变形,最初试样局部区域产生不均匀屈服塑形变形,曲线上出现平台或锯齿,直至C点结束。
继而进入均匀塑形变形阶段。
达到最大拉伸Fb时,试样在此产生不均匀塑形变形,在局部区域产生缩颈。
最终,在拉伸力Fk处,试样断裂。
2.弹性变形现象及指标弹性变形:是可逆性变形,是金属晶格中原子自平衡位置产生可逆位移的反映。
弹性变形指标:①弹性模量,是产生100%弹性变形所需应力。
②弹性比功(弹性比能、应变比能),表示金属吸收弹性变形功的能力。
③滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
④循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。
3.塑性变形现象及指标金属材料常见塑性变形方式主要为滑移和孪生。
滑移:金属材料在切应力作用下位错沿滑移面和滑移方向运动而进行切变得过程。
孪生:金属材料在切应力作用下沿特定晶面和特性晶向进行的塑性变形。
塑性变形特点:①各晶粒变形的不同时性和均匀性;②各晶粒变形的相互协调性。
塑性变形指标:⑴屈服强度,屈服强度及金属材料拉伸时,试样在外力不增加(保持恒定)仍能继续伸长时的应力。
屈服现象:金属材料开始产生宏观塑形变形的标志。
屈服现象相关因素:①材料变形前可动位错密度很小;②随塑性变形的发生,位错能快速增殖;③位错的运动速率与外加应力有强烈的依存关系。
屈服现象指标:规定非比例伸长应力;规定残余伸长应力;规定总伸长应力。
影响屈服强度因素:①内在因素:金属本性和晶格类型;晶粒的大小和亚结构;溶质元素;第二相。
②外在因素:温度、应变速率、应力状态。
⑵应变硬化:金属材料阻止继续塑形变形的能力,塑性变形是硬化的原因,硬化是结果。
⑶缩颈:韧性金属材料在拉伸试验时变形集中于局部区域的特殊现象,是应变硬化与截面减小共同作用的结果。
抗拉强度:韧性金属试样拉断过程中最大力所对应的应力。
材料力学性能总结
![材料力学性能总结](https://img.taocdn.com/s3/m/0e9c398ffc0a79563c1ec5da50e2524de518d0c5.png)
材料力学性能总结第一篇:材料力学性能总结材料力学性能第一章二节.弹变1,。
弹性变形:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。
这种可恢复的变形称为弹性变形。
2.弹性模量:表征材料对弹性变形的抗力3.弹性性能与特征是原子间结合力的宏观体现,本质上决定于晶体的电子结构,而不依赖于显微组织,因此,弹性模量是对组织不敏感的性能指标。
4.比例极限σp:应力与应变成直线关系的最大应力。
5.弹性极限σe:由弹性变形过渡到弹性塑性变形的应力。
6.弹性比功: 表示单位体积金属材料吸收弹性变形功的能力,又称弹性比应变能。
7.力学性能指标:反映材料某些力学行为发生能力或抗力的大小。
8.弹性变形特点:应力与应变成比例,产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状9.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象,称为滞弹性。
10.循环韧性:指在塑性区加载时材料吸收不可逆变形功的能力。
11.循环韧性应用:减振、消振元件。
12.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象,称为包申格效应。
13.包申格应变:指在给定应力下,正向加载与反向加载两应力-应变曲线之间的应变差。
14.消除包申格效应:预先进行较大的塑性变形。
在第二次反向受力前先使金属材料于回复或再结晶温度下退火。
三节:塑性1.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力.2.影响材料屈服强度的因素:㈠内在因素.1.金属本性及晶格类型.主滑移面位错密度大,屈服强度大。
2.晶粒大小和亚结构.晶界对位错运动具有阻碍作用。
晶粒小可以产生细晶强化。
都会使强度增加。
3.溶质原子: 溶质元素溶入金属晶格形成固溶体,产生固溶强化。
4,第二相.a.不可变形的第二相绕过机制.留下一个位错环对后续位错产生斥力, b.可以变形的第二相切过机制.由于,质点与基体间晶格错排及位错切过第二相质点产生新界面需要做功,使强度增加。
材料的力学性能第4章 材料的断裂
![材料的力学性能第4章 材料的断裂](https://img.taocdn.com/s3/m/fd45ad8225c52cc58ad6be26.png)
RAL 4.1 断裂分类与宏观断口特征
4.1.2 断口的宏观特征
光滑圆柱拉伸试样的宏观韧性断口呈杯锥形,由纤维区、放射区 和剪切唇三个区域组成,这就是断口特征的三要素。
77-10
RAL 4.1 断裂分类与宏观断口特征
4.1.2 断口的宏观特征
韧性断裂的宏观断口同时具有上述三个区域,而脆性断口纤维区 很小,几乎没有剪切唇。
根据裂纹扩展路径进行的一种分类。 穿晶断裂裂纹穿过晶内,沿晶断裂裂纹沿晶界扩展。
77-4
RAL 4.1 断裂分类与宏观断口特征
4.1.1 断裂的分类 ✓ 穿晶断裂与沿晶断裂
从宏观上看,穿晶断裂可以是韧性断裂(如室温下的穿晶断裂),也 可以是脆性断裂(低温下的穿晶断裂),而沿晶断裂则多数是脆性断裂。
2 )C0
2
c - 扩展的临界应力 ;
c - 碳化物的表面能 ;
E - 弹性模量;
- 泊松系数;
C0 - 碳化物厚度
77-32
RAL
4.3 脆性断裂
4.3.2 脆性断裂的微观特征 (1)解理断裂
解理断裂 准解理 沿晶断裂
解理断裂是沿特定界面发生的脆性穿晶断裂,其微观特征应该是 极平坦的镜面。实际的解理断裂断口是由许多大致相当于晶粒大小的解 理面集合而成的,这种大致以晶粒大小为单位的解理面称为解理刻面。 在解理刻面内部只从一个解理面发生解理破坏实际上是很少的。在多数 情况下,裂纹要跨越若干相互平行的而且位于不同高度的解理面,从而 在同一刻面内部出现解理台阶和河流花样。
脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明 显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形。一般规定 光滑拉伸试样的断面收缩率小于5%者为脆性断裂,该材料即称为脆性材料; 反之,大于5%者则为韧性材料。
工程材料力学性能各章节复习知识点
![工程材料力学性能各章节复习知识点](https://img.taocdn.com/s3/m/f1624b51876fb84ae45c3b3567ec102de2bddf0f.png)
工程材料力学性能各个章节主要复习知识点第一章弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。
滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。
包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。
塑性:指金属材料断裂前发生塑性变形的能力。
脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。
韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。
应力、应变;真应力,真应变概念。
穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。
拉伸断口形貌特征?①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。
用肉眼或放大镜观察时,断口呈纤维状,灰暗色。
纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。
其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。
②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。
板状矩形拉伸试样断口呈人字形花样。
人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。
韧、脆性断裂区别?韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆拉伸断口三要素?纤维区,放射区和剪切唇。
缺口试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪几种形式?磨损、腐蚀和断裂是材料的三种主要失效方式。
材料的形变强化规律是什么?层错能越低,n越大,形变强化增强效果越大退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。
在某些合金中,增强效果随合金元素含量的增加而下降。
材料的晶粒变粗,增强效果提高。
第二章应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmaxσmax缺口敏感度:缺口试样的抗拉强度σbn 与等截面尺寸光滑试样的抗拉强度σb的比值表示缺口敏感度,即为NSR=σbnσb第三章低温脆性:在实验温度低于某一温度t2时,会由韧性状态变为脆性状态,冲击吸收功明显降低,断裂机理由微孔聚集性变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。
2024年材料力学性能总结范文
![2024年材料力学性能总结范文](https://img.taocdn.com/s3/m/b1a9db21b94ae45c3b3567ec102de2bd9705de5d.png)
2024年材料力学性能总结范文____年材料力学性能总结摘要:本文对____年新材料的力学性能进行了总结。
通过对新材料的力学性能研究,可以更好地应用于工程实践中,提高产品的性能和可靠性。
本文主要对新材料的强度、硬度、韧性、耐热性等性能进行了介绍,并对其应用前景进行了展望。
关键词:新材料;力学性能;强度;硬度;韧性;耐热性一、强度强度是材料抵抗外力的能力,是一个材料最基本的力学性能之一。
____年新材料的强度有了显著的提高,主要得益于新材料结构和组成的优化。
新材料采用了多种复合材料技术,在不同材料的复合过程中,不同材料之间形成了一种互补的关系,使得新材料的强度得到了有效提升。
此外,新材料还采用了新的加工工艺,如纳米技术和超塑性成型技术,通过精确控制材料微观结构和缺陷,使新材料的强度得到了进一步提升。
二、硬度硬度是材料抵抗外界划痕和压痕的能力,表征了材料的抗磨性能。
____年新材料的硬度也得到了大幅提升。
在新材料的研发中,科学家们发现了一些新的硬化机制,如晶体缺陷的控制、固溶体弥散硬化和位错强化等。
通过合理地控制这些硬化机制,新材料的硬度可以得到有效提升。
此外,新材料还采用了一些表面处理技术,如化学镀、电沉积和离子注入等,通过改变材料表面的化学组成和相结构,来提高材料的硬度。
三、韧性韧性是材料抵抗破坏的能力,是反映材料抗拉伸、抗压和抗弯曲能力的重要指标。
____年新材料的韧性也得到了显著改善。
新材料采用了一些新的加工工艺,如冷变形和等离子注入等,通过调整材料的晶界和位错密度,使新材料的韧性得到了提高。
此外,新材料还采用了一些新的复合技术,如纳米复合和纤维复合等,通过增加材料内部的弥散相和增强相,来提高材料的韧性。
四、耐热性耐热性是材料在高温条件下能保持稳定性和性能的能力。
____年新材料的耐热性也得到了显著提升。
新材料采用了一些新的材料组成和结构设计,如金属间化合物、金属陶瓷复合材料和增强材料等,来提高材料的热稳定性。
材料力学性能-第四章-金属的断裂韧度(4)
![材料力学性能-第四章-金属的断裂韧度(4)](https://img.taocdn.com/s3/m/77ed60d5e2bd960590c677fc.png)
公式进行判断:
ac
0.25
KIC
2
2021年10月21日 星期四
第四章 金属的断裂韧度
1、高强度钢的脆断倾向 这类钢的强度很高,0.2≥1400MPa,主要用于航 空航天,工作应力较大,但断裂韧度较低,如18Ni马 氏体时效钢,0.2=1700MPa,KIC=78MPa·m1/2,若工 作应力=1250MPa时,利用上述公式可得ac=1mm,这 样小的裂纹在机件焊接过程中很容易产生,用无损检 测方法也容易漏检,所以此类机件脆断几率很大,因 此在选材时在保证不塑性失稳的前提下,尽量选用0.2 较低而KIC较高的材料。
B工艺:/0.2=1400/2100=0.67<0.7,故不必考虑
塑性区修正问题。由公式 KIC YcB a
可得: cB
1 Y
KIC a
Φ 1.1
KIC
a
1.273
47
1.1 3.14 0.001
971MPa
与其工作应力=1400MPa相比, cB< ,即工
作时会产生破裂,说明B工艺是不合格的,这和
2021年10月21日 星期四
第四章 金属的断裂韧度
其0.2=1800MPa,KIC=62MPa·m1/2,焊接后发现焊缝
中有纵向半椭圆裂纹,尺寸为2c=6mm,a=0.9mm,
试问该容器能否在p=6MPa的压力下正常工作?
t
D
解:根据材料力学理 论可以确定该裂纹受 到的垂直拉应力:
pD 61.5 900MPa
趋于缓和,断裂机理不再发生
变化。
2021年10月21日 星期四
第四章 金属的断裂韧度
7.应变速率:应变速率έ具有 KIC
与温度相似的效应。增加έ相 当于降低温度,使KIC下降,
第四章工程材料基本知识
![第四章工程材料基本知识](https://img.taocdn.com/s3/m/629228fe8bd63186bcebbc97.png)
用标准试样的冲击吸收功Ak表示
5)疲劳强度
材料在无数次重复“交变应力”作用下,而不引起断裂的最 大应力值
6)耐磨性
材料在一定工作条件下抵抗磨损的能力 用体积磨损量、质量磨损量和长度磨损量来评定
退出
回 章 首
(2)工程材料的物理、化学及工艺性能 物理性能:指材料在重力、电磁场、热力等物理因素作用
下所表现出来的性能或属性,包括材料的密度、熔点、导 电性、磁性能、导热性、热膨胀性等
1) 金属材料 : 包括黑色金属(钢铁)和有色金属材料 2) 工程陶瓷 : 由金属和非金属元素的化合物所构成的
各种无机非金属材料 3) 有机高分子材料 :工程中常见的有塑料、橡胶和胶
粘剂 4) 复合材料 :将上述两种或多种单一材料人工合成到
一起的材料
退出
2. 工程材料的主要性能
(1)工程材料的力学性能 1)强度 2)塑性 3)硬度 4)冲击韧性 5)疲劳强度 6)耐磨性
化学性能:主要指材料的抗氧化性、耐蚀性和耐酸性等, 反映了材料在常温或高温环境下抵抗各种化学作用的能力。
材料工艺性能:指材料对各种加工工艺的适应性
退出
§4-2常用金属材料
1 . 碳素钢和合金钢
碳素钢 碳素钢工具钢 合金钢 合金钢工具钢
2 . 铸铁
灰铸铁 球墨灰铸铁 可锻铸铁 合金铸铁
3 . 有色金属材料
KT 200, KT 350,
保留灰铸铁优点,具有中碳钢优点
应用 发动机曲轴、连杆等
退出
• 合金铸铁
代号
KT + H + 数字 + 数字
最小抗拉强度 断后延长率
特点
KT 200, KT 350, 保留灰铸铁优点,具有中碳钢优点
材料力学性能 (4)
![材料力学性能 (4)](https://img.taocdn.com/s3/m/41c966be65ce0508763213bc.png)
3、KI 裂纹扩展的动力,、a都是加剧应力场的因素
4、 K Y a
2 E a 2 E a
材料本质属性
?
裂纹扩展的抗力 ?
4.4.4 断裂判据
随着应力
或裂纹尺寸a的增大,KI因子不断增大。当KI因子增大到临界
KI = KIC
值KIC时,裂纹开始失稳扩展,用KIC表示材料对裂纹扩展的阻力,称为平 面应变断裂韧度(性)。因此,裂纹体断裂判据可表示为:
/2
0
m sin
dx
m
= 2
m 2 /
a0为平衡状态时原子间距
√
材料在低应力作用下应该是弹性的,在这一条件下sinx≈x ;同时,曲线开始部分近似 为直线,服从虎克定律,有 Ex / a
m sin
2x
=
2x m
Ex a0
2 m
ij
当 r<<a, θ →0 时,
KI f ij ( ) 1/ 2 (2r )
f ij ( ) 1
ij 0
根据弹性力学,裂纹尖端O点的应力
0
= 2
a/
裂纹尖端的曲率
K I 0 2r 2 a
2r Y
a
裂纹形状系数,与裂纹形式、试件几何形状有关
K I a K IC
可用测定的断裂韧性求断裂应力和临界裂纹尺寸:
c
K IC
a
ac
K 2 IC
2
、G、 K
容易理解 容易测量
G1 G1C
K1 K1C
(能量平衡观点讨论断裂) (裂纹尖端应力场讨论断裂) (应力-屈服强度比较讨论断裂)
材料力学性能第四章课件
![材料力学性能第四章课件](https://img.taocdn.com/s3/m/507b26e3ec3a87c24028c4d8.png)
3、求KQ (裂纹失稳扩展时临界)
①求F Q
FQ (裂纹失稳扩展时对应的载荷)
对于标准试件,Δa/a(裂纹扩展量)为2%大致相当于ΔV/V(斜率减少量)为5%, 裂纹扩展2%对应的载荷为F5
轴的横向裂纹在轴向 拉力或弯曲力作用下 的扩展
容器纵向裂纹在内压 力下的扩展
滑开型(Ⅱ型)裂纹 撕开型(Ⅲ型)裂纹
切应力平行作用于 切应力平行作用于
裂纹面,而且与裂纹 裂纹面,而且与裂纹
线垂直
线平行
裂纹沿裂纹面平行 滑开扩展。 花键根部裂纹沿切 向力的扩展
裂纹沿裂纹面撕开 扩展。 轴的纵、横裂纹在扭 矩作用下的扩展。
2 2 1.67平面应(欧变文建议)
ys
s
s
1
2
K I
s
2
平面应力
r0
4
1
2
KsI
2
平面应变
材料力学性能第四章
23
§4.2 线弹性下K判据
3、应力松弛对r0的影响
ABJ区域应力松弛造成应力曲线变化
K I
y 2x
面积ABCH(屈服并应力松弛)=面积JBF(未屈服)
面积ABC+面积CH=面积JB+面积BF
K Ⅰ
<K IC
K IC
>K IC
安全(破损安全) 危险临界状态 失稳扩展,直至断裂
材料力学性能第四章
16
§4.2 线弹性下K判据
五、K判据之应用
KYaK
Ⅰ
IC
1、确定承载能力
已知amax,KIC,则
K IC
C Ya
max
若 <,则构件安全
工作
C
若 >,则构件发生, 失直 稳至 扩断 展裂
2024年材料力学性能总结(三篇)
![2024年材料力学性能总结(三篇)](https://img.taocdn.com/s3/m/3bb70f2803768e9951e79b89680203d8cf2f6a44.png)
2024年材料力学性能总结摘要:材料力学性能是材料科学研究中非常重要的一个方面,它描述了材料在力学作用下的行为和性能。
2024年,随着科学技术的进步和工程需求的不断提高,材料力学性能也将取得许多重要的突破和进展。
本文将对2024年材料力学性能的发展进行总结,并对未来可能的应用和研究方向进行展望。
关键词:材料力学性能;2024年;发展总结;应用展望一、引言材料力学性能是材料科学研究中的一个重要方向,它考察材料在外力作用下的响应和变形行为。
材料力学性能的研究不仅对于理论研究有重要意义,也对工程应用具有重要影响。
2024年,随着科学技术的不断进步,材料力学性能也将迎来许多新的挑战和机遇。
本文将对2024年材料力学性能的发展进行总结,并对未来可能的应用和研究方向进行展望。
二、材料力学性能的发展总结2024年,预计会有以下几个方面的材料力学性能发展和突破:1.高强度材料的研发随着科技进步和工程需求的不断提高,对于高强度材料的需求将越来越迫切。
2024年,预计会有许多新型的高强度材料得到开发和研究。
这些材料不仅具有优良的力学性能,还具有其他良好的特性,如轻质、高温稳定性等。
这些高强度材料的研发和应用将对于航空航天、汽车和能源等领域具有重要的意义。
2.新型复合材料的研究复合材料是一种具有多种材料组成的材料,它的力学性能往往比单一材料更优越。
2024年,预计会有许多新型的复合材料被研发和应用。
这些新型复合材料具有更好的强度、刚度和韧性,并且可以具备一些其他功能,如导电性、光学性能等。
这些新型复合材料的研究将有助于解决一些工程问题,同时也为制造行业提供更多的选择。
3.纳米材料的应用拓展纳米材料是一种具有纳米尺度结构的材料,具有许多特殊的力学性能。
2024年,预计纳米材料的应用范围将进一步拓展。
纳米材料不仅可以应用于催化剂、传感器等领域,还可以用于制备高强度和高韧性材料。
纳米材料的研究将有助于改进传统材料的性能,并带来许多新的应用领域。
材料力学:第4章 材料拉伸和压缩时的力学性能
![材料力学:第4章 材料拉伸和压缩时的力学性能](https://img.taocdn.com/s3/m/118c196690c69ec3d5bb7590.png)
z 灰口铸铁压缩应力-应变曲线
z 思考 -为何铸铁试件压缩破 坏断面的法线与轴线大 致成45~55°夹角?
24
第4章 材料拉伸和压缩时的力学性能
§4-1 材料拉伸时的力学性能 §4-2 材料压缩时的力学性能 §4-3 材料的许用应力 §4-4 应力集中的概念 §4-5 本章小结
25
4.3 许用应力
σ
(1)②的 σ b2
E3
(2)①的 E1
(3)③的δ 3
ε
30
z练习 低碳钢平板受拉试件的宽度为b,厚度为h,在拉伸试
验时,每增加的拉力ΔF ,测得沿轴线方向的正应变为ε1, 横向正应变为 ε2 ,试求该试件材料的弹性模量E,泊松比ν
和切变模量G。(5分)
F
b
1
1
h
F
31
z 扩展内容-铸铁材料的弹性模量如性能 §4-3 材料的许用应力 §4-4 应力集中的概念 §4-5 本章小结
27
4.4 应力集中的概念
z 应力集中现象-截面尺寸突变而导致的局部应力显著增大。
z 应力集中系数 K = σ max σ
(K > 1)
28
4.4 应力集中的概念(续)
δ10
≥
5
0 0
-相对性:加载速度、 环境温度、应力状态
14
4.1.1.3 冷作硬化与冷作时效
z 冷作硬化
z 冷作时效
z 冷作硬化/冷作时效→提高强度,节省材料,但降低塑性 。 z 冷作硬化-对加劲钢筋、枪管炮筒、水压机气缸等; z 冷作时效-建筑施工中钢筋的预应力处理等。
15
4.1.2 其他塑性材料拉伸时的力学性能
z 低碳钢试件断口
12
工程材料力学性能 第四章 金属的断裂
![工程材料力学性能 第四章 金属的断裂](https://img.taocdn.com/s3/m/209cfb38ee06eff9aef8076c.png)
金属的断裂知识
断裂是机械和工程构件失效的主要形式之一。 • 失效形断式:磨损、腐蚀和断裂 。断裂的危害最大 。 断裂是工程构件最危险的一种失效方式,尤其是脆性 断裂,它是突然发生的破坏,断裂前没有明显的征兆, 这就常常引起灾难性的破坏事故 • 断裂是材料的一种十分复杂的行为,在不同的力学、 物理和化学环境下,会有不同的断裂形式。 研究断裂的主要目的是防止断裂,以保证构件在服役 过程中的安全。
二、金属断裂强度
理论断裂强度就是把金属原子分离开所需的最大应 力 金属的理论断裂强度可由原子间结合力的图形算出, 如图。图中纵坐标表示原子间结合力,纵轴上方为 吸引力下方为斥力,当两原子间距为a即点阵常数 时,原子处于平衡位置,原子间的作用力为零。如 金属受拉伸离开平衡位置,位移越大需克服的引力 越大,引力和位移的关系如以正弦函数关系表示,
金属中含有裂纹来自两方面:一是在制造 工艺过程中产生,如锻压和焊接等;一是 在受力时由于塑性变形不均匀,当变形受 到阻碍(如晶界、第二相等)产生了很大的 应力集中,当应力集中达到理论断裂强度, 而材料又不能通过塑性变形使应力松弛, 这样便开始萌生裂纹。
ຫໍສະໝຸດ (二)裂纹形成的位错理论
裂纹形成可能与位错运动有关。 1.甄纳—斯特罗位错塞积理论 甄纳(G.zener)1948年提出. 如果塞积头处的应力集中不能为塑性变形所松弛,则塞积头处 的最大拉应力能够等于理论断裂强度而形成裂纹。
解理断裂过程包括如下三个阶段: 塑性变形形成裂纹;裂纹在同一晶粒内初期长大; 裂纹越过晶界向相邻晶粒扩展。
甄纳—斯特罗理论存在的问题: 在那样大的位错塞积下,将同时产生很大切应力 的集中,完全可以使相邻晶粒内的位错源开动,产 生塑性变形而将应力松弛,使裂纹难以形成。
第4章 材料的力学性能 应力应变关系
![第4章 材料的力学性能 应力应变关系](https://img.taocdn.com/s3/m/ef9f0ed376eeaeaad1f33067.png)
第4章 材料的力学性能 应力应变关系
4-4 各向同性材料的广义胡克定律
(1)简单胡克定律
(2)广义胡克定律 据剪切胡克定律
1
xy G
xy
同理
综上所 述,对 于原三 向应力 状态, 有
e x [s x - v(s y s z )] E 1 e y [s y - v(s z s x )] E 1 e z [s z - v(s x s y )] 广义胡克定律 E xy xy G yz yz G zx zx G
4-5 应变能
(1)体变应变与形状变形 变形分为两类:体积变形与形状变形。单元体如果原是立方 体,变形后仍为立方体,或单元体原是球体,变形后仍为球体。 这种变形只是体积发生了变化,而形状没有变化,称为纯体积变 形。如果原是立方体的单元体,变形后为体积相等的长方体,或 原是球形单元体,变形后为体积相等的椭球体。这种变形只是形 状发生了变化,而体积没有变化,称为纯形状变形 。 为方便起见,在主轴坐标系中进行考察。取一 主单元立方体,变形前各棱边的长度均为da ,则变 形前体积 dV0 da 3
(例如d点)开始卸载,则力与变形间
的关系将沿与弹性阶段直线大体平行 的 dd 线回到 d 点。 若卸载后从d 点开始继续加载,曲线将首先大体沿dd 线回至d点,然后仍沿未经卸载的曲线def 变化,直至 f 点发 生断裂为止。 可见,在再次加载过程中,直到 d 点以前,试件变形 是弹性的,过 d 点后才开始出现塑性变形。
第4章 材料的力学性能 应力应变关系
4-4 各向同性材料的广义胡克定律
(1)简单胡克定律
由试验(扭转试验)还可指出,在材料的比例极限范围 内,一点的切应力与相应的切应变成正比,即
第四章 材料力学概述
![第四章 材料力学概述](https://img.taocdn.com/s3/m/c97a1520ed630b1c59eeb59b.png)
4.5 应力、应变及其相互关系
例题:两边固定的薄壁板,边变形后 ab 和 ad 两边保持
为直线a点沿垂直方向向下位移 0.025mm。试求 ab 边 的平均应变和ab, ad 两边夹角的切应变。
250
b
200
a d
0.025mm
a
4.5 应力、应变及其相互关系
250
b
200
a d
0.025mm
荷载未作用时 F 荷载去除后 荷载作用下
4.1 材料力学的研究内容
对构件在荷载作用下正常工作的要求: Ⅲ. 具有足够的稳定性要求——对于理想中心受压杆件,指构件 在荷载作用下保持原有的直线平衡形式的能力,不丧失稳定。
4.1 材料力学的研究内容 实际工程中
在满足上述强度、刚度和稳定性要求的同时,还 须尽可能合理选用材料和降低材料消耗量,以节约投 资,即解决安全与经济的矛盾。
要多小 有多小 p
k
A
4.5 应力、应变及其相互关系
单向应力:微体仅 在一对相互平行的 截面上承受正应力
纯剪切:微体仅 承受切应力
微体两种最基本的受力形式
4.5 应力、应变及其相互关系
M
y
0
dxdy dz 'dydz dx 0
面积
力
面积
力
'
拉 压 实 验 表 明
在弹性范围内,有变形 x 与外 力 F 成正比的弹性定律。
它是由英国力学家胡克(Robert Hooke, 1635-1703) 于1678年发现的,被称作胡克定律。 推广
4.5 应力、应变及其相互关系
单 向 应 力 实 验 表 明
应力与应变也有的类似关系,即 应力与应变成比例关系,也被叫 做 Hooke’s law。 弹性范围内,正应力与正应 变成正比: 引入比例常数E,于是可得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四
1.根据外加应力与裂纹扩展面的取向关系,裂纹扩展有三种基本形式:
1)张开型(Ⅰ型)裂纹扩展。
拉应力垂直作用于裂纹扩展面,裂纹沿作用力方向张开,沿裂纹面扩展 2)滑开型(Ⅱ型)裂纹扩展。
切应力平行作用于裂纹面,而且与裂纹线垂直,裂纹沿裂纹面平行滑开扩展 3)撕开型(Ⅲ型)裂纹扩展。
切应力平行作用于裂纹面,而且与裂纹线平行,裂纹沿裂纹面撕开扩展
裂纹扩展形式中,以I 型裂纹扩展最危险,容易引起脆性断裂
2. 式中 Y 为裂纹形状系数,是一个无量纲系数。
a 指裂纹半长。
K I 指应力场强
度因子,单位为MPa·m 1/2
3.定义:当σ或a 增大时,K Ⅰ也逐渐增加,当K Ⅰ 达到某一临界值时,裂纹便失稳扩展而导致材料断裂。
这个临界或失稳状态的K Ⅰ 值记作K c 或K IC ,称为断裂韧度。
K IC 为平面应变下的断裂韧度,表示在平面应变条件下材料抵抗裂纹失稳扩展的能力。
K c 为平面应力断裂韧度,表示在平面应力条件下材料抵抗裂纹失稳扩展的能力。
4. 裂纹失稳扩展脆断的断裂判据: K I < K IC 有裂纹,但不
会断裂 K I = K IC 临界状态 K I > K IC 裂纹失稳扩展,直至断裂 5. 平面应变的塑性区宽度比平面应力的小得多,因此平面应变是一种最硬的应力状态,塑性区最小。
6. 扩大后的塑性区宽度,不论是平面应力状态还是平面应变状态,经计算R 0=2 r 0
7.修正的条件:当计算应力场强度因子时,一般σ/ σs ≥需进行塑性区修正
8. 通常把裂纹扩展单位面积由系统释放势能的数值称为裂纹扩展能量释放率,简称能量释放率或能量率,用G I 表示
G IC 称为断裂韧度(平面应变断裂韧度),表示材料阻止裂纹失稳扩展时单位面积所消耗的能量。
断裂G 判据:G I ≥G IC
9.
试样尺寸: 因为K IC 是在平面
应变和小范围屈服条件下的K I 的临界值,所以测定K IC 时所用试样尺寸,必须保证裂纹尖端处于平面应变和小范围屈服状态。
a K πσ=I c K K ⅠⅠ≥c c c a Y K σ=
Ⅰ。