第5课 三角形与多边形
人教版八年级数学上册七年级第十一章第五讲:多边形的内角和(教师版)
多边形的内角和人教八上初中数学试卷11-8一、学习目标能记住多边形的内角和、外角和的概念;能通过不同方法推导多边形的内角和与外角和公式,进一步体会数学化归思想;能熟练运用多边形的内角和与外角和公式进行有关计算.二、知识回顾1.三角形三个内角的和等于多少度?三角形三个内角的和等于180°2.n边形从一个顶点出发的对角线有n-3条,它们将n边形分成n-2 个三角形.3.你知道长方形和正方形的内角和是多少吗?其他四边形的内角和是多少?360°.三、新知讲解1.多边形的内角和公式n边形的内角和等于(n-2)·180°.2.多边形的外角和任意多边形的外角和等于360°.四、典例探究2.多边形的外角和【例2】(2015•茂名模拟)若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A.6 B.8 C.10 D.12总结:正n边形的每个外角都相等,所以每个外角的度数等于360°/n.【例3】(2014•无锡模拟)如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数为()A.6 B.7 C.8 D.,9总结:根据题目蕴含的等量关系,利用内角和公式和外角和的不变性,列出方程即可求出边数.练3.(2015•广东模拟)一个n边形的每一个外角都是60°,则这个n边形的内角和是______.练4.(2014春•镇江校级期末)一个多边形的所有内角与外角的总和为2160°,这个多边形是几边形?A.540°B.360°C.300°D.240°5.(2014秋•赣州期末)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是()A.15或17 B.16或15 C.15 D.16或15或17二、填空题6.(2015春•荆门月考)若四边形四个内角的比是3:3:5:7,则它的最大角是度.7.(2015春•东台市月考)一个n边形,除了一个内角外,其余(n﹣1)个内角和为2770°,则这个内角是度.8.(2014秋•新洲区期中)苏敏从A点出发,每走20米就向左转15°,按此规定,她要走米,才能回到原来位置A点处.9.(2014春•丹阳市校级期中)一个多边形的每个外角都等于36°,则它是边形,它的内角和是.三、解答题10.(2013秋•随州校级月考)如图所示,请你根据图中信息求出x的值.11.(2013秋•象山区校级期中)已知一个n边形的每一个内角都等于150°.(1)求n;(2)求这个n边形的内角和;(3)从这个n边形的一个顶点出发,可以画出几条对角线?12.(2014春•镇江校级期末)一个多边形的所有内角与外角的总和为2160°,这个多边形是几边形?13.(2014秋•旬阳县期中)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数.典例探究答案:【例1】(2015•惠山区一模)如果一个多边形的内角和等于1260°,那么这个多边形的边数为()A.7 B.8 C.9 D.10分析:n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得(n﹣2)•180°=1260°,解得n=9,故选C.点评:本题考查了多边形的内角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.练1.如果一个多边形的边数增加1倍,它的内角和是2160°,那么原来多边形的边数是.解析:设原来多边形的边数为n,那么边数增加1倍后,多边形的边数变为2n,内角和为(2n-2)·180°.根据多边形内角和定理,可列出关于边数n的方程,即(2n-2)·180°=2160°,解得n=7.所以原多边形的边数为7.练2.(2013春•邢台期末)已知:如图,五边形ABCDE中,AB∥CD,求图形中∠AED的值.分析:先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠AED的值.解答:解:∵AB∥CD,∴∠B=180°﹣∠C=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠AED=540°﹣150°﹣120°﹣60°﹣160°=50°.点评:考查了平行线的性质,多边形内角和定理,注意对基础知识的熟练掌握及综合运用.【例2】(2015•茂名模拟)若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A.6 B.8 C.10 D.12分析:根据正多边形的每一个外角都相等,可知多边形的边数=360°÷30°,计算即可求解.解答:解:这个正多边形的边数为360°÷30°=12,故选D.点评:本题考查了多边形外角和,熟记正多边形的边数与外角的关系是解题的关键.【例3】(2014•无锡模拟)如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数为()A.6 B.7 C.8 D.9分析:n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.解答:解:设多边形的边数为n,依题意,得(n﹣2)•180°=3×360°,解得n=8,故选:C.点评:此题根据多边形的内角和计算公式,利用内外角和的关系列出关于边数的方程,使问题得解..练3.(2015•广东模拟)一个n边形的每一个外角都是60°,则这个n边形的内角和是.分析:根据多边形的外角和是360度,每个外角都相等,即可求得外角和中外角的个数,即多边形的边数,根据内角和定理即可求得内角和.解答:解:多边形的边数是:360÷60=6,则多边形的内角和是:(6﹣2)×180=720°.故答案为:720°.点评:本题主要考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化,因而把求多边形内角的计算转化为外角的计算,可以使计算简便.练4.(2014春•镇江校级期末)一个多边形的所有内角与外角的总和为2160°,这个多边形是几边形?分析:依题意,多边形的内角与外角和为2160°,多边形的外角和为360°,根据内角和公式求出多边形的边数.解答:解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=2160°,n﹣2=10,n=12.故答案为:十二边形.点评:考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.课后小测答案:一、选择题1.(2015春•建湖县校级月考)一个多边形的每个内角都是144°,这个多边形是()A.八边形B.十边形C.十二边形D.十四边形解:∵一个多边形的每个内角都是144°,∴这个多边形的每个外角都是(180°﹣144°)=36°,∴这个多边形的边数360°÷36°=10.故选B.2.(2015春•新沂市校级月考)下列各度数不是多边形的内角和的是()A.1800°B.540°C.1700°D.10800°解:不是180的整数倍的选项只有C中的1700°.故选C.3.(2014•义乌市三模)正n边形的一个内角比一个外角大100°,则n为()A.7 B.8 C.9 D.10解:设内角为x°,则外角为(x﹣100)°,根据题意得:x+x﹣100=180,解得:x=140,所以外角为40°,∴360°÷40°=9,故选C.4.(2014•将乐县质检)如图,∠1、∠2、∠3、∠4 是五边形ABCDE的4个外角,若∠EAB=120°,则∠1+∠2+∠3+∠4等于()A.540°B.360°C.300°D.240°解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故选:C.5.(2014秋•赣州期末)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是()A.15或17 B.16或15 C.15 D.16或15或17解:多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据题意得(n﹣2)•180°=2520°,解得:n=16,则多边形的边数是15,16,17.故选D.二、填空题6.(2015春•荆门月考)若四边形四个内角的比是3:3:5:7,则它的最大角是度.解:设四边形四个内角分别是3x,3x,5x,7x,则3x+3x+5x+7x=360,解得x=20°.则它的最大角是7×20=140°.7.(2015春•东台市月考)一个n边形,除了一个内角外,其余(n﹣1)个内角和为2770°,则这个内角是度.解:设这个内角度数为x,边数为n,则(n﹣2)×180°﹣x=2770°,180°•n=3130°+x,∵n为正整数,∴n=18.∴这个内角度数为180°×(18﹣2)﹣2770°=110°.故答案为110°.8.(2014秋•新洲区期中)苏敏从A点出发,每走20米就向左转15°,按此规定,她要走米,才能回到原来位置A点处.解:行走路线对应的多边形的边数是:=24,则经过的总路程是:24×20=480(米).故答案是:480.9.(2014春•丹阳市校级期中)一个多边形的每个外角都等于36°,则它是边形,它的内角和是.解:(1)360°÷36°=10.(2)(10﹣2)•180°=1440°.故答案为:10,1440°.三、解答题10.(2013秋•随州校级月考)如图所示,请你根据图中信息求出x的值.解:由题意可得:90°+(2x+25)°+(3x﹣15)°+2x°+x°=(5﹣2)×180°,解得:x=55.——————————唐玲制作仅供学习交流——————————11.(2013秋•象山区校级期中)已知一个n边形的每一个内角都等于150°.(1)求n;(2)求这个n边形的内角和;(3)从这个n边形的一个顶点出发,可以画出几条对角线?解:(1)∵每一个内角都等于150°,∴每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=12;(2)内角和:12×150°=1800°;(3)从一个顶点出发可做对角线的条数:12﹣3=9,.12.(2014春•镇江校级期末)一个多边形的所有内角与外角的总和为2160°,这个多边形是几边形?解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=2160°,n﹣2=10,n=12.故答案为:十二边形.13.(2014秋•旬阳县期中)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数.解:设新多边形是n边形,则180(n﹣2)=2520解得:n=16.则原多边形的边数是:16﹣1=15.答:原多边形的边数是15.唐玲。
苏科版信息技术五年级上册第5课《画正多边形》说课稿
苏科版信息技术五年级上册第5课《画正多边形》说课稿一. 教材分析《画正多边形》是苏科版信息技术五年级上册第5课的内容。
本节课的主要任务是让学生学会利用计算机绘制正多边形,并了解正多边形的性质。
教材通过实例引入正多边形的概念,引导学生探究正多边形的绘制方法,培养学生的动手操作能力和创新能力。
二. 学情分析五年级的学生已经具备了一定的计算机操作基础,对绘图软件有一定的了解。
但是,对于正多边形的性质和绘制方法,他们可能还比较陌生。
因此,在教学过程中,我需要注重引导学生掌握正多边形的性质,并通过动手操作,让学生学会绘制正多边形。
三. 说教学目标1.知识与技能目标:学生能够理解正多边形的概念,掌握正多边形的性质,并学会利用计算机绘制正多边形。
2.过程与方法目标:通过观察、操作、探究等方法,培养学生动手操作能力和创新能力。
3.情感态度与价值观目标:激发学生对数学和信息技术的兴趣,培养学生的团队协作意识和自主学习能力。
四. 说教学重难点1.教学重点:正多边形的性质,正多边形的绘制方法。
2.教学难点:正多边形的绘制方法,如何利用计算机绘制出规则的正多边形。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生主动探究、合作学习。
2.教学手段:利用多媒体课件、网络资源、绘图软件等教学手段,为学生提供丰富的学习资源,提高学生的学习兴趣。
六. 说教学过程1.导入新课:通过展示一些生活中的正多边形图片,如正方形、正三角形等,引导学生思考:这些图形有什么特点?它们是如何形成的?2.探究正多边形的性质:让学生通过观察、操作,发现正多边形的性质,如边数、内角等。
3.学习正多边形的绘制方法:引导学生利用计算机绘制正多边形,学会使用绘图软件的基本操作。
4.实践操作:让学生分组合作,利用计算机绘制不同边数的正多边形,并尝试创新。
5.总结与展示:让学生展示自己的作品,分享绘制正多边形的经验和感受。
三角形与多边形
多边形1.多边形及其有关概念(1)多边形定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形. 多边形按组成它的线段的条数分为三角形、四边形、五边形、六边形、……由n 条线段组成的多边形就叫做n 边形.如图,是一个五边形,可表示为五边形ABCDE .三角形是最简单,边数最少的多边形.(2)多边形的边:组成多边形的线段叫做多边形的边.(3)多边形的内角、外角:多边形相邻两边组成的角叫做多边形的内角,也称为多边形的角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角.如图,∠B ,∠C ,∠D ,…是五边形的内角,∠1是五边形的外角.谈重点 多边形外角的理解 多边形每一个顶点处有两个外角,并且同顶点的外角与内角互为邻补角.(4)多边形的对角线: ①定义:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.如图,AC ,AD 就是五边形ABCDE 中的两条对角线.②拓展理解:一个n 边形从一个顶点可以引(n -3)条对角线,把n 边形分成(n -2)个三角形.一个n边形一共有n (n -3)2条对角线. 析规律 多边形的对角线条数与顶点数的关系 ①从多边形一个顶点引出的对角线能将多边形分割成不同的三角形,这就把多边形问题转化为三角形问题来研究;②所有的四边形都有2条对角线,五边形有5条对角线,也就是说一个边数一定的多边形的对角线的条数是一定的.(5)凸多边形和凹多边形:①在图(1)中,画出四边形ABCD 的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;②在图(2)中,画出DC (或BC )所在直线,整个四边形不都在这条直线的同一侧,我们称这个四边形为凹四边形,像这样的多边形称为凹多边形.【例1】 填空:(1)十边形有________个顶点,________个内角,________个外角,从一个顶点出发可画________条对角线,它共有________条对角线.(2)从多边形一个顶点出发画对角线将它分成了四个三角形,这个多边形是________边形.解析:(1)一个n 边形有n 个顶点,n 个角,2n 个外角,从一个顶点能画出(n -3)条对角线,共有n (n -3)2条对角线; (2)一个n 边形从一个顶点可以引(n -3)条对角线,把n 边形分成(n -2)个三角形,所以n -2=4,n =6,这个多边形是六边形.答案:(1)10 10 20 7 35(2)六2.正多边形(1)定义:各个角都相等,各条边都相等的多边形叫做正多边形.如等边三角形、正方形等.(2)特点:不仅边都相等,角也都相等,两个条件必须同时具备才是正多边形.如长方形四个角都是直角,都相等,但边不等,所以不是正多边形.析规律 正多边形外角的特征 因为边数相同的正多边形各个内角都相等,同顶点的内角与外角互为邻补角,所以边数相同的正多边形的各个外角也相等.【例2】 下列说法正确的个数有( ).(1)由四条线段首尾顺次相接组成的图形是四边形;(2)各边都相等的多边形是正多边形;(3)各角都相等的多边形一定是正多边形;(4)正多边形的各个外角都相等.A .1B .2C .3D .4解析:(1)不正确,一是要在同一平面内,二是不能在同一条直线上;(2)不正确,各边都相等,各角也都相等的多边形才是正多边形,这两个条件必须同时具备,如菱形虽然四边都相等,但它不是正多边形;(3)不正确,如长方形四个角都是直角,都相等,但边不一定相等,所以不是正多边形;(4)正确,因为边数相同的正多边形各个内角都相等,同顶点的内角与外角互为邻补角,所以边数相同的正多边形的各个外角也相等.故选A.答案:A3.多边形的内角和(1)公式:n 边形内角和等于(n -2)×180°.(2)探究过程:如图,以五边形、六边形为例.①从五边形的一个顶点出发,可以画2条对角线,它们将五边形分成3个三角形,五边形的内角和等于180°×3=540°;②从六边形的一个顶点出发,可以画3条对角线,它们将六边形分成4个三角形,六边形的内角和等于180°×4=720°;③从n 边形的一个顶点出发,可以画(n -3)条对角线,它们将n 边形分成(n -2)个三角形,n 边形的内角和等于180°×(n -2).所以多边形内角和等于(n -2)×180°.析规律 多边形内角和公式的推导 推导多边形内角和公式的方法很多,但都是将多边形内角和转化为三角形内角和进行推导的,这也是研究问题的一种思路方法,将多边形问题转化为三角形问题解决.(3)应用:①运用多边形内角和公式可以求出任何边数的多边形的内角和;②由多边形内角和公式可知,边数相同的多边形内角和也相等,因此已知多边形内角和也能求出边数.【例3】 选择:(1)十边形的内角和为( ).A .1 260°B .1 440°C .1 620°D .1 800°(2)一个多边形的内角和为720°,那么这个多边形的对角线共有( ).A .6条B .7条C .8条D .9条解析:(1)运用多边形内角和公式计算:180°×(10-2)=1 440°,故选B ;(2)一个多边形的内角和为720°,即180°×(n -2)=720°,解得n =6,所以该多边形是六边形,六边形有6×(6-3)2=9条对角线,故选D. 答案:(1)B (2)D4.多边形的外角和(1)公式:多边形的外角和等于360°.(2)探究过程:如图,以六边形为例.①外角和:在每个顶点处各取一个外角,即∠1,∠2,∠3,∠4,∠5,∠6,它们的和为外角和.②因为同顶点处的一个内角和外角互为邻补角,所以六边形内、外角和等于180°×6=1 080°,所以∠1+∠2+∠3+∠4+∠5+∠6=1 080°-180°×(6-2)=360°.③n 边形外角和=n ×180°-(n -2)×180°=360°.(3)拓展理解:①多边形的外角和是一个恒值,即任何多边形的外角和都是360°,与边数无关.②多边形的外角和与多边形所有外角的和不是一回事,多边形的外角和是每个顶点处取一个外角的和.解技巧 多边形的内角与相邻外角的关系的运用 同顶点的每一个内角和外角互为邻补角是解决含内、外角问题的关键,是内、外角转换的纽带.【例4】 填空:(1)一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是__________度,外角和是__________度;(2)多边形边数每增加一条,它的内角和会增加__________,外角和增加__________. 解析:(1)因为每个外角都是60°,所以360°÷60°=6,所以是六边形.根据内角和公式计算出内角和是720°,外角和是恒值为360°(也可以由每个外角都是60°,得每个内角都是120°,进而得到内角和是720°);(2)多边形边数每增加一条,它的内角和会增加180°,但外角和不变.答案:(1)六720 360 (2)180°0°5.多边形内角和公式的应用多边形内角和只与边数有关,因此当一个多边形的边数确定时,多边形的内角和就是一定的,所以多边形内角和公式就有两个作用:(1)已知多边形边数(顶点数、内角个数)就可以求出多边形内角和度数,方法是直接将边数n代入公式(n-2)×180°求出.(2)已知多边形内角和求多边形边数,只要根据多边形内角和公式列出以n为未知数的方程,解方程,求出n即可得到边数.破疑点多边形内角和的理解①用内角和除以180°得到的是n-2的值,不是边数,边数是n,这点要注意.②熟记多边形内角和公式是这部分内容应用的关键.【例5-1】若一个四边形的四个内角度数的比为3∶4∶5∶6,则这个四边形的四个内角的度数分别为__________.解析:设每一份为x°,那么四个角分别为3x°,4x°,5x°,6x°.根据四边形内角和是360°,列出方程3x+4x+5x+6x=360,解得x=20,然后求出各角;也可以用360°÷18=20°,每一份是20°,然后求解.答案:60°,80°,100°,120°【例5-2】一个多边形的内角和等于1 440°,则它的边数为__________.解析:根据多边形内角和公式列出以n为未知数的方程(n-2)×180=1 440,解方程得n=10.所以这个多边形为十边形.答案:10【例5-3】一个多边形的内角和不可能是( ).A.1 800°B.540°C.720°D.810°解析:因为边数只能是整数,所以多边形的内角和必须是180°的整数倍,故选D.答案:D6.多边形外角、外角和公式的应用多边形外角和是360°,它是一个恒值,不论多边形是几边形,它的外角和都是360°,与边数无关,所以对于普通多边形,根据多边形外角和无法判断多边形的边数,因此多边形外角很少单独考查,它一般应用于正多边形中或各角都相等时的情况,因为正多边形的每一个内角都相等,所以正多边形的每一个外角也都相等,因此只要知道正多边形中任一个外角的度数就能求出边数,或知道外角的个数也能求出每一个外角的度数,进而能求出内角度数和内角和的度数.同顶点的外角和内角互为邻补角,所以多边形外角和内角又是相互联系的,知道内角能求外角,知道外角也能求内角,它们之间能相互转换.破疑点多边形外角和与外角的关系多边形的外角和与多边形所有外角的和不是一回事,多边形的外角和是每个顶点处各取一个外角的和,是360°,而多边形所有外角的和是360°的2倍,是720°,这点要注意.【例6-1】如图所示,已知∠ABE=138°,∠BCF=98°,∠CDG=69°,则∠DAB=__________.解析:方法一:根据同顶点的外角和内角互为邻补角,求出已知角的邻补角.根据四边形内角和为360°,求出∠A;方法二:根据四边形外角和为360°,求出与∠A同顶点的邻补角(A点处的外角),再求出∠A.答案:125°【例6-2】如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+∠2等于( ).A.140°B.40°C.260°D.不能确定解析:方法一:因为四边形内角和是360°,且∠B+∠ADC=140°,所以∠DAB+∠DCB =220°,∠1+∠2+∠DAB+∠DCB=180°×2,所以∠1+∠2=360°-220°=140°;方法二:可求出与∠B,∠ADC同顶点的两外角和为220°,根据四边形外角和是360°,得出∠1+∠2=360°-220°=140°;方法三:连接BD,根据三角形一个外角等于和它不相邻的两内角和,求出∠1+∠2的度数.答案:A7.正多边形知识的应用正多边形是特殊的多边形,它特殊在每一个内角、外角、每一条边都相等,所以在正多边形中,只要知道一个角的度数,就能知道所有角的度数,包括每一个外角的度数.知道一边的长度,就能知道每一边的长度.因此它的应用主要包括两个方面:(1)已知内角(或外角)能求边数、内角和;已知边数能求每一个外角(或内角)的度数及内角和,即在内角和、边数、内角度数、外角度数四个量中知道一个量就能求出其他三个量.(2)因为正多边形每一条边都相等,所以知道周长能求边长,知道边长能求周长(因较简单所以考查较少).解技巧利用方程思想求多边形的边数正多边形中已知一个内角的度数求边数时,一是将内角根据“同顶点的内、外角互补”转化为外角,再根据外角和是360°,由360°除以一个外角的度数得到边数;二是根据内角和公式和每个角度数都相等列方程解出边数n.【例7-1】若八边形的每个内角都相等,则其每个内角的度数是__________.解析:由多边形内角和定理知,八边形的内角和是1 080°,每个内角都相等,所以1 080°÷8=135°.答案:135°【例7-2】一个多边形的每一个外角都等于30°,这个多边形的边数是__________,它的内角和是__________.解析:多边形的外角和是360°,每个外角都是30°,所以360°÷30°=12,所以该多边形是十二边形,内角和是1 800°,本题也可根据共顶点的内、外角互补,求出内角和.答案:12 1 800°【例7-3】一个多边形的每一个内角都等于144°,求这个多边形的边数.分析:方法一:可设这个多边形的边数为n,那么内角和就是(n-2)×180°,因为每一个内角都是144°,所以内角和为144°×n,根据“表示同一个量的两个式子相等”列方程解出;方法二:因为每一个内角都等于144°,所以每一个外角都是36°.根据多边形外角和为360°,用360°÷36°=10,也可以得出这个多边形为十边形.解:设这个多边形的边数为n,则(n-2)×180°=n×144°,解得n=10.答:这个多边形的边数为10.8.边数、顶点数、内角和、对角线条数之间关系的综合应用在多边形问题中,当多边形的边数n一定时,不论多边形形状如何,多边形的内角和也是一定的,是(n -2)×180°,多边形对角线的条数也是一定的,是n (n -3)2,并且从一个顶点引出的对角线的条数也是一定的,是(n -3)条,所以在多边形问题中,在这些量中,只要知道其中一个量,就可以求出所有的量.在多边形问题的综合应用中,一般是边数、对角线的条数、内角和之间的关系应用较多,有时还与正多边形知识相结合.因知识限制,一般是给出内角和,求边数或对角线条数题目较多,如:已知一个多边形内角和是1 080°,它有几条对角线?根据内角和公式列方程,(n -2)×180=1 080求出边数,再根据对角线公式求出对角线条数.【例8-1】 过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是( ).A .8B .9C .10D .11解析:过多边形一个顶点的所有对角线将一个多边形分成(n -2)个三角形,所以n -2=8,解得n =10,即这个多边形是十边形,故选C.答案:C【例8-2】 多边形的每一个内角都是150°,则此多边形的一个顶点引出的对角线的条数是( ).A .7B .8C .9D .10解析:根据每一个内角都是150°,求出这个多边形是十二边形,它的一个顶点引出的对角线的条数是n -3=12-3=9,故选C.答案:C【例8-3】 一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的内角和. 分析:设边数为n ,根据对角线的条数是边数的4倍,列方程求出边数,再代入多边形内角和公式求出内角和.解:设这个多边形的边数为n ,根据题意,得n (n -3)2=4n ,解得n =11, 所以这个多边形的内角和为:(n -2)×180°=(11-2)×180°=1 620°.9.将多边形截去一个角问题的探讨在多边形问题中,有一类问题是将多边形截去一个角后,探讨多边形边数变化和内角和变化的问题.在这类问题中,因截法不同,会出现不同的变化,现以四边形为例加以说明.如图所示,将正方形的桌面截去一个角,那么余下的多边形的内角和度数将怎样变化?因截法有三种情况,所以内角和也就有三种情况:(1)当是图①所示情况时,不过任何一个顶点,四边形变为五边形,边数增加1,所以内角和为540°.(2)当是图②所示情况时,过一个顶点,四边形边数不变,所以内角和也不变,为360°.(3)当是图③所示情况时,过两个顶点,四边形变为三角形,边数减少1,所以内角和也变为180°.析规律 分类解决问题 对于其他多边形(三角形除外,因为三角形只有两种情况)也有这样的三种情况,并且截法相同,解法也相同.【例9-1】 一个多边形截去一个角后,变为十六边形,则原来的多边形的边数为( ).A .15或17B .16或17C .16或18D .15或16或17解析:因截法不同,所以有三种可能,①当不过任何一个顶点时,截完后边数会增加1,因此原来多边形应为十五边形;②当过一个顶点时,截完后边数不变,所以这种情况下原来的多边形为十六边形;③当过两个顶点时,边数比原来减少1,所以原来就是十七边形,所以原来的多边形的边数为15或16或17,故选D.答案:D【例9-2】一个多边形截去一个角(截线不过顶点)之后,所形成的一个多边形的内角和是2 520°,那么原多边形的边数是( ).A.13 B.15 C.17 D.19解析:一个多边形截去一个角,因截线不过任何顶点,所以新得到的多边形边数比原来的多边形的边数应该增加1.因为新得到的多边形内角和是2 520°,根据多边形内角和公式列方程得(n-2)×180°=2 520°,解得n=16,新多边形为十六边形,所以原多边形为十五边形,故选B.答案:B【例9-3】如果一个多边形的边数增加一倍,它的内角和是2 880°,那么原来的多边形的边数是( ).A.10 B.9 C.8 D.7解析:现在的多边形的内角和是 2 880°,根据多边形内角和公式(n-2)×180°=2 880°,求出n=18,所以原来的多边形的边数就是18÷2=9,因此是九边形,故选B.答案:B10.多边形内角和少算或多算一个角类型题目探索因为多边形的边数只能是整数,由多边形内角和公式(n-2)×180°可知,n-2是正整数,所以多边形的内角和必定是180°的整数倍,因此:①当所给内角和是多计算一个角的情况时,用所给内角和除以180°,因为多加的角大于0°小于180°,所以得到的余数部分就是多加角的度数,得到的整数部分加2就是边数;②当所给内角和是少计算一个角的情况时,因为少加了角,所以得到的整数部分加2比实际的角个数少1,所以用所给内角和除以180°,整数部分加3才是边数,180°减余数部分就是少加的角的度数.破疑点多边形内角和与边数的关系内角和除以180°所得到的整数并不是边数(或角的个数)n,而是n-2的值,所以得到的整数加2才是边数,这是易错点,要注意.【例10-1】一个多边形除了一个内角之外,其余内角之和为2 670°,求这个多边形的边数和少加的内角的大小.分析:因为这个多边形的内角和少加了一个内角,所以内角和实际要大于2 670°,并且加上这个角后就是180°的整数倍,2 670°÷180°=14……150°,所以n-2=14,n =16,因少加一个角,所以实际有16+1=17个角,所以边数是17条,少加的内角是180°-150°=30°.解:因为2 670°÷180°=14……150°,所以n-2=14+1,n=17.所以这个多边形的边数是17.少加的内角是180°-150°=30°.【例10-2】若多边形所有内角与它的一个外角的和为600°,求这个多边形的边数及内角和.分析:由已知可知,600°是多加了一个外角后的内角和,减去多加的角就应是180°的整数倍,因此600°÷180°=3……60°,因此n-2=3,所以n=5,这个多边形为五边形,边数是5,代入多边形内角和公式即可求出内角和.因为多加了一个角,并且多加的角是余数60°,也可以用600°减去余数(60°)得到内角和度数.解:由题意,得600°÷180°=3……60°,所以n-2=3,n=5.所以这个多边形的边数是5.所以这个多边形的内角和为:180°×(5-2)=540°.答:这个多边形的边数是5,内角和是540°.多边形及其内角和习题第1题. 各角都相等的n 边形的一个外角可能取得的值是 ( ) A.(2)180n n -︒ B.360n ︒ C.180n ︒ D.以上都不对第2题. 一个多边形的内角和比它的外角的3倍少180°,则这个多边形的边数是( ) 第3题. 过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是 ( )第4题. 若一个多边形的对角线的条数恰好为边数的3倍,则这个多边形的边数为( ) 第5题. 一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的内角和. 第6题. 图中是三种将多边形(3)n ≥分成三角形的不同方法.第7题 第8题求证:第9题. 多边形的每一个内角都是150°,则此多边形的一个顶点引出的对角线的条数是( )第10题. 如果五边形的五个外角的比是1:3:2:4:5,则五边形中最大的内角与最小的内角的比是 .第11题. 如图,一个顶角为40o的等腰三角形纸片,剪去顶角后,得到一个四边形,则 12∠+∠= 度.第12题. (1)n +边形的内角和比n 边形的内角和大第13题. 正六边形的一个内角的度数是o 1A2A 3A4A 5A n 1A 2A 3A 4 5A n A 1A 2A 3A 45A n A参考答案1答案:B.2答案:73答案:104答案:9.5答案:(3)42n n n -=11n = 1620︒.6答案:2n -,1n -,n .7答案:十,六.8答案:提示:由OB ,OC 是ABC ∠和BCD ∠的平分线,得1180()2BOC ABC BCD ∠=︒-∠+∠ 再由四边形内角和等于360︒,得360()ABC BCD A D ∠+∠=︒-∠+∠代入上式.9答案:9.10答案:13:5.11答案:220;12答案:180o13答案:120;三角形1.三角形(1)定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)构成:如图所示,三角形ABC 有三条边,三个内角,三个顶点.①边:组成三角形的线段叫做三角形的边.②角:相邻两边所组成的角叫做三角形的内角,简称三角形的角.③顶点:相邻两边的公共端点是三角形的顶点.(3)表示:三角形用符号“△”表示,三角形ABC 用符号表示为△ABC .注:顶点A 所对的边BC 用a 表示,顶点B 所对的边AC 用b 表示,顶点C 所对的边AB 用c 表示.(4)分类:①三角形按角分类如下:三角形⎩⎪⎨⎪⎧ 直角三角形锐角三角形钝角三角形②三角形按边的相等关系分类如下:破疑点 等边三角形和等腰三角形的关系 等边三角形是特殊的等腰三角形,即等边三角形是底边和腰相等的等腰三角形.【例1】 如图所示,图中有几个三角形,分别表示出来,并写出它们的边和角.分析:根据三角形的定义及构成得出结论.解:图中有三个三角形,分别是:△ABC ,△ABD ,△ADC .△ABC 的三边是:AB ,BC ,AC ,三个内角分别是:∠BAC ,∠B ,∠C ; △ABD 的三边是:AB ,BD ,AD ,三个内角分别是:∠BAD ,∠B ,∠ADB ; △ADC 的三边是:AD ,DC ,AC ,三个内角分别是:∠ADC ,∠DAC ,∠C .2.三角形的三边关系(1)三边关系:三角形两边的和大于第三边,用字母表示:a +b >c ,c +b >a ,a +c >b . 三角形两边的差小于第三边,用字母表示为:c -b <a ,b -a <c ,c -a <b .(2)作用:①利用三角形的三边关系,在已知两边的三角形中可以确定第三边的取值范围;②根据所给三条线段长度判断这三条线段能否构成三角形.“两点之间线段最短”是三边关系得出的理论依据.破疑点 三角形三边关系的理解 三角形两边之和大于第三边指的是三角形中任意两边之和都大于第三边,即a+b>c,c+b>a,a+c>b三个不等式同时成立.【例2】下列长度的三条线段(单位:厘米)能组成三角形的是().A.1,2,3.5 B.4,5,9C.5,8,15 D.6,8,9解析:选择最短的两条线段,计算它们的和是否大于最长的线段,若大于,则能构成三角形,否则构不成三角形,只有6+8=14>9,所以D能构成三角形.答案:D3.三角形的高(1)定义:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高.(2)描述方法:高的描述方法有三种,这三种方法都能得出AD是BC边上的高.如图所示.①AD是△ABC的高;②AD⊥BC,垂足为D;③D在BC上,且∠ADB=∠ADC=90°.(3)性质特点:①因为高是通过作垂线得出的,因而有高一定有垂直和直角.常用关系式为:因为AD是BC边上的高,所以∠ADB=∠ADC=90°.②“三角形的三条高(所在直线)交于一点”,当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部.如图所示.破疑点三角形的高线的理解三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.【例3】三角形的三条高在().A.三角形的内部B.三角形的外部C.三角形的边上D.三角形的内部、外部或边上解析:三角形的三条高交于一点,但有三种情况:当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部,所以只有D正确.答案:D4.三角形的中线(1)定义:三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.(2)描述方法:三角形中线的描述方法有两种方式,如图.①直接描述:AD 是BC 边上的中线;②间接描述:D 是BC 边上的中点.(3)性质特点:①由三角形中线定义可知,有中线就有相等的线段,如上图中,因为AD 是BC 边上的中线,所以BD =CD (或BD =12BC ,DC =12BC ). ②如下图所示,一个三角形有三条中线,每条边上各有一条,三角形的三条中线交于一点.不论是锐角三角形、直角三角形,还是钝角三角形,三角形的三条中线都交于三角形内部一点.三角形三条中线的交点叫做三角形的重心.破疑点 三角形的中线的理解 三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.【例4】 如图,AE 是△ABC 的中线,EC =6,DE =2,则BD 的长为( ).A .2B .3C .4D .6解析:因为AE 是△ABC 的中线,所以BE =EC =6.又因为DE =2,所以BD =BE -DE =6-2=4.答案:C5.三角形的角平分线(1)定义:三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.(2)描述方法:角平分线的描述有三种,如图.①直接描述:AD 是△ABC 的角平分线;②在△ABC 中,∠1=∠2,且D 在BC 上;③AD 平分∠BAC ,交BC 于点D.(3)性质特点:①由三角形角平分线的定义可知,有角平分线就有相等的角,如上图中,因为AD 是△ABC 的角平分线,所以∠1=∠2(或∠1=∠2= ∠BAC ,或∠BAC=2∠1=2∠2).②一个三角形有三条角平分线,三角形的三条角平分线交于一点,不论是锐角三角形、。
【精品】第九章 三角形、多边形
第9章三角形与多边形一、教学目标本章的主要内容是三角形和多边形的有关概念及其边角的性质。
教材先从瓷砖的铺设提出问题,接着研究三角形和多边形的有关边角的性质,最后探究正多边形在拼地板中的运用及其隐含的数学道理。
本章的教学目标是:1.了解三角形的内角、外角及其主要线段(中线、高、角平分线)等概念。
2.会用刻度尺和量角器画出任意三角形的角平分线、中线和高。
3.了解三角形的稳定性。
4.了解几种特殊的三角形与多边形的特征,并能加以简单地识别。
5.探索并掌握三角形的外角性质与外角和。
6.理解并掌握三角形的三边关系。
7.探索、归纳多边形的内角和外角和公式,并能运用于解决计算问题。
8.体验探索、归纳过程,学会合情推理的数学思想方法。
9.在直观感知、操作确认的基础上,体验证明的必要性,初步学会说理.10.欣赏丰富多彩的图案,体验数学美,提高审美情趣.二、教材特点1.本章由“瓷砖的铺设"导入,接着研究三角形和多边形的性质,最后运用三角形和多边形的有关性质探索拼地板的问题,体现了数学来源于实践,又应用于实践的特点。
2.在呈现方式上,改变“结论——例题——练习”的陈述模式,而是采用“问题——探究——发现”的研究模式,并采用多种探究方法:对“三角形的外角性质及外角和”同时采用拼图和数学说理的方法;对“三角形的三边关系"采用画图的方法;对“多边形的内角与外角和”采用计算与归纳说理的方法.3.在直观感知、操作确认的基础上,适当地进行数学说理,将两者有机地结合起来,让学生体验证明的必要性,学会初步说理。
4.渗透计算器的应用,有意识地让学生运用计算器探索多边形的内角和外角和。
5.通过教材的“问题型”呈现和探索性、开放性习题的练习,力图改变学生的学习方式,让学生自主探索、合作学习。
6.第1课时认识三角形(1)教学目的1。
理解三角形、三角形的边、顶点、内角、外角等概念.2。
会将三角形按角分类.3。
理解等腰三角形、等边三角形的概念。
第五课画正多边形
第五课画正多边形执教:后白中心小学曹凡1.知识与技能(1)认识正多边形。
(2)掌握正多边形重复命令的基本格式。
(3)掌握使用重复命令画出正多边形的方法。
2.过程与方法通过自主探究、小组合作等方法,采用不完全归纳法总结出画正多边形的一般方法。
3.情感态度与价值观通过采用不完全归纳法总结画正多边形的方法,培养科学探索精神。
4.行为与创新激发学生的积极性和创造性,培养综合创新能力。
5.教学重点与难点重点:掌握画正多边形的重复命令的基本格式。
难点:熟练运用重复命令画出正多边形。
6.教学方法与手段教师演示法、归纳法、学生自主探究学习法。
教学过程一、复习导入同学们,大家上午好!我是来自后白中心小学的一位老师,大家可以叫我曹老师,在曹老师来之前,我跟你们孙老师打听过了,说各位同学logo 语言学的特别棒,今天我们就来一起继续学习logo语言,帮小海龟减减负!上节课,我们学会了如何使用REPEAT命令来画图,那么老师问大家一个问题,我看看大家还记得不,REPEAT命令的一般格式是什么样的?(大家请看老师发大家的那张“我们学的怎么样”纸)在第一题当中,将REPEAT命令的基本格式填写完整。
(PPT出示)1.优化代码,精简任务纸上的第二题,并在logo程序中输出程序结果。
(PPT出示结果范例)等边三角形2.优化代码,精简任务纸上的第三题,并在logo程序中输出程序结果。
(PPT出示结果范例)正方形今年我们就来学习新的内容,继续来帮我们的小海龟减负!画正多边形(课件出示)。
二、新授1.有谁知道什么是正多边形,能举个例子吗?PPT出示,等边三角形,正方形。
学生总结,同时教师补充总结:正多边形就是所有角都相等,所有边都相等的简单图形。
2.课件出示正五边形的过程(视频演示)4.幻灯片出示正八边形等正多边形,提出问题,如何来画出任意一个正多边形呢?最难的问题是什么呢?最难的问题是每次画完一条边之后小海龟所需要转动的角度,前面画正三角形、正方形、正五边形、正六边形,我们都可以通过测量得到相印的角度,那么我们要去画任意边数的多边形,在想着去测量,就有点不太现实了,其实画正多边形的转角是有规律的,请大家仔细看这些图形,看看他们的边数和转角之间存在着什么样的关系呢?我看看哪位同学观察的最仔细,最准确。
第5讲 三角形的边角关系 (修复的)
第二篇三角形本篇的主要内容是三角形、全等三角形和等腰三角形以及勾股定理,主要了解三角形的中线、角平分线.在知道三角形的三个内角的和等于180°的基础上.学习全等三角形的性质及各种三角形全等的判定方法,同时学会如何利用全等三角形进行证明.这些内容都是研究特殊的三角形,如等腰三角形、直角三角形)的基础,也是研究其他图形的基础知识.从全等三角形开始,我们要开始理解证明的基本过程,掌握用综合法证明的格式.这既是本篇的重点,也是学习的难点.研究三角形全等条件的重点应放在第一个条件(“边边边”条件)上,然后以“边边边”条件为例,理解什么是三角形的判定,怎样判定.在掌握了“边边边”条件的基础上,学会怎样运用“边边边”条件进行推理论证,怎样正确地表达证明过程.“边边边”条件掌握好了,再学习其他条件就不困难了.在“角平分线和垂直平分线”一讲中,介绍了角的平分线和垂直平分线的作法,角平分线和垂直平分线的性质与判定,这些结论是用三角形全等证明得到的,利用这些结论证明线段相等和角度相等,比用全等知识来证明线段相等和角度相等更方便.本讲中探究三角形三条角平分线和垂直平分线相交于一点.也为今后在“圆”一章学习内心和外心作好了准备.等腰三角形是一种特殊的三角形,它除了具有一般三角形的所有性质外,还有许多特殊的性质.由于它的这些特殊性质,使它比一般三角形应用更广泛.而等腰三角形的许多特殊性质,又都和它是轴对称图形有关.在本讲中,利用等腰三角形的轴对称性,得出了“等边对等角”、“三线合一”等性质,并进一步讨论了等腰三角形的判定方法以及等边三角形的性质与判定方法的内容.课程标准对于推理证明的安排,在“全等三角形”已经要求会用符号表示推理(证明)的基础上,对于一些图形的性质(如线段垂直平分线的性质、等腰(边)三角形的性质与判定等),仍是要求证明.由于刚开始接触用符号表示推理,图形、题目的复杂程度明显增加,多练、多想、多总结是是学好本篇的基本方法.第5讲三角形边角关系〖学习目标〗1.理解三角形及与三角形有关的线段的概念,证明三角形两边的和大于第三边.2.理解三角形的内角、外角的概念,探索并证明三角形内角和定理,掌握直角三角形的两个锐角互余,掌握两个内角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和.3.了解多边形有关的概念,探索并掌握多边形的内角和与外角和公式.※考情分析三角形是正式学习几何的第一步,其主要内容是三角形的三边关系和三角形的内角和,这些都是中考关注的热点,本篇涉及的一些几何证明已经具有一定的难度.在中考数学试卷中,如果是计算或证明,难度可能达到中等,而对概念的考查,就可能比较简单.题型一般为填空或选择为主,分值一般3分左右.〖基础知识·轻松学〗一、三角形的有关概念1.三角形定义的要点:①三条线段;②不在同一条直线上;③首尾顺次连接.2.三角形的分类(1)按边分类 (2)按角分类⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形 ⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形 精讲:(1)等边三角形是特殊的等腰三角形,等腰三角形包括等边三角形.(2)不等边三角形是指三条边都不相等的三角形.无论哪种标准进行分类,原则上做到不重不漏.二、三角形三边关系(1)三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.(2)三边关系的应用:①若两条较短的线段长度之和大于第三条线段,则这三条线段可以组成三角形.②当已知三角形两边长,两边之差<第三边<两边之和.精讲:这里的“两边”指的是任意两边.对于“两边之差”它可能是正数,也可能是负数,一般地取“差”的绝对值.三、三角形的高、角平分线和中线高:三角形的一个顶点到它对边的垂线段.中线:三角形的一个顶点到它对边中点的连线段.角平分线:一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段.精讲:(1)三条高所在的直线相交于一点(垂心).①锐角三角形三条高的交点在三角形的内部(如图5-1);②钝角三角形的三条高所在的直线交于一点,这点在三角形外部(如图5-2);③直角三角形的三条高的交点是直角顶点(如图5-3).图5-1 图5-2 图5-3 图5-4(2)三角形的三条中线相交于一点,如图5-4(重心),三角形的每一条中线将三角形分成两个面积相等的三角形.(3)三角形的三条角平分线相交于一点,如图(内心)四、三角形三个内角的和等于180°.表示:在△ABC 中,∠A +∠B +∠C =180°.应用:在三角形中,已知两个角的度数,可求另一个角的度数;或已知各角之间的数量关系可求各角.推论:直角三角形的两个锐角互余,这个性质是由三角形的内角和定理得到的.反之,当一个三角形的两个锐角互余时,这个三角形是直角三角形.精讲:由三角形内角和定理可以推出以下几个常见结论:结论1:如图5-5,如果∠C =90°,则∠A +∠B =90°; AB C D AB CI A E C D B图5-5 图5-6 图5-7 图5-8 图5-9(图5-5未标注顶点ABC )结论2:在△ABC 中,如果∠A +∠B =90°或∠A +∠B =∠C 或∠C -∠A =∠B 或∠C -∠B =∠A ,则△ABC 为直角三角形;结论3:如图5-6,在△ABC 中,AB =AC ,BD ⊥AC 于D ,则∠DBC =12∠A ; 结论4:如图5-7,在△ABC 中,∠ABC ,∠ACB 的角平分线相交于I ,则∠BIC =90°+12∠A . 结论5:如图5-8,在△ABC 中,AB =AC ,FD ⊥BC 于D ,DE ⊥AB 于E ,则∠EDF =∠B =∠C ;结论6:如图5-9,在△ABC 中,AD ,AE 分别是△ABC 的角平分线和高,则∠DAE =12|∠C -∠B |. A C B五、三角形的外角的性质性质1:三角形的一个外角等于与它不相邻的两个内角之和;性质2:三角形的一个外角大于与它不相邻的任何一个内角.精讲:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证时经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.六、多边形1.多边形的对角线①从同一顶点出发,可以画(n-3)条对角线;②从同一顶点出发的对角线将n边形分成(n-2)个三角形;n n 条对角线.③n边形一共有(3)22.n边形的内角和等于(n-2)×180°.3.n边形的外角和等于360°.精讲:多边形的内角和随着边数的增加而增加,而且是每增一边,都增加180°,而外角和不随边数的变化而变化,保持度数不变.〖重难疑点·轻松破〗一、这三条线段能否构成三角形例1:下面分别是三根小木棒的长度,用它们能摆成三角形吗? .(1)5cm,8cm,2cm;(2)5cm,8cm,13cm;(3)5cm,8cm,5cm.分析:只要比较两条较短线段之和与最长线的大小即可.答案:(1)∵5+2=7< 8,不满足两边之和大于第三边∴不能摆成三角形.(2)∵5+8=13,出现两边之和等于第三边的情况∴不能摆成三角形.(3)∵5+5=10>8,两个较小边之和大于第三边,∴能摆成三角形.点评:如果三条线段能够构成三角形,则任意两边之和大于第三边.但是当两条较短线段长之和大于第三边的话,那么另外两组不等式也是成立的.变式练习1:下列长度的三条线段中,能组成三角形的是()A.3cm,5cm,8cm B.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cm D.3cm,40cm,8cm二、中线等分对边的应用三角形中线的应用体现在两个方面,一是讨论中线将三角形周长分成的两部分的关系;二是中线等分三角形面积问题.例2:如图5-10,等腰△ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成15和6两部分,求这个三角形的腰长及底边长.AB C D图5-10分析:由题意可知,中线BD 将△ABC 的周长分成AB +AD 和BC +CD 两部分(注意不是AB +AD +BD 和BC +CD +BD 两部分),故有两个可能(1)AB +AD =15且BC +CD =6;(2)AB +AD =6且BC +CD =15.再由AB =AC =2AD =2CD 及三角形三边关系知(1)成立,(2)不成立.解:设AB =AC =2x ,则AD =CD =x .(1)当AB +AD =15,BC +CD =6时,有2x +x =15,所以x =5,2x =10,BC =6-5=1.(2)当AB +AD =6,BC +CD =15时,有2x +x =6.所以x =2,2x =4,所以BC =13.因为4+4<13,故不能组成三角形.答:三角形的腰长为10,底边长为1.点评:(1)由于AD =CD ,因此本题中线BD 将△ABC 周长分成的两部分之差,等于AB 与BC 边长之差.(2)涉及等腰三角形边的问题时,常要分情况讨论,然后看它们是否满足三边关系,不满足的要舍去.变式练习2:在△ABC 中,AB =AC ,AC 上的中线BD 把三角形的周长分为24cm 和30cm 的两个部分,求三角形的三边长.例3:如图5-11,在△ABC 中,AD ,BE ,CF 是三条中线,它们相交于同一点G ,问△AGF 的面积和△AGE 的面积是否相等?为什么?图5-11分析:三角形的中线可将三角形的面积分成面积相等的两部分,本题中除了AD ,CF ,BE 可以看作中线外,GF ,GE ,GD 也可以看作中线.解:这两个三角形的面积相等.理由:∵AD 是BC 边上的中线,∴△ABD 与△ADC 等底同高,∴S △ABD =S △ADC .同理:S △BGD =S △CGD .∴S △ABG =S △AGC .∵GE ,GF 分别是△AGC ,△AGB 的中线.∴S △AGF =S △BFG ,S △AGE =S △GEC .∴S △AGF =S △AGE点评:根据“三角形的面积=21×底×高”可知,“同高等底的两个三角形的面积相等”本题正是利用这一性质解决问题的.变式练习3:如图5-12,在△ABC 中,已知点D ,E ,F 分别是BC 、AD 、CE 的中点,且ABC S △=4cm 2,则BEF S △=_______cm 2. AB DC EF图5-12三、基本图形――两角平分线的夹角问题三角形中两个内角平分线夹角、一个内角和一个外角平分线的夹角、以及两个外角平分线的夹角都与第三个内角有关,了解这些结论推导的过程,并熟记这些结论,对今后的解题有很大的帮助.例4:如图5-13,已知在△ABC 中,BD 平分∠ABC ,CD 平分△ABC 的外角∠ACE ,BD 、CD 相交于点D .求证:∠A =2∠D ;图5-13分析:根据外角性质可得∠A =∠ACE -∠ABC ,∠D =∠DCE -∠DBC ,要证明∠A =2∠D ,只需证明∠ACE -∠ABC =2(∠DCE -∠DBC )即可.证明:∵BD 平分∠ABC ,CD 平分△ABC 的外角∠ACE ,∴∠ACE =2∠DCE ,∠ABC =2∠DBC∵∠A =∠ACE -∠ABC ,∠D =∠DCE -∠DBC∴∠A =2∠D .模型梳理:在三角形中,一个外角平分线和一个内角平分线的夹角等于第三个角度数的一半,即∠D =12∠A ; 类似的结论还有:(1)如图5-14,在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,则∠BOC =90°+12∠A . (2)如图5-15,在△ABC 中,CP ,BP 分别是∠ACB ,∠ABC 的外角的平分线,则∠P =90°-12∠A ,可见∠P 为锐角. AB C O A B C P D E图5-14 图5-15变式练习4:如图5-16,在△ABC 中,∠A =42°,∠B 和∠C 的三等分线分别交于点D ,E ,则∠BDC 等于_______.图5-16四、利用外角求角度例5:一个零件的形状如图5-17,按规定,∠CAB 应等于90°,∠C ,∠B 应分别等于20°和300.李师傅量得∠CDB =142°,就断定了这个零件不合格,你能说出其中的道理吗?A B CD E图5-17分析:由于李师傅量得∠CDB =142°,我们可由∠CAB =90°,∠B =∠C =20°计算出∠CDB 的度数,如果∠CDB 不等于142°,则这个零件肯定不合适.解:延长BD 交AC 于E ,则∠CDB =∠C +∠CED ;又∠CED =∠CAB +∠B ,所以∠CDB =∠C +∠CAB +∠B =140°.而实际测量∠CDB =142°,所以可以断定这个零件不合格.点评:(1)解形如图5-17的图形的角度计算问题时,我们常常通过延长某条线段将该图形分割成两个三角形,构造三角形的外角解决问题.(2)从本题的解法可以总结出这样一个规律:∠CDB =∠C +∠CAB +∠B .变式练习5:如图5-18,△ABC 的三条角平分线交于点O ,过O 作OE ⊥BC 于E ,求证:∠BOD =∠COEAB C DEC B AH G DE O图5-18五、基本图形――“又”字型例6:如图5-19,BE 与CD 交于A ,CF 为∠BCD 的平分线,EF 为∠BED 平分线.(1)试探求:∠F 与∠B ,∠D 之间的关系?(2)若∠B ∶∠D ∶∠F =2∶4∶x .求x 的值.DE FA B C G HD E F C G E F B C H D E A B C图5-19 图5-20 图5-21 图5-22分析:这个图形我们可分解为图5-20、图5-21、图5-22三个基本图形,这三个基本图形分别可得结论:①∠D +∠DEF =∠F +∠DCF ;②∠F +∠FEB =∠B +∠BCF ;③∠D +∠DEB =∠B +∠BCD .我们可任选两个结论来探究∠F 与∠B ,∠D 之间的关系.证明:∵∠EGC =∠D +∠DEF ,∠EGC =∠F +∠DCF ,∴∠D +∠DEF =∠F +∠DCF .即∠D -∠F =∠DCF -∠DEF .同样道理:∠F -∠B =∠BCF -∠FEB .∵CF 为∠BCD 的平分线,EF 为∠BED 平分线,∴∠DCF =∠BCF ,∠DEF =∠FEB ,∴∠DCF -∠DEF =∠BCF -∠FEB .∴∠D -∠F =∠F -∠B .即2∠F =∠B +∠D(2)设∠B =2k ,∠D =4k ,∠F =xk ,∵2∠F =∠B +∠D ,∴2xk =2k +4k ,解得:x =3.点评:本题问题的顺利解决主要得益于基本图形的使用,平时注意积累基本图形及其基本规律对于解题非常有帮助,同时对于复杂的图形,我们要善于将复杂的图形分解成简单的图形,从而发现解题思路.变式练习6:如图5-23,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.图5-23六、多边形边数的探究思路例7:如果一个多边形除了一个内角外,其余各内角之和为1190°,则这个多边形的边数是多少?这个内角是多少度?分析:从n边形的内角和我们可以看出两方面内容:一是多边形的内角和是180°的倍数;二是多边形的内角和与多边形的边数有关,如果将内角和除以180°,然后加2后就等于多边形边数;在本题中,这个多边形的内角和是比1190°大,是180°的倍数,而且是与1190°最接近的那个180°的倍数,所以这个多边形的内角和为1260°.解:设这个多边形为n边形由题意:这个多边形的内角和为1260°∴180(n-2)=1260,解得n=91260°-1190°=70°答:这个多边形为九边形,这个内角为70°.点评:判断一个多边形的内角和是否计算错误,首先这个内角和必须是180°的倍数,如果少计算了一个角,则内角和要比计算结果大,与计算结果最接近的那个180°的倍数,如果多计算了一个角,则内角和要比计算结果小,也是与计算结果最接近的那个180°的倍数.变式练习7:一个多边形截取一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能例8:如果一个各边都相等的多边形,若它的每一个内角是144°,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形分析:本题有两种解决问题的思路,思路一是借助多边形的内角和定理,设这个多边形为n 边形,则这个多边形的内角和为180(n-2)°或144n°,则可得方程180(n-2)=144n,求出这个多边形的边数;思路二是转化为多边形的外角来求,由于这个多边形的每个内角为144°,所以它的每个外角等于36°,根据多边形的外角和是360°可知这个多边形是十边形.解:法一:设这个多边形为n边形.则180(n-2)=144n,解得n=10.答:这个多边形是十边形.法二:因为这个多边形的每一个内角是144°,所以这个多边形每个外角等于36°,360°÷36°=10.答:这个多边形是十边形.点评:尽管多边形的内角和度数随着边数的增加而增加,但是多边形的外角和的度数始终保持不变,利用这一不变性,可使问题变得简单.变式练习8:一个正多边形的一个内角为120°,则这个正多边形的边数为().A.9B.8C.7D.6【课时作业·轻松练】A.基础题组1.如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .等边三角形2.能把一个三角形分成面积相等的两个三角形的是( ).A .高B .中线和角平分线C .角平分线D .中线3.如图5-24,AE ,AD 分别是△ABC 的高和角平分线,且∠B =36°,∠C =76°,则∠DAE 的度数为( )A .40°B .20°C .18°D .38° AE C D B图5-244.如图5-25,∠A =55°,∠B =30°,∠C =35°,求∠D 的度数.图5-255.一个正多边形的每个外角都是36°,这个正多边形的边数是_______.B .提升题组6.如图5-26,把△ABC 的纸片沿DE 折叠,当点A 落在四边形BCED 内部时,则∠A 与∠1,∠2之间有一种数量关系始终保持不变,请试着找出这个规律为_______________. 1 2 BC AE D 图5-267.如图5-27,在△ABC 中E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.图5-278.如图5-28,在△ABC 中,∠C =90°,AD 平分∠BAC ,且∠B =3∠BAD ,求∠ADC 的度数.CAB D图5-289.(1)如图5-29,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY ,XZ 分别经过点B ,C ,△ABC 中,∠A =30°,则∠ABC +∠ACB = 度,∠XBC +∠XCB = 度;(2)如图5-30,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY ,XZ 仍然分别经过点B ,C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小.X XYA BCCB A YZ Z图5-29 图5-3010.如图5-31,∠XOY =90°,点A ,B 分别在射线OX ,OY 上移动,BE 是∠ABY 的平分线,BE的反向延长线与∠OAB 的平分线相交于点C ,试问∠ACB 的大小是否发生变化,如果保持不变,请给出证明,如果随点A ,B 移动发生变化,请求出变化范围.YXOA BCE图5-31〖中考试题初体验〗1.(2013湖南长沙 3, 3分)如果一个三角形的两边长分别是2和4,则第三边可能是( ).A .2B .4C .6D .82.(2013四川达州,17,3分)如图5-32,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013=___度.图5-32五、我的错题本参考答案变式练习1.答案:C解析:较短的两边长度之和大于较长的边.2.答案:三角形的三边长分别为20,20,14或16,16,223.答案:1解析:△BEF面积等于△BEC面积的一半,而△ABE与△BDE,△ACE与△CDE的面积相等,所以△BEF的面积等于△ABC面积的四分之一.4.答案:88°解析:∵∠B和∠C的三等分线分别交于点D,E,∴∠DBC=23∠ABC,∠DCB=23∠ACB,∵∠ABC+∠ACB=180°-∠A=138°,∴∠DBC+∠DCB=23(∠ABC+∠ACB)=92°.5. 证明:∵AD,BG,CH是△ABC的三条角平分线,∴∠ABG=12∠ABC,∠BAD=12∠BAC,∠BCH=12∠ACB∵∠ABC+∠BAC+∠ACB=180°,∴∠ABG+∠BAD+∠BCH=90°∴∠ABG+∠BAD=90°-∠BCH∵OE⊥BC,∴∠BCH+∠COE=90°,∴∠COE=90°-∠BCH∴∠BOD=∠COE6.解:∵∠GKF=∠E+∠F,∠GKF=∠KGH+∠KHG,∴∠E+∠F=∠KGH+∠KHG,同理:∠A+∠B=∠GKH+∠KHG,∠C+∠D=∠KGH+∠GKH.∴∠A+∠B+∠C+∠D+∠E+∠F=2(∠KGH+∠GKH+∠KHG)=360°.7.答案:D解析:由多边形的内角和公式得,(n-2)180=1620,解得n=11;通过操作可以发现,一个多边形截取一个角后,所得出的边数与原多边形边数比较有三种情况:等于原边数、比原边数少1、比原边数多1.8.答案:D解析:设这个多边形的边数为n ,则有120n =(n -2)180,解得n =6. 课时作业·轻松练 A .基础题组 1.答案:C 2.答案:D 3.答案:B 解析:∠DAE =12(∠C -∠B ). 4.延长BD 到点E ,∵∠A =55°,∠B =30°,∴∠BEC =∠A +∠B =85°,∴∠BDC =∠BEC+∠C =120°. 5.答案:10解析:多边形的外角和为360°,而正多边形的每个外角都相等,都是36°. B.提升题组 6.2∠A =∠1+∠2解析:∵∠1=180°-2∠ADE , ∠2=180°-2∠AED,∴∠1+∠2=2(180°-∠ADE -∠AED )= 2∠A. 7.答案:2解析:∵EC =2BE ,点D 是AC 的中点,∴S △ACE =23S △ABC =8,S △BCD =12S △ABC =6,S △ADF -S △BEF =S △ACE -S △BCD =2.8.解:设∠BAD =x °,则∠B =3x °,∵AD 平分∠BAC ,∴∠BAC =2∠BAD =2x °,∵∠C =90°,∴∠BAC +∠B =90°,∴3x °+2x °=90°,解得:x =18,∴∠ADC =72°. 9.(1)150、90;(2)不变化、60°. 10.∠C 的大小保持不变.理由:∵∠ABY =90°+∠OAB ,AC 平分∠OAB ,BE 平分∠ABY , ∴∠ABE =21∠ABY =21(90°+∠OAB )=45°+21∠OAB , 即∠ABE =45°+∠CAB ,又∵∠ABE =∠C +∠CAB , ∴∠C =45°,故∠ACB 的大小不发生变化,且始终保持45°. 中考试题初体验1.答案:B解析:本题考查了三角形的三边关系,由于“三角形两边之和大于第三边;三角形两边之差小于第三边”知三条线段能组成三角形的条件是任何两边之和都大于第三边,对于选项A 中2+2=4,不能构成三角形;选项C 中2+4=6,不能构成三角形;选项D 中2+4<8,不能构成三角形;只有选项B 能构成三角形.2.答案:20132m解析:利用角平分先性质、三角形外角性质,易证∠A 1=21∠A ,进而可求∠A 1,由于∠A 1=21∠A ,∠A 2=21∠A 1=221∠A ,…,以此类推可知∠A 2013=201321∠A = 20132m 度.。
赣榆县一小四年级数学下册 四 巧手小工匠——认识多边形三角形知识点总结1 青岛版六三制
三角形由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形具有稳定性 三角形内角和是180°组成三角形的两个条件: 三角形任意两边之和大于第三边 三角形任意两边之差小于第三边三角形分类 按角来分锐角(0°<A<90°) 直角(90°) 钝角(90°<A<180°) 锐角三角形:三个角都是锐角直角三角形:有一个角是直角(其他两个角一定都是锐角) 钝角三角形:有一个角是钝角(其他两个角一定都是锐角)锐角三角形的三条高(三条虚线)直角三角形的三条高(一条虚线加两条直角顶点边底CBA三角形ABC:A边)钝角三角形的三条高(三条虚线)按边分底直角边CBA直角边CBCBA 底边等边三角形(三条边都相等,每个角都是等腰三角形(两条边相等,两个底角相等)※已知三角形两条边各长a、b(a>=b),求第三边长度c的范围方法:a-b<c<a+b例:已知一个三角形两边分别长5cm和9cm,第三边的长度范围是多少?解:9-5<c<9+5(没有等号) 4<c<14如果第三边长度是整数,那么第三边可能是5、6、7、8、9、10、11、12、13cm例:已知一个三角形两边分别长5cm和5cm,第三边的长度范围是多少?解:5-5<c<5+5(没有等号) 0<c<10如果第三边长度是整数,那么第三边可能是1、2、3、4、5、6、7、8、9cm※已知三条线段的长度,判断能不能组成三角形方法:将最短的两条线段长度相加,如果比最长的那条线段长,那么能组成三角形例:已知三条线段分别是7cm、4cm、2cm,它们能不能组成三角形?2+4<7 不能例:已知三条线段分别是5cm、5cm、5cm,它们能不能组成三角形?5+5>5 能(等边三角形/正三角形)例:已知三条线段分别是10cm、10cm、20cm,它们能不能组成三角形?10+10=20 不能※多边形内角和问题三角形:180°四边形:360°在四边形内部画一条线,将其分成两个三角形,内角和=180°×2=360°五边形:540°在五边形内部画两条线,将其分成三个三角形,内角和=180°×3=540°六边形:720°在六边形内部画三条线,将其分成四个三角形,内角和=180°×4=720°第八单元垂线与平行线1 认识射线和直线项目内容1.生活中有哪些物体可以近似地看成线段、射线、直线?2.笔直的马路给我们( )的形象,绷紧的琴弦可以近似地看作( ),电筒的光柱类似( )。
四年级下册第五单元《多边形的内角和》人教版
三角形的内角和:(3-2)×180°
180°+360°四=540边°。 形的内角和:(4-2)×180°
有一个直角,有两条边相等。
五边形的内角和:(5-2)×180° 在三角形中,一个是直角,另两个可能各是多少度?
这节课你有什么收获?还有什么问题? 1.理解并掌握四边形的内角和是360°的结论。
六边形的内角和:(6-2)×180° 下面图形中各有个三角形?有什么规律?
这一结论,求多边形的内角和的度数。 在三角形中,一个是直角,另两个可能各是多少度?
探索多边形的内角和。
导入新知
同学们,你们知道四边形的内角 和是多 识。
合作探究
我们已知正方形和长方形的四个角都是直角, 它们的内角和为360°,那么任意四边形的 内角和是多少度?
小结:从n边形的一个顶点出发,可以引 ((2)13)+多4=边7形(厘的米内) 角和与三角形内角和有什么关系?
这第节几课 个你图有形什的么三收角获形?的还个有数什等么于问从题1到?几的连续的自然数的相加。 1我8们0°+已3知60正°=方5形40和°。长方形的四个角都是直角,它们的内角和为360°,那么任意四边形的内角和是多少度? 在三角形两中条,边一分个别是是直角3cm,和另4两cm个,另可一能条各边是可多能少是度多?少厘米?
答18:0(°1×)4另=两72个0°角可能各是40度和50度。 (在2三)角多形边两形条的边边分数别与是内3c角m和和有4c什m,么另关一系条?边可能是多少厘米? (在3三)角从形多中边,形一的个一是个直顶角点,引另到两对个角可线能分各成是三多角少形度的?个数与多边形的边数有什么关系? ((1)21)80多-边90形=的90边(度数) 与内角和有什么关系?
4.下面图形中各有个三角形?有什么规律?
人教版四年级数学下册第5单元《三角形》知识点梳理
人教版四年级数学下册第5单元《三角形》知识点梳理一、三角形的特性1.三角形的定义。
由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2.三角形的各部分的名称。
三角形有3条边,3个顶点,3个角。
3.三角形的表示方法。
为了表达方便,可以用字母A、B、C分别表示三角形的3个顶点,下面的三角形可以表示成三角形ABC。
4.三角形的高。
定义:从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
(如右图)画法:注意:锐角三角形的3条高都在三角形的里面。
钝角三角形有一条高在三角形的里面,2条高在三角形的外面。
(如图)直角三角形的两条直角边是互相垂直的,互为底和高。
(如下图所示)5.三角形的特性。
三角形具有稳定性。
6.两点间的距离。
两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。
7.三角形3条边的关系。
三角形任意两边之和大于第三边。
二、三角形的分类1.用集合圈表示三角形的分类。
2.特殊三角形的特点。
等腰三角形:相等的两条边叫做三角形的腰,两腰与底边的夹角叫做底角。
等腰三角形的两腰相等,两个底角也相等。
等边三角形:等边三角形也叫做正三角形。
3条边都相等,3个角也相等,都是60°。
直角三角形:直角三角形中相互垂直的两条边叫做直角边,直角所对的边叫做斜边,斜边大于任意一条直角边。
一个三角形中最少有2个锐角。
等边三角形是特殊的等腰三角形,但等腰三角形不一定是等边三角形。
三、三角形的内角和1.三角形的内角和是180°。
2.三角形内角和的应用:在一个三角形中,已知两个角的度数,可以根据“三角形的内角和是180°”求出第三个角的度数。
典型题目:一个等腰三角形的一个内角是70°,另外两个角分别是多少度?分析:不知道70°的角是顶角还是底角,所以此题有两种可能。
解答:(180°-70°)÷2=55°或180°-70°×2=40°答:另外两个角可能都是55°,也可能一个是70°,一个是40°。
北师版五年级数学上册第4单元 多边形的面积第5课时 探索活动:三角形的面积(探索公式)
Γ
探索新知
把三角形转化为 学过的图形。
转化前后图形的 面积有什么关系?
长
高
宽
高
底
底
探索新知
高
三角形的面积=底×高÷2
底
三角形的底和高与平行四 边形的底和高相等,面积 是平行四边形的一半。
探索新知
宽
高
三角形的面积=底×高÷2
底
三角形的底和高相当于 长方形的长和宽,面积 是长方形的一半。
探索新知
课后作业
作 业 1.请完成教材第57页“练一练” 第1题、第2题。 2.请完成“ ”剩余习题。
BS版数学五年级上册课件
四 多边形的面积
第5课时 探索活动: 三角形的面积(1)
复习导入
回忆一下,我们是怎样探讨平行四边形面积 计算方法的?
平行四边形
转化 推导
长方形
复习导入
计算下面长方形和平行四边形的面积。
Γ 5
Γ
厘 米 8厘米
5×8=40(平方厘米)
5厘米 8厘米 8×5=40(平方厘米)
探索新知
高
底
如果用S表示平行四边形的面积,用a和h分
别表示三角形的底和高,那么,三角形的
面积公式可以写成:S=
1
2 ah
。
探索新知
你能求出这面流动红旗的面积吗?
S=
1 2
ah=
1 2
×28×25=350
cm2
答:这面流动红旗的面积是350cm2。
25 cm
Γ
28 cm
探索新知
此内容源于《典中点》
1. 如图,将平行四边形沿对角线分成相等的两部分,其中一个 三角形的面积是( ah÷2 )。
五年级春季班第5讲(平面几何)教师版
第五讲平面几何一.角:1.锐角三角形:三个角都为锐角直角三角形:有一个角为直角,另外两个角互余(和为90)钝角三角形:有一个角为钝角2.三角形三个内角和为180n-⨯多边形内角和:(2)180二.边:1.等腰三角形:只有两条边相等的三角形.且两底角相等等边(正)三角形:三条边都相等的三角形.且三个角都相等(60)2.三角形两边之和大于第三边.(两边之差小于第三边)3.勾股定理:直角三角形两条直角边的平方和等于斜边的平方4.三线合一:等腰三角形底边的中线、高线、角平分线重合.5.巧求周长:平移法、割补法、标向法三.面积:1.公式法(格点法)2.割补法3.等积变形(五大模型)例题1【提高】如图,,AD BD AE CE BE BF ===,问:ACE ∠的度数【分析】36ACE ∠=.(2013年五春第六讲例1)【集训】如图,在ABD ∆中,AB CD =,求“?”的度数.40°30°?DCBA【分析】如图,由于AB CD =,可以将ABC ∆移动到DC E ∆,由于180(3040)110ACB ∠=︒-︒+︒=︒,18011070ACD ∠=︒-︒=︒,所以7040110ACE ∠=︒+︒=︒,又110CED ∠=︒,而A C D E =,所以四边形ACED 是等腰梯形,有180********ADE CED ∠=︒-∠=︒-︒=︒,703040ADC ∠=︒-︒=︒. 点评:通过构造全等三角形来转化.D例题2【提高】【集训】如图,则A ∠+B ∠+C ∠+D ∠+E ∠+F ∠+G ∠=90n ∙︒,则n =_________.【分析】6n例题3【提高】智能机器猫从平面上的O 点出发.按下列规律行走:由O 向东走12厘米到1A ,由1A 向北走24厘米到2A ,由2A 向西走36厘米到3A ,由3A 向南走48厘米到4A ,由4A 向东走60厘米到5A ,…,问:智能机器猫到达6A 点与O 点的距离是多少厘米?【分析】60厘米(2013年五春第六讲例2)【集训】已知如图,一个六边形的6个内角都是120,其连续四边的长,,,AB BC CD DE 依次是1,9,9,5厘米.求这个六边形的周长.【分析】42厘米(2013年五春第六讲拓展3)例题4【提高】如图,是一个三级台阶,它的每一级的长、宽、高分别为20分米 、3分米、2分米.A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路是_________.【分析】 展开得到长方形,长方形的长为20分米,宽为15分米,AB 为最短距离,为25分米.A【集训】如图,某会展中心在会展期间准备将高5米,长13米,宽2米的楼道上铺地毯,已知地毯每平方米18元,请你帮助算一下,铺完这个楼道至少需要多少元钱?513【分析】 地毯的面积是17234⨯=平方米,需要1834612⨯=元.例题5【提高】(1)求“乡村小屋”的面积是多少?【分析】图形内部格点数9N =;图形边界上的格点数20L = ;根据毕克定理, 则1182LS N =+-=(单位面积).(2013年五春第六讲基1)(2)把同一个三角形的三条边分别5等分、7等分(如图1,图2),然后适当连接这些等分点,便得到了若干个面积相等的小三角形.已知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积是______平方分米.【分析】图1中阴影部分占整个三角形面积的1225,图2中阴影部分占整个三角形面积的1649,故图2中阴影部分的面积为12162942002549÷⨯=(平方分米).【集训】如图相邻两个格点间的距离是1,则图中阴影三角形的面积为________.【分析】1211.(2013年五春第六讲拓展4)例题6【提高】【集训】将边长分别为4,8,12,16,20的正方形并排在一起(如图),一条与正方形的边平行的直线CD 将该图形分为面积相等的两个部分,那么AB 的长是多少?【分析】656AB =.(2013年五春第六讲例5)例题7【提高】将边长分别为10,12,8的正方形并排在一起(如图),直线AB 将该图形分为面积相等的两个部分,那么BC的长是多少?【分析】1BC=.(2013年五春第六讲尖1)【集训】如图,大正方形被分成了面积相等的四块.若3CF=厘米,则大正方形的面积为________平方厘米.【分析】81.(2013年五春第六讲例6)例题8【提高】在右图的长方形ABCD中,3BC=厘米.将此长方形的顶点A与顶点C重叠在一起AB=厘米,5折成五边形ABEFG,则五边形ABEFG的面积是_______平方厘米.【分析】9.9.(2013年五春第六讲拓展6)例题9【提高】如图所示,在四边形ABCD中,线段BC长为6厘米,角ABC为直角,角BCD为135,而且点A 到边CD的垂线AE的长为12厘米,线段ED的长为5厘米,求四边形ABCD的面积.【分析】84平方厘米(2013年五春第五讲提2)【集训】如图,平面上CDEF 是正方形,ABCD 是等腰梯形,它的上底23AD =厘米,下底35BC =厘米.求三角形ADE 的面积.FECB DA【分析】如右图,作等腰梯形的两个高1AH 和2DH ,23523622BC AD CH --===.易知,将2H DC △旋转90°到HDE △的位置.则A ,D ,H 三点在一条直线上.EH AH ⊥,26EH H C ==是ADE △的底边AD上的高.所以,三角形ADE 的面积为623692⨯=.H 2H 1HADBCEF例题10【提高】用3根等长的火柴可以摆成一个等边三角形.如图用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形的每边由20根火柴组成,那么一共要用多少根火柴?【解析】 把大的等边三角形分为“20”层分别计算火柴的根数:最上一层只用了3根火柴;从上向下数第二层用了3×2=6根; 从上向下数第二层用了3×3=9根; ……从上向下数第二层用了3×20=60根;所以总共要用火柴3×(1+2+3+……+20)=630.【集训】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层,共用了多少根小棍?【解析】 通过观察每增加一层,恰好增加6根小棍,这6根恰好是增加那一层比上一层多摆出的两个正方形多用的,即前1层用4根,前2层用4+6根,前3层用4+6×2根,前n 层用4+6×(n -1)根,现在共用了60多根,应减去4是6的倍数,所以共用小棍64根,围成的图形有11层.例题11【提高】【集训】在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【解析】 首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯长方形,所以棋盘上横、竖共有13⨯长方形68296⨯⨯=个.由于棋盘上的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为96248÷=个.练习1如图,,108,54AB BC CD C D ==∠=∠=,求A ∠和B ∠.【分析】30,168A B ∠=∠=.(2013年五春第六讲拓展1)练习2如图,八边形的8个内角都是135,已知,20,10,30AB EF BC DE FG ====,求AH 的长度【分析】20AH =(2013年五春第六讲例3)练习3科技小组演示自制的机器人.若机器人从点A 向南行走1.2米,再向东行走1米,接着又向南行走1.8米,再向东行走2米,最后又向南行走1米到达B 点.则B 点与A 点的距离是( )米. 【分析】4BABA为5米.练习4已知ABC 中,18AB AC cm ==,ABC 的面积是281cm ,P 是BC 上任意一点,P 到,AB AC 的距离分别是,xcm ycm ,那么________x y +=.【分析】9x y +=.(2013年五春第六讲练习6)练习5(第五届“华杯赛”试题)正六边形ABCDEF 的面积是6平方厘米.M 是AB 中点,N 是CD 中点,P 是EF 中点.问:三角形MNP 的面积是多少平方厘米?SRQAB CD EF NM P EB【分析】将正六边形分成六个面积为1平方厘米的正三角形,再取它们各边的中点将每个正三角形分为4个小正三角形.于是正六边形ABCDEF 被分成了24个小正三角形,每一个小正三角形的面积是6240.25÷=(平方厘米),三角形MNP 由9个小正三角形所组成,所以三角形MNP 的面积0.259 2.2=⨯=(平方厘米).练习6把边长为40厘米的正方形ABCD 沿对角线AC 截成两个三角形,在两个三角形内按图示剪下两个内接正方形,M N ,则,M N 的面积之差是________平方厘米.【分析】4009.(2013年五春第六讲基2)练习7孙老师用一张梯形纸做折纸游戏.先上下对折,使两底重合,可得如下左图,并测出为重叠部分的两个三角形面积和是20平方厘米.然后再将左图中两个小三角形向内翻折,得到右图.经测算,右图的面积相当于图1的56.这张梯形纸的面积是_____平方厘米.【分析】100平方厘米.(2013年五春第六讲练习3)练习8如图是由18个大小相同的小正三角形拼成的四边形.其中某些相邻的小正三角形可以拼成较大的正三角形若干个.那么,图中包含“*”号的大、小正三角形一共有______个.*【解析】分三类进行计数(设小正三角形边长为1)包含*的三角形中,边长为1的正三角形有1个;边长为2的正三角形有4个;边长为3的正三角形有1个;因此,图中包含“*”的所有大、小正三角形一共有1416++=(个).11。
四年级下册数学复习教案-5《三角形》 人教新课标
《三角形》复习教案一、复习内容教材P59—P70的学习内容。
二、复习目标1.在老师的引导下,经历知识整理的过程,建立知识结构,进一步理解本单元的知识及相互联系。
2.通过复习,加深对三角形特性、三角形分类以及多边形内角和的理解,进一步体会分类思想和转化思想,感受数学与生活的联系。
三、复习重、难点重点:三角形的特性、三角形的分类以及多边形的内角和难点:画出三角形的高、三角形的三边关系四、复习设计(一)课前设计复习任务:阅读教材,研读例题同学们,本单元一共设置了7道例题,请你认真研读,看一看每个例题的内容以及例题之间的联系,完成下面的梳理表格。
三角形的特征三角形的分类三角形的内角和例1:例5:例6:例2:例3:例7:例4:(二)课堂设计1.回顾学习内容,明确复习任务课前同学们已经对本单元知识进行了梳理,谁来说一说本单元我们主要学习了哪些内容?随着学生的交流板书知识点:三角形的特征三角形的分类三角形的内角和2.分类进行复习,巩固基础知识(1)复习三角形的特征关于这部分知识,你都了解了些什么?你想给大家提醒些什么呢?典型题目1:画出每个三角形中底边上的高。
学生独立画出高,集体评讲,重点评讲两点:第一:直角三角形的两条直角边互为底和高;第二:检查画出的高和底是不是相对应的。
(2)复习三角形的分类三角形怎样分类?分类时要注意什么?先确定分类标准,然后按照标准把所有三角形进行分类,注意不能重复,不能遗漏。
为了直观地呈现这些三角形之间的关系,我们可以用集合圈表示。
直角三角形(3)复习三角形的内角和三角形的内角和是多少度?我们是怎么得出这个结论的?(回忆研究的过程)知道了三角形的内角和,我们在研究多边形的内角和时,是怎样研究的?强调:用转化的思想把多边形转化成若干个三角形,借助已有的结论得出新的结论。
这是非常重要的学习方法。
典型题目:求出多边形未知角的度数。
学生独立解决,同桌交流思路。
3.呈现思维导图,再次回顾内容4.完成评价试题,检测复习效果(1)选择题①一个三角形的两条边分别是3厘米和5厘米,这个三角形一定不是()三角形。
中班优秀数学公开课教案《三角形与多边形》(二篇)
中班优秀数学公开课教案《三角形与多边形》一、设计意图在过去的与几何形体相关的活动设计中,我们惯于呈现一个个完整成型的几何形体让孩子观察辨认,在预想的多种感官参与(看看、说说、摸摸等)中、多种形式操作活动(找找、拼拼、剪剪等)中,让孩子们获得我们自以为的对某种几何图形的充分认识。
然而,对于这些几何形体从何而来、还有什么样的图形等具有开放性、延展性、启发性、挑战性的问题,老师鲜有思考,也极少能从数学活动这一平台让孩子获得相应的思考引领。
其实,在孩子们辨识的平面图形中,从最简单的三角形到各种不规整的多边形,它们都是几条”线”围成的封闭状图形,其中”线”的数量差异给这些各不相同的图形命名带来便利:有几条边(线),就是几边形。
而”线”,又是从”点”出发的某个方向的延伸。
当我们尝试从源头处厘清这些有关平面图形的知识链时,我们很容易就能找到引导孩子通向图形王国的自发、可持续性探索的数学活动平台:连点成线变图形。
二、活动目标1.在连线活动中,增进对三角形”三条边、三个角”的图形特征的认识。
2.尝试对连点成线所围成的图形进行命名,了解多边形的命名方法。
3.用”连线”方式探索多边形与三角形之间的转换,初步感知图形之间互相转换的内在规律。
三、活动准备1.背景音乐《雪绒花》、《的士高》,相机。
2.情境创设:蓝色块状星空图(蓝色展板为底,其上零星粘贴适量黄色小圆点作”星星”)围成一片,成”星空”状情境;.另备1块”星空图”,置于黑板上用于示范性操作,或制作相应课件进行操作。
3.油画棒人手1份。
四、活动过程(一)星星的”三步舞曲”三角形特征再探秘1.倾听音乐《雪绒花》,感受音乐三拍子的节奏特点。
提问:这首曲子听上去怎么样?这是一首几拍子的曲子?听到音乐你想干什么?2.示范操作:连点成线变三角形。
导语:小星星们也喜欢这首曲子,看,它们跳起舞来了呢!示范:教师在《雪绒花》的音乐背景下,按音乐节奏在星空图上连点成线变出一个个三角形。
《多边形》三角形PPT精品课件
巩固练习
下列图形包含了哪些多边形?
六边形
四边形
五边形和六边形
探究新知
知识点 2 多边形的对角线
定义:
A
连接多边形不相邻的两个顶点的线 B
E
段,叫做多边形的对角线.
D C
线段AC是五边形ABCDE的一条对角线, 多边形的对角线通常用虚线表示.Байду номын сангаас
素养考点 1 多边形的截角问题
例 凸六边形纸片剪去一个角后,得到的多边形的边 数可能是多少?画出图形说明.
解:∵六边形截去一个角的边数有增加1、减少1、不变三种情况, ∴新多边形的边数为7、5、6三种情况, 如图所示.
探究新知
归纳总结
一个多边形截去一个角后,多边形的边数可能 增加了一条,也可能不变或减少了一条.
∴n-3+n-2=21, 解得n=13. 答:该多边形的边数有13条.
巩固练习
画一画:画出下列多边形的全部对角线.
巩固练习 观察下列图形,并阅读图形下面的相关文字,解答下 列问题:
十边形有多少条对角线?n边形呢?
巩固练习
解:∵四边形的对角线条数为4×(4-3)×12 =2.
五边形的对角线条数为5×(5-3)×
n(n≥3)边形共有对角线 n(n 3) 条.
2
探究新知
素养考点 2 利用多边形的对角线相关公式求边数
例 过多边形的一个顶点的所有对角线的条数与这些对角 线分割多边形所得三角形的个数的和为21,求这个多边 形的边数.
解:设这个多边形为n边形,则有(n-3)条对角线,所 分得的三角形个数为n-2,
中班优秀数学公开课教案《三角形与多边形》
《三角形与多边形》教学目标:1.让学生认识三角形和多边形,理解它们的基本特征。
2.培养学生的观察力、想象力及空间思维能力。
3.激发学生对几何图形的兴趣,增强团队合作意识。
教学重点:1.认识三角形和多边形。
2.理解三角形和多边形的基本特征。
教学难点:1.区分三角形和多边形。
2.掌握三角形和多边形的特征。
教学准备:1.教具:三角形、多边形模型,图片,课件等。
2.学具:三角形、多边形卡片,剪刀,胶水等。
教学过程:一、导入1.老师出示三角形和多边形模型,引导学生观察并说出它们的名称。
2.学生自由讨论,分享自己对三角形和多边形的认识。
二、新课讲解1.老师讲解三角形的基本特征:三角形有三条边,三个角。
三角形的角有三种类型:锐角、直角、钝角。
2.老师讲解多边形的基本特征:多边形有多条边,多个角。
多边形可以是规则多边形,也可以是不规则多边形。
三、互动环节1.老师出示三角形和多边形图片,让学生分辨并说出它们的名称。
2.学生分成小组,每组挑选一张图片,用剪刀将图片剪下来,再贴在指定的位置。
3.老师引导学生观察剪贴的图片,发现三角形和多边形的特征。
四、案例分析1.老师出示几个生活中的实例,如红绿灯、自行车架等,让学生找出其中的三角形和多边形。
2.学生分组讨论,分析这些实例中三角形和多边形的作用。
五、实践操作1.老师发放三角形和多边形卡片,让学生自由组合,创造出各种有趣的图形。
2.学生展示自己的作品,分享创作心得。
2.学生分享自己在课堂上的收获和感受。
教学延伸:1.课后让学生观察生活中的三角形和多边形,记录下来并与同学分享。
2.组织一次三角形和多边形的手工制作活动,培养学生的动手能力。
教学反思:本节课通过讲解、互动、实践等环节,让学生认识了三角形和多边形,理解了它们的基本特征。
在教学过程中,教师注重启发式教学,引导学生主动参与,提高了学生的观察力和想象力。
同时,通过实践操作,培养了学生的团队合作意识。
但在教学过程中,仍有个别学生表现出注意力不集中的情况,需要在今后的教学中加以改进。
解密小学五年级数学下册三角形和多边形的关系
解密小学五年级数学下册三角形和多边形的关系数学是一门让人充满好奇和挑战的学科,而在小学五年级数学下册中,我们将会学习到三角形和多边形的关系。
本文将通过解密这一关系,帮助读者更深入地理解这个数学概念。
1. 三角形的基本概念在我们深入研究三角形和多边形的关系之前,首先需要了解三角形的基本概念。
三角形是由三条不同的线段组成的图形,其中线段被称为三角形的边。
而三角形的角则是由两条相邻边所形成的夹角。
根据三角形的边和角的特点,我们可以将三角形分为不同的类型,如等边三角形、等腰三角形、直角三角形等。
2. 多边形的基本概念除了三角形之外,多边形也是数学中常见的图形之一。
与三角形类似,多边形由多条线段组成,而且每条线段都是多边形的边。
多边形的角也是由相邻边所形成的夹角。
不同于三角形,多边形的边的数量大于三条,可以是四条、五条,甚至更多。
3. 三角形与多边形的关系从上面的描述中,我们可以发现三角形其实是多边形的一种特殊情况。
当多边形只有三条边时,它就是一个三角形。
因此,我们可以将三角形视为多边形的一个子集。
同样地,我们也可以将三角形的性质应用于多边形。
例如,等边三角形的概念可以扩展到多边形中,我们可以称某个多边形的所有边都相等为等边多边形。
4. 使用三角形的性质推导多边形的性质由于三角形是多边形的一个特殊情况,我们可以利用三角形的性质来推导多边形的性质。
例如,在研究多边形的内角和时,我们可以利用三角形的内角和公式来推导多边形的内角和公式。
同样地,我们也可以利用三角形的周长和面积公式来推导多边形的周长和面积公式。
5. 实例分析为了更好地理解三角形和多边形的关系,我们来解答一个实际问题。
假设有一个五边形,其中三个角的度数为60°,另外两个角的度数为120°。
我们需要求出这个五边形的内角和。
首先,我们将这个五边形分解为三个三角形,每个三角形的角度分别为60°、60°、120°。
三角形与多边形
【自主解答】选A.因为∠A=50°,∠ABC=70°,所以∠C=180°∠A-∠ABC=180°-50°-70°=60°.又因为BD平分∠ABC,所以 ∠DBC= 1 ∠ABC= 1 ×70°=35°,所以∠BDC=180°-∠DBC2 2
∠C=180°-35°-60°=85°.
【规律方法】三角形内角、外角关系的应用 (1)正确识别三角形的外角. (2)明确三角形的外角与“和它不相邻两个内角”的等量关系: 三角形的一个外角等于和它不相邻的两个内角的和. (3)注意三角形内角、外角转化,灵活运用整体思想.
2x>20 2x, 20 2x>0,
解得5cm<x<10cm.
热点考向二 三角形的内角和定理及其推论 【例2】(2014·昆明中考)如图,在△ABC中, ∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC 的度数是( A.85° C.75° ) B.80° D.70°
【思路点拨】根据三角形内角和定理及其推论求出角的度数 .
3.如果一个定理的逆命题经过证明是正确的,那么它也是一个 互逆 定理. 定理,则这两个定理为_____
【思维诊断】(打“√”或“×”) 1.三角形是由三条线段组成的封闭图形.( √ ) 2.长为3cm,4 cm,1 cm的三条线段能组成一个三角形.( × ) 3.一个三角形中最多有3个锐角.( √ ) 4.一个三角形中至少有1个锐角.( × ) 5.三角形的角平分线是一条射线.( × )
5.(2014·玉林、防城港中考)在等腰△ABC中,AB=AC,其周长为
20cm,则AB边的取值范围是( )
A.1cm<AB<4cm
C.4cm<AB<8cm
B.5cm<AB<10cm
新版(部编人教版)小学数学四年级下册第5课时 多边形的内角和
新版(部编人教版)小学数学四年级下册第5课时多边形的内角和新人教版精品文档第5单元三角形第5课时多边形的内角和【教学目标】1.知识目标:探究并了解四边形的内角和。
2.能力目标:通过引导学生自主探究四边形内角和,培养学生探究问题的方法与能力;让学生尝试从不同角度寻求探究问题的方法并能有效地解决问题,训练学生的发散性思维和培养他们的创新精神。
3.情感目标:通过实例引入,使学生体验数学来源于生活,又服务于生活,唤起学生学数学的兴趣和应用数学的意识。
在自主探究、合作交流的过程中,感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情和合作意识。
【教学重难点】重点:四边形的内角和。
难点:如何引导学生参与到探索四边形的内角和的过程;探索多边形内角和时,如何把多边形转化成三角形。
【教学过程】课堂教学环节导入一、复习引入新课 1、出示一个三角形:这个三角形的内角和是多少度? 2、如果剪掉一个角,剩下的图形是什么图形?内角和是多少度呢?这节课我们来研究四边形的内角和。
问题情境与教师活动学生活动媒体设计意图应用目标达成精选高中小试卷案,为您推荐下载! 1新人教版精品文档教学过程设计思路学习新环知节二、新课探究 1、我们学过的四边形有哪些? 2、出示长方形、正方形、平行四边形、梯形。
师:长方形和正方形的内角和都是多少度?你是怎么知道的?长方形和正方形的4个角都是直角,它们的内角和是360°。
那么平行四边形和梯形的内角和是否和长方形和正方形一样呢?你有办法验证一下吗? 3、验证:(1)用量角器量一量平行四边形和梯形的四个角。
(2)如果是任意一个四边形呢? A:把这个四边形的4个角剪下来,拼成一个周角。
B:把这个四边形分成两个三角形。
(3)总结:四边形的内角和都是360度三、拓展延伸: 1、你有办法求出五边形、六边形的内角和吗? 2、你有什么发现?四、回顾总结精选高中小试卷案,为您推荐下载! 2新人教版精品文档师:这节课你有什么收获?我们是怎样研究三角形的内角和是180°?这节课我们分别用度量、剪拼、折一折的方法对猜想进行验证,最后运用三角形内角和是180°的知识解决生活中的问题。
三角形与多边形复习课
5.(2018·内江)小王到瓷砖店购买一种正多边形瓷砖铺设无缝地
板,他购买的瓷砖形状不可以是( D )
A. 正三角形
B. 正四边形
C. 正六边形
D. 正八边形
二、核心考题 考点1 (正)多边形的内角与外角 6.(2019·广东)一个多边形的内角和是1 080°,这个多边形的 边数是_____8___.
∠D 的度数为( B ) A.45°
B.48°
C.50°
D.58°
10.(2018·常德)已知三角形两边的长分别是3和7,则此三
角形第三边的长可能是( C )
A. 1
B. 2
C. 8
D. 11
11.(2019·黔东南州)如图,以△ABC的顶点B为圆心,BA长为 半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°, 则∠DAC的大小为__3_4___度.
2.如图,点D是△ABC的边BC上一点,下列说法错误的是( D ) A. 若∠BAD=∠DAC,则AD是△ABC的角平分线 B. 若BD=DC,则AD是△ABC的中线 C. 若AD⊥BC,则AD是△ABC的高 D. 中位线就是中线
3.三角形的四心 (1)内心:三角形角平分线的交点; (2)外心:三角形三边垂直平分线的交点; (3)重心:三角形三条中线的交点; (4)垂心:三角形三条高的交点.
D.无数条
17.(2018·河北)下列图形具有稳定性的是( A )
A.
B.
C.
D.
18.(2019·济宁)如图,该硬币边缘镌刻的正九边形每个内角的 度数是___1_4_0_°__.
19.(2019·枣庄)将一副直角三角板按如图所示的位置放置, 使含30°角的三角板的一条直角边和含45°角的三角板的 一条直角边放在同一条直线上,则∠α的度数是( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5课三角形与多边形
【知识要点】
1、三角形的三边关系定理:三角形的两边之和大于第三边,两边之差小于第三边
2、多边形的内角和是(n-2)180º,外角和等于360º.
3、n边形的对角线条数:____________.
4、三角形中的特殊线段:高线、角平分线、中线.中线把三角形分成面积相等的两部分. 【例题选讲】
例1、周长为30,各边长互不相等且都是整数的三角形一共有多少个?
例2、△ABC中有一点P,连接BP、CP,求证:
(1)∠BPC>∠A;(2)AB+AC>PB+PC;
(3)0.5(AB+BC+CA)<P A+PB+PC<AB+BC+AC.
例3、若不等边三角形ABC的两条高长分别是4和12,且第三条高线长也是整数,则这条高长为( )
A.5
B.6
C.7
D.8
例4、△ABC中,三条内角平分线交于点I,HI⊥BC,求证:∠BID=∠HIC.
例5、在△ABC内部有m个点,没有任何三点共线,在这些点之间以及这些点与A、B、C之间连接一些线段,这些线段在△ABC内部没有这m个点之外的公共点,并将△ABC分成的全部区域都是小三角形.请你证明:(1)分成的小三角形区域的总数一定是奇数;
(2)位于△ABC内部的所连线段的条数是3的倍数.
例6、已知三角形的一边是另一边的2倍,求证:它的最小边在它的周长的1/6到1/4之间. 例7、四边形ABCD中,E、F分别是两组对边的延长线的交点,EG、FG分别平分∠E、∠F,且∠ADC=60º,∠ABC=80º,求∠G.
例8、用正多边形镶嵌地板要求不留下空隙,也不能有多边形互相重叠,那么有哪些正多边形可以满足要求?请说明理由.
例9、求证:三角形的三条中线把三角形分成面积相等的6部分.
例10、把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数之和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.请问:(1)原来的多边形是几边形?(2)把原来的多边形分割成了几个多边形?
练习:
1、一个多边形有14条对角线,则其内角和为_________.
2、一个凸n边形最小的内角是95º,其他内角的度数一次增加10º,则n=_______.
3、如图所示,若干个正五边形排列成环状,如图所示的是前三个正五边形,要完成这一圆环还需要( )个正五边形.
A.6
B.7
C.8
D.9
E.10
4、凸n边形中,小于108º的内角最多可以有_______个.
5、一个三角形的边长均为整数且互不相等,若其中最长边为8,则这样的三角形一共有______个.
6、把一条长度为15厘米的线段截为三段,使每条线段的长度都是整数,则一种可以构成____种不同的三角形.
7、某锐角三角形的内角用度数表示时,所有角的度数均为正整数,最小角的度数是最大角的1/4,求满足此条件的所有锐角三角形的内角的度数。
8、三角形内角平分线的交点称为内心,如图,D是△ABC的内心,E是△ABD的内心,F是△BDE的内心,若∠BFE的度数为整数,则∠BFE至少是多少度?。