接地保护原理含图

合集下载

保护接地、保护接零和重复接地

保护接地、保护接零和重复接地

筑龙网ww wom保护接地、保护接零和重复接地王凤杰 (广东奇正电气有限公司 佛山52800)摘要:简明扼要的介绍了保护接地、保护接零和重复接地的概念及其必要性 关键词:保护接地 保护接零 重复接地在实际工作中,工程技术人员有时将保护接地与保护接零的概念混淆,重复接地的概念也比较模糊,本文将对这几个问题做较详尽的叙述。

一、 保护接地在中性点对地绝缘的电网中,带电部分意外碰壳时,接地电流将通过接触碰壳设备的的人体和电网与大地之间的电容构成回路(见图1,)。

流过故障点的接地电流主要是电容电流。

在一般情况下,此电流是不大的。

但是,如果电网分布很广,或者电网绝缘强度显著下降,这个电流可能达到危险程度,这就有必要采取安全措施。

如果电器设备采取了保护措施(见图2),这时通过人体的电流仅是全部接地电流I D 的一部分,显然,保护接地电阻R D 是与人体电阻并联的,R D 越小,流经人体的电流也越小, 如果限制R D 在适当的范围内,就能保障人身的安全。

所以在这种中性点不接地(绝缘)系统中,凡因绝缘损坏而可能呈现对地电压的金属部分(正常时是不带电的)均应接地,这就是保护接地。

二、保护接零所谓保护接零,就是把电气设备在正常情况下不带电的金属部分与电网的零线紧密连接,有效地起到保护人身和设备安全的作用。

1、保护接零的原理及应用范围在变压器中性点直接接地的三相四线制系统中,通常采用保护接零作为安全措施,见图3,在这图1 不接地的危险 图2 保护接地原理w w.z hu l on g.c om种情况下,如果一相带电部分碰连设备外壳,则通过设备外壳形成相线对零线的单相短路。

短路电流总是超出正常工作电流许多倍,能使线路上的保护装置迅速动作,从而使故障部分脱离电源,保障安全。

在380/220伏三相四线制中性点直接接地的电网中,不论环境如何,凡因绝缘损坏而可能呈现对地电压的金属部分,均应接零。

2、重复接地对采用接零保护的电气设备,当其带电部分碰壳时,短路电流经过相线和零线形成回路。

IT系统、TT系统、TN系统保护接地系统

IT系统、TT系统、TN系统保护接地系统

IT系统、TT系统、TN系统保护接地系统水利建设工地大多分散在郊区与边远地区,施工场地大,设备与人员分散,施工季节性强,施工单位得安全管理水平参差不齐,临时工与外来民工较多,这些都给现场得安全供用电带来极为不利得影响,水利工地电气事故时有发生,安全用电形势严峻。

因此必须积极贯彻预防为主得方针,认真研究运用各项技术措施与管理措施,提高供用电系统得安全水平,营造工地电气安全环境,保障广大水利建设者得安全。

1 施工用电380/220V低压系统得接地方式380-220V低压系统有三种接地方式。

1.1 IT系统IT系统就是电源端中性点不直接接地,电气装置得外露可导电部分直接接地得系统(见图1)。

图1 IT系统1.2TT系统TT系统就是电源系统中性点直接接地,电气装置得外露可导电部分直接接地得系统(见图2)。

图2 TT系统1.3 TN系统TN系统为电源系统中性点直接接地,电气装置外露可导电部分通过保护导体连接到电源接地点得系统。

根据中性线与保护线得布置,TN系统有三种形式:1.3.1 TN-C系统TN-C系统就是中性线与保护线合一得三相四线制系统(图3)。

图3TN-C系统1.3.2TN-S系统TN-S系统为三相五线制,系统中得保护线与中性线就是从电源端开始完全分开得(见图4)。

图4TN-S系统1.3.3 TN-C-S系统TN-C-S系统得特点就是一部分中性线与保护线合一,一部分中性线与保护线分开(见图5)。

图5TN-C-S系统2保护接地与保护接零2.1 保护接地TT系统中得接地方式称为保护接地图6就是TT系统保护接地原理图,U为相电压,Rde为工作接地电阻,Rpe为保护接地电阻,M为用电装置,当M绝缘损坏外壳带电时,不计线路及电源电阻,则有图6TT系统保护接地原理Ie=U/(Rde+Rpe)取U=220V,Rde=Rpe=4Ω,则Ie=27.5A在接地短路电流Ie得作用下,电路中保护装置动作切断电源,从而保障了安全。

保护接地与保护接零知识图文解析(附注意事项)

保护接地与保护接零知识图文解析(附注意事项)

保护接地与保护接零知识图文解析(附注意事项)(1)保护接地:电气设备的导体部分或者外壳用足够容量的金属导线或导体可靠的与大地连接,当人体触及带电外壳时,人体相当于接地电阻的一条并联支路,由于人体电阻远远大于接地电阻,所以通过人体的电流将会很小,避免了人身触电事故。

(2)保护接零:电气设备在正常情况下,不带电的金属部分与零线做良好的金属或者导体连接。

当某一相绝缘损坏致使电源相线碰壳,电气设备的外壳及导体部分带电时,因为外壳及导体部分采取了接零措施,该相线和零线构成回路。

由于单相短路电流很大,使线路保护的熔断器熔断。

从而使设备与电源断开,避免了人身触电伤害的可能性。

适用范围(1)保护接地:适用于中性点不接地的三相电源系统中。

(2)保护接零:适用于中性点接地的三相电源系统中(一些民用三相四线中性点接地系统也采用保护接地,但必须是配合带有漏电保护的开关使用)。

保护原理及危害分析(1)在中性点不接地系统中:当人体触及电气设备的导体部分或者外壳时,人体相当于一个与接地电阻并联支路的一个大电阻。

若按人体电阻值1000Ω(通常人体电阻值为1000~2000Ω)计算,设备外壳所带电压为220V时,那么无保护接地时流经人体的电流为:Ir=220/Rr=220mA(人体可以承受的最大交流电流/交流摆脱电流为10mA)。

(2)在中性点接地系统中:在380V/220V三相四线制电源中性点直接接地的配电系统中,只能采用保护接零,采用保护接地则不能有效地防止人身触电事故的发生。

若采用保护接地,电流中性点接地电阻按4Ω考虑,而电源电压为220V,那么当电气设备的绝缘损坏使电气设备的外壳带电时,则中性点接地电阻与接地电阻之间的电流为:Ir=220/(R0+Rd)=220/(4+4)=27.5A。

熔断器的额定电流是根据电气设备的要求选定的,如果设备的容量较大,为了保证设备在正常情况下的运行。

所选熔体的额定电流将会随之增大。

如果在27.5A的接地短路电流作用下保护不动作,外壳带电的电气设备不能立即脱离电源,设备导体或者金属外壳会长期存在对地电压Ud=27.5×4=110V。

电气接地图解

电气接地图解

TN-S接地系统(整个系统的中性线和保护线是分开的)TN-C接地系统(整个系统的中性线和保护线是合一的)TT接地系统(TT接地系统有一个直接接地点,电气装置外露可导电部分则是接地)TN-C-S接地系统(整个系统有一部分的中性线和保护线是合一的)IT接地系统(IT接地系统的带电部分与大地间不直接连接,而电气装置的外露可导电部分则是接地的)字母标识第一字母表示电力系统的对地关系T-----一点接地I-----所有带电部分与地绝缘,或一点经阻抗接地第二字母表示装饰的外露可导电部分对地关系T-----外露可导电部分对地直接电气连接,与电力系统的任何接地点无关N-----外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)如果后面还有字母,这个字母表示中性线和保护线的组合S-----中性线和保护线是分开的C-----中性线和保护线是合一的(PEN线)我们国家110KV及以上系统普遍采用中性点直接接地系统(即大电流接地系统)。

35KV、10KV系统普遍采用中性点不接地系统或经大阻抗接地系统(即小电流接地系统) 380V/220V低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。

IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。

即:过去称三相三线制供电系统的保护接地。

TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。

即过去的三相四线制供电系统中的保护接地。

TN系统,在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。

即过去的三相四线制供电系统中的保护接零。

TN系统的电源中性点直接接地,并有中性线引出。

按其保护线形式,TN系统又分为:TN-C系统、TN-S系统和TN-C-S系统等三种。

(1)TN-C系统(三相四线制),该系统的中性线(N)和保护线(PE)是合一的,该线又称为保护中性线(PEN)线。

保护接地与保护接零

保护接地与保护接零
(3)利用管道或配管作接地体时,应在管接头处采用跨接线焊接。
(4)直流电力网的接地装置不得利用自然接地体。
2. 人工接地体
人工接地体是采用钢管、角钢、扁钢、圆钢等钢材特意制作而埋入地中的导体。按照机械强度的要求,钢质接地体和接地线的最小尺寸应满足表1;铜、铝接地线只能用于地面以上,其最小尺寸见表2。
右图所示为TT系统采用保护接地极其等效电路。
通过等效电路图我们可以看出人体电阻和保护接地电阻的关系为并联,然后与中性点接地电阻串联,一般情况下 设RE=R0=4Ω,Rb=1700Ω,在380/220V电网中,利用欧姆定律可以求出,接地故障电流IE=27.5A,人体承受的电压UE=Ub=110V。流过人体的电流Ib=65mA>30mA。
保护接零电路的等效电路

RN
Rb
R0
U=220V
设人体电阻RN >>R0(接地电阻),Rb>>RN(零线电阻)时,RΦ—相线电阻,RN—零线电阻,若相线截面为零线的2倍,则RN=2RΦ,利用欧姆定律可以求出此时人体承受的电压Ub=147V。
通过上述分析,我们可以知道,保护接零的有效性在于线路的短路保护装置能否在碰壳短路故障发生后灵敏的动作迅速切断电源。
(1)架空线路干线和长度超过200m的分支线终端及沿线路每100m处; (2)线路引入车间及大型建筑物的第一面配电装置处; (3)采用金属管配线时,金属管与保护零线连接后作重复接地; (4)同杆架设的高低压架空线路的共同敷设段的两端。
对重复接地电阻的要求:
第四节 接地装置
接地装置由接地体和接地线组成。接地体是埋入地中并直接与大地土壤接触的金属导体;接地线是指将电气设备需要接地的部分与接地体连接起来的金属导线。
设另外,由于接地电阻很小,接地短路电流流过时,所产生的压降也很小,故外壳对大地的电压也很低,人站在大地上去碰触外壳时,人体所承受的电压很低,不会有危险。

IT系统、TT系统、TN系统保护接地系统

IT系统、TT系统、TN系统保护接地系统

IT系统、TT系统、TN系统保护接地系统水利建设工地大多分散在郊区和边远地区,施工场地大,设备和人员分散,施工季节性强,施工单位的安全管理水平参差不齐,临时工和外来民工较多,这些都给现场的安全供用电带来极为不利的影响,水利工地电气事故时有发生,安全用电形势严峻。

因此必须积极贯彻预防为主的方针,认真研究运用各项技术措施和管理措施,提高供用电系统的安全水平,营造工地电气安全环境,保障广大水利建设者的安全。

1 施工用电380/220V低压系统的接地方式380-220V低压系统有三种接地方式。

1.1 IT系统IT系统是电源端中性点不直接接地,电气装置的外露可导电部分直接接地的系统(见图1)。

图1 IT系统1.2 TT系统TT系统是电源系统中性点直接接地,电气装置的外露可导电部分直接接地的系统(见图2)。

图2 TT系统1.3 TN系统TN系统为电源系统中性点直接接地,电气装置外露可导电部分通过保护导体连接到电源接地点的系统。

根据中性线和保护线的布置,TN系统有三种形式:1.3.1 TN-C系统TN-C系统是中性线与保护线合一的三相四线制系统(图3)。

图3 TN-C系统1.3.2 TN-S系统TN-S系统为三相五线制,系统中的保护线与中性线是从电源端开始完全分开的(见图4)。

图4 TN-S系统1.3.3 TN-C-S系统TN-C-S系统的特点是一部分中性线与保护线合一,一部分中性线与保护线分开(见图5)。

图5 TN-C-S系统2 保护接地和保护接零2.1 保护接地TT系统中的接地方式称为保护接地图6是TT系统保护接地原理图,U为相电压,Rde为工作接地电阻,Rpe为保护接地电阻,M为用电装置,当M绝缘损坏外壳带电时,不计线路及电源电阻,则有图6 TT系统保护接地原理Ie=U/(Rde+Rpe)取U=220V,Rde=Rpe=4Ω,则Ie=27.5A在接地短路电流Ie的作用下,电路中保护装置动作切断电源,从而保障了安全。

发电机定子、转子接地保护

发电机定子、转子接地保护

RCS-985 发电机注入式转子接地保护
接线图
图1 双端注入式接线示意图
图2 单端注入式接线示意图
RCS-985 发电机注入式转子接地保护
注入式转子接地保护原理
发电机正常运行时转子绕组回路对地(大轴)是绝缘的,发生转子 绕组接地故障后,对地绝缘被破坏。为此,通过在发电机转子绕组两端 (如图3 所示)或一端(如图4 所示)注入方波信号电源,可区分正常 运行和接地故障。正常运行时发电机由注入电源引起的对地泄漏电流几 乎为零;转子绕组接地故障时,此电流明显地发生改变,通过检测该电 流的变化,可实时计算转子一点接地电阻及一点接地位置。这种原理既 能在100%范围内测量转子接地故障,同时也能反映转子绕组绝缘下降 ,起到对绝缘老化监视的作用。
RCS-985 发电机注入式定子接地保护
保护原理
RCS-985 发电机注入式定子接地保护
保护原理
RCS-985 发电机注入式定子接地保护
保护原理
注入式定子 接地保护出 口逻辑
RCS-985 发电机注入式定子接地保护
定值整定原则
发电机中性点经配电变高阻接地,当定子绕组发生单相接地故障时,其等效 的基波零序回路电路如下图所示:
RCS-985 发电机注入式转子接地保护
注入式转子接地保护原理
图3 双端注入式保护方案
图4 单端注入式保护方案
RCS-985 发电机注入式转子接地保护
注入式转子接地保护原理
注入式转子接地保护分为两种原理,双端注入式原理和单独注入式原理。其中双 端注入式原理较有代表性,以此为例阐述注入式转子接地保护原理,其等效原理图如 图3 所示:
RCS-985 发电机注入式定子接地保护
组屏
RCS-985 发电机注入式定子接地保护

工作接地,保护接地(TN,TT,IT)有图

工作接地,保护接地(TN,TT,IT)有图

首先明确两个概念,工作接地和保护接地。

1什么是工作接地,什么是保护接地?工作接地,在正常或故障情况下为了保证电气设备的可靠运行,而将电力系统中某一点接地称为工作接地。

例如电源(发电机或变压器)的中性点直接(或经消弧线圈)接地,能维持非故障相对地电压不变,电压互感器一次侧线圈的中性点接地,能保证一次系统中相对低电压测量的准确度,防雷设备的接地是为雷击时对地泄放雷电流。

保护接地,将在故障情况下可能呈现危险的对地电压的设备外露可导电部分进行接地称为保护接地。

电气设备上与带点部分相绝缘的金属外壳,通常因绝缘损坏或其他原因而导致意外带电,容易造成人身触电事故。

为保障人身安全,避免或减小事故的危害性,电气工程中常采用保护接地。

接地保护与接零保护统称保护接地,是为了防止人身触电事故、保证电气设备正常运行所采取的一项重要技术措施。

这两种保护的不同点主要表现在三个方面:一是保护原理不同。

接地保护的基本原理是限制漏电设备对地的泄露电流,使其不超过某一安全范围,一旦超过某一整定值保护器就能自动切断电源;接零保护的原理是借助接零线路,使设备在绝缘损坏后碰壳形成单相金属性短路时,利用短路电流促使线路上的保护装置迅速动作。

二是适用范围不同。

根据负荷分布、负荷密度和负荷性质等相关因素,《农村低压电力技术规程》将上述两种电力网的运行系统的使用范围进行了划分。

TT系统通常适用于农村公用低压电力网,该系统属于保护接地中的接地保护方式;TN系统(TN系统又可分为TN-C、TN-C-S、TN-S三种)主要适用于城镇公用低压电力网和厂矿企业等电力客户的专用低压电力网,该系统属于保护接地中的接零保护方式。

当前我国现行的低压公用配电网络,通常采用的是TT或TN-C系统,实行单相、三相混合供电方式。

即三相四线制380/220V配电,同时向照明负载和动力负载供电。

三是线路结构不同。

接地保护系统只有相线和中性线,三相动力负荷可以不需要中性线,只要确保设备良好接地就行了,系统中的中性线除电源中性点接地外,不得再有接地连接;接零保护系统要求无论什么情况,都必须确保保护中性线的存在,必要时还可以将保护中性线与接零保护线分开架设,同时系统中的保护中性线必须具有多处重复接地。

发电机转子接地保护原理综述综述0824

发电机转子接地保护原理综述综述0824

发电机转子接地保护原理综述发电机转子绝缘损坏时引起的励磁回路接地故障是常见的故障,据统计,1999年全国100MW及以上发电机发生转子接地故障九次,占发电机本体故障的30%,可见转子接地保护对于保护发电机本体遭受更大的损害有非常重要的意义。

在研制保护装置之前,首先要了解发电机转子接地保护原理。

发电机转子接地保护分为一点接地保护和两点接地保护两种。

本文主要分析了各种保护的基本原理,它们的优缺点以及改进。

一、转子一点接地保护发电机转子一点接地保护方法主要有电桥法,叠加直流电压法,叠加交流电压法(主要是导纳法),乒乓法。

下面分别介绍他们的工作原理及优缺点。

(一)电桥法图1-1电桥式一点接地保护原理图 (a)正常情况下;(b )经过渡电阻一点接地利用电桥原理构成的一点接地保护,其原理图如图1-1所示。

(a),(b)分别是正常情况和一点接地情况下的原理图。

集中电阻y R 表示绕组对地绝缘分布电阻。

励磁绕组LE 的电阻构成构成电桥的两个臂,外接电阻R1和R2 构成另外两个臂。

正常情况下,调节电阻R1和R2,使流过继电器J 的不平衡电流最小,使继电器的动作电流大于这一不平衡电流。

当一点经过渡电阻接地后,电桥失去平衡,此时继电器的动作。

电流的大小决定于k 点的位置以及过渡电阻Rf 的大小。

当电流大于继电器J 的动作电流时,继电器动作。

当励磁绕组的正端或负端发生接地故障时,这种保护装置的灵敏度很高,然而,当故障点位于励磁绕组中点附近时,即使是金属性接地,保护装置也不能动作。

这是电桥法的根本缺陷。

为了消除这一缺陷,在电桥的1R 臂中串接一只非线性电阻f R 。

非线性电阻0f R u i α-=,其中α是常数,当电压0u 升高,电流i 非线性地增加,电阻f R 下降;反之,则f R 上升。

因此,串接这个非线性电阻后,电桥的平衡条件会随着励磁电压的改变而变化。

在某一电压下的死区,在另一电压下变为动作区,从而减小了拒动的几率。

转子接地保护原理

转子接地保护原理

发电机转子接地保护原理发电机正常运行时,转子的转速很高,离心力极大,承受的电负荷又重,一次励磁绕组绝缘容易破坏。

绕组导线碰接铁芯,就会造成转子一点接地故障。

发电机励磁回路的一点接地是比较常见的故障,由于不会形成电流通路,所以对发电机无直接危害,因此发电机可继续运行。

但发生一点接地以后,励磁回路对地电压会有所升高,例如当负极接地,励磁绕组正极对地电压即增加到工作励磁电压值;正极接地,励磁绕组负极对地电压也增加到工作励磁电压值。

因此当转子发生一点接地后,如发电机仍然继续运行,遇上励磁绕组其他点绝缘水平降低时,就有可能发生转子回路的第二点接地。

励磁回路两点接地后构成短路电流通路,可能烧坏转子绕组和铁芯。

由于部分励磁绕组被短接,破坏了气隙磁场的对称性,引起机组振动,特别是多机组振动更严重。

此外,转子两点接地还可能使汽轮发电机组的轴系统和汽缸磁化。

因此,转子一点接地以后,应该对励磁回路进行认真检查.同时是否会有保护误动作:根据某些保护构成原理,检查是不是因为炭刷接触不良所引起.此外,还可以倒换备用励磁以找出接地范围.如果一旦确认转子一点接地,应该投入转子2点接地保护,这时候,严禁在励磁回路上工作,以防保护误动作。

需要指出的是,在转子一点接地的同时,若发电机出现振动,则应该立即解列停机。

一.转子一点接地保护1.绝缘检测装置用一个电压表定期测量励磁回路正负极对地电压,其接线如下图所示。

图中元件1为励磁绕组,元件2为接地炭刷。

励磁绕组对地存在着绝缘电阻,设这些绝缘电阻对地均匀分布,如图中的r1,r2,…,r n-1,r n。

当励磁绕组绝缘良好时,所测得的正极对地电压和于负极对地电压。

如果正极接地,则负极对地电压为工作励磁电压;如果负极接地,则正极对地电压为工作励磁电压。

如果励磁绕组其他点接地,一般情况下,正极对地电压不等于负极电压,而且所测得的电压低于工作励磁电压。

但是如果励磁绕组中部接地,则所测得的正极对地电压将等于负极对地电压,且为工作励磁电压的一半。

注入式定子接地保护

注入式定子接地保护
注入式定子接地保护
• 接线示意图:
辅助电源装置(RCS985U)将低频电压加在负 载电阻Rn上,并通过接地 变压器,将低频电压信号 注入到发电机定子绕组对 地的零序回路中。
带通滤波器:通过20Hz低频 电压信号,防止50Hz电压 倒灌入电源。 保护装置(RCS-985)检 测注入的电压、电流信号, 通过保护计算判断接地故 障。
• 无需与主变高压侧接地后备保护配合。 • 20Hz 信号和工频、分次谐波、整数次谐波相差较大,机组正常运行或 振荡时不会影响外加20Hz电阻的计算。 • 注入一次绕组电压仅为 1~3 %的额定相电压,不会损坏定子绕组绝缘。
注入式定子接地保护的逻辑框图:
注入式定子接地保护的特点:
• 保护范围为100%,灵敏度一致,不受接地位置影响。 • 不受发电机运行工况的影响,在发电机静止、起停过程、空载运行、 并网运行、甩负荷等各种工况下,均能可靠工作。可监视定子绕组绝缘 的缓慢老化。
• 接地电阻的实测结果、电阻判据中的电阻定值为一次值,更直观。
变压器 带通滤波器
E 50
接地 过渡电阻
U
3C
G0 I
G0
Rn
BPF 检测注入的低频电压、电 U 流,通过导纳法可计算出 s 20
接地过渡电阻阻值,可以 反映发电机100%的定子 绕组单相接地。
20Hz电源
RE
当对地绝缘受到破坏,注 正常情况下,注入的低频 滤波算法 入电流出现电阻性电流。 电流主要是流过对地电容 RE I LF , U I G 0 ,U G 0 的电容电流。 0 LF 0
(3)辅助功能——频率闭锁
• 接地电阻定子接地判据 接地电阻判据与定子绕组的接地点无关,可以反映发电机100%的定子绕组 单相接地。接地电阻判据反映发电机定子绕组接地电阻的大小,设有两段接地 电阻定值,高定值段作用于报警,低定值段作用于延时跳闸. • 接地电流定子接地判据 考虑到当接地点靠近发电机机端时,检测量中的基波分量会明显增加, 导致检测量中低频故障分量的检测灵敏度受到影响。为了提高此种情况下保护 的灵敏度,增设接地电流辅助判据。 接地电流判据能够反映距发电机机端80~90%的定子绕组单相接地,而 且接地点越靠近发电机机端其灵敏度越高,因此能够很好的与接地电阻判据构 成高灵敏的100%定子接地保护方案。 • 外加电源回路故障报警 当 和 中的任一个低于各自的定值时,认为定子接地保护外加 电源回路故障,闭锁保护出口并发出报警信号。 • 频率闭锁 在机组频率严重偏离额定值时,需闭锁外加电源式定子接地保护装置的 接地电阻判据,而接地电流判据不受影响。

发电机定子单相接地保护

发电机定子单相接地保护

发电机定子单相接地保护发电运行部 钟应贵一、 发电机定子单相接地的危害设发电机定子绕组为每相单分支且中性点不接地,发电机定子绕组接线示意图及机端电压向量图(图1)ABC(a )定子绕组接地示意图B C(b )定子绕组接地电压向量图设A 相定子绕组发生接地故障,接地点距中性点的电气距离为α(所谓电气距离,就是发电机单相定子绕组的长度,α为中性点到故障点的绕组占全部绕组的百分数),此时,在接地点会出现一个零序电压。

由图1(b )向量图可以看出,A 相接地时,使B 相及C 相对地电压,由相电压升高到另一值。

当机端A 相接地时,B 、C 两相的对地电压由相电压升高到线电压。

另外,发电机定子绕组及机端连接元件(包括主变低压侧及厂用变高压侧)对地有分布电容,零序电压通过分布电容向故障点供给电流。

此时,如果发电机中性点经某一电阻接地,则发电机零序电压通过电阻也为接地点供给电流。

综合上述分析,发电机定子绕组单相接地的危害是:1、非接地相对地电压升高,将危及对地绝缘,当原来绝缘较弱时可能会造成非接地相相间发生接地故障,从而造成相间接地短路,损害发电机。

2、流过接地点的电流具有电弧性质,会产生电弧,可能烧伤定子铁芯。

分析表明:接地点距发电机中性点越远,对发电机的危害越大;反之越小。

二、发电机定子绕组单相接地保护的构成1、利用零序电压构成的发电机定子绕组单相接地保护由上述分析:画出零序电压3U0随故障点位置α变化的曲线,见图2。

3U0(v)50Uop图2 定子绕组单相接地时3U0与α的关系曲线越靠近机端,故障点的零序电压越高。

利用基波零序电压构成定子单相接地保护,图中Uop为零序电压定子接地保护的动作电压。

定子绕组单相接地保护用的零序电压的获取见图3。

100/3N U 03U 03U 3100/3100/3N U FFDL图3发电机定子绕组单相接地接线原理零序电压可以从发电机机端YH 二次可口三角形获取,也可以从发电机中性点单相YH 获取。

发电机励磁回路接地保护

发电机励磁回路接地保护

16
确定,而式中励磁电压按空载励磁电压 U fd0 考虑。K 为可靠系数,可取 Krel 1.5 。则动作条件可写为:
rel
U0 Rf Ry Rk Ry Rf

1U 2
R fd 0 f
Ry Rk
Krel U0 U fdn Rk Ry
(3-3-8)
对于空冷或氢冷发电机,其励磁绕组对地绝缘电
阻在几兆欧及以上,正常情况下电桥平衡条件打破后
流过继电器的不平衡电流变化不大。而对于水内冷发
电机,对地绝缘电阻相当低,则流过继电器的不平衡
电流要有较大的变化。由图33(b)可求出继电器K中的
电流 Ik为(设 R1 R2 ):
Ik
U fd

由此可解出表示最小灵敏度的过渡电阻值为:
Rf
U0 Ry 1.5 U0 U fdn Ra 0.5U0 1.5U fdn 0.5U fd 0
(3-3-9)

Ra Ry Rk Ry Rk
(3-3-10)
若 Rk 和 Ry 是给定值,则式(3-3-9)算出的 Rf 值为
殊,这一缺点没有得到明显改善。因此,对于大机组
来说,电桥式一点接地保护是不够完善的。励磁绕组
中点的固有交流分量的大小是不能改变的,利用这种
交流分量的普遍有效性尚需积累资料。 12
2、叠加直流电压式一点接地保护
TVA

U
U K I0 U0 Rk
U fd
LE
1 2 U fd
Ry
将一直流电压U0 经 一继电器K顺向加到励磁 绕组的一端与地之间, 如图35所示,则构成了 叠加直流电压式一点接
4

《仪表接地技术》PPT课件

《仪表接地技术》PPT课件

3、防反击 防雷装置在承受雷击时,接闪器、引下线、接地装置
呈现很高电压,可能击穿邻近导体的绝缘,造成反击。为 此,必须保证接闪器、引下线、接地装置与邻近导体之间 保持足够的安全距离。
独立避雷针空中距离一般不得小于5m。 避雷线空中距离一般也不得小于5m。 接地装置地下距离一般不得小于3m。
防直击雷措施。一般是采用避雷针或避雷带。 2、防雷电感应 防雷电感应分为防静电感应和防电磁感应。
(1)防静电感应 ① 将建筑物和构筑物的金属设备、管道金属构架、电缆金属外皮、钢
屋架、钢窗等接地。
② 将建筑物和构筑物的金属屋面、屋面结构钢筋、屋面金属网格以及 突出屋面的金属体接地。
防静电感应的接地装置应与电气设备接地装置共用。
当安装在金属仪表盘、箱、柜、框架上的仪表,与已接地 的金属仪表盘、箱、柜、框架电气接触良好时,可不做保 护接地。
1.2 工作接地 工作接地的作用是保证仪表精确、可靠地正常工作。它包
括信号回路接地、屏蔽接地和本安系统接地。
1、仪表信号回路接地 在仪表及控制系统中,信号分为隔离信号和非隔离信号。
输入式安全栅除了进行能量转换传输外,还进行了检测信
号的传输。来自现场变送器的4~20 mA DC信号经限流限 压电路、整流滤波电路Ⅰ(此时该电路起调制器的作用)、 隔离变压器T2耦合到共基极放大整流电路。共基极放大整 流电路在此起解调器的作用,把方波信号还原成1~5 V DC信号,作为输出送给控制室仪表。所以从信号通道来 看,安全栅是一个放大系数为1的传送器,被传送的信号 经过调制一变压器耦合一解调的过程后,照原样送出(或 转换成1~5 V DC的标准信号)。
图 5—5 信号回路在控制室和现场两侧同时接地示意图
④ 现场仪表接线箱两侧的电缆屏蔽层应在箱内跨接,现场仪 表接线箱内的多芯电缆备用芯要在箱内作跨接。见图 5—6

转子一点接地保护原理示意图

转子一点接地保护原理示意图

同一个接点地 d "
上式表明 Œ 当接地电阻越小 Œ 则测定电
导 G 越大 , 所以将上式作为转子一点接地
保护 的 动 作 判 据 , 当 Rjd œ R zd (整 定 电 阻) , 即当 G ž Gzd (整定电 导) 时 保护 动 作"
实质是电子开关在时序电路控制下周期
性地导通 ! 截止 Œ 即转子的正负极人为地周
在时序电路控制下周期性地导通 ! 截止 Œ 即转子的 正负极人为地周期性接地来监测转子的对地绝缘状 况 " 这对电桥平衡原理的转子两点接地来说 Œ 相当 于出现永久性的不固定的两点接地故障 Œ 电桥无法 调节平衡 Œ 这样使两点接地保护装置不能正常可靠 地投入运行 " 因此要使这两种原理的转子接地保护 并存运行 Œ 必须对乒乓原理转子一点接地保护的逻 辑电路进行改进 Œ 使这两种原理的接地保护装置能 够安全可靠地运行在系统中 "
方案 ’ š 利用转子一点接地保护的出口接点 Œ 并加时限电路及双稳态触发电路 Œ 去闭锁时序电路 控制的电子开关 Œ 从而起到退出一点接地保护的功 能 " 时限回路的时间长短略长于装置的最长时限 Œ 最好设计成可调 " 为使装置再次工作 Œ 设有双稳态 触发电路复位按钮 " 具体接线见图 ” "
另外 Œ 可以在方案 ’ 基础上 Œ 利用乒乓式转子 一点接地保护的出口常闭接点去触发桥平衡原理的 一个双稳态开关 Œ 实现自动退出一点接地保护和自 动投入转子两点接地保护的功能 " 运行人员只对两
³‘ 闭合 ³’ 打开时 Œ 直流稳态电流 ! 电导分别 为
©‘ •
U‘ R • ‹ Rjd
G‘ •
I‘ U‘

发电机转子一点接地保护原理图附案例!

发电机转子一点接地保护原理图附案例!

发电机转子一点接地保护原理图附案例!一、某厂发电机组及励磁系统概述某厂一台发电机是由东莞电机厂有限责任公司生产的QFSN-660-2型三相同步汽轮发电机,采用水氢氢冷却方式,励磁方式采用静态励磁。

发电机为三相交流隐极式同步发电机,采用整体全封闭、内部氢气循环、定子绕组水内冷、定子铁心及端部结构件氢气表面冷却、转子绕组气隙取气氢内冷的冷却方式。

发电机定、转子绕组均采用F级绝缘。

发电机组于2009年9月正式投产。

二、发电机转子接地保护装置原理简述发电机转子一点接地保护装置为南京南瑞RCS-985RE保护装置,该装置采用注入式转子接地保护原理,在转子绕组的正负两端或其中一端(通常选择负端)与大轴之间注入一个48V电压,通过装置内部电子开关定时切换,实时求解转子对地绝缘电阻值,注入电压由保护装置自产,保护反映发电机转子对大轴绝缘电阻的下降。

转子一点接地保护。

可根据现场转子绕组的引出方式,选择双端注入式或单端注入式转子接地保护原理,在转子绕组的正负两端(或负端)与大轴之间注入一个48V电压,通过装置内部电子开关定时切换,使得外加电源模块输出偏移方波电压,实时求解转子一点接地电阻,保护反应发电机转子对大轴绝缘电阻的下降。

双端注入式和单端注入式转子接地保护的工作电路如图1和图2所示,图中Rx为测量回路电阻,Ry为注入大功率电阻,Us为注入电源模块,Rg为转子绕组对大轴的绝缘电阻。

一点接地设有两段动作值,灵敏段动作于报警,普通段可动作于信号也可动作于跳闸。

图1:双端注入式转子接地保护原理发电机转子一点接地保护原理图附案例!图2:单端注入式转子接地保护原理发电机转子一点接地保护原理图附案例!转子两点接地保护。

若转子一点接地保护动作于报瞥方式,当转子接地电阻Rg小于普通段整定值,转子一点接地保护动作后,经延时自动投人转子两点接地保护,当接地位置α改变达一定值时判为转子两点接地,动作于跳闸。

三、环球电机分析发电机转子一点接地保护报替原因1、故障现象及现场检查情况2013年某日,该机组DCS系统发“发电机转子一点接地’’报警信号,专业人员到设备就地进行检査,转子接地保护装置检测到接地电阻值在0.3K到300K之间波动,装置一点接地报警持续发出。

发电机定子接地保护解读

发电机定子接地保护解读

注:1)对氢冷发电机为 2.5。
单相接地故障时的零序电压
U AD

d
EA

U CD

U d 0 E U BD A



U AD (1 ) E A U BD E B E A U CD E C E A

Cf

发电机定子绕组单相接地故障电流允许值

中性点不接地的发电机,当发电机内部单相接地时,接地电容电 流应在规定的允许值之内,如下表所示。大型发电机由于造价昂 贵,结构复杂,检修困难,且容量的增大使得其接地故障电流也 随之增大,为了防止故障电流烧坏铁芯,大型发电机有的装设了 消弧线圈,通过消弧线圈的电感电流与接地电容电流的相互抵消, 把定子单相接地故障电流限制在规定的允许值之内。
S3
N
E3 Cf 2 Cf 2
S
N
E3 Cf 2 Cf 2
S
U N3
Cw
U S3
UN3
3L
Cw
U S3

发电机三次谐波电势和对地电容的等值电路图
3 (3L)( X N3 j 2 ) 3C f 2 3C f
3 (3L)
X N3 j
6 (7C f 2C w )
U S3 7 U N3 9
利用零序电压构成的定子单相接地保护
3U 0 1.0 0.5
U0p
100V

定子绕组单相接地时3U 0 与 的关系曲线
0
0.5
1.0

保护构成原理
装置交流模件
3U0
装置 交流 模件
动作方程: 3U0>3U0g 3U0 ——机端TV开口三角电压或中性点TV(或消弧线圈)二次电压; 3U0g——动作电压整C w 2(C f C w )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接地保护
电网在正常运行以及发生相间短路时,三相电流之和为零,即系统中无零序电流。

只有当系统发生单相接地短路时,才会出现零序电流。

HL-9661可以为采用中性点或经消弧线圈接地的35kV以下电压等级的小电流接地系统提供接地保护。

零序电流大于整定值时。

保护可作用于信号或跳闸(由控制字选择)。

其动作方程为:
I0(采样零序电流)>I0(零序电流定值)
t≥t_I0
t为采样零序电流大于接地保护定值的时间;
t_I0为接地保护的整定延时。

接地保护原理逻辑图如下:
复归后
接地控制字
保护动作出口
保护信号出口
保护信号出口
出口信号
图5-8 接地保护原理逻辑图。

相关文档
最新文档