湖南大学物理(2)第14,15章课后习题参考答案-推荐下载
第二章课后习题答案(湖南大学物理)
![第二章课后习题答案(湖南大学物理)](https://img.taocdn.com/s3/m/296213c18bd63186bcebbcae.png)
第二章 质点力学的基本定律2.1 如图所示,把一个质量为m 的木块放在与水平成θ角的固定斜面上,两者间的静摩擦因素μs 较小,因此若不加支持,木块将加速下滑. (1)试证tan θ≧μs ; 的水平力F,可使木块恰不下滑?这时木块对(2)须施加多大斜面的正压力多大?(3)如不断增大F 的大小,则摩擦力和正压力将有怎样的变化?(1)[证明]木块在斜面上时受到重力G mg =和斜面的支持力N 以及静摩擦力f ,其中f ≦ f s = μs N ,而 N = G cos θ. 要使木块加速下滑,重力沿着斜面的分量不得小于最大静摩擦力f s .根据牛顿第二定律得μs G cos θ = ma ≧0,G sin θ - 因此tan θ≧μs . 证毕.(2)[解答]要使物体恰好不下滑,则有 - F cos θ = 0, (1) G sin θ - μs N F sin θ = 0. (2) N - G cos θ - (2)×μs +(1)得μs G cos θ – F cos θ - μs F sin θ = 0,G sin θ -解得sin cos cos sin s s F mgθμθθμθ-=+. (3)上式代入(2)得cos sin s mgN θμθ=+.(4)(3)[解答]当木块平衡时,一般情况下,有G sin θ - f - F cos θ = 0,N - G cos θ - F sin θ = 0. 解得f = G sin θ - F cos θ,N = G cos θ + F sin θ.可知:1当F的大小不断增加时,摩擦力将不断减小;当F = G tan θ时,摩擦力为零;当F再增加时摩擦力将反向;至于木块是否向上做加速运动,则要进一步讨论.2正压力将不断增加.[讨论]当tan θ < 1/μs 时,如果木块恰好不上滑,则摩擦力恰好等于最大静摩擦力,方向沿着斜面向下,用上面的方法列方程,可得图2.1sin cos cos sin s s F mgθμθθμθ+=-.将(3)式中的μs 改为-μs 就是这个结果.可见:当tan θ = 1/μs 时,F 趋于无穷大,只有当tan θ< 1/μs 时,才能增加F 的大小使木块向上加速滑动.2.2 如图所示,设质量m = 10kg 的小球挂在倾角α = 30°的光滑斜面上,求:(1)当斜面以加速度a = g /3沿图中所示的方向运动时,绳中的张力及小球对斜面的正压力各是多大?(2)当斜面的加速度至少为多大时小球对斜面的正压力为零?(g = 9.8m·s -2)[解答](1)小球受到重力G ,斜面的支持力N 和绳子的张力T .建立坐标系,列方程得 T sin α – mg = 0, N cos α + N sin α = ma . T cos α - 解得N = m (g cos α – a sin α) = 68.54(N), m (g sin α + a cos α) = 77.29(N). T = (2)令N = 0,得加速度为 a = g ctg α = 16.97(m·s -2).2.3 物体A 和B 的质量分别为m A = 8kg ,m B = 16kg ,它们之间用绳子联结,在倾角α = 37°的斜面上向下滑动,如图所示.A 和B 与斜面的滑动摩擦因素分别为μkA = 0.2,μkB = 0.4,求:(1)物体A 和B 的加速度; (2)绳子的张力;(3)如果将A 和B 互换位置,则(1)和(2)的结果如何?[解答]根据角度关系可得sin α = 3/5 = 0.6,cos α = 4/5 = 0.8,0.75.tan α = 3/4 = (1)如果物体A 和B 之间没有绳子,由于tan θ≧μs ,可知:A 和B 都要沿斜面做加速运动,而B 的加速度比较小.当A 和B 之间有绳子时,它们将以相同的加速度运动.设绳子的张力为T ,根据牛顿第二定律分别对A 和B 列运动方程: μkA m A g cos α - T = m A a ,m A g sin α – m B g sin α – μkB m B g cos α = m B a . T + 两式相加得 [(m A + m B )sin α – (μkA m A + μkB m B )cos α]g m B )a , = (m A + 所以加速度为 [sin cos ]kA A kB BA Bm m a g m m μμαα+=-+= 3.26(m·s -2).(2)将加速度a 的公式代入任一方程都可解得张力为图2.3()cos kB kA A B A Bm m g T m m μμα-=+= 3.86(N).由此可见:当两物体的摩擦因素相等时,张力才为零,这是因为它们的加速度相等.(3)将A 和B 互换位置后,由于A 的加速度比较大,所以绳子不会张紧,其张力为零. A 的运动方程为m A g sin α – μkA m A g cos α = m A a A , 解得 a A = g (sin α – μkA cos α) = 4.12(m·s -2). 同理得a B = g (sin α – μkB cos α) = 2.7(4m·s -2).2.4 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 2211sin 22y at g t α==⋅.x = v 0t ,将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.5 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力? [解答](1)物体与板之间有正压力和摩擦力的作用. 板对物体的支持大小等于物体的重力N m = mg = 19.6(N),这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为f m = ma = 2(N), 这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力M )g = 29.4(N),N M = (m + 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为f M = μk N M = 7.35(N).这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为图2.4f =μs mg = ma`,可得 a` =μs g .板的运动方程为+ M )g = Ma`, F – f – μk (m 即 F = f + Ma`+ μk (m + M )g = (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.6 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为12212(2)/22F m m ga m m μ-+=+= .78(m·s -2), 绳对它的拉力2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.7 两根弹簧的倔强系数分别为k 1和k 2.求证: (1)它们串联起来时,总倔强系数k 与k 1和k 2.满足12111k k k =+;关系关系式(2)它们并联起来时,总倔强系数k = k 1 + k 2. [解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以 F = F 1 = F 2,x = x 1 + x 2,因此1212F F F k k k =+,即12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2,即k = k 1 + k 2.12图2.62 图2.72.8 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;度1a 沿水平方向运动;(2)小车以加速(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角;行的加速度1b把小车沿斜面往上推(设b 1 = b );(4)用与斜面平的加速度2b(b 2 = b ),将小车从斜面上推下来.(5)以同样大小[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg . (2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于ma/mg , tan θ =所以 θ = arctan(a/g ); 绳子张力等于摆所受的拉力T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力,合力沿斜面向下,所以θ = φ;T = mg cos φ. (4)根据题意作力的矢量图,将竖直虚线延长,与水平辅助线相交,可得一直角三角形,θ角的对边是mb cos φ,邻边是mg +mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T ==.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.9 如图所示:质量为m = 10kg 的小球,拴在长度l = 5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多(2)图2.9大?(2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大? [解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为22d d s F ma m t ==, 其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,得2601cos 2B v gl θ︒=,解得B v =s -1).由于22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为(2cos 1)Cn a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为t a g== 8.49(m·s -2),法向加速度为a n = 0, 绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.10 一质量为m 的小球,最初静止于如图所示的A 点,然后沿半径为r 的光滑圆弧的内表面ADCB 下滑.试求小球在C 点时的角速度和对圆弧表面的作用力.[解答]此题情形与上一题的数学类型是相同的. 取上题中l = r ,对(1)式积分 090d sin d C v v v gr αθθ-︒=-⎰⎰, 2901cos 2C v rg αθ-︒=,得 解得速度为C v ,角速度为C v r ω==由于N C – mg cos α = 2mg cos α,所以 N C = 3mg cos θ.2.11 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则 mg cos θ. F = 小球的运动方程为22d d sF ma m t ==,s 表示弧长.图2.11由于d v t =,所以22d d d d d d d ()d d d d d d d s s v v s vv t t t t s t s ====,因此 v d v = g cos θd s = g d h , h 表示石下落的高度.积分得 212v g h C=+,当h = 0时,v = 0,所以C = 0, 因此速率为v =2.12 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x 处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212km v C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2n x mv k x =-⎰.(1)当n = 1时,可得21ln 2mv k x C =-+.利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101nk C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.13 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d v f mg kv mt =--=,分离变量得d d()d v m mg kv t mmg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln /m mg kv m mg k v t k mg kv k mg k v ++=-=-++,小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤. 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+,当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.14 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v vf m mR t μ=-=,即 2d d kv t R v μ=-.积分得1kt C Rv μ=+.当t = 0时,v = v 0,所以01C v =-,因此 011kt Rv v μ=-. 解得01/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++,积分得0ln (1)`k kv tRx C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.15 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为 F = mg tg θ. 珠子做圆周运动的半径为r = R sin θ.根据向心力公式得F = mg tg θ = mω2R sin θ, 可得2cos mgR ωθ=,解得2arccosgR θω=±.2.16 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得 = F d t = -kA cos ωt d t , d I 积分得冲量为 /20(cos )d I kA t t ωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0,末动量为p 2 = mv 2 = -mωA ,小球获得的冲量为I = p 2 – p 1 = -mωA ,可以证明k =mω2,因此I = -kA /ω.mg图2.152.17 一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=-得21p p p =+∆,由此可作矢量三角形,可得p ∆=.因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR == 2/42R T T mvmvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为F cos ωt ,F x = F cos θ = F sin ωt , F y = F sin θ = 给小球的冲量大小为F cos ωt d t ,d I x = F x d t =d I y = F y d t = F sin ωt d t , 积分得/4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,所前面计算结果相同,但过程要复杂一些.2.18用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v ==14(m·s -1),其速度的增量为v ∆=s -1).棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力)F = I/t = 366.2(N).2.19 如图所示,3个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2) [解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动,加速度大小为a ,可列方程T = Ma ,联立方程可得a = g/2 = 5(m·s -2).根据运动学公式s = v 0t + at 2/2,可得B 拉C 之前的运动时间t =.此时B 的速度大小为v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得2Mv = 3Mv`,因此C 开始运动的速度为v` = 2v /3 = 1.33(m·s -1).v xΔvv y2.20 一个原来静止的原子核,放射性蜕变时放出一个动量p 1 = 9.22×10-16g·cm·s -1的电子,同时还在垂直于此电子运动的方向上放出一个动量p 2 = 5.33×10-16g·cm·s -1的中微子.求蜕变后原子核的动量的大小和方向.[解答]原子核蜕变后的总动量大小为p =10-16(g·cm·s -1).其方向与电子方向的夹角为θ = arctan(p 2/p 1) = 30°. 根据动量守恒定律,三个粒子总动量为零,12`0p p p ++=,所以原子核的反冲动量为12`()p p p p =-+=- ,其大小与电子和中微子的合动量的大小相等,方向相反,与电子速度的夹角为180 - θ = 150°.2.21 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向.根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°=0cos θ.2.22 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?方向为正方向,弧位移d s的大小为[解答]取弧长增加的d s = R d θ.重力G的大小为G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+πsin d mgR θθ=-,图2.22积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f的大小为f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为4520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F就是平衡力,即0F G f ++=, 或者 ()F G f =-+.拉力的功元为d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR =.由此可见:重力和摩擦力都做负功,拉力做正功.2.23 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈? [解答] (1)质点的初动能为E 1 = mv 02/2,末动能为E 2 = mv 2/2 = mv 02/8,动能的增量为ΔE k = E 2 – E 1 = -3mv 02/8,这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ, 积分得20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为2316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为a t = f/m = -μk g ,根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量-fs = ΔE k ,可得 s = -ΔE k /f , 由此也能计算弧长和圈数。
大学物理第14章思考题解
![大学物理第14章思考题解](https://img.taocdn.com/s3/m/cede3de9aef8941ea76e05ed.png)
《大学物理学》(下册)思考题解第14章 电磁感应14-1 在电磁感应定律i d dtΦ=-¶中,负号的含义是什么? 如何根据负号来判断感应电动势的方向?答:电磁感应定律i d dtΦ=-¶中的负号来自于楞次定律。
由于磁通量Φ变化而引起感应电动势i ¶变化、从而产生感应电流,这个电流的磁场将阻碍原磁通量Φ的变化。
例如原磁通量Φ正在增加,所激发的感应电动势的感应电流的感应磁场将阻碍这个Φ增加。
14-2 如题图所示的几种形状的导线回路,假设均匀磁场垂直于纸面向里,且随时渐减小。
试判断这几种形状的导线回路中,感应电流的流向答:14-3 将一磁铁插入一个由导线组成的闭合电路线圈中,一次迅速插入,另一次缓慢插入。
问:(1)两次插入时在线圈中的感生电荷量是否相同? (2)两次手推磁铁的力所做的功是否相同?(3)若将磁铁插入一个不闭合的金属环中,在环中间发生什么变化? 答:始末两态的磁通1Φ、2Φ不变,所以 (1) 感生电荷量12q RΦ-Φ=,与时间、速度无关,仅与始末两态的磁通有关,所以两次插入线圈的感生电荷量相同。
(2)从感应电流作功考虑,W I t =∆¶,定性地判断:两种情况下I t q ∆=不变,12d dttΦ-ΦΦ=∆=-¶分子不变分母有区别,所以两次手推磁铁的力,慢慢插入的作功少,快速插入的作功多。
(3) 若将磁铁插入一个不闭合的金属环中,在环的两端将产生感应电动势。
14-4 让一块很小的磁铁在一根很长的竖直钢管内下落,若不计空气阻力,试定性说明磁铁进入钢管上部、中部和下部的运动情况,并说明理由。
答:把小磁铁看作磁矩为m的磁偶极子,下落至钢管口附近时,由于钢管口所围面积的磁通量发生了变化,管壁将产生感生电动势和感生电流,感生电流将激发感生磁场'1B ,由于磁矩m 自己产生的磁感B 在管口产生的磁通正在增加,根据楞次定律,它所激发的感生磁场'1B 将阻碍这个增加,因此,'1B 与B 反方向。
大学物理学课后答案(湖南大学出版社)
![大学物理学课后答案(湖南大学出版社)](https://img.taocdn.com/s3/m/f46eed250912a21614792920.png)
大学物理习题集 第一章质点运动学1.1一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2= h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t= t 1 + t 2 = 6.98(s).v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+2t=人飞越的水平速度为;v x 0 = v 0cos θ= 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:θ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t= 6.98(s).由此可以求解其它问题.1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t 内,船行驶的距离为. [证明](1)分离变数得,故,可得:.(2)公式可化为,由于v = d x/d t ,所以:积分. 因此.证毕. [讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2,而 d x /d t = v ,a = d v /d t , 分离变数得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt , 得速度为:v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=±011kt v v =+01ln(1)x v kt k=+2d d vk t v =-020d d vtv v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++0001d d(1)(1)xtx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为a n = rω2 = 230.4(m·s -2); 角加速度为β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即. 由此得,即解得.所以=3.154(rad).(3)当at = a n 时,可得rβ = rω2,即: 24t = (12t 2)2,解得:t = (1/6)1/3 = 0.55(s).1.6一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α,a y = a sin α. 运动方程为,.即, .令y= 0,解得飞机回到原来高度时的时间为:t = 0(舍去);.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.0e `ktv x C k-=+-0(1-e )ktv x k -=d d n vk t v =-11n v kt C n-=-+-101nv C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-n a a =2r r ω=22(12)24t =36t =3242(13)t θ=+=2012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin sin v t a θα==v1.7一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为.算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为; (3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB 方向的速度大小为,所以飞行时间为.证毕.212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+t02l t v =1221/t t u v=-2t =1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v ==--V 22l t V ===图1.7 AABvv + uv - uABvu uvv1.10如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即.证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求.证毕.第二章运动定律与力学中的守恒定律(一) 牛顿运动定律 2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度运动,的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为x = v 0t ,.将t = x/v 0,代入后一方程得质点的轨道方程为,这是抛物线方程.2.2桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力? [解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N),2v 3v 1v12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+0v 0v 2211sin 22y at g t α==⋅22sin g y x v α=F图1.101 hlα图2.1这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N), 这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3如图所示:已知F = 4N ,m 1= 0.3kg ,m 2= 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 = 4.78(m·s -2),绳对它的拉力为= 1.35(N).2.4两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式;(2)它们并联起来时,总倔强系数k = k 1 + k 2. [解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数. 两个弹簧分别拉长x 1和x 2,产生的弹力分别为F 1 = k 1x 1,F 2 = k 2x 2.(1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2,因此,即:.(2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此kx = k 1x 1 + k 2x 2,即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成θ角;12212(2)/22F m m ga m m μ-+=+2112(/2)/22m T F m g m m μ=-+12111k k k =+1212F F F k k k =+12111k k k =+1a12图2.32 图2.4(4)用与斜面平行的加速度把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度(b 2= b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg ,所以θ = arctan(a/g ); 绳子张力等于摆所受的拉力:(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = θ; T = mg cos θ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos θ,邻边是mg + mb sin θ,由此可得:,因此角度为;而张力为(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了. 2.6如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求:(1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大? (3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 ,其中s 表示弧长.由于s = Rθ = lθ,所以速度为,因此,即v d v = -gl sin θd θ,(1) 取积分,1b 2bT =cos tan sin mb mg mb ϕθϕ=+cos arctansin b g b ϕθϕ=+T ==22d d s F ma m t ==d dd d s v l t t θ==d d d d d d dd v v m v F mm v t t l θθθ===060d sin d Bv v vgl θθ︒=-⎰⎰(2)图2.6得,解得:s -1).由于:,所以T B = 2mg = 1.96(N).(2)由(1)式积分得,当θ = 60º时,v C = 0,所以C = -lg /2,因此速度为.切向加速度为a t = g sin θ;法向加速度为.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + man = mg (3cos θ – 1). (3)当θ = 60º时,切向加速度为= 8.49(m·s -2),法向加速度为a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为,s 表示弧长.由于,所以 ,因此v d v = g cosθd s= g d h ,h 表示石下落的高度.积分得,当h = 0时,v = 0,所以C = 0,因此速率为2.8质量为m 的物体,最初静止于x0,在力(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程2601cos 2B v gl θ︒=B v =22B BB v v T mg m m mgR l -===21cos 2C v gl C θ=+C v =2(2cos 1)Cn v a g R θ==-t a =22d d sF ma m t ==d d s v t =22d d d d d d d ()d d d d d d d s s v v s vv t t t t s t s ====212v gh C =+v 2kf x =-图2.7利用v = d x/d t ,可得,因此方程变为,积分得.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此,即[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得. (1)当n = 1时,可得利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此, 即. (2)如果n ≠1,可得.利用初始条件x = x 0时,v = 0,所以,因此,即.当n = 2时,即证明了本题的结果.2.9一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程,分离变数得,222d d k x f ma m x t =-==22d d d d d d d d d d x v x v v v t t t x x ===2d d k xmv v x =-212k mv C x =+2012k kmv x x =-v =21d 2nx mv k x =-⎰21ln 2mv k x C =-+21ln 2x mv k x =v =21121n k mv x C n -=-+-101nk C x n -=--2110111()21n n k mv n x x --=--v =d d v f mg kv mt =--=d d()d v m mg kv t mmg kv k mg kv +=-=-++积分得.当t = 0时,v = v 0,所以,因此,小球速率随时间的变化关系为.(2)当小球运动到最高点时v = 0,所需要的时间为.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以,即,积分得, 当t = 0时,x = 0,所以,因此.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为,用同样的步骤可以解得小球速率随时间的变化关系为.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程. [解答]物体做圆周运动的向心力是由圆环带对物体的压力,即N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得ln ()mt mg kv C k =-++0ln ()mC mg kv k =+00/ln ln /m mg kv m mg k v t k mg kv k mg k v ++=-=-++0()exp()mg kt mgv v k m k =+--00/ln ln(1)/mg k v kv m m T k mg k k mg +==+0d [()exp()]d mg kt mg x v t k m k =+--0(/)d d exp()d m v mg k kt mgx tk m k +=---0(/)exp()`m v mg k kt mgx t C k m k +=---+0(/)`m v mg k C k +=0(/)[1exp()]m v mg k kt mg x tk m k +=---d d vf mg kv mt =-=0()exp()mg mg ktv v k k m =---,即:. 积分得:.当t = 0时,v = v 0,所以,因此.解得.由于,积分得,当t = 0时,x = x 0,所以C = 0,因此.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得,解得.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 ,方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的品质为m ,其初动量为p 1 = mv 1 =0, 末动量为p 2 = mv 2 = -mωA ,2d d k v v f m m R t μ=-=2d d k vt Rv μ=-1k t C R v μ=+01C v =-11kt R v v μ=-001/k v v v t Rμ=+0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++0ln (1)`k kv tR x C Rμμ=++0ln (1)k kv tRx Rμμ=+2cos mg R ωθ=2arccosgR θω=±/20(cos )d I kA t tωω=-⎰π/20sin kAkAtωωωω=-=-π图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义得:, 由此可作向量三角形,可得:. 因此向心力给予小球的的冲量大小为= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得,,合冲量为,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为s -1),其速度的增量为= 24.4(m·s -1).棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).21p p p ∆=- 21p p p =+∆p∆==I p=∆24v TI Ft mR ==2/42R T T mv mvR ππ==/4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==I ==y v =v ∆=v xΔvv y2.15如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s =v 0t + at 2/2, 可得B 拉C 之前的运动时间;. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答]炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得 ,所以v` = v /cos45° = .2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移的大小为d s = R d θ.重力的大小为:G = mg ,方向竖直向下,与位移元的夹角为π+ θ,所做的功元为,积分得重力所做的功为.摩擦力的大小为:f = μk N= μk mg cos θ,方向与弧位移的方向相反,所做的功元为,积分得摩擦力所做的功为t =/2`cos 452mmv v =︒cos θd sG1d d cos(/2)d W G s G s θ=⋅=+πsin d mgR θθ=-454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-f2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-图2.17.要使雪橇缓慢地匀速移动,雪橇受的重力、摩擦力和马的拉力就是平衡力,即,或者.拉力的功元为:,拉力所做的功为.由此可见,重力和摩擦力都做负功,拉力做正功.2.18一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答](1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:.由于W = ΔE ,可得滑动摩擦因子为.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为,圈数为n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得s = -ΔE k /f ,由此也能计算弧长和圈数。
《大学物理》第14单元课后答案 高等教育出版社
![《大学物理》第14单元课后答案 高等教育出版社](https://img.taocdn.com/s3/m/638bc7c758f5f61fb7366664.png)
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点, 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园() 课后答案网() 淘答案()
Ei N
线圈中感应电动势大小: Ei E1 E 2
0 IvL1 0 IvL1 N 2x 2 ( x L2 )
Ei
N 0 IS v ,其中: S L1 L2 ,动生电动势方向为顺时针。 2 x( x L2 )
(2)如果线圈保持不变,长直导线中通有交变电流 I I 0 sin t 。
kh
da
(D) E L / R
Page84
课
后 答
(B) 21 > 12
(C) 21 = 12
M
N
题 21.图
N
作业登记号
学号
姓名
单元十四
单元十四(二) 自感、互感、磁场能量
一、选择题 1. 自感为 0.25H 的线圈中,当电流在(1/16)秒内由 2A 均匀减小到零时,线圈中自感电动势的大小 为: (A) 7.8 10 V
3
【 C (B) 2.0V (C) 8.0V (D) 3.1 10 V
作业登记号
学号
姓名
单元十四
方向垂直纸面向里。
选顺时针为积分正方向
根据: E i ( v B ) dl
a
b
线段 CA 中产生的动生电动势: E1 N
0 IvL1 2x
方向由 C 到 A。
大学物理上册(湖南大学出版社-陈曙光)-课后习题答案全解
![大学物理上册(湖南大学出版社-陈曙光)-课后习题答案全解](https://img.taocdn.com/s3/m/f485c5b78762caaedd33d43a.png)
大学物理上册课后习题答案第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t -=+,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t -=+.计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =. 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).图1.3人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其它问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变数得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变数得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n -=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =.由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+. 即 201cos cos 2x v t a t θα=⋅+⋅,201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .v[注意]选择不同的坐标系,如x方向沿着a的方向或者沿着v0的方向,也能求出相同的结果.1.7一个半径为R= 1.0m的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A.在重力作用下,物体A从静止开始匀加速地下降,在Δt = 2.0s内下降的距离h = 0.4m.求物体开始下降后3s末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A下落加速度.由于212th a t=∆,所以a t = 2h/Δt2 = 0.2(m·s-2).物体下降3s末的速度为v = a t t = 0.6(m·s-1),这也是边缘的线速度,因此法向加速度为2nvaR== 0.36(m·s-2).1.8一升降机以加速度1.22m·s-2上升,当上升速度为2.44m·s-1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at=+;螺帽做竖直上抛运动,位移为22012h v t gt=-.由题意得h = h1 - h2,所以21()2h a g t=+,解得时间为t=.算得h2 = -0.716m,即螺帽相对于升降机外固定柱子的下降距离为0.716m.[注意]以升降机为参考系,钉子下落时相对加速度为a + g,而初速度为零,可列方程h = (a + g)t2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A处向东飞到B处,然后又向西飞回到A处.已知气流相对于地面的速度为u,AB之间的距离为l,飞机相对于空气的速率v保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为2ltv=;(2)如果气流的速度向东,证明来回飞行的总时间为01221/ttu v=-;(3)如果气流的速度向北,证明来回飞行的总时间为2t=.[证明](1)飞机飞行来回的速率为v,路程为2l,所以飞行时间为t0 = 2l/v.(2)飞机向东飞行顺风的速率为v + u,向西飞行逆风的速率为v - u,所以飞行时间为1222l l vltv u v u v u=+=+--022222/1/1/tl vu v u v==--.(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB方向的速度大小为V=,所以飞行时间为图1.7A BA Bvv + uv - uA Bv uuvv22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律 2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、图1.101h lα图2.1与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m ga m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆12图2.32 图2.4线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T ==.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求:(1)小球通过竖直位置时的速度为多少?此时绳的张力多大?(2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大? (3)在θ = 60°时,小球的加速度多大?绳的张力有多大? [解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此(2)图2.6d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C=+,当h = 0时,v = 0,所以C = 0,因此速率为v =图2.72.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x 处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程222d d k xf ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv Cx =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k kmv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C=-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =. (2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101nk C x n -=--, 因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d v f mg kv mt =--=,分离变数得d d()d v m mg kv t m mg kv k mg kv +=-=-++, 积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+,当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得001/k v v v t R μ=+. 由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosgR θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,mg图2.11积分得冲量为/20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作向量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆=s -1). 棒给球冲量为I = m Δv = 7.3(N·s),对球的作用力为(不计重力):F = I/t = 366.2(N).2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma , 联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C 之前的运动时间;t =.此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45° = 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+πv xΔv v y图2.17sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为4520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR =+.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因子为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理(许瑞珍_贾谊明)第14章答案
![大学物理(许瑞珍_贾谊明)第14章答案](https://img.taocdn.com/s3/m/bd9b46ed172ded630b1cb666.png)
第十四章 波动14-1 如本题图所示,一平面简谐波沿ox 轴正向传播,波速大小为u ,若P 处质点振动方程为)cos(ϕ+ω=t A y P ,求:(1)O 处质点的振动方程;(2)该波的波动方程;(3)与P 处质点振动状态相同质点的位置。
解:(1)O 处质点振动方程:y 0 = A cos [ ω(t + L / u )+φ] (2)波动方程y 0 = A cos { ω[t - (x - L )/ u +φ} (3)质点位置x = L ± k 2πu / ω (k = 0 , 1, 2, 3……)14-2 一简谐波,振动周期T =1/2s ,波长λ=10m ,振幅A =0.1m ,当t =0时刻,波源振动的位移恰好为正方向的最大值,若坐标原点和波源重合,且波沿ox 轴正方向传播,求:(1)此波的表达式;(2)t 1=T/4时刻,x 1=λ/4处质点的位移;(3)t 2 =T/2时刻,x 1=λ/4处质点的振动速度。
解:(1) y = 0.1 cos ( 4πt - 2πx / 10 )= 0.1 cos 4π(t - x / 20 ) (SI) (2) 当 t 1 = T / 4 = 1 / 8 ( s ) , x 1 = λ/ 4 = 10 / 4 m 处质点的位移y 1 = 0.1cos 4π(T / 4 - λ/ 80 )= 0.1 cos 4π(1 / 8 - 1 / 8 ) = 0.1 m (3) 振速 )20/(4sin 4.0x t tyv --=∂∂=ππ t 2 = T / 2 = 1 / 4 (S) ,在x 1 = λ/ 4 = 10 / 4( m ) 处质点的振速v 2 = -0.4πsin (π-π/ 2 ) = - 1.26 m / s14-3 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。
设4Tt =时刻的波形如本题图所示,求该波的表达式。
解:由图可看出,在t=0时,原点处质点位移y 0=-A ,说明原点处质点的振动初相πϕ=0,因而波动方程为])(cos[πω++=uxt A y14-4 本题图表示一平面余弦波在t =0时刻与t =2s 时刻的波形图,求: (1) 坐标原点处介质质点的振动方程;(2) 该波的波方程。
湖南大学物理(2)第14,15章课后习题参考答案资料讲解
![湖南大学物理(2)第14,15章课后习题参考答案资料讲解](https://img.taocdn.com/s3/m/25d23e9f0912a21615792952.png)
湖南大学物理(2)第14,15章课后习题参考答案第14章 稳恒电流的磁场 一、选择题1(B),2(D),3(D),4(B),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8). )/(lB mg ; (9). aIB ; (10). 正,负.三 计算题1.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得: )(220R r rRIB ≤π=μ 因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r R I Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ 因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40Iμ2ln 20π+Iμ2. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得 NI r B μ=π⋅2, )2/(r NI B π=μ 在r 处取微小截面d S = b d r , 通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量⎰=S S B d Φr b r NId 2π=μ12ln 2R R NIb π=μ (2) 同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于0=∑i I02=π⋅r B ∴ B = 03. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)解:在距离导线中心轴线为x 与x x d +处,作一个单位长窄条,其面积为 x S d 1d ⋅=.窄条处的磁感强度202RIxB r π=μμ所以通过d S 的磁通量为 x RIxS B r d 2d d 20π==μμΦ通过1m 长的一段S 平面的磁通量为⎰π=Rr x RIx20d 2μμΦ60104-=π=Ir μμ Wb4. 计算如图所示的平面载流线圈在P 点产生的磁感强度,设线圈中的电流强度为I .解:如图,CD 、AF 在P 点产生的 B = 0EF DE BC AB B B B B B+++=)sin (sin 4120ββμ-π=aIB AB , 方向⊗ 其中 2/1)2/(sin 2==a a β,0sin 1=β ∴ a I B AB π=240μ, 同理, aIB BC π=240μ,方向⊗.同样 )28/(0a I B B EF DE π==μ,方向⊙. ∴ aI B π=2420μaIπ-240μaIπ=820μ 方向⊗.5. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言).重力矩 αραρsin sin 2121gSa a a gS a M +⋅=SRxd x2a2aaaIPIP AB C D E IIIO BA D C O 'α α Bαρsin 22g Sa =磁力矩 ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M =所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρ T6. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B 方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.7. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)? (2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
湖南大学物理(2)第13章课后习题参考答案
![湖南大学物理(2)第13章课后习题参考答案](https://img.taocdn.com/s3/m/90c4ae134431b90d6c85c7e5.png)
第13章 静电场中的导体和电解质一、选择题1(D),2(A),3(C),4(C),5(C),6(B),7(C),8(B),9(C),10(B)二、填空题(1). 4.55×105 C ;(2). σ (x ,y ,z )/ε0,与导体表面垂直朝外(σ > 0) 或 与导体表面垂直朝里(σ < 0). (3). εr ,1, εr ; (4). 1/εr ,1/εr ;(5). σ ,σ / ( ε 0ε r ); (6).Rq 04επ ;(7). P ,-P ,0; (8) (1- εr )σ / εr ; (9). 452; (10). εr ,εr三、计算题1.如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势.解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q . (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点 产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+2. 一圆柱形电容器,外柱的直径为4 cm ,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183)解:设圆柱形电容器单位长度上带有电荷为λ,则电容器两极板之间的场强分布 为 )2/(r E ελπ= 设电容器内外两极板半径分别为r 0,R ,则极板间电压为⎰⎰⋅π==R rRr r r r E U d 2d ελ 0ln 2r Rελπ=电介质中场强最大处在内柱面上,当这里场强达到E 0时电容器击穿,这时应有002E r ελπ=,000ln r R E r U = 适当选择r 0的值,可使U 有极大值,即令0)/ln(/d d 0000=-=E r R E r U ,得 e R r /0=,显然有22d d r U < 0,故当 e R r /0= 时电容器可承受最高的电压 e RE U /0max = = 147 kV.3. 如图所示,一圆柱形电容器,内筒半径为R 1,外筒半径为R 2 (R 2<2 R 1),其间充有相对介电常量分别为εr 1和εr 2=εr 1 / 2的两层各向同性均匀电介质,其界面半径为R .若两种介质的击穿电场强度相同,问:(1) 当电压升高时,哪层介质先击穿?(2) 该电容器能承受多高的电压?解:(1) 设内、外筒单位长度带电荷为+λ和-λ.两筒间电位移的大小为 D =λ / (2πr ) 在两层介质中的场强大小分别为E 1 = λ / (2πε0 εr 1r ), E 2 = λ / (2πε0 εr 2r ) 在两层介质中的场强最大处是各层介质的内表面处,即E 1M = λ / (2πε0 εr 1R 1), E 2M = λ / (2πε0 εr 2R ) 可得 E 1M / E 2M = εr 2R / (εr 1R 1) = R / (2R 1)已知 R 1<2 R 1, 可见 E 1M <E 2M ,因此外层介质先击穿. (2) 当内筒上电量达到λM ,使E 2M =E M 时,即被击穿,λM = 2πε0 εr 2RE M 此时.两筒间电压(即最高电压)为:r r r r U R R r M RR r M d 2d 221201012⎰⎰+=επελεπελ⎪⎪⎭⎫ ⎝⎛+=R R R R RE r r M r 22112ln 1ln 1εεε4. 一空气平行板电容器,两极板面积均为S ,板间距离为d (d 远小于极板线度),在两极板间平行地插入一面积也是S 、厚度为t (<d )的金属片,如图所示. 试求:(1) 电容C 于多少? (2) 金属片放在两极板间的位置对电容值有无影响?解:设极板上分别带电荷+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为 )/(01S q E ε=金属板与B 板间场强为 )/(02S q E ε= 金属片内部场强为 0='E 则两极板间的电势差为2211d E d E U U B A +=- )(210d d S q+=ε)(0t d Sq -=ε 由此得 )/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容值无影响.O R 1R 2Rεr 2εr 1t S S S d Ad 1t d 2d5. 如图所示,一电容器由两个同轴圆筒组成,内筒半径为a ,外筒半径为b ,筒长都是L ,中间充满相对介电常量为εr 的各向同性均匀电介质.内、外筒分别带有等量异号电荷+Q和-Q .设 (b - a ) << a ,L >> b ,可以忽略边缘效应,求:(1) 圆柱形电容器的电容;(2) 电容器贮存的能量.解:由题给条件 (a a b <<-)和b L >>,忽略边缘效应, 应用高斯定理可求出两 筒之间的场强为: )2/(0Lr Q E r εεπ= 两筒间的电势差 =π=⎰r drL QU bar εε02a b L Q r ln 20εεπ 电容器的电容 )]//[ln()2(/0a b L U Q C r εεπ== 电容器贮存的能量 221CU W =)/ln()]4/([02a b L Q r εεπ=6. 如图所示,一平板电容器,极板面积为S ,两极板之间距离为d ,其间填有两层厚度相同的各向同性均匀电介质,其介电常量分别为ε1和ε2.当电容器带电荷±Q 时,在维持电荷不变下,将其中介电常量为ε1的介质板抽出,试求外力所作的功.解:可将上下两部分看作两个单独的电容器串联,两电容分别为d S C 112ε=,d SC 222ε= 串联后的等效电容为 ()21212εεεε+=d SC带电荷±Q 时,电容器的电场能量为 ()S d Q C Q W 21212242εεεε+== 将ε1的介质板抽去后,电容器的能量为 ()S d Q W 202024εεεε+='外力作功等于电势能增加,即 ⎪⎪⎭⎫⎝⎛-=-'=∆=102114εεS d Q W W W A7. 如图所示,将两极板间距离为d 的平行板电容器垂直地插入到密度为ρ、相对介电常量为εr 的液体电介质中.如维持两极板之间的电势差U 不变,试求液体上升的高度h .解:设极板宽度为L ,液体未上升时的电容为 C 0 = ε0HL / d 液体上升到h 高度时的电容为()d hL dL h H C rεεε00+-=()011C H h r ⎥⎦⎤⎢⎣⎡-+=ε 在U 不变下,液体上升后极板上增加的电荷为()d hLU U C CU Q r /100-=-=∆εε电源作功 ()d hLU QU A r /120-==∆εε液体上升后增加的电能20212121U C CU W -=∆()d hLU r /12120-=εε 液体上升后增加的重力势能 2221gdh L W ρ=∆因 A = ∆W 1+∆W 2,可解出 ()2201gdU h r ρεε-=思考题1. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。
湖南大学 物理 习题解答
![湖南大学 物理 习题解答](https://img.taocdn.com/s3/m/a0ba615377232f60ddcca1d3.png)
第14章 稳恒电流的磁场14.1 充满εr = 2.1电介质的平行板电容器,由于电介质漏电,在3min 内漏失一半电量,求电介质的电阻率.解:设电容器的面积为S ,两板间的距离为l ,则电介质的电阻为lR Sρ=.设t 时刻电容器带电量为q ,则电荷面密度为ζ = q/S ,两板间的场强为E = ζ/ε =q/εr ε0S ,电势差为 U = El =ql/εr ε0S ,介质中的电流强度为0d 1d r q U q t R εερ-==,负号表示电容器上的电荷减少.微分方程可变为0d 1d r q t q εερ=-,积分得 0ln r t q C εερ=-+,设t = 0时,q = q m ,则得C = ln q m ,因此电介质的电阻率的公式为0ln(/)r m tq q ρεε=. 当t = 180s 时,q = q m /2,电阻率为121808.84210 2.1ln 2ρ-=⨯⨯⨯ =1.4×1013(Ω·m).14.2 有一导线电阻R = 6Ω,其中通有电流,在下列两种情况下,通过总电量都是30C ,求导线所产生的热量.(1)在24s 内有稳恒电流通过导线; (2)在24s 内电流均匀地减少到零.解:(1)稳恒电流为 I = q/t = 1.25(A),导线产生的热量为Q = I 2Rt = 225(J). (2)电流变化的方程为 12.5(1)24i t =-, 由于在相等的时间内通过的电量是相等的,在i-t 图中,在0~24秒内,变化电流和稳恒电流直线下的面积是相等的.在d t 时间内导线产生的热量元为d Q = i 2R d t ,在24s 内导线产生的热量为242422001d [2.5(1)]d 24Q i R t t R t ==-⎰⎰2423112.5624(1)324t =-⨯⨯⨯⨯-=300(J).14.3 已知铜的相对原子质量A = 63.75,质量密度ρ = 8.9×103kg·m -3. (1)技术上为了安全,铜线内电流密度不能超过6A·mm -2,求此时铜线内电子的漂移速度为多少?(2)求T = 300K 时,铜内电子热运动平均速度,它是漂移速度的多少倍?解:(1)原子质量单位为u = 1.66×10-27(kg),一个铜原子的质量为m = Au = 1.058×10-25(kg), 铜的原子数密度为 n = ρ/m = 8.41×1028(个·m -3),如果一个铜原子有一个自由电子,n 也是自由电子数密度,因此自由电子的电荷密度为ρe = ne = 1.34×1010(C·m -3).铜线内电流密度为δ = 6×106(A·m -2),根据公式δ = ρe v ,得电子的漂移速度为v = ρe /δ = 4.46×10-4(m·s -1). (2)将导体中的电子当气体分子,称为“电子气”,电子做热运动的平均速度为v =其中k 为玻尔兹曼常数k = 1.38×10-23J·K -1,m e 是电子的质量m e = 9.11×10-31kg ,可得 v = 1.076×105(m·s -1),对漂移速度的倍数为v /v = 2.437×108,可见:电子的漂移速率远小于热运动的速度,其定向运动可认为是附加在热运动基础上的运动. 14.4 通有电流I 的导线形状如图所示,图中ACDO 是边长为b 的正方形.求圆心O 处的磁感应强度B = ?解:电流在O 点的产生的磁场的方向都是垂直纸面向里的.根据毕-萨定律:002d d 4I r μπ⨯=l r B ,圆弧上的电流元与到O 点的矢径垂直,在O 点产生的磁场大小为012d d 4I lB a μπ=,由于d l = a d φ,积分得11d L B B =⎰3/200d 4I a πμϕπ=⎰038Ia μ=. OA 和OD 方向的直线在O 点产生的磁场为零.在AC 段,电流元在O 点产生的磁场为022d sin d 4I l B r μθπ=,由于l = b cot(π - θ) = -b cot θ,所以 d l = b d θ/sin 2θ;又由于r = b /sin(π - θ) = b /sin θ,可得02sin d d 4I B bμθθπ=,积分得3/402/2d sin d 4LI B B b ππμθθπ==⎰⎰3/400/2(cos )48IIb bππμθππ=-=同理可得CD 段在O 点产生的磁场B 3 = B 2. O点总磁感应强度为00123384I IB B B B a bμπ=++=+.14.5 如图所示的载流导线,图中半圆的的半径为R ,直线部分伸向无限远处.求圆心O 处的磁感应强度B = ? 解:在直线磁场公式012(cos cos )4IB Rμθθπ=-中,令θ1 = 0、θ2 = π/2,或者θ1 = π/2、θ2 = π,就得半无限长导线在端点半径为R 的圆周上产生的磁感应强度04I B Rμπ=.两无限长半直线在O 点产生的磁场方向都向着-Z 方向,大小为B z = μ0I /2πR . 半圆在O 处产生的磁场方向沿着-X 方向,大小为B x = μ0I /4R . O 点的磁感应强度为0042x z IIB B RRμμπ=--=--B i k i k .场强大小为B ==X 轴的夹角为2arctan arctan z x B B θπ==.14.6 如图所示的正方形线圈ABCD ,每边长为a ,通有电流I .求正方形中心O 处的磁感应强度B = ?解:正方形每一边到O 点的距离都是a /2,在O 点产生的磁场大小相等、方向相同.以AD 边为例,利用直线电流的磁场公式: 012(cos cos )4IB Rμθθπ=-,令θ1 = π/4、θ2 = 3π/4、R = a /2,AD 在O产生的场强为02AD IB aπ=, O点的磁感应强度为04AD IB B aπ==,方向垂直纸面向里.14.7 两个共轴圆线圈,每个线圈中的电流强度都是I ,半径为R ,两个圆心间距离O 1O 2 = R ,试证:O 1、O 2中点O 处附近为均匀磁场. 证:方法一:用二阶导数.一个半径为R 的环电流在离圆心为x 的轴线上产生的磁感应强度大小为:20223/22()IR B R x μ=+. 设两线圈相距为2a ,以O 点为原点建立坐标,两线圈在x 点产生的场强分别为201223/22[()]IR B R a x μ=++, 202223/22[()]IR B R a x μ=+-.方向相同,总场强为B = B 1 + B 2.一个线圈产生的磁场的曲线是凸状,两边各有一个拐点.两个线圈的磁场叠加之后,如果它们相距太近,其曲线就是更高的凸状;如果它们相距太远,其曲线的中间部分就会下凹,与两边的峰之间各有一个拐点.当它们由远而近到最适当的位置时,两个拐点就会在中间重合,这时的磁场最均匀,而拐点处的二阶导数为零.设k = μ0IR 2/2,则 223/2223/211{}[()][()]B k R a x R a x =++++- 对x 求一阶导数得225/2d 3{d [()]B a x k x R a x +=-++,225/2}[()]a xR a x --+-求二阶导数得2222227/2d 4()3{d [()]B R a x k x R a x -+=-++22227/24()}[()]R a x R a x --++-, 在x = 0处d 2B /d x 2 = 0,得R 2 = 4a 2,所以2a = R .x = 0处的场强为223/22[(/2)]B k R R =+k == 方法二:用二项式展开.将B 1展开得2012223/22[2]IR B R a ax x μ=+++20223/22223/22()[1(2)/()]IR R a ax x R a μ=++++. 设20223/22()IR k R a μ=+,则 23/21222(1)ax x B k R a -+=++.同理,23/22222(1)ax x B k R a--+=++.图14.7当x 很小时,二项式展开公式为 2(1)(1)1 (12)nn n x nx x -+=+++⋅. 将B 1和B 2按二项式展开,保留二次项,令R 2 - 4a 2 = 0,即a = R /2,得20223/22()IR B k R a μ===+O 点附近为均强磁场.14.8 将半径为R 的无限长导体圆柱面,沿轴向割去一宽为h (h <<R )的无限长缝后,沿轴向均匀地通有电流,面密度为i ,求轴线上的磁感应强度B = ? 解:方法一:补缺法.导体圆柱面可看作由很多无限长直导线组成,如果补上长缝,由于对称的缘故,电流在轴线上产生的磁感应强度为零.割去长缝,等效于同时加上两个大小相等,方向相反的电流,其中,与i 相同的电流补上了长缝,与i 相反的电流大小为I = ih .在轴线上产生的磁感应强度为0022I ihB R Rμμππ==.方法二:积分法.在导体的截面上建立坐标,x 坐标轴平分角α,α = h/R . 电流垂直纸面向外,在圆弧上取一线元d s = R d θ, 无限长直线电流为d I = i d s = iR d θ,在轴线产生的磁感应强度大小为00d d d 22I iB R μμθππ==,两个分量分别为0d d sin sin d 2x i B B μθθθπ==,0d d cos cos d 2y iB B μθθθπ=-=-. 积分得2/22/200/2/2sin d cos 22x i iB παπαααμμθθθππ--==-⎰0[cos(2/2)cos(/2)]02iμπααπ=---=; 2/22/200/2/2cos d sin 22y i iB παπαααμμθθθππ--=-=-⎰0[sin(2/2)sin(/2)]2i μπααπ=--- 0002sin 2222i iih Rμμμααπππ=≈=. B y 的方向沿着y 方向.B y 的大小和方向正是无限长直线电流ih 产生的磁感应强度.14.9在半径为R = 1.0cm 的无限长半圆柱形导体面中均匀地通有电流I =5.0A ,如图所示.求圆柱轴线上任一点的磁感应强度B = ?解:取导体面的横截面,电流方向垂直纸面向外.半圆的周长为C = πR , 电流线密度为i = I/C = IπR .在半圆上取一线元d l = R d φ代表无限长直导线的截面,电流元为d I = i d l = I d φ/π,在轴线上产生的磁感应强度为002d d d 22I I B R Rμμϕππ==,方向与径向垂直.d B 的两个分量为d B x = d B cos φ,d B y = d B sin φ.积分得002200cos d sin 022x I IB R R ππμμϕϕϕππ===⎰,020sin d 2y I B R πμϕϕπ=⎰00220(cos )2II R Rπμμϕππ=-=.由对称性也可知B x = 0,所以磁感应强度B = B y = 6.4×10-5(T),方向沿着y 正向.14.10 宽度为a 的薄长金属板中通有电流I ,电流沿薄板宽度方向均匀分布.求在薄板所在平面内距板的边缘为x 的P 点处的磁感应强度(如图所示).解:电流分布在薄板的表面上,单位长度上电流密度,即面电流的线密度为δ = I/a ,以板的下边缘为原点,在薄板上取一宽度为d l 的通电导线,电流强度为 d I = δd l ,在P 点产生磁感应强度为00d d d 22()I lB r x a l μμδππ==+-, 磁场方向垂直纸面向外.由于每根电流产生的磁场方向相同,总磁场为00d 2()alB x a l μδπ=+-⎰00ln()2al x a l μδπ==-+-0ln(1)2I aa xμπ=+. [讨论]当a 趋于零时,薄板就变成直线,因此00ln(1/)2/2I I a x B x a x x μμππ+=→,这就是直线电流产生的磁场强度的公式.14.11 在半径为R 的木球上紧密地绕有细导线,相邻线圈可视为相互平行,盖住半个球面,如图所示.设导线中电流为I ,总匝数为N ,求球心O 处的磁感应强度B = ?解:四分之一圆的弧长为C = πR /2,单位弧长上线圈匝数为n = N/C = 2N/πR .在四分之一圆上取一弧元d l = R d θ,线圈匝数为d N = n d l = nR d θ,环电流大小为 d I = I d N = nIR d θ.环电流的半径为 y = R sin θ,离O 点的距离为 x = R cos θ, 在O 点产生的磁感应强度为22003d d sin d 22y InIB R μμθθ==20sin d NIRμθθπ=, 方向沿着x 的反方向,积分得O 点的磁感应强度为/2200sin d NI B R πμθθπ=⎰/2000(1cos 2)d 24NI NIR R πμμθθπ=-=⎰.14.12 两个共面的平面带电圆环,其内外半径分别为R 1、R 2和R 3、R 4(R 1 < R 2 < R 3 < R 4),外面圆环以每秒钟n 2转的转速顺时针转动,里面圆环以每称n 1转逆时针转动,若两圆环电荷面密度均为ζ,求n 1和n 2的比值多大时,圆心处的磁感应强度为零.解:半径为r 的圆电流在圆心处产生的磁感应强度为B = μ0I /2r .在半径为R 1和R 2的环上取一半径为r 、宽度为d r 的薄环,其面积为d S = 2πr d r ,所带的电量为d q = ζd S = 2πζr d r ,圆环转动的周期为T 1 = 1/n 1,形成的电流元为d I = d q/T 1 = 2πn 1ζr d r .薄环电流可以当作圆电流,在圆心产生的磁感应强度为d B 1 = μ0d I /2r = πμ0n 1ζd r , 圆环在圆心产生磁感应强度为B 1 = πμ0n 1ζ(R 2-R 1).同理,半径为R 3和R 4的圆环在圆心处产生的磁感应强度为B 2 = πμ0n 2ζ(R 4-R 3).由于两环的转动方向相反,在圆心产生的磁感应强度也相反,当它们大小相同时,圆心处的磁感应强度为零,即:πμ0n 1ζ(R 2-R 1) = πμ0n 2ζ(R 4-R 3),图14.10 图14.11解得比值为431221= R R n n R R --.14.13 半径为R 的无限长直圆柱导体,通以电流I ,电流在截面上分布不均匀,电流密度δ = kr ,求:导体内磁感应强度?解:在圆柱体内取一半径为r 、宽度为d r 的薄圆环,其面积为d S = 2πr d r , 电流元为d I = δd S = 2πk r 2d r ,从0到r 积分得薄环包围的电流强度为I r = 2πk r 3/3;从0到R 积分得全部电流强度I = 2πkR 3/3,因此I r /I = r 3/R 3. 根据安培环路定理可得导体内的磁感应强度:200322r I IB r r Rμμππ==.14.14 有一电介质圆盘,其表面均匀带有电量Q ,半径为a ,可绕盘心且与盘面垂直的轴转动,设角速度为ω.求圆盘中心o 的磁感应强度B = ?解:圆盘面积为S = πa 2,面电荷密度为ζ = Q/S = Q/πa 2.在圆盘上取一半径为r 、宽度为d r 的薄环,其面积为d S = 2πr d r ,所带的电量为d q = ζd S= 2πζr d r .薄圆环转动的周期为 T = 2π/ω,形成的电流元为d I = d q/T = ωζr d r .薄环电流可以当作圆电流,在圆心产生的磁感应强度为d B = μ0d I /2r = μ0ωζd r /2,从o 到a 积分得圆盘在圆心产生磁感应强度为B = μ0ωζa /2 = μ0ωQ /2πa .如果圆盘带正电,则磁场方向向上.14.15 二条长直载流导线与一长方形线圈共面,如图所示.已知a = b =c = 10cm ,l = 10m ,I 1 = I 2 = 100A ,求通过线圈的磁通量.解:电流I 1和I 2在线圈中产生的磁场方向都是垂直纸面向里的,在坐标系中的x 点,它们共同产生的磁感应强度大小为01022(/2)2(/2)I I B a b x c b x μμππ=++++-.在矩形中取一面积元d S = l d x ,通过面积元的磁通量为d Φ = B d S = Bl d x , 通过线圈的磁通量为/2012/2()d 2/2/2b b l I I x a b x c b xμΦπ-=++++-⎰ 011(ln ln )2l a b c I I a c bμπ+=-+=2×10-7×10×100×2ln2=2.77×10-4(Wb).14.16 一电子在垂直于均匀磁场的方向做半径为R = 1.2cm 的圆周运动,电子速度v = 104m·s -1.求圆轨道内所包围的磁通量是多少? 解:电子所带的电量为e = 1.6×10-19库仑,质量为m = 9.1×10-31千克.电子在磁场所受的洛伦兹力成为电子做圆周运动的向心力, 即:f = evB = mv 2/R ,所以 B = mv/eR . 电子轨道所包围的面积为 S = πR 2, 磁通量为 Φ = BS = πmvR/e =2.14×10-9(Wb).图14.13图14.1614.17 同轴电缆由导体圆柱和一同轴导体薄圆筒构成,电流I 从一导体流入,从另一导体流出,且导体上电流均匀分布在其横截面积上,设圆柱半径为R 1,圆筒半径为R 2,如图所示.求:(1)磁感应强度B 的分布;(2)在圆柱和圆筒之间单位长度截面的磁通量为多少?解:(1)导体圆柱的面积为 S = πR 12,面电流密度为δ = I/S = I/πR 12.在圆柱以半径r 作一圆形环路,其面积为S r = πr 2,包围的电流是I r = δS r = Ir 2/R 12.根据安培环路定理,d 00rLI I μμ==⋅∑⎰l B由于B 与环路方向相同,积分得2πrB = μ0I r ,所以磁感应强度为B = μ0Ir /2πR 12,(0 < r < R 1). 在两导体之间作一半径为r 的圆形环中,根据安培环中定理可得B = μ0I /2πr ,(R 1 < r < R 2).在圆筒之外作一半径为r 的圆形环中,由于圆柱和圆筒通过的电流相反,所包围的电流为零,根据安培环中定理可得B = 0,(r > R 2). (2)在圆柱和圆筒之间离轴线r 处作一径向的长为l = 1、宽为d r 的矩形,其面积为d S = l d r = d r ,方向与磁力线的方向一致,通过矩形的磁通量为d Φ = B d S = B d r ,总磁通量为210211d ln 22R R II R r r R μμΦππ==⎰. *14.18 一长直载流导体,具有半径为R 的圆形横截面,在其内部有与导体相切,半径为a 的圆柱形长孔,其轴与导体轴平行,相距b = R – a ,导体截有均匀分布的电流I .(1)证明空孔内的磁场为均匀场并求出磁感应强度B 的值;(2)若要获得与载流为I ,单位长度匝数n 的长螺线管内部磁场相等的均匀磁场,a 应满足什么条件?(1)证:导体中的电流垂直纸面向外,电流密度为22()IR a δπ=-. 长孔中没有电流,可以当作通有相反电流的导体,两个电流密度的大小都为δ,这样,长孔中磁场是两个均匀分布的圆形电流产生的.如果在圆形截面中过任意点P 取一个半径为r 的同心圆,其面积为 S = πr 2,包围的电流为ΣI = δS = πr 2δ,根据安培环路定理可得方程2πrB r = μ0ΣI ,磁感应强度为 0022r I B r r μμδπ∑==,方向与矢径r 垂直. 同理,密度为-δ的电流在P 点产生的磁感应强度为0``2r B r μδ=,方向与矢径r`垂直.设两个磁感应强度之间的夹角为θ,则合场强的平方为222``2cos r r r r B B B B B θ=++,22220()(`2`cos )2B r r rr μδθ=++.根据余弦定理,如图可知:222`2`cos b r r rr ϕ=+-, 由于φ = π - θ,所以02B b μδ=,由于b 和δ都是常量,可见:长孔中是均匀磁场.将δ和b 代入公式得磁感应强度大小为02()IB R a μπ=+,可以证明磁场的方向向上.(2)解:长螺线管内部的场为B =μ0nI ,与上式联立得12a R nπ=-,这就是a 所满足的条件.14.19 在XOY 平面内有一载流线圈abcda ,通有电流I = 20A ,bc 半径R = 20cm ,电流方向如图所示.线圈处于磁感应强度B = 8.0×10-2T 的均强磁场中,B 沿着X 轴正方向.求:直线段ab 和cd 以及圆弧段bc 和da 在外磁场中所受安培力的大小和方向.解:根据右手螺旋法则,bc 弧和cd 边受力方向垂直纸面向外,da 弧和ab 边受力方向垂直纸面向里.由于对称的关系,ab 边和cd 边所受安培力的大小是相同的,bc 弧和da 弧所受安培力的大小也是相同的.ab 边与磁场方向的夹角是α = 45°,长度为l = R /sin α,所受安培力为 F ab = |I l ×B | = IlB sin α= IRB = 0.32(N) = F cd .在圆弧上取一电流元I d l ,其矢径R 与X 轴方向的夹角为θ,所受力的大小为 d F bc = |I d l ×B | = I d lB sin θ,由于线元为d l = R d θ,所以 d F bc = IRB sin θd θ,因此安培力为/20/2sin d (cos )bc F IRB IRB ππθθθ==-⎰= IRB = 0.32(N) = F da .14.20 载有电流I 1的无限长直导线旁有一正三角形线圈,边长为a ,载有电流I 2,一边与直导线平等且与直导线相距为b ,直导线与线圈共面,如图所示,求I 1作用在这三角形线圈上的力.解:电流I 1在右边产生磁场方向垂直纸面向里,在AB 边处产生的磁感应强度大小为B = μ0I 1/2πb ,作用力大小为F AB = I 2aB = μ0I 1I 2a /2πb ,方向向左.三角形的三个内角α = 60°,在AC 边上的电流元I 2d l 所受磁场力为 d F = I 2d lB , 两个分量分别为 d F x = d F cos α,d F y = d F sin α,与BC 边相比,两个x 分量大小相等,方向相同;两个y 分量大小相等,方向相反.由于 d l = d r /sin α,所以 d F x = I 2d rB cot α,积分得sin 012cot 1d 2b a x bI I F r r αμαπ+=⎰012cot sin ln 2I I b a b μααπ+==. 作用在三角形线圈上的力的大小为F = F AB – 2Fx 012(2I I a b μπ=,方向向左.14.21 载有电流I 1的无限长直导线,在它上面放置一个半径为R 电流为I 2的圆形电流线圈,长直导线沿其直径方向,且相互绝缘,如图所示.求I 2在电流I 1的磁场中所受到的力.解:电流I 1在右边产生磁场方向垂直纸面向里,右上1/4弧受力向右上方,右下1/4弧受力向右下方;电流I 1在左边产生磁场方向垂直纸面向外,左上1/4弧受力向右下方,左下1/4弧受力向右上方.因此,合力方向向右,大小是右上1/4弧所受的向右的力的四倍.电流元所受的力的大小为d F = I 2d lB ,其中d l = R d θ,B = μ0I 1/2πr ,而r = R cos θ, 所以向右的分别为d F x = d F cos θ = μ0I 1I 2d θ/2π,积分得/20120120d d 24x I I I I F πμμθπ==⎰,电流I 2所受的合力大小为F = 4F x = μ0I 1I 2,方向向右.14.22 如图所示,斜面上放有一木制圆柱,质量m = 0.5kg ,半径为R ,长为 l = 0.10m ,圆柱上绕有10匝导线,圆柱体的轴线位导线回路平面内.斜面倾角为θ,处于均匀磁场B = 0.5T 中,B 的方向竖直向上.如果线圈平面与斜面平行,求通过回路的电流I 至少要多大时,圆柱才不致沿斜面向下滚动?解:线圈面积为 S = 2Rl ,磁矩大小为p m = NIS ,方向与B 成θ角,所以磁力矩大小为M m = |p m ×B | = p m B sin θ = NI 2RlB sin θ,方向垂直纸面向外.重力大小为 G = mg ,力臂为L = R sin θ,重力矩为 M g = GL = mgR sin θ,方向垂直纸面向里.圆柱不滚动时,两力矩平衡,即NI 2RlB sin θ = mgR sin θ,解得电流强度为I = mg /2NlB = 5(A).14.23 均匀带电细直线AB ,电荷线密度为λ,可绕垂直于直线的轴O 以ω角速度均速转动,设直线长为b ,其A 端距转轴O 距离为a ,求: (1)O 点的磁感应强度B ;(2)磁矩p m ;(3)若a >>b ,求B 0与p m .解:(1)直线转动的周期为T = 2π/ω,在直线上距O 为r 处取一径向线元d r ,所带的电量为d q = λd r ,形成的圆电流元为d I = d q/T = ωλd r /2π, 在圆心O 点产生的磁感应强度为d B = μ0d I /2r = μ0ωλd r /4πr , 整个直线在O 点产生磁感应强度为001d ln 44a b a a bB r r aμωλμωλππ++==⎰,如果λ > 0,B 的方向垂直纸面向外. (2)圆电流元包含的面积为S = πr 2,形成的磁矩为 d p m = S d I = ωλr 2d r /2,积分得233d [()]26a bm ap r r a b a ωλωλ+==+-⎰.如果λ > 0,p m 的方向垂直纸面向外.(3)当a >>b 时,因为00ln(1)( (44)b B a a μωλμωλππ=+=+, 所以04b B a μωλπ≈. 33[(1)1]6m a b p a ωλ=+-3223[33()()]62a b b b a ba a a ωλωλ=++≈.14.24 一圆线圈直径为8cm ,共12匝,通有电流5A ,将此线圈置于磁感应强度为0.6T 的均强磁场中,求:(1)作用在线圈上的电大磁力矩为多少?(2)线圈平面在什么位置时磁力矩为最大磁力矩的一半.解:(1)线圈半径为R = 0.04m ,面积为S = πR 2,磁矩为p m = NIS = πR 2NI ,磁力矩为M = p m B sin θ.图14.22当θ = π/2时,磁力矩最大M m = p m B = πR 2NIB = 0.18(N·m).(2)由于M = M m sin θ,当M = M m /2时,可得sin θ = 0.5,θ = 30°或150°.*14.25 在半径为R ,通以电流I 2的圆电流的圆周上,有一无限长通以电流I 1的直导线(I 1,I 2相互绝缘,且I 1与圆电流I 2所在平面垂直),如图所示,求I 2所受的力矩.若I 1置于圆电流圆心处(仍垂直),I 2所受力矩又如何?解:在x 轴上方的圆周上取一电流元I 2d l ,其大小为I 2d l = I 2R d θ, 所受的安培力为 d F = I 2d l ×B , 其大小为 d F = |I 2d l ×B | = I 2R d θB sin φ,其中φ = θ/2,B 是电流I 1在电流元I 2d l 处产生的磁感应强度010124cos I I B r R μμππϕ==, 因此安培力的大小可化为012d t a n d 42I I F μθθπ=,力的方向垂直纸面向里. 如果在x 轴下方取一电流元,其受力方向垂直纸面向外,因此,圆周所受的安培力使其绕x 轴旋转.电流元所受的力矩为2012d d (sin )sin d 22I I R M F R μθθθπ==电流所受的力矩为201201(1cos )d 22I I R M πμθθπ=-⎰0122I I R μ=.如果电流I 1置于圆电流圆心处,那么I 2就与I 1产生的磁力线重合,所受的力为零,力矩也为零.14.26 一个电子在B = 20×10-4T 的磁场中,沿半径R = 2cm 的螺旋线运动,螺距h = 5cm ,如图所示,求: (1)电子的速度为多少? (2)B 的方向如何?解:电子带负电,设速度v 的方向与磁力线的负方向成θ角,则沿着磁力线方向的速度为v 1 = v cos θ,垂直速度为v 2 = v sin θ.由 R = mv 2/eB ,得 v 2 = eBR/m . 由 h = v 1T ,得 v 1 = h/T = heB /2πm ,因此速度为v ==106(m·s -1); 由 212tan v Rv hπθ=== 2.51,得 θ = 68.3° = 68°18′.14.27 一银质条带,z 1 = 2cm ,y 1 = 1mm .银条置于Y 方向的均匀磁场中B = 1.5T ,如图所示.设电流强度I = 200A ,自由电子数n = 7.4×1028个·m -3,试求:(1)电子的漂移速度;(2)霍尔电压为多少?解:(1)电流密度为 δ = ρv ,其中电荷的体密度为ρ = ne .电流通过的横截面为S = y 1z 1,电流强度为I =δS = neSv ,得电子的漂移速度为 281917.410 1.6100.0010.02I v neS -==⨯⨯⨯⨯⨯=8.45×10-4(m·s -1). (2)霍尔系数为2819117.410 1.610H R ne -==⨯⨯⨯= 8.44×10-11(m 3·C -1), 霍尔电压为111200 1.58.44100.001H H IB U R y -⨯==⨯= 2.53×10-5(V).。
大学物理第14章学习题答案
![大学物理第14章学习题答案](https://img.taocdn.com/s3/m/a2a2cfc20c22590102029da6.png)
习题十四14-1 自然光是否一定不是单色光?线偏振光是否一定是单色光?答:自然光不能说一定不是单色光.因为它只强调存在大量的、各个方向的光矢量,并未要求各方向光矢量的频率不一样.线偏振光也不一定是单色光.因为它只要求光的振动方向同一,并未要求各光矢的频率相同.14-2 用哪些方法可以获得线偏振光?怎样用实验来检验线偏振光、部分偏振光和自然光? 答:略.14-3 一束光入射到两种透明介质的分界面上时,发现只有透射光而无反射光,试说明这束光是怎样入射的?其偏振状态如何?答:这束光是以布儒斯特角入射的.其偏振态为平行入射面的线偏振光. 14-4 什么是光轴、主截面和主平面?什么是寻常光线和非常光线?它们的振动方向和各自的主平面有何关系? 答:略.14-5 在单轴晶体中,e 光是否总是以e n c /的速率传播?哪个方向以0/n c 的速率传播? 答:e 光沿不同方向传播速率不等,并不是以0/n c 的速率传播.沿光轴方向以0/n c 的速率传播.14-6是否只有自然光入射晶体时才能产生O 光和e 光?答:否.线偏振光不沿光轴入射晶体时,也能产生O 光和e 光.14-7投射到起偏器的自然光强度为0I ,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过130°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是0I 的几倍? 解:由马吕斯定律有0o 2018330cos 2I I I ==0ο2024145cos 2I I I ==0ο2038160cos 2I I I ==所以透过检偏器后光的强度分别是0I 的83,41,81倍. 14-8 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为1I ,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与1I 之比为多少?解:由马吕斯定律ο20160cos 2I I =80I = 32930cos 30cos 20ο2ο20I I I ==∴25.2491==I I14-9 自然光入射到两个重叠的偏振片上.如果透射光强为,(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少? 解:(1) max 120131cos 2I I I ==α 又 2max I I =∴ ,61I I =故 'ο11124454,33cos ,31cos===ααα. (2) 0220231cos 2I I I ==α ∴ 'ο221635,32cos ==αα 14-10 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少?(2)折射角为多少? 解:(1),140.1tan 0=i ∴'ο02854=i (2) 'ο0ο323590=-=i y14-11 利用布儒斯特定律怎样测定不透明介质的折射率?若测得釉质在空气中的起偏振角为58°,求釉质的折射率. 解:由158tan οn=,故60.1=n 14-12 光由空气射入折射率为n 的玻璃.在题14-12图所示的各种情况中,用黑点和短线把反射光和折射光的振动方向表示出来,并标明是线偏振光还是部分偏振光.图中.arctan ,00n i i i =≠题图14-12解:见图.题解14-12图题14-13图*14-13如果一个二分之一波片或四分之一波片的光轴与起偏器的偏振化方向成30°角,试问从二分之一波片还是从四分之一波片透射出来的光将是:(1)线偏振光?(2)圆偏振光?(3)椭圆偏振光?为什么?解:从偏振片出射的线偏振光进入晶(波)片后分解为e o ,光,仍沿原方向前进,但振方向相互垂直(o 光矢垂直光轴,e 光矢平行光轴).设入射波片的线偏振光振幅为A ,则有A.2130sin ,A 2330cos οο====A A A A o e ∴ e o A A ≠e o , 光虽沿同一方向前进,但传播速度不同,因此两光通过晶片后有光程差.若为二分之一波片,e o ,光通过它后有光程差2λ=∆,位相差πϕ=∆,所以透射的是线偏振光.因为由相互垂直振动的合成得ϕϕ∆=∆-+22222sin cos 2eo eoA A xyA y A x ∴ 0)(2=+eo A yA x 即 x A A y oe-= 若为四分之一波片,则e o ,光的,4λ=∆位相差2πϕ=∆,此时1sin ,0cos =∆=∆ϕϕ∴12222=+eoA y A x即透射光是椭圆偏振光.*14-14 将厚度为1mm 且垂直于光轴切出的石英晶片,放在两平行的偏振片之间,对某一波长的光波,经过晶片后振动面旋转了20°.问石英晶片的厚度变为多少时,该波长的光将完全不能通过?解:通过晶片的振动面旋转的角度ϕ与晶片厚度d 成正比.要使该波长的光完全不能通过第二偏振片,必须使通过晶片的光矢量的振动面旋转ο90. ∴ 1212::d d =ϕϕmm 5.412090οο1122=⨯==d d ϕϕ。
大学物理(二)智慧树知到答案2024年湖南大学
![大学物理(二)智慧树知到答案2024年湖南大学](https://img.taocdn.com/s3/m/718411371611cc7931b765ce05087632311274b1.png)
大学物理(二)湖南大学智慧树知到答案2024年第一章测试1.电场中某点的电场强度与检验电荷无关。
A:错 B:对答案:B2.若闭合曲面内没有电荷,则闭合面上的电场强度处处为零。
A:错 B:对答案:A3.电场中某一点电势的量值与电势零点选择无关。
A:错 B:对答案:A4.静电场的电场线一定是闭合曲线。
A:对 B:错答案:B5.静电场中两点的电势差与电势零点选择无关。
A:对 B:错答案:A6.A:只适用于具有球对称性、轴对称性和平面对称性的静电场. B:只适用于真空中的静电场. C:只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. D:适用于任何静电场.答案:D7.A: B: C:D:答案:C8.A: B:C:D:答案:C9.真空中,有一均匀带电细圆环,半径为R,电荷线密度为l,选无穷远处电势为零,则其圆心处的电势为A: B: C: D:答案:B10.A: B: C:D:答案:A第二章测试1.A:错 B:对答案:A2.A:对 B:错答案:A3.一般情况下电介质内部没有自由电荷。
A:对 B:错答案:A4.A:对 B:错答案:B5.如果自由电荷与介质分布都不具备对称性,不能由高斯定理求出电场。
A:对 B:错答案:A6.关于高斯定理,这些说法中哪一个是正确的?A: B:这些说法都不正确C:D:答案:D7.两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则A:大小关系无法确定. B:空心球电容值大. C:两球电容值相等. D:实心球电容值大.答案:C8.A:C1极板上电量减少,C2极板上电量减少. B:C1极板上电量增加,C2极板上电量减少. C:C1极板上电量增加,C2极板上电量增加. D:C1极板上电量减少,C2极板上电量增加.答案:C9.A: B: C: D:答案:C10.A:只适用于均匀电介质. B:适用于任何电介质. C:只适用于各向同性线性电介质. D:适用于线性电介质.答案:B第三章测试1.安培环路定理是磁场的基本规律之一。
湖南大学物理(二)答案资料
![湖南大学物理(二)答案资料](https://img.taocdn.com/s3/m/c8ccde66c850ad02de80419f.png)
普通物理A (2)练习册 参考解答第12章 真空中的静电场一、选择题1(C),2(A),3(C),4(D),5(B),二、填空题(1). 0,λ / (2ε0) ; (2). 0 ; (3). -2×103 V ;(4). ⎪⎪⎭⎫ ⎝⎛-πb ar r q q 1140ε; (5). 0,pE sin α ;三、计算题1. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强. 解:在O 点建立坐标系如图所示. 半无限长直线A ∞在O 点产生的场强:()j i RE-π=014ελ半无限长直线B ∞在O 点产生的场强:()j i RE +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i RE +π=034ελ由场强叠加原理,O 点合场强为:()j i RE E E E+π=++=03214ελ2. 两根相同的均匀带电细棒,长为l ,电荷线密度为λ,沿同一条直线放置.两细棒间最近距离也为l ,如图所示.假设棒上的电荷是不能自由移动的,试求两棒间的静电相互作用力.解:选左棒的左端为坐标原点O ,x 轴沿棒方向向右,在左棒上x 处取线元d x ,其电荷为d q =λd x ,它在右棒的x '处产生的场强为:()204d d x x xE -'π=ελ整个左棒在x '处产生的场强为:BA∞O B A ∞∞()⎰-'π=lx x xE 0204d ελ⎪⎭⎫⎝⎛'--'π=x l x 1140ελ 右棒x '处的电荷元λd x '在电场中受力为:x x l x x E F '⎪⎭⎫⎝⎛'--'π='=d 114d d 02ελλ整个右棒在电场中受力为:⎜⎠⎛'⎪⎭⎫ ⎝⎛'--'π=ll x x l x F 3202d 114ελ34ln 402ελπ=,方向沿x 轴正向. 左棒受力 F F -='另解:d d ,d d q x q x λλ''==220d d d 4()x x F x x λπε'='-232020d d d 4()ll lx x F F x x λπε'=='-⎰⎰⎰⎰223202000d d 11()d 4()423ll l l x x x x x x l x l λλπεπε'==-'---⎰⎰⎰ 204ln 43λπε= F F -='3. 一“无限长”圆柱面,其电荷面密度为: σ = σ0cos φ ,式中φ为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为 λ = σ0cos φ R d φ, 它在O 点产生的场强为: φφεσελd s co 22d 000π=π=RE 它沿x 、y 轴上的二个分量为:d E x =-d E cos φ =φφεσd s co 2200π-d E y =-d E sin φ =φφφεσd s co sin 200π 积分:⎰ππ-=2020d s co 2φφεσx E =002εσ0)d(sin sin 220=π-=⎰πφφεσy E ∴ i i E E x02εσ-==4. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q SE S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεkSb xdx kSS E E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x kE ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得2/b x =5. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零). 解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为ixx E 012εσ=圆盘在该处的场强为i x R x x E⎪⎪⎭⎫ ⎝⎛+--=2202112εσ'∴ i x R x E E E 220212+=+=εσ该点电势为 ()220222d 2x R R xR x x U x+-=+=⎰εσεσ6.一真空二极管,其主要构件是一个半径R 1=5×10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5×10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6×10-19 C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R BA B A r rr E U U ελ 120ln 2R R ελπ-= 得到 ()120/ln 2R R U U A B -=πελ, 所以 ()rR R U U E A B 1/ln 12⋅-=在阴极表面处电子受电场力的大小为 ()()11211/c R R R U U eR eE F A B ⋅-===4.37×10-14 N 方向沿半径指向阳极.7. 如图所示,半径为R 的均匀带电球面,带有电荷q .沿某一半径方向上有一均匀带电细线,电荷线密度为λ,长度为l ,细线左端离球心距离为r 0.设球和线上的电荷分布不受相互作用影响,试求细线所受球面电荷的电场力和细线在该电场中的电势能(设无穷远处的电势为零).解:设x 轴沿细线方向,原点在球心处,在x 处取线元d x ,其上电荷为x q d d λ=',该线元在带电球面的电场中所受电场力为: d F = q λd x / (4πε0 x 2)整个细线所受电场力为:()l r r l q x x q F l r r +π=π=⎰+00024d 400ελελ方向沿x 正方向.电荷元在球面电荷电场中具有电势能:xd W = (q λd x ) / (4πε0 x )整个线电荷在电场中具有电势能:⎪⎪⎭⎫⎝⎛+π=π=⎰+0000ln 4d 400r l r q x x q W l r r ελελ四 研讨题1. 真空中点电荷q 的静电场场强大小为 2041r qE πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰cb a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 从工厂的烟囱中冒出的滚滚浓烟中含有大量颗粒状粉尘,它们严重污染了环境,影响到作物的生长和人类的健康。
湖南大学物理(2)第14,15章课后习题参考答案
![湖南大学物理(2)第14,15章课后习题参考答案](https://img.taocdn.com/s3/m/717f0f77f4335a8102d276a20029bd64783e6230.png)
湖南大学物理(2)第14,15章课后习题参考答案第14章稳恒电流的磁场一、选择题1(b)、2(d)、3(d)、4(b)、5(b)、6(d)、7(b)、8(c)、9(d)、10(a)II。
填空(1).最大磁力矩,磁矩;(2).?r2c;(3).0i/(4a);(4).0i4?R(5).?0i,沿轴线方向朝右.;(6).?0ri/(2?r12),0;(7).4;(8).mg/(lb);(9).aib;(10).正,负.三道计算题一.一无限长圆柱形铜导体(磁导率?0),半径为r,通有均匀分布的电流i.今取一矩形平面s(长为1m,宽为2r),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解决方案:圆柱与导体中心轴之间距离r处的磁感应强度大小可通过安培环路定律获得:is2r1mB0i2?r2r(r?r)因而,穿过导体内画斜线部分平面的磁通?1为R0i?0irdr??1.Bds??北斗卫星导航系统22? r4?0在圆形导体外,距离导体中心轴r处的磁感应强度为B??0i2?r(r?r)因而,穿过导体外画斜线部分平面的磁通?2为2r?0i??我2.Bds??博士0ln22?2?rr?i?i穿过整个矩形平面的磁通量1??2?0?0ln24.2.n2.横截面为矩形的环形螺线管,圆环内外半径分别为r1和r2,芯子材材料的渗透性是?,导线的总匝数为n,且绕得很紧。
如果线圈通过电流I通电,计算(1)铁芯中的B值和铁芯部分的磁通量。
(2) R<R1和R>R2时的B值bR2r1解:(1)根据安培环路定理,在环路中做一个半径为r的圆环路b?2?r??ni,b??ni/(2?r)在r处取微小截面ds=bdr,通过此小截面的磁通量dφ?北斗卫星导航系统穿过截面的磁通量φ??ni2?rbdr北斗卫星导航系统sni2?rbdr??nib2?Lnr2r1i(2)还在环外形成一个环形电路(r<R1和r>R2)i0B2.R0∴b=03.一根很长的圆柱形铜导线均匀载有10a电流,在导线内部作一平面s,s的一个边是导线的中心轴线,另一边是s平面与导线表面的交线,如图所示.试计算通沿导体长度方向穿过一段长度为1m的s平面的磁通量-(真空的磁导率?0=4?×107tm/a,铜的相对磁导率?r≈1)s解决方案:与导线中心轴的距离为x和x?在DX,制作一个单位长度的窄条,其面积为DS?1.DX。
湖南大学物理(2)第14,15章课后习题参考答案
![湖南大学物理(2)第14,15章课后习题参考答案](https://img.taocdn.com/s3/m/c6247109f78a6529647d53e4.png)
第14章 稳恒电流的磁场 一、选择题1(B),2(D),3(D),4(B),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8). )/(lB mg ; (9). aIB ; (10). 正,负.三 计算题1.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得:)(220R r r RIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r R I Rd 2020⎰π=μπ=40Iμ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+Iμ1 m2. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1) 芯子中的B 值和芯子截面的磁通量. (2) 在r< R 1和r > R 2处的B 值.解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得NI r B μ=π⋅2, )2/(r NI B π=μ 在r 处取微小截面d S = b d r , 通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量⎰=SS B dΦr b rNId 2π=μ12ln2R R NIbπ=μ (2) 同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于0=∑iI02=π⋅r B ∴ B = 03. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)解:在距离导线中心轴线为x 与x x d +处,作一个单位长窄条, 其面积为 x S d 1d ⋅=.窄条处的磁感强度 202RIxB r π=μμ所以通过d S 的磁通量为 x RIxS B r d 2d d 20π==μμΦ通过1m 长的一段S 平面的磁通量为⎰π=Rr x RIx20d 2μμΦ60104-=π=Ir μμ Wb4. 计算如图所示的平面载流线圈在P 点产生的磁感强度,设线圈中的电流强度为I .解:如图,CD 、AF 在P 点产生的 B = 0x2EF D E BC AB B B B B B+++= )sin (sin 4120ββμ-π=aIB AB , 方向⊗其中 2/1)2/(sin 2==a a β,0sin 1=β∴ a I B AB π=240μ, 同理, a IB BC π=240μ,方向⊗.同样)28/(0a I B B EF D E π==μ,方向⊙.∴ aI B π=2420μaIπ-240μaIπ=820μ 方向⊗.5. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言).重力矩 αραρsin sin 2121gSa a a gS a M +⋅= αρsin 22g Sa =磁力矩 ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M =所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρ T6. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有 2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B 方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.P7. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B 的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
湖南省十四校2024届物理高一第二学期期末质量检测模拟试题含解析
![湖南省十四校2024届物理高一第二学期期末质量检测模拟试题含解析](https://img.taocdn.com/s3/m/2ba9b310326c1eb91a37f111f18583d048640f7d.png)
湖南省十四校2024届物理高一第二学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得5分,选不全的得3分,有选错的或不答的得0分)1、(本题9分)两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木块每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的.由图可知()A.在时刻t2以及时刻t5两木块速度相同B.在时刻t3两木块速度相同C.在时刻t3和时刻t4之间某瞬时两木块速度相同D.在时刻t4和时刻t5之间某瞬时两木块速度相同2、以下四种规格的用电器,让它们在额定电压下工作相同的时间,下列说法正确的是()A.电动机输出功率为650W B.电风扇和电烙铁产生的热量相同C.电风扇和电烙铁消耗的电能相同D.日光灯消耗的电能全部转化为光能3、 (本题9分)为了测定木块和竖直墙壁之间的滑动摩擦因数,某同学设计了一个实验:用一根弹簧将木块压在墙上,同时在木块下方有一个拉力F 2作用,使木块恰好匀速向下运动(弹簧随木块一起向下运动),如下图所示.现分别测出了弹簧的弹力F 1、拉力F 2和木块的重力G ,则动摩擦因数μ应等于( )A .21G F F +B .21F FC .1G FD .12G F F +4、(本题9分)关于点电荷的说法,正确的是( ) A .只有体积很小的带电体,才能看作点电荷 B .体积很大的带电体一定不能看作点电荷 C .点电荷一定是电荷量很小的电荷D .两个带电的金属小球,不一定能将它们作为电荷集中在球心的点电荷处理5、 (本题9分)如图是多级减速装置的示意图、每一级减速装置都是由固定在同一装动轴上、绕同一转动轴转动的大小两个轮子组成。
大学物理下册(湖南大学陈曙光)课后习题答案和全解
![大学物理下册(湖南大学陈曙光)课后习题答案和全解](https://img.taocdn.com/s3/m/f28c5147852458fb770b5667.png)
大学物理下册课后习题全解()第十二章 真空中的静电场12.1 如图所示,在直角三角形ABCD 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强.[解答]根据点电荷的场强大小的公式 22014q q E k r r ==πε,其中1/(4πε0) = k = 9.0×109N·m 2·C -2. 点电荷q 1在C 点产生的场强大小为: 112014q E AC=πε994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯方向向下.点电荷q 2在C 点产生的场强大小为 2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯, 方向向右.C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.12.2 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电线密度分别为+λ和-λ,求圆心处的场强. [解答]在带正电的圆弧上取一弧元d s = R d θ,电荷元为d q = λd s , 在O 点产生的场强大小为 220001d 1d d d 444q s E R R Rλλθπεπεπε===, 场强的分量为d E x = d E cos θ,d E y = d E sin θ.对于带负电的圆弧,同样可得在O 点的场强的两个分量.由于弧形是对称的,x 方向的合场强为零,总场强沿着y 轴正方向,大小为2d sin y LE E E ==⎰θ/6/6000sin d (cos )22RR==-⎰ππλλθθθπεπε0(12R=λπε.12.3 均匀带电细棒,棒长a = 20cm ,电荷线密度为λ = 3×10-8C·m -1,求: (1)棒的延长线上与棒的近端d 1 = 8cm 处的场强;(2)棒的垂直平分在线与棒的中点相距d 2 = 8cm 处的场强.[解答](1)建立坐标系,其中L = a /2 = 0.1(m),x = L+d 1 = 0.18(m). 在细棒上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的场强公式,电荷元在P 1点产生的场强的大小为1220d d d 4()q lE k r x l ==-λπε图12.1场强的方向沿x 轴正向.因此P 1点的总场强大小通过积分得120d 4()L L l E x l λπε-=-⎰014LLx l λπε-=- 011()4x L x L λπε=--+220124L x Lλπε=-. ① 将数值代入公式得P 1点的场强为8912220.13109100.180.1E -⨯⨯⨯=⨯⨯-= 2.41×103(N·C -1), 方向沿着x 轴正向.(2)建立坐标系,y = d 2.在细棒上取一线元d l ,所带的电量为d q = λd l , 在棒的垂直平分在线的P 2点产生的场强的大小为2220d d d 4q lE kr rλπε==, 由于棒是对称的,x 方向的合场强为零,y 分量为 d E y = d E 2sin θ.由图可知:r = d 2/sin θ,l = d 2cot θ, 所以 d l = -d 2d θ/sin 2θ, 因此 02d sin d 4y E d λθθπε-=,总场强大小为02sin d 4Ly l LE d λθθπε=--=⎰02cos 4Ll Ld λθπε=-=LL=-==. ②将数值代入公式得P 2点的场强为89221/220.13109100.08(0.080.1)y E -⨯⨯⨯=⨯⨯+= 5.27×103(N·C -1). 方向沿着y 轴正向.[讨论](1)由于L = a /2,x = L+d 1,代入①式,化简得1011011144/1a E d d a d d a λλπεπε==++, 保持d 1不变,当a →∞时,可得1014E d λπε→, ③这就是半无限长带电直线在相距为d 1的延长线上产生的场强大小.(2)由②式得y E ==当a →∞时,得 022y E d λπε→, ④这就是无限长带电直线在线外产生的场强公式.如果d 1=d 2,则有大小关系E y = 2E 1.12.4 一均匀带电的细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.图12.4[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强. 在圆弧上取一弧元 d s =R d φ, 所带的电量为 d q = λd s ,在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为 d E x = -d E cos φ. 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向. 再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1,因此 θ/2 = π/4, 所以 θ = π/2.12.5 一宽为b 的无限长均匀带电平面薄板,其电荷密度为ζ,如图所示.试求:(1)平板所在平面内,距薄板边缘为a 处的场强.(2)通过薄板几何中心的垂直线上与薄板距离为d 处的场强.[解答](1)建立坐标系.在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = ζd x ,根据直线带电线的场强公式02E rλπε=, 得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-,其方向沿x 轴正向.由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰/2/2ln(/2)2b b b a x σπε--=+-0ln(1)2b aσπε=+. ① 场强方向沿x 轴正向.(2)为了便于观察,将薄板旋转建立坐标系.仍然在平面薄板上取一宽度为d x 的带电直线,电荷的线密度仍然为d λ = ζd x , 带电直线在Q 点产生的场强为221/200d d d 22()xE rb x λσπεπε==+,图12.5沿z 轴方向的分量为221/20cos d d d cos 2()z xE E b x σθθπε==+,设x = d tan θ,则d x = d d θ/cos 2θ,因此d d cos d 2z E E σθθπε==积分得arctan(/2)0arctan(/2)d 2b d z b d E σθπε-=⎰0arctan()2bd σπε=. ② 场强方向沿z 轴正向.[讨论](1)薄板单位长度上电荷为λ = ζb , ①式的场强可化为0ln(1/)2/b a E a b a λπε+=, 当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02E aλπε→, ③ 这正是带电直线的场强公式.(2)②也可以化为0arctan(/2)2/2z b d E d b dλπε=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02z E dλπε→,这也是带电直线的场强公式.当b →∞时,可得:02z E σε→, ④ 这是无限大带电平面所产生的场强公式.12.6 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少? [解答]点电荷产生的电通量为Φe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0. (2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.7 面电荷密度为ζ的均匀无限大带电平板,以平板上的一点O 为中心,R 为半径作一半球面,如图所示.求通过此半球面的电通量.[解答]设想在平板下面补一个半球面,与上面的半球面合成一个球面.球面内包含的电荷为 q = πR 2ζ,通过球面的电通量为 Φe = q /ε0,通过半球面的电通量为Φ`e = Φe /2 = πR 2ζ/2ε0.12.8 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性. (1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl ,穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2).(3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.9 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`.在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为 d e SΦ=⋅⎰E S 2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS ,包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES ,高斯面在板内的体积为V = Sd ,包含的电量为 q =ρV = ρSd , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强迭加法.(1)由于平板的可视很多薄板迭而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为 d ζ = ρd y ,产生的场强为 d E 1 = d ζ/2ε0,积分得100/2d ()222r d y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry dE r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0, E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场迭加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.10 一半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为R`<R 的小球体,如图所示,试求两球心O 与O`处的电场强度,并证明小球空腔内的电场为匀强电场.[解答]挖去一块小球体,相当于在该处填充一块电荷体密度为-ρ的小球体,因此,空间任何一点的场强是两个球体产生的场强的迭加.图12.10对于一个半径为R ,电荷体密度为ρ的球体来说,当场点P 在球内时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r r ππρε=P 点场强大小为 03E r ρε=. 当场点P 在球外时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r R ππρε=P 点场强大小为 3203R E rρε=. O 点在大球体中心、小球体之外.大球体在O 点产生的场强为零,小球在O 点产生的场强大小为320`3O R E aρε=,方向由O 指向O `. O`点在小球体中心、大球体之内.小球体在O`点产生的场强为零,大球在O 点产生的场强大小为`03O E a ρε=,方向也由O 指向O `. [证明]在小球内任一点P ,大球和小球产生的场强大小分别为03r E r ρε=, `0`3r E r ρε=,方向如图所示. 设两场强之间的夹角为θ,合场强的平方为 222``2cos r r r r E E E E E θ=++222()(`2`c o s )3r r r r ρθε=++, 根据余弦定理得222`2`c o s ()a r r r r πθ=+--, 所以 03E a ρε=, 可见:空腔内任意点的电场是一个常量.还可以证明:场强的方向沿着O 到O `的方向.因此空腔内的电场为匀强电场.12.11 如图所示,在A 、B 两点处放有电量分别为+q 和-q 的点电荷,AB 间距离为2R ,现将另一正试验电荷q 0从O 点经过半圆弧路径移到C 点,求移动过程中电场力所做的功.[解答]正负电荷在O 点的电势的和为零:U O = 0; 在C 点产生的电势为 0004346Cq q q U R R Rπεπεπε--=+=, 电场力将正电荷q 0从O 移到C 所做的功为W = q 0U OD = q 0(U O -U D ) = q 0q /6πε0R .12.12 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2ζ,B 平面的电荷面密度为ζ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少?[解答]两平面产生的电场强度大小分别为 E A = 2ζ/2ε0 = ζ/ε0,E B = ζ/2ε0,两平面在它们之间产生的场强方向相反,因此,总场强大小为 E = E A - E B = ζ/2ε0, 方向由A 平面指向B 平面.两平面间的电势差为 U = Ed = ζd /2ε0,图12.11当点电荷q 从A 面移到B 面时,电场力做的功为 W = qU = qζd /2ε0.12.13 一半径为R 的均匀带电球面,带电量为Q .若规定该球面上电势值为零,则无限远处的电势为多少?[解答]带电球面在外部产生的场强为 204Q E rπε=,由于 d d R R R U U E r ∞∞∞-=⋅=⎰⎰E l 200d 44RRQQr r r πεπε∞∞-==⎰04Q Rπε=,当U R = 0时,04QU Rπε∞=-.12.14 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明]球的体积为343V R π=,电荷的体密度为 334Q QV R ρπ==. 利用12.10题的方法可求球内外的电场强度大小为30034QE r r Rρεπε==,(r ≦R ); 204QE rπε=,(r ≧R ). 取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l 3200d d 44RrRQ Qr r r R r πεπε∞=+⎰⎰230084RrRQ QrRrπεπε∞-=+22300()84QQR r R R πεπε=-+2230(3)8Q R r Rπε-=.12.15 在y = -b 和y = b 两个“无限大”平面间均匀充满电荷,电荷体密度为ρ,其它地方无电荷. (1)求此带电系统的电场分布,画E-y 图;(2)以y = 0作为零电势面,求电势分布,画E-y 图.[解答]平板电荷产生的场强的方向与平板垂直且对称于中心面:E = E`,但方向相反. (1)在板内取一底面积为S ,高为2y 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为 d e S Φ=⋅⎰E S 0d d d 2S S S ES =⋅+⋅+⋅=⎰⎰⎰E S E S E S 12.高斯面内的体积为 V = 2yS , 包含的电量为 q = ρV = 2ρSy , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρy/ε0, (-b ≦y ≦b ).穿过平板作一底面积为S ,高为2y 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES , 高斯面在板内的体积为 V = S 2b ,包含的电量为 q = ρV = ρS 2b , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρb/ε0, (b ≦y ); E = -ρb/ε0, (y ≦-b ). E-y 图如图所示.(2)对于平面之间的点,电势为0d d y U y ρε=-⋅=-⎰⎰E l 22y C ρε=-+,在y = 0处U = 0,所以C = 0,因此电势为 22y U ρε=-,(-b ≦y ≦b ).这是一条开口向下的抛物线.当y ≧b 时,电势为00d d nqb nqb U y y C εε=-⋅=-=-+⎰⎰E l ,在y = b 处U = -ρb 2/2ε0,所以C = ρb 2/2ε0,因此电势为2002b b U y ρρεε=-+,(b ≦y ). 当y ≦-b 时,电势为 00d d b bU y y C ρρεε=-⋅==+⎰⎰E l , 在y = -b 处U = -ρb 2/2ε0,所以 C = ρd 2/2ε0,因此电势为2002b b U y ρρεε=+, 两个公式综合得 200||2b b U y ρρεε=-+,(|y |≧d ). 这是两条直线.U-y 图如右图所示.U-y 图的斜率就形成E-y 图,在y = ±b 点,电场强度是连续的,因此,在U-y 图中两条直线与抛物线在y = ±b 点相切.[注意]根据电场求电势时,如果无法确定零势点,可不加积分的上下限,但是要在积分之后加一个积分常量.根据其它关系确定常量,就能求出电势,不过,线积分前面要加一个负号,即d U =-⋅⎰E l这是因为积分的起点位置是积分下限.12.16 两块“无限大”平行带电板如图所示,A 板带正电,B 板带负电并接地(地的电势为零),设A 和B 两板相隔5.0cm ,板上各带电荷ζ=3.3×10-6C·m -2,求:(1)在两板之间离A 板1.0cm 处P 点的电势;(2)A 板的电势.[解答]两板之间的电场强度为 E=ζ/ε0,方向从A 指向B .以B 板为原点建立坐标系,则r B = 0,r P = -0.04m ,r A = -0.05m . (1)P 点和B 板间的电势差为 d d BBPPr r P B r r U U E r -=⋅=⎰⎰E l 0()B P r r σε=-, 由于U B = 0,所以P 点的电势为6123.3100.048.8410P U --⨯=⨯⨯=1.493×104(V). (2)同理可得A 板的电势为()A B A U r r σε=-=1.866×104(V).12.17 电量q 均匀分布在长为2L 的细直线上,试求: (1)带电直线延长线上离中点为r 处的电势; (2)带电直线中垂在线离中点为r 处的电势;(3)由电势梯度算出上述两点的场强. [解答]电荷的线密度为λ = q/2L .(1)建立坐标系,在细在线取一线元d l ,所带的电量为d q = λd l , 根据点电荷的电势公式,它在P 1点产生的电势为101d d 4lU r lλπε=-总电势为 10d 4L L l U r l λπε-=-⎰0ln()4Ll Lr l λπε=--=-0ln8q r LLr Lπε+=-. (2)建立坐标系,在细在线取一线元d l ,所带的电量为d q = λd l , 在线的垂直平分在线的P 2点产生的电势为2221/20d d 4()lU r l λπε=+,积分得2221/201d 4()LLU l r l λπε-=+⎰0)4Ll Ll λπε=-=08qLπε=0ln4q LLrπε=.(3)P 1点的场强大小为11U E r ∂=-∂011()8q L r L r L πε=--+22014q r L πε=-, ① 方向沿着x 轴正向.P 2点的场强为22U E r ∂=-∂01[4q L r πε==, ②方向沿着y 轴正向.[讨论]习题12.3的解答已经计算了带电线的延长线上的场强为1220124L E x L λπε=-,由于2L λ = q ,取x = r ,就得公式①. (2)习题12.3的解答还计算了中垂在线的场强为y E =d 2 = r ,可得公式②.由此可见,电场强度可用场强迭加原理计算,也可以用电势的关系计算.12.18 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强.[解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势. 在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为 d V = 4πr 2d r ,包含的电量为 d q = ρd V = 4πρr 2d r ,在球心处产生的电势为00d d d 4O q U r r rρπεε==, 球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-,包含的电量为 Q = ρV , 这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--.(2)A 点的场强为 0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂.[讨论] 过空腔中A 点作一半径为r 的同心球形高斯面,由于面内没有电荷,根据高斯定理,可得空腔中A 点场强为E = 0, (r ≦R 1).过球壳中B 点作一半径为r 的同心球形高斯面,面内球壳的体积为 3314()3V r R π=-, 包含的电量为 q = ρV ,根据高斯定理得方程 4πr 2E = q/ε0,可得B 点的场强为 3120()3R E r rρε=-, (R 1≦r ≦R 2).这两个结果与上面计算的结果相同.在球壳外面作一半径为r 的同心球形高斯面,面内球壳的体积为 33214()3V R R π=-, 包含的电量为 q = ρV ,根据高斯定理得可得球壳外的场强为 33212200()43R R qE r rρπεε-==,(R 2≦r ). A 点的电势为d d AAA r rU E r ∞∞=⋅=⎰⎰E l 12131200d ()d 3A R R r R R r r r r ρε=+-⎰⎰2332120()d 3R R R r r ρε∞-+⎰ 22210()2R R ρε=-.B 点的电势为d d BBB r rU E r ∞∞=⋅=⎰⎰E l 23120()d 3BR r R r r r ρε=-⎰2332120()d 3R R R r r ρε∞-+⎰322120(32)6B B R R r r ρε=--. A 和B 点的电势与前面计算的结果相同.12.19 一圆盘,半径为R ,均匀带电,面电荷密度为ζ,求:(1)圆盘轴线上任一点的电势(用该点与盘心的距离x 来表示); (2)从电场强度的和电势梯度的关系,求该点的电场强度. (此题解答与书中例题解答相同,在此省略)12.20 (1)设地球表面附近的场强约为200V·m -1,方向指向地球中心,试求地球所带有的总电量.(2)在离地面1400m 高处,场强降为20V·m -1,方向仍指向地球中心,试计算在1400m 下大气层里的平均电荷密度.[解答]地球的平均半径为 R =6.371×106m .(1)将地球当作导体,电荷分布在地球表面,由于场强方向指向地面,所以地球带负量. 根据公式 E = -ζ/ε0,电荷面密度为 ζ = -ε0E ;地球表面积为 S = 4πR 2, 地球所带有的总电量为Q = ζS = -4πε0R 2E = -R 2E /k ,k 是静电力常量,因此电量为 629(6.37110)200910Q ⨯⨯=-⨯=-9.02×105(C). (2)在离地面高为h = 1400m 的球面内的电量为 2()``R h E Q k+=-=-0.9×105(C),大气层中的电荷为 q = Q - Q` = 8.12×105(C).由于大气层的厚度远小于地球的半径,其体积约为 V = 4πR 2h = 0.714×1018(m 3), 平均电荷密度为 ρ = q /V = 1.137×10-12(C·m -3).第十三章 静电场中的导体和电介质13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为 204q E r πε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为 04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d S Φ=⋅⎰D S Ñ012d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr ,其方向垂直中心轴向外. 电场强度为 E = D/ε0εr = λ/2πε0εr r ,方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势迭加,大小为图13.3000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少? (2)A 板电势为多少? [解答](1)设A 的左右两面的电荷面密度分别为ζ1和ζ2,所带电量分别为q 1 = ζ1S 和q 2 = ζ2S ,在B 、C 板上分别感应异号电荷-q 1和-q 2,由电荷守恒得方程q = q 1 + q 2 = ζ1S + ζ2S . ① A 、B 间的场强为 E 1 = ζ1/ε0,A 、C 间的场强为 E 2 = ζ2/ε0. 设A 板与B 板的电势差和A 板与C 板的的电势差相等,设为ΔU ,则ΔU = E 1d 1 = E 2d 2, ② 即 ζ1d 1 = ζ2d 2. ③解联立方程①和③得 ζ1 = qd 2/S (d 1 + d 2), 所以 q 1 = ζ1S = qd 2/(d 1+d 2) = 2×10-8(C); q 2 = q - q 1 = 1×10-8(C). B 、C 板上的电荷分别为 q B = -q 1 = -2×10-8(C); q C = -q 2 = -1×10-8(C).(2)两板电势差为 ΔU = E 1d 1 = ζ1d 1/ε0 = qd 1d 2/ε0S (d 1+d 2), 由于 k = 9×109 = 1/4πε0,所以 ε0 = 10-9/36π, 因此 ΔU = 144π = 452.4(V).由于B 板和C 板的电势为零,所以 U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A ,带电量为q ,在它的附近放一块与A 平行的金属导体板B ,板B有一定的厚度,如图所示.则在板B 的两个表面1和2上的感应电荷分别为多少?[解答]由于板B 原来不带电,两边感应出电荷后,由电荷守恒得q 1 + q 2 = 0. ① 虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S ,则面电荷密度分别为 ζ1 = q 1/S 、ζ2 = q 2/S 、ζ = q/S ,它们产生的场强大小分别为 E 1 = ζ1/ε0、E 2 = ζ2/ε0、E = ζ/ε0. 在B 板内部任取一点P ,其场强为零,其中1面产生的场强向右,2面和A 板产生的场强向左,取向右的方向为正,可得 E 1 - E 2 – E = 0,即 ζ1 - ζ2 – ζ = 0, 或者 q 1 - q 2 + q = 0. ② 解得电量分别为 q 2 = q /2,q 1 = -q 2 = -q /2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V ,两板间相距为1.2mm ,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以ζ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面, 所以ζ4 = 0.由于两板带等量异号的电荷,所以ζ2 = -ζ3. 两板之间的场强为 E = ζ3/ε0,而 E = U/d , 所以面电荷密度分别为ζ3 = ε0E = ε0U/d = 8.84×10-7(C·m -2),ζ2 = -ζ3 = -8.84×10-7(C·m -2).13.7 一球形电容器,内外球壳半径分别为R 1和R 2,球壳与地面及其它物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214R C R R πε=-表示.(提示:可看作两个球电容器的并联,且地球半径R >>R 2)图13.4图13.6[证明]方法一:并联电容法.在外球外面再接一个半径为R 3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为1210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为 2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共享一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R RC C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的迭加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`Rq q R =-.根据高斯定理可得两球壳之间的场强为 122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l 121202()d 4R R R q r R r πε=-⎰1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为 120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-. 当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的界面插入一薄导体,可知两个电容器串联,电容分别为 C 1 = ε1S/d 1和C 2 = ε2S/d 2.总电容的倒数为 122112121212111d d d d C C C S S S εεεεεε+=+=+=,总电容为 122112S C d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ;(3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d S Φ=⋅⎰D S Ñ012d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl ,根据介质中的高斯定理 Φd = q ,可得电位为 D = λ/2πr ,方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr ,方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLRU E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为 00212ln(/)l qC U R R πε==,所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布;(2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d S SD S r D Φπ=⋅==⎰⎰D S 蜒高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2,方向沿着径向.用向量表示为 D = Q 0r /4πr 3.电场强度为 E = D /ε0εr = Q 0r /4πε0εr r 3,方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4r Q rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以 D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0.(2)在介质层内靠近金属球处,自由电荷Q 0产生的场为 E 0 = Q 0r /4πε0r 3; 极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3; 总场强为 E = Q 0r /4πε0εr r 3.由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为 ``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为 ``21q q =-, 面密度为 ``02222221(1)44r Q q R R σπεπ==-. 13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为 W 1:W 2 = C 2:C 1 = 2:1.两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为 W 1:W 2 = C 1:C 2 = 1:2.13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为 C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ;另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为 C = C 1 + C 2 = (1 + εr )ε0S /2d , 静电能为 W = CU 2/2 = (1 + εr )ε0SU 2/4d .13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能;(3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为 C = (1 + εr )ε0S /2d .(2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为 W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d .(3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d .设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++. 13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少? [解答]平行板电容器的电容为 C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为 C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为。
湖南大学大学物理练习册答案(一二上下两册全)
![湖南大学大学物理练习册答案(一二上下两册全)](https://img.taocdn.com/s3/m/706e6ceca1c7aa00b52acb31.png)
大学物理(一)练习册 参考解答第1章 质点运动学一、选择题1(D),2(D),3(B),4(D),5(D),6(D),7(D),8(D ),9(B),10(B), 二、填空题(1). s i n2t A ωω,()ωπ+1221n (n = 0,1,… ), (2). 8 m ,10 m. (3). 23 m/s.(4). 16Rt 2 ,4 rad /s 2(5). 4t 3-3t 2 (rad/s),12t 2-6t (m/s 2). (6).331ct ,2ct ,c 2t 4/R . (7). 2.24 m/s 2,104o(8). )5cos 5sin (50j t i t+-m/s ,0,圆.(9). h 1v /(h 1-h 2) (10). 0321=++v v v三、计算题1. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2, v (2) =-6 m/s. (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m.2. 一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt t v = 2t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI)3. 质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI),如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2213x x +=v4. 一物体悬挂在弹簧上作竖直振动,其加速度为-=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt y y t a d d d d d d d d vvv v ===又 -=a ky ∴ -k =y v d v / d y⎰⎰+=-=-C ky y ky 222121 , d d v v v已知 =y y 0 ,=v v 0 则 20202121ky C --=v)(220202y y k -+=v v5. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cb c R t -=6. 如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 27. (1)对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i 、j表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω如图所示;(2)由(1)导出速度 v 与加速度 a的矢量表示式; (3)试证加速度指向圆心.解:(1) j t r i t r j y i x rsin cos ωω+=+=(2) j t r i t r t rcos sin d d ωωωω+-==v j t r i t r ta sin cos d d 22ωωωω--==v(3) ()r j t r i t r a sin cos 22ωωωω-=+-=这说明 a 与 r方向相反,即a 指向圆心8. 一飞机驾驶员想往正北方向航行,而风以60 km/h 的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为 180 km/h ,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.解:设下标A 指飞机,F 指空气,E 指地面,由题可知:v FE =60 km/h 正西方向 v AF =180 km/h 方向未知v AE 大小未知, 正北方向由相对速度关系有: FE AF AE v v v +=AE v 、 AF v 、EE v 构成直角三角形,可得 ()()k m /h 17022 v v v =-=FE AF AE () 4.19/tg 1==-AE FE v v θ(飞机应取向北偏东19.4︒的航向).西北θFE v vAFv vAE v v四 研讨题1. 在下列各图中质点M 作曲线运动,指出哪些运动是不可能的?参考解答: (1)、(3)、(4)是不可能的.(1) 曲线运动有法向加速度,加速度不可能为零;(3) 曲线运动法向加速度要指向曲率圆心;(4) 曲线运动法向加速度不可能为零.2. 设质点的运动方程为)(t x x =,)(t y y =在计算质点的速度和加速度时:第一种方法是,先求出22y x r +=,然后根据 td d r=v 及 22d d t r a =而求得结果;第二种方法是,先计算速度和加速度的分量,再合成求得结果,即22)d d ()d d (t y t x +=v 和 222222)d d ()d d (ty t x a +=.你认为两种方法中哪种方法正确?参考解答:第二种方法是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、填空题 (1). 最大磁力矩,磁矩 ;
(3). 0 I /(4a) ;
(5). 0i,沿轴线方向朝右. ;
(7). 4 ; (9). aIB ;
(2). R2c ;
(真空的磁导率0 =4×10-7 T·m/A,铜的相对磁导率r≈1)
解:在距离导线中心轴线为 x 与 x d x 处,作一个单位长窄条, 其面积为 d S 1 d x .窄条处的磁感强度
B r 0 Ix 2 R2
所以通过 dS 的磁通量为 d B d r 0 Ix d x 2 R2
通过1m 长的一段 S 平面的磁通量为
(4). 0 I ; 4R
(6). 0rI /(2R12 ) , 0 ;
(8). mg /(lB) ;
(10). 正,负.
三 计算题
1.一无限长圆柱形铜导体(磁导率0),半径为 R,通有均匀分布的电流 I.今取一矩形平面 S (长为 1 m,宽为 2 R),位置如右图中画斜线部分所 示,求通过该矩形平面的磁通量.
解:在圆柱体内部与导体中心轴线相距为 r 处的磁感强度的大小,由安
培环路定
律可得:
因而,穿过导体内画斜线部分平面的磁通1 为
1
BdS
B 0I r (r R) 2R 2
在圆形导体外,与导体中心轴线相距 r 处的磁感强度大小为
因而,穿过导体外画斜线部分平面的磁通2 为
穿过整个矩形平面的磁通量
R
BdS
sin 2 a /( 2a) 1/ 2 , sin 1 0
B AB
0I 4 2a
,
同理,
BDE BEF 0 I /(8 2a) ,方向⊙.
B 20I 0I 20I
4 2a 4 2a 8a
4
BBC
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
解:(1) 在环内作半径为 r 的圆形回路, 由安培环路定理得
2R 0 I
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
S
(2) 同样在环外( r < R1 和 r > R2 )作圆形回路, 由于 Ii 0
∴
B 2r 0
B=0
2r
3. 一根很长的圆柱形铜导线均匀载有 10 A 电流,在导线内部作一平面 S,S 的一个边是导
线的中心轴线,另一边是 S 平面与导线表面的交线,如图所示.试计算
通过沿导线长度方向长为 1m 的一段 S 平面的磁通量.
R r 0 Ix d x r 0 I 106 Wb
0 2 R 2
4. 计算如图所示的平面载流线圈在 P 点产生的磁感强度,设线圈中的 电流强度为 I.
解:如图,CD、AF 在 P点产生的 B= 0
其中
∴
.
同样
∴
B BAB BBC BDE BEF
B AB
0I 4a
(sin 2
sin 1 ) ,
0 2R2
B 0I (r R) 2r
2
B
dS
R 2r
1 2
2. 横截面为矩形的环形螺线管,圆环内外半径分别为 R1 和 R2,芯子材 料的磁导率为,导线总匝数为 N,绕得很密,若线圈通电流 I,求.
(1) 芯子中的 B 值和芯子截面的磁通量. (2) 在 r < R1 和 r > R2 处的 B 值.
0I
dr
0I 4
r dr 0I
0I
2
0 I ln 2 2
4
ln 2
I S 1m
2R
N
b R2 R1
B 2r NI , B NI /(2r)
在 r 处取微小截面 dS = bdr, 通过此小截面的磁通量
穿过截面的磁通量
dΦ B d S NI b d r 2r
Φ B d S NI b d r NIb ln R2