全国各地中考数学分类:反比例函数综合题汇编含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.

(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;

(2)若y= 的值不大于2,求符合条件的x的范围;

(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;

(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.

【答案】(1)解:y=2x+1中k=2>0,

∴y随x的增大而增大,

∴当x=2时,y最小=5;当x=4时,y最大=9.

∵y= 中k=2>0,

∴在2≤x≤4中,y随x的增大而减小,

∴当x=2时,y最大=1;当x=4时,y最小= .

∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,

∴当x=1时,y最小=1;当x=4时,y最大=19

(2)解:令y= ≤2,

解得:x<0或x≥1.

∴符合条件的x的范围为x<0或x≥1

(3)解:①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0

时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=

无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴

当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0

(4)解:①当m<2时,有2(2﹣m)2+m﹣2=1,

解得:m1=1,m2= (舍去);②当2≤m≤4时,有m﹣2=1,

解得:m3=3;③当m>4时,有2(4﹣m)2+m﹣2=1,

整理得:2m2﹣15m+29=0.

∵△=(﹣15)2﹣4×2×29=﹣7,无解.

∴m的值为1或3.①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无

最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0;

【解析】【分析】(1)根据k=2>0结合一次函数的性质即可得出:当2≤x≤4时,y=2x+1的最大值和最小值;根据二次函数的解析式结合二次函数的性质即可得出:当2≤x≤4时,

y=2(x﹣1)2+1的最大值和最小值;(2)令y= ≤2,解之即可得出x的取值范围;(3)①当k>0时,如图得当0<x≤2时,得到y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,得到y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=

无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,于是得到结论;(4)分m<2、2≤m≤4和m>4三种情况考虑,根据二次函数的性质结合当2≤x≤4时有最小值为1即可得出关于m的一元二次方程(一元一次方程),解之即可得出结论.

2.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.

(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;

(2)⊙O的半径是,

①求出⊙O上的所有梦之点的坐标;

②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.

【答案】(1)解:∵P(2,b)是梦之点,∴b=2

∴P(2,2)

将P(2,2)代入中得n=4

∴反比例函数解析式是

(2)解:①设⊙O上梦之点坐标是(,)∴∴

=1或 =-1

∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)

②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)

由已知MN∥l或MN⊥l

∴直线MN为y=-x+b或y=x+b

当MN为y=-x+b时,m=b-3

由图可知,当直线MN平移至与⊙O相切时,

且切点在第四象限时,b取得最小值,

此时MN记为,

其中为切点,为直线与y轴的交点

∵△O 为等要直角三角形,

∴O =

∴O =2

∴b的最小值是-2,

∴m的最小值是-5

当直线MN平移至与⊙O相切时,且切点在第二象限时,

b取得最大值,此时MN记为,

其中为切点,为直线与y轴的交点。

同理可得,b的最大值为2,m的最大值为-1.

∴m的取值范围为-5≤m≤-1.

当直线MN为y=x+b时,

同理可得,m的取值范围为1≤m≤5,

综上所述,m的取值范围为-5≤m≤-1或1≤m≤5

【解析】【分析】(1)由“ 梦之点”的定义可得出b的值,就可得出点P的坐标,再将点P的坐标代入函数解析式,求出n的值,即可得出反比例函数的解析式。

(2)①设⊙O上梦之点坐标是(a,a )根据已知圆的半径,利用勾股定理建立关于a的方程,求出方程的解,就可得出⊙O上的所有梦之点的坐标;② 由(1)知,异于点P 的梦之点Q的坐标为(-2,-2),由已知直线MN∥l或MN⊥l,就可得出直线MN的解析式为y=-x+b或y=x+b。分两种情况讨论:当MN为y=-x+b时,m=b-3,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,当直线MN平移至与⊙O相切时,且切点在第二象限时,b的最大值为2,m的最大值为-1,就可得出m的取值范围,当直线MN为y=x+b时,同理可得出m的取值范围。

相关文档
最新文档