第15章 色谱分析法导论
第15章色谱分析方法导论
具体做法:固定一个色谱峰为标准s,然后再求其它峰 i 对标准峰的相对保留值
,此时以 表示:
t
' r
(
i
)
t
' s
(
s
)
>1, 又称选择因子(Selectivity factor)。
h. 区域宽度:用于衡量柱效及反映色谱操作条件下的动力学因素。通常有 三种表示方法: 标准偏差:0.607倍峰宽处的一半。 半峰宽W1/2:峰高一半处的峰宽。W1/2=2.354 峰底宽W:色谱峰两侧拐点上切线与基线的交点间的距离。W= 4
3. 按两相状态分
分类
方法
固定相
平衡类型
气 气液色谱
液体吸附于固体 气液间分配
相 气固色谱
固体吸附剂
吸附
色 气相键合色谱 有 机 组 份 键 合 于 液 体和 键合 体
谱
固体表面
表面间的分配
液液色谱
液体吸附于固体 不 相溶 液体 间
的分配
液 固 ( 吸 附 ) 色 固体吸附剂
吸附
液谱
相 液相键合色谱 有 机 组 份 键 合 于 液 体和 键合 体
色谱流出曲线的意义: ✓ 色谱峰数=样品中单组份的最少个数; ✓ 色谱保留值——定性依据; ✓ 色谱峰高或面积——定量依据; ✓ 色谱保留值或区域宽度——色谱柱分离效能评价指标; ✓ 色谱峰间距——固定相或流动相选择是否合适的依据。
8.3 色谱法基本原理 两组份峰间距足够远:由各组份在两相间的分配系数决定,即由色谱过程的
在迁移过程中随流动相不断改变方向,形成紊乱的 “涡流”:从图中可见,因填充物颗粒大小及填充 的不均匀性——同一组分运行路线长短不同——流 出时间不同——峰形展宽。
《色谱分析法》PPT课件
调整保留时间tR’:组分的保留时间与死时间之差值, 即组分在固定相中滞留的时间
tR' tR tm
或t
' R
tR
t0
保留体积VR:从进样开始到组分出现浓度极大点时 所消耗的流动相的体积
16(
t
' R
)2
W
5.54( tR' )2 W1 2
H eff L / neff
讨论:neff 和H eff 扣除了死时间,更能真实的反映柱效 k ,neff n理
小结
塔板理论的贡献:从热力学角度Hale Waihona Puke 提出了评价柱效高低的n和H的计算式
塔板数 n是色谱柱的特征参数。当色谱柱长度一定时,
2. 纵向扩散项(分子扩散项):B/u
产生原因: 峰在固定相中被流动相推动向前、展开 →两边浓度差
纵向扩散系数 B 2 Dg
— 弯曲因子( 1) 填充柱 1 空心毛细管柱 1
Dg — 组分在载气中的扩散系数(常数)
影响因素: B u tR ,B Dg
Dg
T
一般分类 液相色谱LC
分离方法
L-L分离
固定相
吸附在固定相表面的液体
液相-固定相 固定相表面键合的有机相
液固或吸附
离子交换
尺寸排阻
气 相 色 谱 GC (流动相为气 体)
气、液 气-键相 气-固定体
超临界流体色 谱 SFC ( 流 动 相超临界流体)
固体 离子交换树脂 聚合物中间隙 吸附在固定相表面的液体 固体表面键合的有机物 固体 固体表面键合的有机物
色谱法导论ppt文档
18.2.色谱法基础知识、基本概念和术语
18.2.1. 色谱分离和相应 基础理论范畴
色谱基础理论是从微 观分子运动和宏观分布平 衡探讨最大限度提高分离 迁移和降低离散迁移的科 学原理,包括色谱热力学、 色谱动力学和色谱分离理 论。
各种色谱方法具有基 本相同的动力学理论,也 有相似的分离理论规律。
18.2.2. 分布平衡
色谱过程涉及溶质在两相中的分布平衡(distribution equilibrium),平衡常数K称为分布系数或分配系数:
K Cs Cm
(G)T.P 0
s sRlTnas mmRlTn am
s RlT n a sm RlT n a m
K Cs exp( )
Cm
RT
18.2.3.分布等温线
18.1.5.色谱法与其他分离、分析方法比较
18.1.5.3.与光谱、质谱分析方法比较 1. 光谱、质谱主要是物质定性鉴定分析方法,色谱法
本质上不具备定性分析功能。
2. 色谱法最主要的特点是适用于多组分复杂混合物分 离分析。
3. 色谱仪器的价格相对比分子光谱、质谱仪器低得多, 适用范围和领域更广。
经典柱色谱、制备色谱、萃取、精馏、结晶 精馏、萃取、吸附、吸收、膜分离
18.1.3. 分离方法分类
18.1.3.1. 按相的类型分类
18.1.3. 分离方法分类
18.1.3.2. 按分离机理分类
18.1.3. 分离方法分类
18.1.3.3.按分离过程推动力分类
18.1.4.色谱法分类
18.1.4.1. 按固定相的形态分类 柱色谱:填充柱、整体柱、毛细管或开管柱 平面色谱:薄层色谱和纸色谱 18.1.4.2. 按色谱动力学过程分类 淋洗色谱法 置换色谱法 迎头色谱法
第15章 色谱分析法导论(S)
A B
KA>KB
A B
沿柱移动距离L 溶质A和B在沿柱移动时不同位臵处的浓度轮廓
32
★分配系数的要点:
①K值与组分性质、固定相性质、流动相性质、 分离温度有关的参数; ②一定TC下,K越大,出峰越慢; ③提高TC ,组分在固定相中浓度降低,tR变小;
④K=0的组分,不被固定相保留,最先流出;
13
(4)凝胶色谱(或空间排阻)色谱 利用多孔性固定相对大小不同的分子 的排阻作用而达到分离的方法。 又称为空间(尺寸)排阻色谱法。
14
GC与LC的区别: ①物质在GC中传输速度快,流动相渗透性 好,可用长柱,分离效率高,分析速度快; 但GC要求样品具有一定挥发性及热稳定性; 气体价格低,仪器相对便宜。 ②LC的流动相为色谱纯液体,需用高压恒 流泵传输,造价高,有机溶剂为流动相,价 高、消耗量大,仪器昂贵,但只要样品具有 一定的溶解性即可用LC分析。 一般,GC可分析15%~20%的有机物; LC可分析70%~80%的有机物。
第十五章 色谱分析法导论
15.2 色谱图及色谱 常用术语 15.3 色谱分析的基 本理论 15.4 色谱定性和定
量方法
1
15-1 概述
一、色谱法的由来与发展
1.由来 色谱法早在1903年由俄国植物学家茨维特 (Tswett)分离植物色素时提出。 Tswett在研究植物叶的色素成分时,将植物 叶子的萃取物倒入填有碳酸钙的直立玻璃管 内,然后加入石油醚使其自由流下,结果色 素中各种组分互相分离,形成
27
7.相对保留值r2.1或ri.s
某组分2的调整保留值与组分1的调整保留值 之比。 r2,1= t R2 / t R1´= V R2 / VR1 相对保留值只与柱温及固定相性质有关,而 与柱径、柱长、填充情况及流动相流速无关。 在色谱法中,特别是在气相色谱法中,广泛 用作定性的依据。 相对保留值r2.1或ri.s也称为分离系数、柱的选 择性、溶剂效率等。
色谱分析法
组分在固定相中的质量 k 组分在流动相中的质量
分配比又称容量因子。
2013-7-1 色谱分析法导论 10
分配系数和分配比值决定于组分及固定相热力学性质。除 了与温度、压力有关外,还与流动相及固定相的性质有关。
分配比k与分配系数K的关系为:
MS VS MS VS cs VS k K/ Mm MS V cm Vm m Vm
2013-7-1
色谱分析法导论
8
(一) 分离原理
当试样由载气携带 进入色谱柱与固定相 接触时,被固定相溶 解或吸附。 随着载气的不断通 入,被溶解或吸附的 组分又从固定相中挥 发或脱附, 挥发或脱附下的组 分随着载气向前移动 时又再次被固定相溶 解或吸附。 随着载气的流动, 溶解、挥发,或吸附 、脱附的过程反复地 进行。
14
5. 分配系数 K 与保留值的关系
VR =K Vs 将反映色谱行为的保留值与反映热力学性质的分配系 数K直接联系起来。
6. 分配比 k 与保留值的关系
tR tM t k R tM tM
tR= tM(1+ k )
k 是衡量色谱柱对组分保留能力的参数, k值越大, 保留时间越长。
2013-7-1
20
二、速率理论
速率理论方程式(也称范弟姆特方程式):
B H A Cu u
H:理论塔板高度,u:流动相的线速度(cm/s)
A、B、C为常数,分别代表涡流扩散项、分子扩散
项系数和传质阻力项系数。
(1956年荷兰学者van Deemter(范第姆特)等在研究气 液色谱时提出。该理论模型对气相、液相色谱都适用。)
tR 2 tR 2 n 5.54( ) 16( ) Y1/ 2 Wb
2013-7-1 色谱分析法导论 17
色谱分析方法导论
第15页,共105页。
(三)按分离原理分类:可分为:
吸附色谱法:利用吸附剂(固定相 一般是固体)表面对不同组分吸附能 力的差别进行分离的方法;
第16页,共105页。
分配色谱法:利用不同组分在 两相间的分配系数的差别进行分 离的方法。
第17页,共105页。
离子交换色谱:利用溶液中不 同离子与离子交换剂间的交换能力 的不同而进行分离的方法。
第6页,共105页。
一、色谱分离基本原理:
由以上方法可知,在色谱法中存 在两相,一相是固定不动的,我们把 它叫做固定相;另一相则不断流过固 定相,我们把它叫做流动相。
第7页,共105页。
色谱法的分离原理就是利用待 分离的各种物质在两相中的分配系 数、吸附能力等亲和能力的不同来 进行分离的。
第8页,共105页。
谱柱柱型特点的参数。对填充柱,
=6~35;对毛细管柱, =60~600
。
第46页,共105页。
4. 选择因子 :色谱柱对A、B两组分的选择因子
定义如下:
tr' (B) tr' ( A)
kB kA
KB KA
A为先流出的组分,B 为后流出的组分。
第47页,共105页。
注意:K 或 k 反映的是某一组分在两相间的
分配;而 是反映两组分间的分离情况!当两组分
K 或 k 相同时, =1 时,两组分不能分开;当两组 分 K 或 k 相差越大时, 越大,分离得越好。也就
是说,两组分在两相间的分配系数不同,是色谱分离的 先决条件。
和 k 是计算色谱柱分离效能的重要参
数!
第48页,共105页。
二、 塔板理论
塔板理论是描述色谱柱中组分在两相间的分配状况及 评价色谱柱的分离效能的一种半经验式的理论。塔板理论将 一根色谱柱当作一个由许多塔板组成的精馏塔,用塔板概念 来描述组分在柱中的分配行为。塔板是从精馏中借用的,是 一种半经验理论,但它成功地解释了色谱流出曲线呈正态分 布。
第15章-色谱分析法导论
k 值越大,说明组分在固定相中的量越多,相当于柱的
容量大,因此又称分配容量。 它是衡量色谱柱对被分离组分保留能力的重要参数。
k 值也取决于组分及固定相热力学性质。它不仅随柱温、
柱压变化而变化,而且还与流动相及固定相的体积有关。
23
3、分配系数和分配比之间的关系
k cSVS cMVM
17
§15-2 色谱分离原理
一、分离原理 气相色谱分离过程是在色谱柱内完成的,气固色谱和
气液色谱,两者的分离机理不同。 气固色谱的固定相: 多孔性的固体吸附剂颗粒,其分离是基于固体吸附剂
对试样中各组分的吸附能力的不同。 气液色谱的固定相: 由担体和固定液所组成,其分离是基于固定液对试样
中各组分的溶解能力的不同。
图15-1色谱原型
1
1906年, Tsweet 发现色谱分离现象
碳酸钙 (固定相)
色石素油混醚合液 (流动相) 色谱柱
色带
2
植物色素分离图示
3
Chromatography
Tswett将这种方法命名为色谱 法(Chromatography),很显然 色谱法 (Chromatography)这个 词是由希腊语中“色”的写法 (chroma)和“书写”(graphein) 这两个词根组成的。
2)死时间( tM ): 不与固定相作用的气体(如空气)的保留时间。
因为这种物质不被固定相吸附 或溶解,故其流动速度将与流动相 的流动速度相近。
测定流动相平均线速度u0时, 可用柱长 L 与 tM 的比值计算。
uu0 L tM
29
3)调整保留时间( tR ' ):
tR' = tR - tM
30
色谱法导论PPT课件
色谱法的应用领域
01
02
03
04
化学分析
色谱法广泛应用于化学分析领 域,用于分离和测定复杂有机 化合物、无机离子和金属配合 物等。
生物医药
在生物医药领域,色谱法用于 分离和纯化生物分子、药物成 分以及检测药物残留等。
环境监测
在环境监测领域,色谱法用于 检测空气、水和土壤中的有害 物质,如有机污染物、重金属 等。
新型硅胶基质固定相
硅胶基质固定相具有良好的热稳定性和化学稳定性, 可用于分离各种极性化合物。
新型聚合物固定相
聚合物固定相具有高选择性、高柱效和良好的耐受性, 可用于分离复杂样品。
新型手性固定相
手性固定相可用于拆分光学异构体,为手性化合物的 分离提供了新的解决方案。
色谱仪器的发展
高效液相色谱仪
高效液相色谱仪具有高分离效能、高灵敏度和广 泛应用的特点,已成为色谱分析的重要手段。
食品成分分析
色谱法用于分析食品中的营养成分,如脂肪、蛋白 质、糖类等,以评估食品的质量和营养价值。
食品添加剂检测
色谱法用于检测食品中添加剂的含量,确保食品的 安全性和合规性。
食品污染物检测
色谱法用于检测食品中的污染物,如农药残留、重 金属等,保障食品安全和消费者健康。
在环境监测中的应用
01
空气污染物的分离 与测定
食品工业
在食品工业中,色谱法用于检 测食品中的添加剂、农药残留 和营养成分等。
02
色谱法的基本原理
分离原理
分离原理
色谱法通过流动相和固定相之 间的相互作用,使不同组分在 固定相和流动相之间的分配系 数不同,从而实现各组分的分 离。
分配系数
各组分在固定相和流动相之间 的分配系数决定了它们在色谱 分离中的行为。分配系数越大 ,组分在固定相上的保留越强 ,越难以被洗脱。
第五章-色谱分析法概论
Fc:流动相平均体积流速,(单位:cm3·min-1).
(5) 保留体积VR
指从进样开始到被测组分在柱后出现浓度极大点时所通过 的流动相的体积。保留时间与保留体积关系:
VR = Fc·tR (6)调整保留体积VR
某组分的保留体积扣除死体积后,称为该组分的调整保留体 积。
VR = VR VM = tR Fc
3. 保留值与容量因子的关系
k' K1KVs KVs
Vm VM
将色谱过程基本方程代入:
k' VR VM Vs
Vs VM
可得: k' VRVMVR ' tR ' tRtM
VM VM tM tM
将该式改为: VRVM(1k')
tRtM(1k')
tR
L u
(1
k
')
4.相对保留值 2 ,1
某组分2的调整保留值与组分1的调整保留值之比,称为相对
取决于组分在固定相上的热力学性质。
2、分离度的定义
分离度又叫分辨率或分辨度,既能反映柱效率又能反映选择
性的指标,是衡量分离效能的总指标。
定义:
Rs
1 2
{ 根据流动相的
气相色谱(GC) 气-液色谱(GLC)
物态可分为
液相色谱(LC) 液-固色谱(LSC)
液-液色谱(LLC)
按固定相的固 定方式分类
填充柱色谱 柱色谱 毛细管柱色谱
平板色谱 纸色谱 薄层色谱
平板色谱
根据分离机理 可分为
吸附色谱 分配色谱 离子交换色谱 排阻色谱
色谱法的特点和应用
1.分离效能高 2.灵敏度高 可检测10-11~10-13g,适于痕量分析.色
色谱分析法导论 优秀课件
色谱法的特点
“三高”、“一快”、“一广”
高选择性——可将性质相似的组分分开 高效能——反复多次利用组分性质的差异
产生很好分离效果 高灵敏度——10-11~10-13g,适于痕量分析 分析速度快——几~几十分钟完成分离
一次 可以测多种样品 应用范围广——气体,液体、固体物质
化学衍生化再色谱分离、分析
下来。组分从色谱柱流出时,各个组分在检测器上所产 生的信号随时间变化,所形成的曲线叫色谱图。
记录了各个组分流出色谱柱的情况,又叫色谱流出 曲线。
2.基线(baseline)
在实验操作条件下, 色谱柱后没有组分 流出的曲线叫基线。
稳定情况下,一 条直线。
基线上下波动称 为噪音。
3. 色谱峰(peak)是流出曲线上的突起部分。 正常色谱峰、拖尾峰和前延峰
▪ 色谱法:混合物在流动相的携带下通过 色谱柱分离出几种组分的方法。
固定相:
(1)固体吸附剂:CaCO3、Al 2O3等 (2)液体固定相(载体+固定液——高沸点有
机化合物,涂在载体上)
色谱分离法一定是先分离。后分析
一定具有两相;固定相和流动相
分离:利用组分在两相中分配系数或吸附能力的 差异进行分离
1.死时间(dead time) t0——不被固定相吸附或溶解的组 分流经色谱柱所需的时间。
2.保留时间 tR(retention time) 组分流经色谱柱时 所需时间。进样开 始到柱后出现最大 值时所需的时间。 操作条件不变时, 一种组分有一个tR定 值,定性参数。
3.调整保留时间t’R
(adjusted retention
第二节 色谱过程和基本原理
一、色谱过程 实现色谱操作的基本条件是必须具备相对运
华中师范大学等六校合编《分析化学》(第4版)(下册)配套题库-课后习题-色谱法导论【圣才出品】
第十五章色谱法导论1.气相色谱分离的原理是什么?根据你所掌握的分析化学基本知识,比较色谱法与其他分析方法(电化学分析、光谱分析等)的区别。
色谱法有何成功和不足之处?答:(1)气相色谱分离的原理:利用不同物质在固定相和流动相中具有不同的分配系数,当两相作相对移动时,使这些物质在两相间进行反复多次的分配,原来微小的分配差异产生了很明显的分离效果,从而依先后顺序流出色谱柱。
(2)色谱法与其他分析方法(电化学分析、光谱分析等)的区别:①色谱法利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果;②电化学分析法是应用电化学原理和技术,利用化学电池内被分析溶液的组成及含量与其电化学性质的关系而建立起来的一类分析方法。
其特点是灵敏度高,选择性好,设备简单,操作方便,应用范围广;③光谱分析法是利用光谱学的原理和试验方法以确定物质的结构和化学成分的分析方法。
(3)色谱法的成功和不足:①成功:分离效率高、灵敏度高、分析速度快、应用范围广。
②不足:定性困难。
2.概要说明色谱法分类的依据及各类方法。
答:色谱法分类的依据及各类方法:(1)根据流动相所处的状态分类:气相色谱和液相色谱。
(2)根据固定相的固定方式分类:柱色谱、薄层色谱和纸色谱。
(3)根据分离机理分类:吸附色谱、分配色谱、离子交换色谱、凝胶色谱、离子对色谱和亲和色谱等。
3.简述塔板理论的要点,塔板理论有什么局限性?答:(1)塔板理论的要点①对于长度L 一定的色谱柱,塔板数n 越大,则待测组分在柱内被分配的次数越多,柱效越高,色谱峰越窄。
②用n eff 和H eff 来衡量柱效能时,应指明测定物质,因为不同物质在同一色谱柱上的分配系数不同。
当两组分在同一色谱柱上的分配系数相同时,无论该色谱柱的柱效能多高,两组分无法分离。
③用来计算n 和H 的基本关系式为()()()()222/1222/1/16/54.5,//16/54.5,/Y t Y t n H L n Y t Y t n H L n R R eff eff R R '='=====(2)塔板理论的不足①无法解释为什么同一色谱柱在不同的载气流速下的柱效不同;②未能指出影响柱效的因素及提高柱效的途径和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)用体积表示的保留值
①死体积VM 指色谱柱在填充后,柱管内固定相颗粒间所 剩留的空间、色谱仪中管路和连接头间的空 间以及检测器的空间的总和。
当后两相很小可忽略不计时,死体积可由死 时间与色谱柱出口的载气流速Fo(cm3· -1) min 计算。 VM = tM Fo
VM反映了柱和仪器系统的几何特性,与 被测组分的性质无关。
21
2.按两相状态分类(使用最普遍) (1)气相色谱(GC): 流动相是气体的色谱。 分为 气固色谱(GSC) 气液色谱(GLC) (2)液相色谱法(LC) : 液体为流动相的色谱。 分为 液固色谱(LSC) 液液色谱(LLC) 超临界流体为流动相的色谱为超临界 流体色谱(SFC)。
22
3.按分离机理分类 (1)吸附色谱 利用组分在吸附剂(固定相)上的吸附 能力强弱不同而得以分离的方法。 (2)分配色谱 利用不同组分在固定液(固定相)中不 同的分配系数而达到分离的方法。 (3)离子交换色谱 利用组分在离子交换剂(固定相)上的 亲和力大小不同而达到分离的方法。
1.基线 在实验操作条件下, 色谱柱后没有样品组 分流出时的流出曲线 称为基线,稳定的基 线应该是一条水平直 线。
28
2.色谱峰 组分浓度随时间变化的曲线。 如果进样量很小,浓度很低,在线性范围内, 则色谱峰是对称的。标准的色谱峰为正态分 布曲线。
每一色谱峰至少代表一个组分; 每一峰的峰值出峰时间——定性;
浓 度
A B
KA>KB
A B
沿柱移动距离L 溶质A和B在沿柱移动时不同位臵处的浓度轮廓
42
★分配系数的要点:
①K值与组分性质、固定相性质、流动相性质、 分离温度有关的参数; ②一定TC下,K越大,出峰越慢; ③提高TC ,组分在固定相中浓度降低,tR变小;
④K=0的组分,不被固定相保留,最先流出;
(热力学因素);②每种组分在流经柱子后发生谱 带扩散分布(动力学因素)。
15
2.发展 (1) 1901年,Tswett开始研究。 (2) 1903年3月21日,华沙自然科学生物学 会论文: “一种新型吸附现象及其在 生 物分析上的应用” ,提出用吸附原理 分 离植物色素。 (3)1906年,德国生物学会议,公开展示 “彩色环带的柱管”——“色谱图”。 (4)在随后20多年中,色谱分离法得以广泛
14
色谱法分离过程: 当流动相中样品混合物经过固定相时,就会与固定 相发生作用,由于各组分在性质和结构上的差异,与 固定相相互作用的类型、强弱也有差异,因此在同一 推动力的作用下,不同组分在固定相滞留时间长短不 同,从而按先后不同的次序从固定相中流出。与适当 的柱后检测方法结合,实现混合物中各组分的分离与 检测。 两个重要特征:①试样中各组分在柱中不等速迁移
17
(10)60年代,各国相继出版了有关色谱教科 书及专著—色谱成为一门独立 学科。 (11)1962年,超临界流体色谱技术— SFC (12)80年代,毛细管电泳色谱— CEC
18
• 仪器的发展 ☆ 1955年,美国商品色谱仪出现; ☆ 1957年,日本商品色谱仪出现; ☆ 1960年,美国液相色谱仪,Waters ☆ 1979年,“弹性石英毛细柱”; Golay柱(1957年)为易碎的玻 璃柱,长8~10~100m ; 石英毛细柱φ0.1、0.22、0.32、0.53mm
23
(4)凝胶色谱(或空间排阻)色谱 利用多孔性固定相对大小不同的分子 的排阻作用而达到分离的方法。 又称为空间(尺寸)排阻色谱法。
24
GC与LC的区别: ①物质在GC中传输速度快,流动相渗透性 好,可用长柱,分离效率高,分析速度快; 但GC要求样品具有一定挥发性及热稳定性; 气体价格低,仪器相对便宜。 ②LC的流动相为色谱纯液体,需用高压恒 流泵传输,造价高,有机溶剂为流动相,价 高、消耗量大,仪器昂贵,但只要样品具有 一定的溶解性即可用LC分析。 一般,GC可分析15%~20%的有机物; LC可分析70%~80%的有机物。
39
三、分配平衡
★色谱分析的目的是将样品中各组分彼此分离,组分 要达到完全分离,两峰间的距离必须足够远,两峰 间的距离是由组分在两相间的分配系数决定的,即 与色谱过程的热力学性质有关。
★但是两峰间虽有一定距离,如果每个峰都很宽,以
致彼此重叠,还是不能分开。这些峰的宽或窄是由 组分在色谱柱中传质和扩散行为决定的,即与色谱 过程的动力学性质有关。因此,要从热力学和动力 学两方面来研究色谱行为。
36
②保留体积VR 指从进样开始到被测组分在柱后出现浓度极 大点时所通过的流动相的体积。 VR= tR Fo 载气流速越大,保留时间降低, VR不变 —VR与载气流速无关。 ③调整保留体积VR 某组分的保留体积扣除死体积后的保留体积。 VR = VR VM = tR Fo 同理: VR与载气流速无关,并更合理地反 映了被测组分的保留特性。
每一峰的峰面积(峰高)——定量。
29
3.峰高h 色谱峰顶点与基线之间的垂直距离,以h 表示。用纸高(mm)或电信号大小(mv或 mA)表示。 4.峰的区域宽度 色谱峰的区域宽度是色谱流出曲线的重要 参数之一,用于衡量柱效率及反映色谱操作 条件的动力学因素。 表示色谱峰区域宽度通常有三种方法。
30
①标准偏差 即0.607倍峰高处色谱峰宽的一半(即拐点峰 宽的一半) 。 = ½ Y0.607h ②半峰宽Y1/2 即峰高一半处对应的峰宽。它与标准偏差的 关系为 Y1/ 2 = 2.355 ③峰底宽度Y(基线宽度) 即色谱峰两侧拐点上的切线在基线上截距间 的距离。 它与标准偏差的关系是 Y = 4
19
●进口色谱仪器品牌有: HP(安捷伦)、Waters、岛津、戴安 ●国产仪器有: 北分(SP)、上分、鲁南
20
二、色谱法分类
1.按操作(固定相使用)形式分类 (1)柱色谱:固定相装于柱内的色谱法。 分为填充柱色谱和空心毛细 管柱色谱。 (2)平板色谱:固定相呈平板状的色谱。 它又可分为薄层色谱(固定 相压成或涂成薄膜的色谱) 和纸色谱(固定相为滤纸的 色谱)。
16
离与分析中。 (5)1952年,Martin(英)发明了GL分配色 谱—诺贝尔化学奖。 (6)1954年,Ray发明了TCD检测器。 (7)1956年,Van.Deemter(荷)提出速率方 程理论。 (8)1957年,Golay(美)发明了玻璃毛细柱 (φ<1mm)。 (9)几年后,Mcwillian(澳)发明了 FID。 Lovelock(英)发明了ECD。
44
k k
1 β
m m
s m
VS Vm
K
式中: ①β为相比:反映色谱柱柱型及结构的参数。 填充柱相比约6~35;毛细管柱的相比约 50~1500。 ② β V M ,VM为流动相体积,即柱内固定 VS 相颗粒间空隙体积。 VS为固定相体积,其中,GSC中为吸附剂 表面容量,GLC中为固定液体积。 ③空气或甲烷的ms=0, ∴ k′= 0
45
3.分配比与保留值的关系
k
t R tM k2tM k1t M k2 k1
r21 α 21
t R(2) t R(1)
K2 K1
46
讨论:
①K和k′除与组分及固定相的热力学性质有关
外,还随柱温、柱压的变化而变化。
②K只与组分和两相性质有关,与两相体积无
12
各种不同颜色的谱带。 在玻璃管上,每一种 色带即为一种色素 (完全分离)。色带 犹如光谱分析中的谱 线(带),因此得名 “色谱法”。 (chromatography)
13
名称: (1)固定相(stationary phase) 在色谱法中,填入玻璃管或不锈钢管 内静止不动的一相(固体或液体)。 (2)流动相(mobile phase) 携带试样混合物流过固定相的流体(气体 或液体)。 (3)色谱柱(column) 装有固定相的管子(玻璃管或不锈钢管)
2
3
GC112A型气相色谱仪
4
GC2010/日本岛津
5
GC190微型便携式气相色谱仪
6
LC 2690液相色谱仪
7
气相色谱毛细柱
8
填充柱
9
Waters symmetry色谱柱
10
色谱分析流程
11
15-1 概述
一、色谱法的由来与发展
1.由来 色谱法早在1903年由俄国植物学家茨维特 (Tswett)分离植物色素时提出。 Tswett在研究植物叶的色素成分时,将植物 叶子的萃取物倒入填有碳酸钙的直立玻璃管 内,然后加入石油醚使其自由流下,结果色 素中各种组分互相分离,形成
⑤每个组分的K不同,选择适宜的固定相来改善 分离效果; ⑥试样中不同组分在相同分离条件下,K不同, 得以分离。
43
2.分配比k′(分配容量或容量因子) 分配比又称容量因子,它是指在一定温度和 压力下,组分在两相间分配达平衡时,分配 在固定相和流动相中的质量比。即
组分在固定相中的质量 组分在流动相中的质量 C S VS C m Vm K
40
分配平衡:一定温度(TC)下,组分在流动 相和固定相间作用达到的平衡。 1.分配系数K 指在一定温度和压力下,组分在固定相和 流动相之间分配达平衡时的浓度之比值,即
K 组分在固定相中的浓度 组分在流动相中的浓度 CS Cm
41
下图是 A、B两组分沿色谱柱移动时,不 同位臵处的浓度轮廓。
34
②保留时间tR 试样从进样到柱后出现峰极大点时所经过的 时间,称为保留时间。 ③调整保留时间tR´ 某组分的保留时间扣除死时间后,称为该组 分的调整保留时间。 即 tR´= tR tM tR´:由于组分吸附或溶解于固定相中,比流 动相在柱中多滞留的时间。 tR:出柱时间; tR′:与固定相作用时间。
15.1 概述
第十五章 色谱分析法导论