量子力学——第四章作业参考答案

合集下载

苏汝铿量子力学(第二版)课后习题(含答案)---第四章4.1-4.4#13(延边大学)三年级

苏汝铿量子力学(第二版)课后习题(含答案)---第四章4.1-4.4#13(延边大学)三年级

4.1.求在动量表象中角动量x L 的矩阵元和2x L 的矩阵元。

解:(1)对于x L 333()31()()()21()()21()()()21()()()2x pp z y z y z y y z y y iip rp ri i p rp r i i p r p r i p p r L ey p z p ed e yp zp e d e i p p e d p pz i p p e d p pz τπτπτππ'-'-'-'--'=-=-∂∂=--∂∂∂∂=--∂∂⎰⎰⎰⎰()()()zy y i p p p p p pzτδ∂∂'=---∂∂(2)对于2x L23232331()()21()()21()()()21)()()()2pp x x z y z y z y z y z y y i ip rp ri i p r p r i i p rp r i i p r p L e L e d e y p z p e d e y p z p y p z p e d e y p z p i p p e p pzτπτπτππ'-'-'-'-'==-=--∂∂=---∂∂⎰⎰⎰⎰3()223221()())()21()()2()()z y z y y z y y zy y r i ip rp r i p p rd i p pe y p z p e d p pz p p e d p pz p p p p p pzττπτπδ-'--'∂∂=---∂∂∂∂=--∂∂∂∂'=---∂∂⎰⎰4.2设厄米算符ˆA ,B 满足22ˆˆ1A B ==,ˆˆˆˆ0AB BA +=,求:(1)在ˆA 表象中,算符ˆA 和ˆB的矩阵表示; (2)在ˆB表象中,算符ˆA 和ˆB 的矩阵表示; (3)在ˆA 表象中,算符ˆB的本征值和本征函数;(4)在ˆB表象中,算符ˆA 的本征值和本征函数; (5)由A 表象到B 的幺正变换矩阵S 。

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学第四章习题new

量子力学第四章习题new

第四章 态和力学量的表象4.1 求在动量表象角动量x L 的矩阵元和2x L 的矩阵元。

解: 动量为p 的本征函数为()3212ieψπ⋅==p r p p在连续情况下,按矩阵元的定义,x L 的矩阵元为()()()()()()()*333331ˆˆˆ2112222i ix x zy pp iiii i ii i yz yzL L d e ypzpe d e y e d ez e d i z i y p p e e d ee d i p i p ψψττπττππττππ∞∞'-⋅⋅''-∞-∞∞∞''-⋅⋅-⋅⋅-∞-∞∞''-⋅⋅-⋅⋅-∞-∞==-⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭''∂∂=-''∂∂⎰⎰⎰⎰⎰p r p r p pp r p rp r p r p r p r p r p r ()()()()()()()331122iiz yyzz y yz z y z y y z y z p ed p ed i p i p p p i p p i p p i p p p p p p ττππδδδ∞∞∞''-⋅-⋅-∞-∞∂∂''=-''∂∂⎛⎫∂∂'''=-- ⎪ ⎪''∂∂⎝⎭⎛⎫⎛⎫∂∂∂∂''''=---=-- ⎪ ⎪ ⎪ ⎪''∂∂∂∂⎝⎭⎝⎭⎰⎰⎰p p r p p r p p p p p p2x L 的矩阵元:()()()()()()22*23*3*31ˆˆˆ21ˆˆ212p r p r p pp r p r p r p ri ixx zy pp i i z y zy yz i i z yz y y z yzL L d e ypzpe d p p e ypzpe d i p p i p p p p e e d p p i p p ψψττπτππ∞∞'-⋅⋅''-∞-∞∞'⋅⋅-∞'⋅⋅==-⎡⎤⎛⎫∂∂=--⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫∂∂∂∂=--⎢⎥ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰()()()32212r p p p p iz yz y y z y z z yy z i p p i p p ed p p p p p p p p ττπδ∞-∞∞'⋅--∞⎛⎫⎛⎫∂∂∂∂=-- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎛⎫∂∂'=--- ⎪ ⎪∂∂⎝⎭⎰⎰4.2 求一维无限深势阱中粒子的坐标和动量在能量表象中的矩阵元。

量子力学答案(第二版)苏汝铿第四章课后答案4.5-4#3 @

量子力学答案(第二版)苏汝铿第四章课后答案4.5-4#3 @

2 1 2 1 2 1
∴对角化的矩阵为 L x S Lx S
L x 2
1 2 1 2 1 2
0 1 2 1 2

1 1 2 0 1 0 2 1 1 0 1 0 2 1 0 1 0 1 2 2
取 a1
1 ,归一化的 2
1 2 1 ˆ 对应于 L x 的本征值 2 1 2
ˆ 表象的变换矩阵为 ˆ 2 和L ˆ 的共同表象变到 L 由以上结果可知,从 L x Z
1 2 S 0 1 2 1 2 1 2 1 2
ˆA ˆS ˆ 1 ) ( S ˆB ˆ 1 ) ( S ˆ 1 ) ( S ˆA ˆS ˆ 1 ) ˆS ˆS (S ˆB


利用⑴式于⑵,则可以写成
[ A
aa
ˆB ˆ 1 ) ( S ˆB ˆ 1 ) A ] 0 ˆS ˆS (S
a1 ∴ 2a1 a1
a1 由归一化条件 1 (a , 2a , a ) 2a1 4 a1 a1
* 1 * 1 * 1 2
1 2 1 ˆ 的本征值 1 对应于 L 取 a1 ,归一化的 x 2 2 1 2
a1 0 1 0 a 1 当 2 时,有 1 0 1 a 2 a 2 2 a 0 1 0 a 3 3
1 a1 2 a 1 1 (a1 a 3 ) a 2 2 1 a3 a2 2

量子力学教程(第二版)周世勋习题解答

量子力学教程(第二版)周世勋习题解答
整理(10)、(11)、(12)、(13)式,并合并成方程组,得
(10) (11) (12) (13)
ek1a B sin k 2aC cosk 2aD 0 0
k1ek1a B k 2 cosk 2aC k 2 sin k 2a D 0 0
0 sin k 2aC cosk 2aD ek1a F 0
(x) c (x)

④乘 ⑤,得 (x) (x) c2 (x) (x) , 可见,c 2 1 ,所以 c 1
当 c 1时, (x) (x) , (x) 具有偶宇称,
当 c 1时, (x) (x) , (x) 具有奇宇称,
18
当势场满足 U (x) U (x) 时,粒子的定态波函数具有确定的宇称。
3
第一章 绪论
1.1.由黑体辐射公式导出维恩位移定律: mT b, b 2.9 10 3 m0C 。
证明:由普朗克黑体辐射公式:
d
8h c33Βιβλιοθήκη 1hd ,
ekT 1
及 c 、 d c d 得
2
8hc 5
1,
hc
ekT 1
令 x hc ,再由 d 0 ,得 .所满足的超越方程为
kT
d
2
(x)
E
2
(x)

12
Ⅲ: x a
2 2m
d2 dx2
3
(x)
U
(x)
3
(x)
E
3
(x)

由于(1)、(3)方程中,由于U (x) ,要等式成立,必须
1(x) 0 2 (x) 0
即粒子不能运动到势阱以外的地方去。
方程(2)可变为
d
2 2 ( dx2

量子力学智慧树知到答案章节测试2023年泰山学院

量子力学智慧树知到答案章节测试2023年泰山学院

第一章测试1.导致“紫外灾难”的是()A:维恩公式B:巴尔末公式C:瑞利-金斯公式D:普朗克公式答案:C2.量子力学的研究对象是微观物体。

()A:错B:对答案:B3.光电效应实验中,光电子的最大动能与()有关。

A:其余选项都不对。

B:入射光的光强C:入射光的频率D:入射光照射的时间答案:C4.玻尔在()岁时获得诺贝尔物理学奖。

A:50B:37C:45D:26答案:B5.氦原子的动能是(k为玻耳兹曼常数),求T=1K时,氦原子的德布罗意波长为0.37nm。

()A:对B:错答案:A第二章测试1.量子力学的态叠加原理是指()A:波函数描述的相位的叠加;B:波函数的线性叠加;C:两列波振幅的叠加;D:两列波振动位移的叠加.答案:B2.对于一维束缚定态,如果势能具有空间反演不变性,则所有能量本征态都有确定的宇称。

()A:错B:对答案:B3.下列哪种论述不是定态的特点()。

A:任何不含时力学量的平均值都不随时间变化B:几率流密度矢量不随时间变化C:任何力学量的取值都不随时间变化D:几率密度不随时间变化答案:C4.质量为的粒子在一维无限深方势阱中运动,,基态的能量为。

()A:对B:错答案:A5.波函数满足的标准化条件为单值、有限、连续。

()A:对B:错答案:A第三章测试1.若不考虑电子的自旋,氢原子能级n=3的简并度为()。

A:6B:12C:3D:9答案:D2.以下关于厄米算符本征问题说法正确的是()A:厄米算符的本征值不一定为实数;B:厄米算符的属于不同本征值的本征函数彼此正交;C:厄米算符的本征值必为实数;D:厄米算符的本征函数系是完备的答案:BCD3.量子力学中可观测量对应的算符都是厄米算符。

()A:错B:对答案:B4.力学量算符的正交归一本征函数完备系为,本征方程为,若体系的波函数为,则在态中测量力学量F结果为的几率为()。

A:1B:9/4C:1/4D:9/10答案:D5.若在某一力场中力学量F守恒,则力学量F一定取确定值。

量子力学第四章习题(1)

量子力学第四章习题(1)

第四章态叠加原理及力学量的算符表示4-1 下列算符哪些是线性的?为什么? (1) (2) ( )2 (3) (4)4-2 线性算符具有下列性质:,式中C是复数。

下列算符哪些是线性的?(1)(2)(3)(4)(5)(6)4-3 若都是厄米算符,但,试问:(1)是否厄米算符?(2)是否厄米算符?4-4 证明下列算符哪些是厄米算符:4-5 (1)证明(2)4-6试判断下述二算符的线性厄米性,(1)(2)4-7 试证明任意一个算符不可能有两个以上的逆。

又问,算符的情况下,是什么样的算符?4-8 对于一维运动,求的本征函数和本征值。

进而求的本征值。

4-9 若算符有属于本征值为的本征函数,且有:和,证明和也是的本征函数,对应的本征值分别是和。

4-10 试求能使为算符的本征函数的值是什么?此本征函数的本征值是什么?4-11 如果为线性算符的一个本征值,那么为的一个本征值。

一般情况下,设为的多项式,则便为的一个本征值。

试证明之。

4-12 试证明线性算符的有理函数也是线性算符。

4-13 当势能改变一个常数C时,即时,粒子的波函数与时间无关的那部分改变否?能量本征值改变否?4-14 一维谐振子的势能,处于的状态中,其中,问:(1)它的能量有没有确定值?若有,则确定值是多少?(2)它的动量有没有确定值?4-15 在时间时,一个线性谐振子处于用下列波函数所描写的状态:式中是振子的第n个时间无关本征函数。

(a)试求C3的数值。

(b)写出在t时的波函数。

(c)在时振子的能量平均值是什么?在秒时的呢?4-16 证明下列对易关系:,4-17 证明下列对易关系:。

量子力学练习参考解答

量子力学练习参考解答

量子力学练习参考解答第一章 波函数与薛定谔方程1.1,1.2,1.3题解答略。

1.4(a )设一维自由粒子的初态为一个Gauss 波包,222412)(1)0,(απαψxx p i e e x -=证明:初始时刻,0=x ,0p p =[]2)(12α=-=∆x x x[]α2)(12=-=∆p p p2 =∆⋅∆p x证:初始时刻012222===-+∞∞-+∞∞-⎰⎰dx exdx x x x απαψ2122222222απαψα===-∞+∞-∞+∞-⎰⎰dx exdx x x x()22122α=-=∆xx x)0,(x ψ的逆变换为⎰+∞∞--=dx ex p ipx/)0,(21)(ψπϕ=⎰+∞∞---dx eeeipx x x p i/2412220)(121απαπ=2220()22214(/)p p eααπ--22202()()p p p eααϕπ--=因此02)(p dp p p p ==⎰+∞∞-ϕ2222222)(0αϕ +==⎰∞+∞-p dp p p p()α22122 =-=∆p p p2 =∆⋅∆p x注:也可由以下式子计算p 和2p :2222(,0)()(,0)(,0)()(,0)dp x ix dx dxd p x x dxdx ψψψψ+∞*-∞+∞*-∞=-=-⎰⎰1.5 设一维自由粒子的初态为)0,(x ψ,证明在足够长时刻后,()[]⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡⋅-=t mx t imx i t m t x ϕπψ2exp 4exp ,2式中()()⎰+∞∞--=dx e x k ikx0,21ψπϕ是)0,(x ψ的Fourier 变换。

提示:利用()x e e x i i δπααπα=-∞→24/lim。

证:依照平面波的时刻转变规律 ()t kx i ikxe e ω-→ , m k E 22==ω,任意时刻的波函数为()()()dk e k t x mtkkx i 2/221, -+∞∞-⎰=ϕπψ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⋅=⎰∞+∞-22/2ex p 212t mx k m t i k dk etimx ϕπ(1) 那时刻足够长后(所谓∞→t ),上式被积函数中的指数函数具有δ函数的性质,取m t 2 =α , (2)参照此题的解题提示,即得()()⎰+∞∞--⎪⎭⎫ ⎝⎛-⋅≈k d t mx k k e t m et x i timx δϕππψπ4/2221,2⎪⎭⎫⎝⎛=-t mx e e t m t imx i ϕπ2/4/2 (3) 1.6 依照粒子密度散布ρ和粒子流密度散布j的表示式, ()()()t r t r t r ,,,*ψψρ=()()()()()[]t r t r t r t r mi t r j ,,,,2,**ψψψψ∇-∇-=概念粒子的速度散布v()()()()⎥⎦⎤⎢⎣⎡∇-∇-==t r t r t r t r m i j v ,,,,2**ψψψψρ 证明:0=⨯∇v 。

量子力学答案(第二版)苏汝铿第四章课后答案4.8-4#15

量子力学答案(第二版)苏汝铿第四章课后答案4.8-4#15

由 sin a 和 cos a 的泰勒展开公式,
(1) n a 2 n (2n)! n 0 exp A (1) n a 2 n 1 n 0 (2n 1)!
(1) n a 2 n 1 n 0 (2 n 1)! cos a sin a n 2 n (1) a sin a cos a (2n)! n 0
2
2 ) x2
P(
2 1 ) 2 25/ 4 ( 2 1) 2 2
(2)取势场第一次发生突变时为 t=0,波函数 ( x,0) 0 ( x)
n ( x) 为 V2 的能量本征态,对应能级 En (n ) 2
因而 ( x, 0) 0 ( x)
4 15 5 2 X1 5 15 1 5 3
0 2 X 2 X1 65 65 5 65 65
0 (1)
k 1
A
2k 2
A
2 k 1
0 (1)k a 2 k 1 0 a (1)k 1 a 2 k 2 0 a k 2 k 1 0 0 a 0 (1) a a 0 (1)n a 2 n 0
(1) n a 2 n 1 n 0 (2n 1)! n 2n (1) a (2n)! n 0

因此, exp A 1 A
(1) n a 2 n (2n)! n 0 (1) n a 2 n 1 n 0 (2n 1)!
A2 A3 2! 3!
解:对矩阵 A, exp A 1 A
又对 A

作业第四章答案

作业第四章答案

解:(1)莱曼系共振线
P2 3/2,1/ 2

S2 1/ 2
精细结构分裂决定于
P2 3/2,1/ 2
(n=2,l=1)能级的分
裂,代入精细结构引起的能级差得
ΔE
=
hcα 2R n3l(l +1)
= 1240 ×1.097 ×10−2 1372 × 23 × 2
=
4.53×10−5 eV
相应波数差为 Δλ
4.11 在斯特恩—盖拉赫实验中,处于基态的氢原子束通过不均匀横向磁场,磁场梯度
∂B ∂Z
= 10 3T/m
,磁场纵向范围
L1
=
0.03m
,从磁极末端到屏的距离
L2
=
0.1m
,氢原子的速度
v=103m/s ,试确定氢原子束在屏上分裂为两束间的距离 d。
解: ΔZ
=
2[ 1
μB
dB dz
( L1 )2
4.6 钾原子基态为 4S,钾原子主线系第一条谱线的波长 λ1 = 766.5nm ,主线系的线系限
λ∞ = 285.8nm 。试求 4S 和 4P 谱项的量子数亏损值。
解:(1)
R (4 − Δ4s )2
=
1 λ∞

Δ4s
=
4−
Rλ∞ = 4 −
1.097 ×10−2 × 285.8 = 2.23
+
μB
dB dz
L1
L2 ]
2 mH v
mH v v
μB =2
dB dz
L1 [ 1
L1
+
L2 ]
mH v 2 v v
=

6.02 ×1023 × 927.4 ×10−26 0.001

量子作业四_255207228

量子作业四_255207228

量子力学作业四1. 带电粒子在均匀磁场中(沿z 轴方向)中运动时,哈密顿算符可以近似表示成H = p 2/2m - ωL z , ω = qB /(2mc ), q 为粒子的电荷,B 为场强。

已知t = 0时,0 ,0===z y x p p p p ,试求t > 0时)(),( ),(t p t p t p z y x 。

又,本题有哪些重要的守恒力学量?(提示:利用力学量变化率算符]ˆ,ˆ[1ˆH A i dt A d=及其定义式:)(),(ˆ),(*t A dtd d t r dt A d t r dt dA =≡⎰τψψ ,可化成经典谐振子方程,再利于初值条件,即可求解。

若0)(=t A dtd , 则力学量A 称为守恒量。

) 2. 设力学量K 的算符可以表示成两个不对易算符L 和M 之积,K=LM ,而L ,M 的对易式为[L ,M]=1。

K 的本征函数、本征值记为ψn ,λn (n=1,2,⋯)。

试证明:函数L ψn ,M ψn 如存在,则它们也是K 的本征函数,本征值分别为(λn -1),(λn +1)。

(提示:若函数L ψn ,M ψn 存在,即要证明)ˆ)(1()ˆ(ˆnn nL L K ψλψ-=和)ˆ)(1()ˆ(ˆn n n M M K ψλψ+=。

) 3. 证明:对于)(22r p V mH +=的情形,在任何束缚定态下,p 各分量的平均值为0。

(提示:n n nE H ψψ=,x V i V p H p x x ∂∂-== )](,[],[r ,利用这两式,从⎰⎰==τψψτψψd H p E d p p n x n n n x n x )()(1)()(**r r r r 中,可推导出0)()()(*=∂∂=∂∂⎰τψψd xV x V n n r r r 。

再利用]ˆ,ˆ[1ˆH p i dt p d x x =,可求得0)(=t p dt d x 。

因此C p x =,其中C 为常数,必须取0。

量子力学课后答案

量子力学课后答案

•第一章 绪论 •第二章 波函数和薛定谔方程 •第三章 力学量的算符表示 •第四章 态和力学量的表象 •第五章 微扰理论 •第六章 弹性散射 • 第七章 自旋和全同粒子1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 03109.2 ,⋅⨯==-λ。

证明:由普朗克黑体辐射公式: ννπνρννd e c h d kT h 11833-=, 及λνc =、λλνd c d 2-=得 1185-=kT hc e hc λλλπρ, 令kThc x λ=,再由0=λρλd d ,得λ.所满足的超越方程为 15-=x x e xe 用图解法求得97.4=x ,即得97.4=kT hc m λ,将数据代入求得C m 109.2 ,03⋅⨯==-b b T m λ 第一章绪论 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010A 7.09m 1009.72=⨯≈==-mE h p h λ # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。

解:010A 63.12m 1063.1232=⨯≈===-mkT h mE h p h λ 其中kg 1066.1003.427-⨯⨯=m ,123K J 1038.1--⋅⨯=k # 1.4利用玻尔—索末菲量子化条件,求:(1)一维谐振子的能量。

(2)在均匀磁场中作圆周运动的电子的轨道半径。

已知外磁场T 10=B ,玻尔磁子123T J 10923.0--⋅⨯=B μ,求动能的量子化间隔E ∆,并与K 4=T 及K 100=T 的热运动能量相比较。

解:(1)方法1:谐振子的能量222212q p E μωμ+=可以化为()12222222=⎪⎪⎭⎫ ⎝⎛+μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为22,2μωμE b E a ==,相空间面积为 ,2,1,0,2=====⎰n nh E E ab pdq νωππ 所以,能量 ,2,1,0,==n nh E ν方法2:一维谐振子的运动方程为02=+''q q ω,其解为 ()ϕω+=t A q sin 速度为 ()ϕωω+='t A q cos ,动量为()ϕωμωμ+='=t A q p cos ,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=⎰⎰⎰2)cos 1(2cos 220220222μωϕωμωϕωμω, ,2,1,0=n νμωnh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。

曾谨言量子力学习题解答 第四章

曾谨言量子力学习题解答 第四章

ˆ nx ˆm x ˆm p ˆn p 是厄密算符。 2
ˆ nx ˆm x ˆm p ˆn p 也是。 2
因此 Anm
mn
ˆB ˆ 0 ˆ 作为厄密算符 0 ˆ 的定义,并设 ( A ˆ ) 又假定用 0 ˆ ) 则本题可用较简方式来证明如下: ˆ A ( B
从原来的对易式经过总数 n-1 次运算后,得
取 A=q,B=p,注意[q,p]=hi 代入前一式后,有
(6)证明
是厄密算符
证明)本题的算符可以先行简化,然后判定其性质
是厄密算符,因此原来算符也是厄密的。 另一方法是根据厄密算符的定义:
用于积分最后一式: 前式=
说明题给的算符满足厄密算符定义。
(7)证 (证明)此算符 证明动量是厄密算符,则 F( )
ni ni
在前式的最后一项中,当 I=x 时,可利用莱勃尼兹公式:
Pxn ( X) (
h n h n 1 h n n Px ) ( X) ( )n ( X n n n 1 ) XPxn i Px i x i x x
n n n
当 i y , z : Py ( X ) XPy ; Pz ( X ) XPz
[ p, fp 2 ] pfp 2 fp 2 ( pf fp ) p 2
h i 2 f p i
(2)证明以下诸式成立: (1) (证明)根据坐标分角动量对易式
~81~
为了求证
该矢量关系式,计算等号左方的矢量算符的 x 分量。
以及
看到 由于轮换对称性,得到特征的公式。
(2) (证明)证法与(1)类似,但需先证 分量与 分量的对易律
同理可证明其他轮换式,由此得普通式

苏汝铿量子力学课后习题及答案chapter4

苏汝铿量子力学课后习题及答案chapter4
第四章 矩阵力学基础(2)——表象理论 典型例题分析 4.1 质量为 m 的粒子在势场 V(x)中作一维运动,试建立动量表象中的能量本征方程。 解题思路:Schrodinger 方程式位置表象中描写波函数的方程,因此可以将它的解展开为一 系列动量表象本征函数的组合,其系数便是动量表象中的波函数。 解: 采用 Dirac 符号,能量本征方程在位置表象中的方程,即 Schrodinger 方程,
(4.40)
K dp 1 = [ p,V (r )] dt i=
(4.41)
在座标表象中, p = −i=∇ ,于是,
K
K K dp = −∇V = F dt
(4.42)
当 λ = 1 时,
(4.19)
B12 −λ
= 0 ⇒ λ = ±1
(4.20)
b1 = e− iα b2 , b2 = eiα b1
再结合归一化条件: (b1
*
(4.21)
b * ⎛ 1⎞ b2 )⎜ ⎟ =1 ⎝ b2 ⎠
b1 =
为方便讨论,取 γ = α = 0
1 iγ 1 i (γ +α ) e , b2 = e 2 2
由对易关系, px y − ypx = −i=δ xy ,可以得
K K K K [r , p 2 ] = [ x, px 2 ]i + [ y, p y 2 ] j + [ z , pz 2 ]k
易知, [ x, px ] = 2i=px ,所以,
2
(4.39)
K K dr p = 。 dt m
同理可得,
左乘 p ,得


p (T + V ) p ' ϕ ( p ')dp ' = E ∫ p p ' ϕ ( p ')dp ' p '2 p2 p p' = δ ( p − p ') 2m 2m

量子力学习题解答-第4章

量子力学习题解答-第4章

第4章三维空间中的量子力学本章主要内容概要1.球对称势场中能量本征函数的求解方法: 能量本征方程为22(),2V r E mψψψ-∇+=其中球坐标系中的拉普拉斯算符为2222222211111sin .sin sin r r r r r r θθθθθθφ⎛⎫∂∂∂∂∂∂⎛⎫⎛⎫∇=++ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭设()(,,)()(,)(,)u r r R r Y Y rψθφθφθφ==分离变量,能量本征方程分解为角方程和径向方程和222111sin (1).sin sin YY l l Y θθθθθφ⎧⎫∂∂∂⎛⎫+=-+⎨⎬⎪∂∂∂⎝⎭⎩⎭()222221.22l l d u V u Eu m dr m r +⎡⎤-++=⎢⎥⎣⎦角方程的解是球谐函数(,)ml Y θφ,径向方程在指定势函数后可由级数法等求解。

2. 空间角动量空间角动量算符ˆ(/)()i =⨯=⨯∇L r pr 2222211sin ,sin sin L θθθθθφ⎡⎤∂∂∂⎛⎫=-+ ⎪⎢⎥∂∂∂⎝⎭⎣⎦.z L i φ∂=∂ 对易关系[, ]; [, ]; [, ]x y z y z xz x yL L i L L L i L L L i i===⇒⨯=L L L ()2,0, ,,i L L i x y z ⎡⎤==⎣⎦2L 与L 的三个直角分量都对易,球谐函数(,)m l Y θφ为2,z L L 的共同本征函数。

22ˆˆ(,)(1)(,), (,)(,)m m m m l l z l lL Y l l Y L Y m Y θφθφθφθφ=+= 以1l =的三个基矢量11111,,,Y Y Y -构成的(子)表象是常用表象,在这个表象中,,,x y z L L L 的矩阵表示是010*******L 101, L 0, L 0002201000001x y z i i i i -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭其中z L 是在自身表象中,为对角矩阵,对角元是本征值。

量子力学导论第4章答案参考资料

量子力学导论第4章答案参考资料

第四章力学量用算符表达与表象变换1 14.1 )设A 与B 为厄米算符,则—AB BA 和 AB 一 BA 也是厄米算符。

由此证明,任何一个算符2 2i分解为F =F . • iFF 与F_均为厄米算符,且证:i)1AB BA1 -AB BA 为厄米算符。

1 1 1二—B A - A B 二 丄 BA - AB 二丄 AB - BA -2i 2i 2i二1(AB - BA )也为厄米算符。

iii )令 F 二 AB ,则 F 二 AB = B A ;= BA ,由i ) ,ii )得F . = F , F_ = F_,即卩F 和F_皆为厄米算符。

则由(1)式,不难解得F iF4.2)设F (x, p )是x, p 的整函数,证明整函数是指F(X, p)可以展开成F(X,p) = v C mn X m p n 。

m,n =0证: (1)先证 p,x m L -mi x m 4, X, p n]二 ni pn/。

p,xm ] =x m4 lp,x 「p, x m4 xi x m4 x m ^ ip,xk p,x m Q x 2 --2i x m4 x m : b, x 殳2 b,x m ; x 3=-3i x m4 ■ 'p,x m ^x 3 二… =-m -1i 乂心■ b,x m —z x m _ --m -1 i x m4 -i x m J 二 mi x m4同理,F 均可1 ^2i F -F1F =2 F F ,1 11 B A A B BA AB AB BAii)扌 AB 一 BA 且定义F T F「F(1)'p,F:xX, p n .1 - p n二X, p Z- X, p n J Ip=i*p n' + p n~ IX, p】p + X, p n~ 】p2= 2i%n」+ k, p n,】p 2=n卷p n」现在,Ip,F ]= |P, hC mn X”=送C mn b,X m Ip"Q QC mn -mi x mJ p nm,n兰:F 7而-i ——C mn -mi x mJ p n。

量子力学导论第4章答案参考资料

量子力学导论第4章答案参考资料

第四章 力学量用算符表达与表象变换 4.1)设A 与B 为厄米算符,则()BA AB +21和()BA AB i-21也是厄米算符。

由此证明,任何一个算符F 均可分解为-++=iF F F ,+F 与-F 均为厄米算符,且()()+++-=+=F F iF F F F 21 ,21 证:ⅰ)()()()()BA AB AB BA B A A B BA AB +=+=+=⎥⎦⎤⎢⎣⎡++++++21212121()BA AB +∴21为厄米算符。

ⅱ)()()()()BA AB i AB BA i B A A B i BA AB i -=--=--=⎥⎦⎤⎢⎣⎡-+++++21212121()BA AB i-∴21也为厄米算符。

ⅲ)令AB F =,则()BA A B AB F ===++++,且定义 ()()+++-=+=F F iF F F F 21 ,21 (1) 由ⅰ),ⅱ)得-+-+++==F F F F ,,即+F 和-F 皆为厄米算符。

则由(1)式,不难解得 -++=iF F F4.2)设),(p x F 是p x ,的整函数,证明[][]F ,F,,pi F x x i F p ∂∂=∂∂-=整函数是指),(p x F 可以展开成∑∞==,),(n m n m mnp x Cp x F 。

证: (1)先证[][]11, ,,--=-=n n m mp ni p x xmi xp 。

[][][][][][][][]()()[]()111111331332312221111,1,3,,2,,,,,------------------=---=+--==+-=++-=++-=+=m m m m m m m m m m m m m m m m m mx m i x i x i m xxp x i m x x p x i x x p x x p x x i x x p x x p x x i xx p x p x x p同理,[][][][][][]1221222111,2,,,,,--------==+=++=+=n n n n n n n n np ni ppx pi p p x p p x p p i pp x p x p p x现在,[][]()∑∑∑∞=-∞=∞=-==⎥⎦⎤⎢⎣⎡=0,1,0,,,,n m nm mnn m n m mn n m n m mn px m i C p x p C p x C p F p而 ()∑∞=--=∂∂-0,1n m n m mn p x mi C x Fi 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=⎡ ⎣ p y , lz ⎤ ⎦+⎡ ⎣l y , pz ⎤ ⎦ = 2i px ,
同理 ( p × l + l × p ) y = 2i p y , ( p × l + l × p ) z = 2i pz ,因此
14
p × l + l × p = 2i p 。
2 2 2 2 ⎡ ⎣l , p ⎤ ⎦x = ⎡ ⎣l x , p x ⎤ ⎦+⎡ ⎣l y , px ⎤ ⎦+⎡ ⎣lz , px ⎤ ⎦
可见, ( p × l − l × p ) = p × l − l × p , p × l − l × p 为厄米算符。
+
(4)算符 r × l
( r × l ) x = ylz − zl y ,
( r × l ) x = lz+ y + − l y+ z + = lz y − l y z = ( ylz − i x ) − ( zl y + i x ) = ( r × l ) x − 2i
[ A, BC ] = ABC − BCA = ( ABC + BAC ) − ( BAC + BCA)
= [ A, B ]+ C − B [ A, C ]+
3.8 证明:
( p × l + l × p ) x = p y lz − pz l y + l y p z − l z p y = ( p y lz − lz p y ) + ( l y pz − pz l y )
+
+ + + + +
+
+
+
+
+
( ri p )
+
+ + + + = px x + py y + pz+ z + = px x + p y y + pz z = xpx + yp y + zpz − 3i ≠ r i p
故有 r i p 不是厄米算符。 可以构造出相应的厄米算符 r i p + p i r ,
+ + + + + 1 ⎡⎛ r ⎞ ⎛ r ⎞ ⎤ 1 ⎡ + ⎛ r ⎞ ⎛ r ⎞ ⎤ i i i p p p ⎢⎜ ⎟ +⎜ ⎟ ⎥ = ⎢ ⎜ ⎟ + ⎜ ⎟ i p⎥ 2⎣ r r ⎝ ⎠ ⎝ ⎠ ⎦ ⎢ ⎥ 2⎢ ⎥ ⎣ ⎝r⎠ ⎝r⎠ ⎦
1⎛ r r ⎞ = ⎜ pi + i p ⎟ = pr 。 2⎝ r r ⎠
2
=−
2
⎡ ∂2 1 ∂ 1 ∂ ⎛ ∂ 1 ⎞ 1 ⎤ ⎢ 2 + r ∂r + r ∂r + ⎜ ∂r r ⎟ + r 2 ⎥ = − ⎝ ⎠ ⎣ ∂r ⎦
⎛ ∂2 2 ∂ ⎞ ⎜ 2+ ⎟ r ∂r ⎠ ⎝ ∂r
=−
(e) p = −
2
2
1 ∂ 2 ∂ 。 r r 2 ∂r ∂r
⎡1 ∂ 2 ∂ ∂ ∂ ∂2 ⎤ 1 1 + + r sin θ ⎢ r 2 ∂r ∂r r 2 sin θ ∂θ ∂θ r 2 sin 2 θ ∂φ 2 ⎥ ⎣ ⎦
证明:令 C =
(1) (2)
F = F+ + F−
其中 F+ = 有
(3) (4)
1 1 F + F † ) , F− = ( F − F † ) ( 2 2i 1 † −1 † F + F ) = F+ , F−† = ( ( F − F ) = F− 2 2i
F+† =
(5)
这样利用上述方法,任意一个算符都可以表示为两个厄米算符的和 3.2 解:粒子的坐标 r 和动量 p 为厄米算符。
( p × l − l × p )x ,
2 ( p × l − l × p)y , ⎡ ⎣l , p ⎤ ⎦ z = i ( p × l − l × p ) z ,因此
同理 ⎡ ⎣l , p ⎤ ⎦y = i
i
2 ( p × l − l × p) = ⎡ ⎣l , p ⎤ ⎦。
3.10 证明: (a) pr =
+
x。
同理
( r × l ) y = zlx − xlz ,
( r × l ) y = ( r × l ) y − 2i
+
y,
( r × l ) z = xl y − ylx ,
( r × l ) z = ( r × l ) z − 2i
+ +
z,
故有 ( r × l ) ≠ r × l ,因而算符 r × l 不是厄米算符。 可以构造厄米算符 r × l − l × r ,
im
(ψ n , rHψ n ) −
im
( Hψ n , rψ n )
En (ψ n , rψ n ) −
im
。 En (ψ n , rψ n ) = 0 ( H 为厄米算符)
φ 为 lˆz 的本征态,则有 lˆz φ = lz φ ,其中 lz 为本征值。
1 ˆ ˆ [l y , lz ] 有, i 1 1 φ [ lˆy , lˆz ] φ = φ lˆy lˆz φ − φ lˆz lˆy φ i i 1 lz φ lˆy φ − lz φ lˆy φ = 0 。 i
ˆ = 根据对易关系 l x
1 lˆx = i 1 = i
同理
1 lˆy = φ [ lˆz , lˆx ] φ = 0 。 i ˆ Y (θ , ϕ ) = l ( l + 1) 3.15 解:粒子处于 Ylm (θ , ϕ ) 状态下,有 l lm
(1)角动量算符 l = r × p
+ + lx = ypz − zp y ,则 lx+ = pz+ y + − p y z = pz y − p y z = ypz − zp y = lx ;
同理 l y = zpx − xpz ,则 l y = p x z − pz x = px z − pz x = zpx − xpz = l y ; 同理 l z = xp y − ypx ,则 lz = p y x − px y = p y x − px y = xp y − ypx = l z ; 故有 l = l , l 为厄米算符(当然, l x 、 l y 和 l z 也是厄米算符) 。 (2)算符 r i p = xpx + yp y + zpz
( r × l − l × r ) x = ( ylz + lz y ) − ( zl y + l y z ) ,
13
( r × l − l × r ) y = ( zlx + lx z ) − ( xlz + lz x ) , ( r × l − l × r ) z = ( xl y + l y x ) − ( ylx + lx y ) ,


=
m ,n =0 ∞
∑C ⎡ ⎣( −i ) x
mn
m −1
p n + xpx m −1 p n − x m p n +1 ⎤ ⎦
=
m ,n =0 ∞
∑C ∑C

mn
⎡ ⎣ 2 ( −i ⎡ ⎣ m ( −i
) x m−1 p n + x 2 px m−2 p n − x m p n+1 ⎤ ⎦ = ... ) x m−1 p n + x m p n − x m p n+1 ⎤ ⎦
∂ F。 ∂x
(8)
=
m ,n =0
mn
= −i
m,n =0
∑C
mn
mx m −1 p n = −i
同理,可得 [ x, F ] = i 3.4 证明:
∂ F。 ∂p
(9)
[ AB, C ] = ABC − CAB = ( ABC + ACB ) − ( ACB + CAB )
= A [ B, C ]+ − [ A, C ]+ B
+
px ) − ( pz l y + i px )
= ( p × l ) x − 2i px ≠ ( p × l ) x 。
同理
( p × l ) y = pz l x − px l z ,
( p × l ) y == ( p × l ) y − 2i
+
py ≠ ( p × l ) y ,
( p × l ) z = pxl y − p y lx ,
第四章作业参考答案
[曾谨言著《量子力学教程》(第二版) 习题 3: BA) , D = ( AB − BA) ,有 2 2i 1 1 1 † C † = ( AB + BA ) = ( B † A† + A† B † ) = ( AB + BA ) = C 2 2 2 − 1 − 1 1 † D† = ( AB − BA) = ( B† A† − A† B† ) = ( AB − BA) = D 2i 2i 2i 可见, C 、 D 都是厄米算符 对于一个给定的算符 F ,可以将其分成两部分
∂ ∂ ∂r ⎞ ⎛ ∂ ⎞ ⎛ ∂ + 1 − r − 1 ⎟ = −i ⎜ r − r − ⎟ = i 。 ∂r ∂r ∂r ⎠ ⎝ ∂r ⎠ ⎝ ∂r
2
(d) p = −
2 r
2
⎛ ∂ 1⎞ ⎜ + ⎟ =− ⎝ ∂r r ⎠
相关文档
最新文档