曲柄连杆机构运动学
曲柄连杆机构运动学
![曲柄连杆机构运动学](https://img.taocdn.com/s3/m/3debac156edb6f1aff001fe5.png)
(2)均匀转动的曲拐
(3)平面运动的连杆组
10
2. 连杆的质量换算
二质量系统
三质量系统
11
二质量系统
m1 ml (l l ) / l m2 ml l / l
等效原则: •质量相等 •质心重合 •转动惯量相等
12
5
4.1.2 曲柄连杆机构受力分析
一、气体作用力
二、惯性力
三、零件的受力分析
6
一、气体作用力
1、气体作用力
pg
Fg
D2
4
( pg p )
'
p′
f g pg p'
7
2、缸内压力
8
二、惯性力
曲柄连杆机构的运动及质量换算
往复惯性力 旋转惯性力
9
1.曲柄连杆机构的运动
3.往复质量和往复惯性力 (1)往复运动质量
mj mp m1
(2)往复惯性力
mj r2 cos cos 2 Fj mj x
a
13
4. 旋转质量与惯性力
(1)旋转质量
mr mc m2
mc (1/ r)mi ri
(2)离心力
Fr mr r
' 1
法向力:
F F1 cos
F cos( ) Fn F cos( ) cos
' 1
17
4、发动机的转矩
Fr sin( ) T F r t cos
18
5、倾覆力矩
Tk Fc h T
r sin( ) sin
《曲柄连杆机构》课件
![《曲柄连杆机构》课件](https://img.taocdn.com/s3/m/8cfed94278563c1ec5da50e2524de518964bd3dc.png)
在曲柄连杆机构中,活塞在气缸内进行往复运动,由于连杆的摆动,使得活塞的直线运 动转变为曲轴的旋转运动。在这个过程中,曲轴的旋转运动将能量输出,驱动车辆或其 他机械运动。曲柄连杆机构的特点在于其能够将活塞的往复运动转变为旋转运动,从而
实现能量的高效转换。
分类与应用
总结词
曲柄连杆机构有多种分类方式,如按照曲轴 的形状可分为直列式和V型式,广泛应用于 汽车、摩托车等动力机械中。
缸体的材料选择也很重要,通常采用高强度合金钢或不锈钢制造,以提高其使用寿 命。
03
曲柄连杆机构的工作特性
运动特性
曲柄连杆机构是发动机中的重要 机构,它将活塞的直线运动转化 为曲轴的旋转运动,实现发动机
的做功过程。
曲柄连杆机构的运动特性包括曲 轴的旋转运动、活塞的往复直线
运动以及连杆的摆动运动等。
优化方法
采用数学建模、数值分析和计算机仿 真等方法进行优化设计。
优化流程
建立曲柄连杆机构的数学模型→确定 优化变量和约束条件→选择合适的优 化算法→进行优化计算→分析优化结 果→改进设计。
优化实例与结果分析
优化实例
以某实际应用的曲柄连杆机构为例,进行优化设计。
结果分析
通过对比优化前后的性能指标,分析优化效果。例如,运动性能提升、能耗降 低、振动减小等。同时,对优化后的曲柄连杆机构进行实验验证,确保优化结 果的可靠性和实用性。
05
曲柄连杆机构的常见问题与维护
常见问题与原因分析
01
02
03
04
曲柄连杆机构异响
由于润滑不良、装配间隙不当 或零件疲劳损坏等原因,可能 导致或曲轴轴瓦材料疲劳 极限较低可能导致曲轴轴瓦烧 蚀,影响曲柄连杆机构的正常 运转。
曲柄连杆机构的运动与受力分析讲解学习
![曲柄连杆机构的运动与受力分析讲解学习](https://img.taocdn.com/s3/m/9de329ccf01dc281e53af0dd.png)
定义“曲拐当量质量”为:
则: Prqmqdr2
mqdmqx2mqbrb
如果曲拐的某一曲柄臂上设有平衡重,其质量为 m p ,而其质心
距曲轴轴线的距离为 p ,则平衡重的旋转惯性力为:
Prpmpp2r2mprp
定义“平衡重当量质量”为:
mpd
mp
p
r
(1-32)
则: Prpmpdr2 (1-33)
(2)活塞速度:在0 ºCA~90 ºCA之间和 270 ºCA~360 ºCA之间,活塞速度各出现 一个正极值和负极值。 (3)活塞加速度:在上止点前后活塞加 速度是正值,方向是活塞下行的方向,往 复惯性力朝上;在下止点前后活塞加速度 是负值,方向是活塞上行的方向,往复惯 性力朝下。根据极值方法求解,可得:
1.2.2.2 单个曲拐的旋转惯性力
曲轴上曲柄不平衡部 分的质量分为两部分:
(1)曲柄销部分:
图1-10 单曲拐的旋转惯性力
Prxmqxr2 (1-28)
(r为曲柄半径)
(2)曲柄臂部分: Prbmqbb2 (1-29)
( b 为曲柄臂质心至曲轴轴线的垂直距离)
整个曲拐的旋转惯性力就是:
P rq P rx 2 P rb r2 m q x2 m qbrb
由式(1-3)知:
arc s i(n1-12)
极值: e arcsin角速度: l Nhomakorabead
dt
cos cos
cos 1 2 sin 2
1 (1-13)
2
角速度极值:le
角加速度:l d d l t c s i o n d d s tc o c s s2 o i n s d d t
1.2.2.3 连杆的惯性力
第九章-曲柄连杆机构动力学分析
![第九章-曲柄连杆机构动力学分析](https://img.taocdn.com/s3/m/a90f112310661ed9ad51f332.png)
Pj m j a m j R 2 cos m j R 2 cos2 PjI PjII
(2)、旋转惯性力Fr=mrRω2 2、沿气缸中心线的总作用力F 总作用力F是缸内气体作用力Fg与往复惯性力的代数和 F=Fg+Fj 气体作用力 D 2 Fg p g - p? g 4
1、活塞位移x:
x ( L R) ( L cos R cos )
2 2
R(1 cos ) L(1 1 sin )
(精确式)
R x R(1 cos ) (1 cos 2 ) x I x II (近似式) 4
近似式与精确式相比误差很小,如当λ =1/3.5时,曲柄转角为 90度时误差为最大,在0.003R左右,此精度在工程上已足够。
பைடு நூலகம்
(精确式)
1 2 L sin 1 1 3 cos2 (近似式) 2
2
在α =90º 或270º 时达到极值:
Le
2 (1 2 )1 / 2
(精确式)
1 (近似式) 2 摆动角速度和角加速度精确式中分母均近似等于 1 ,因此两者均 随α 近似按简谐规律变化。
L L 1 m j m p m 1 m p m l L 作旋转运动的不平衡质量mr,包括曲柄换算质量mk和连杆换算
L1 mr mk m 2 mk1 2mk 2 mL R L
到大头中心的质量m2,集中作用于曲柄销中心,即
三、曲柄连杆机构作用力和力矩 1、惯性力 、 (1)旋转惯性力 (1)、 往复惯性力
2、活塞速度:
sin( ) v R cos
发动机曲柄连杆机构运动及动力特性分析与仿真
![发动机曲柄连杆机构运动及动力特性分析与仿真](https://img.taocdn.com/s3/m/40c4aed0ce2f0066f53322cb.png)
第 一种情 况 : 当
时,活 塞加速 度在 曲
4
轴转 动 一 圈的范 围 内有两 个 极值 : 在 , 0 处 , = 。 即上 止 点处 , 塞加速 度 极大 值为 : 活
作 者简 介 :李鹏 (9 6 )男 ,在 读硕 士 ,主要 研 究方 向 为内燃 机动 态 设计 。 18 -
( 5 )
结 合() 分析 :速度 1对 曲轴 转角 作一 次 4式 ,
Va≈+ c /+ 2,其所在位置 ( 表 示 , x Ro 1 2 x v) m
图 1 曲柄 连 杆 机 构 简 图
、 .
x = a ccos— r
/+—2 — 8 —1 1 2
—
发 动机 曲柄连 杆 机 构 由活塞 组 、连 杆 组和 曲 轴 组三 大 部分 组成 。 1 图 是正 置式 曲柄 连杆 机构 运
机 电技术
21 年 6 01 月
a =R o(+2 c 1 )
Байду номын сангаас
() 6
,
一
( ) +
() 8
在 ,=10 处 ,即下 止 点处 ,活塞 加速度 极 小值 8。
1 连杆 运 动学分 析 . 2
为:a, R o (一 =一 c 1 )
1
() 7
= ・ D () 9
速度 近似 式代 入 ,可 得 曲柄连 杆机 构 的往 复惯 性
力为:
= m, c ( S ̄ cs a - R o C O+2 o 2 ) O
一
4
结合 () 分析 :活 塞加 速度 极值 的大 小及 位 5式 置有 两 种情 况 :
1
动和动力分析简图,其 中活塞组和连杆小端沿气 缸 中心 线 做往 复 直线 运 动 , 曲轴组 和连 杆 大端 作 回转运 动 。运 动 过程 中 ,各 部 件 的速度 和 加速 度
曲柄连杆机构运动学仿真
![曲柄连杆机构运动学仿真](https://img.taocdn.com/s3/m/9d0b8c48caaedd3383c4d3b2.png)
课程设计任务书目录1 绪论 (1)1.1CATIA V5软件介绍 (1)1.2ADAMS软件介绍 (1)1.3S IM D ESIGNER软件介绍 (2)1.4本次课程设计的主要内容及目的 (2)2 曲柄连杆机构的建模 (3)2.1活塞的建模 (3)2.2活塞销的建模 (5)2.3连杆的建模 (5)2.4曲轴的建模 (6)2.5汽缸体的建模 (8)3 曲柄连杆机构的装配 (10)3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10)4 曲柄连杆机构导入ADAMS (14)4.1曲柄连杆机构各个零部件之间运动副分析 (14)4.2曲柄连杆机构各个零部件之间运动副建立 (14)4.3曲柄连杆机构导入ADAMS (16)5 曲柄连杆机构的运动学分析 (17)结束语 (21)参考文献 (22)1 绪论1.1 CATIA V5软件介绍CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。
它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。
CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。
CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。
由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。
法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。
曲柄连杆机构课件
![曲柄连杆机构课件](https://img.taocdn.com/s3/m/eeb42018ac02de80d4d8d15abe23482fb5da0216.png)
节能环保设计理念的应用
高效能设计
优化曲柄连杆机构的结构 设计,提高发动机的燃烧 效率,降低燃油消耗和排 放。
绿色制造工艺
采用环保的制造工艺,减 少对环境的污染,同时降 低生产成本。
可回收与再利用
设计可回收和再利用的曲 柄连杆机构,降低资源消 耗和环境污染,实现可持 续发展。
将电动机的旋转运动转化为输送带的往复运动,从而实现货物的输送。
03
曲柄连杆机构的优化设计
减小曲柄连杆机构的振动
1 2
优化曲柄连杆机构的结构设计
通过改进结构设计,降低机构运动时的振动。
选用高刚度材料
采用高刚度材料制造曲柄连杆机构,提高机构的 抗振性能。
3
合理配置平衡块
通过配置平衡块来平衡机构运动时的惯性力,减 少振动。
曲柄连杆机构课件
目录 Contents
• 曲柄连杆机构概述 • 曲柄连杆机构的应用 • 曲柄连杆机构的优化设计 • 曲柄连杆机构的常见问题与解决方案 • 曲柄连杆机构的发展趋势与展望
01
曲柄连杆机构概述
定义与组成
定义
曲柄连杆机构是发动机中的主要运动机构,它将活塞的往复运动转换为曲轴的旋 转运动,同时将作用于活塞上的力转变为曲轴对外输出的转矩,以驱动汽车的运 行。
根据曲柄连杆机构的工作需求,选择 具有合适强度、刚度和耐磨性的材料 。
考虑材料的加工性能
注重环保和可持续性
优先选择可再生、可回收或低环境影 响材料,促进可持续发展。
选用易于加工和制造的材料,降低制 造难度和成本。
04
曲柄连杆机构的常见问题与 解决方案
曲轴断裂问题
曲轴断裂是曲柄连杆机构中常见的问题之一,通常是由于曲轴承受过大的扭矩或 弯曲应力所导致的。
活塞式压缩机的受力分析
![活塞式压缩机的受力分析](https://img.taocdn.com/s3/m/c0d6c90de2bd960590c6775e.png)
s 2r (曲柄半径)
r/L
;
;
L —连杆长度,通常 总在
1/3~1/6之间。
2、曲柄机构的运动分析 (1)活塞的位移
xr 1 cos / 4 1 cos 2
式中:
—曲柄转角(一般规定活塞在外 止点时 =0° )。
活塞的速度及加速度
1、运动学原理
活塞式压缩机曲柄连杆机构的任务是将主 轴的旋转运动,通过连杆转化为活塞(或者是 十字头)的往复运动。
运动时:
曲柄作旋转运动;
连杆作平面运动;(可看作一部分随曲柄 作旋转运动,另一部分做往复运动); 活塞(十字头)做往复运动; 我们重点是 研究往复运动。
行程、连杆比
活塞行程:
连杆比:
(使连杆受拉伸为正、压缩为负)。
3)、活塞力 P ,传递至十字头 销(或活塞销)时,分解为两个力:侧 向力 N 及连杆力 PL (见图2)。 由图2知: N Ptg
PL P / cos
侧向力、连杆力 的作用点
侧向力 N 作用于十字头滑道上或气
缸工作面上(筒形活塞);连杆力 P L 作
活塞式压缩机的受力分析
曲柄连杆机构简化图 1
A’ S=2r x A A’’ β B’ C α O
r+L
ω
B’’
Pg pg Fh
R B
ω T PL
-N
P Pg I
A N
β
r h
O
PL
α
P
h’
压缩机作用力分析图 2
第一节、简述压缩机的动力学 一、运动学 二、压缩机中的作用力 三、压缩机中惯性力的平衡
气体力
1)、气体力:Pg pg Fh 是个变化值。 ( Pg —气体压力) 。其值决定 pg 的大小和 活塞面积 Fh 。
第二章_曲柄连杆机构受力分析(冲突_WIN20160317ZJK_20130513224638)
![第二章_曲柄连杆机构受力分析(冲突_WIN20160317ZJK_20130513224638)](https://img.taocdn.com/s3/m/a5931c4c561252d380eb6ea5.png)
11
曲柄连杆机构受力分析
2019/1/9
内燃机设计
12
曲柄连杆机构受力分析
2019/1/9
内燃机设计
13
一、气体作用力
• 作用在活塞顶上的气体力就是内燃机的示功 图,示功图可通过工作过程模拟计算(对新 设计内燃机)或试验方法(对现有内燃机) 确定。
Fg D ( pg p' ) / 4
* /(r ) sin ( / 2) sin 2 (1 2 sin 2 ) 1/ 2
a* a /(r 2 ) cos [cos2 (1 2 sin 2 ) (2 / 4) sin 2 2 ](1 2 sin 2 ) 3/ 2
sin sin
2019/1/9
内燃机设计
7
活塞运动规律
• 整理以上两式后得 x r[(1 1 / ) cos (1 2 sin 2 )1/ 2 / ]
r[sin ( / 2) sin 2 (1 2 sin 2 ) 1/ 2 ]
2019/1/9
内燃机设计
10
第二节 曲柄连杆机构受力分析
• 作用在内燃机曲柄连杆机构中的力有缸内气
体作用力、运动质量惯性力、摩擦力、支承
反力和有效负荷等。一般受力分析时忽略摩
擦力使受力分析偏于安全。所以,在内燃机
曲柄连杆机构中,气体作用力、惯性力与支
承反力、有效负荷相平衡。
2019/1/9
内燃机设计
2019/1/9
内燃机设计
8
2、活塞运动规律简化表达式
• 对于一般内燃机 1 / 3 ,可把上列各式简化 成
x* 1 cos ( / 4)(1 cos2 )
第一章 曲柄连杆机构的运动与受力分析
![第一章 曲柄连杆机构的运动与受力分析](https://img.taocdn.com/s3/m/8b8fe4fc04a1b0717fd5dd63.png)
(1 − λ
⋅ω 2
2
⋅ sin 2 α )
3 2
(1-14) )
ε le = m
(1 − λ )
2
λ
1 2
• 第二节 作用于曲柄连杆机构中的力和力矩
1.2.1 气体作用力 作用于活塞顶上的气体作用力: 作用于活塞顶上的气体作用力: Pg = ( p g − p0 ) ⋅ Fh (式中,Fh是活塞投影面积) 式中, 是活塞投影面积)
活塞速度: 活塞速度: 可得: 可得: v = r ⋅ ω ⋅
二、活塞的速度
sin (α + β ) cos β
dt
)(精确式 (1-7)(精确式) )(精确式)
将式( )对时间求导, 将式(1-5)对时间求导,得:
λ (1-8)(近似式) )(近似式 )(近似式) v = r ⋅ ω ⋅ sin α + ⋅ sin 2α 2 2S S⋅n (1-9) ) 活塞平均速度: 活塞平均速度: C m = 60 = 30 n
图1-1 正置曲柄连杆机构简图
l+r
r
r 记: λ = l
则: x 因: 故: 而:
(1-1) )
1 = r ⋅ (1 − cos α ) + ⋅ (1 − cos β ) (1-2)(精确式) )(精确式 )(精确式) λ
l ⋅ sin β = r ⋅ sin α sin β = λ ⋅ sin α
dx dα 1 dβ v= = r ⋅ sin α ⋅ + ⋅ sin β ⋅ dt dt λ dt dβ cos α dα =λ⋅ ⋅ 将式(1-3)对时间求导,得: 将式( )对时间求导, (1-6) ) cos β dt dt dα 代入上式,且记曲轴角速度: 代入上式,且记曲轴角速度: =ω
曲柄连杆机构运动分析
![曲柄连杆机构运动分析](https://img.taocdn.com/s3/m/5078460790c69ec3d5bb75cd.png)
曲柄连杆机构运动分析四缸发动机曲轴、连杆和活塞的运动是较复杂的机械运动。
曲轴做旋转运动,连杆做平动,活塞是直线往复运动。
在用Pro/Engineer做曲轴、连杆和活塞的运动分析的步骤如下所示[20]:(1)设置曲轴、连杆和活塞的连接。
为使机构能够按照预定的方式运动,须分别在曲轴与机体之间、连杆与曲轴之间、活塞与连杆之间添加销钉。
在活塞与机体之间添加滑动杆连接。
(2)定义伺服电动机。
利用伺服电动机驱动曲轴转动。
(3)建立运动分析。
(4)干涉检验与视频制作。
(5)获取分析结果。
7.1 活塞及连杆的装配7.1.1 组件装配的分析与思路活塞组件主要包括活塞、活塞销和活塞销卡环,连杆由连杆体和连杆盖两部分组成,将活塞组与连杆组分别组装,工作时用螺栓和螺母将连杆体、连杆盖和曲轴装配在一起,用活塞销将连杆小头和活塞装配在一起[21]。
7.1.2 活塞组件装配步骤1、向组件中添加活塞新建组件文件,运用【添加元件】,将活塞在缺省位置,完成装配。
2、向组件中添加活塞销卡环(1)在“约束类型”中选择“对齐”选项,将卡环中心轴与活塞销孔中心轴对齐;(2)选择“匹配”选项,将卡环外圆曲面与卡环槽曲面相匹配,完成两个活塞销卡环的装配。
3、向组件中添加活塞销(1)选择“对齐”选项,将活塞销中心轴与活塞销座孔的中心轴对齐;(2)选择“匹配”选项,将活塞销端面与卡环端面相匹配,完成活塞销的装配。
装配结果如图7.1所示:图7-1 活塞组装配结果Figure7-1Piston assembly results7.1.3 连杆组件的装配步骤1、向组件中添加连杆体新建组件文件,运用【添加元件】,将连杆体添加在“缺省”位置,完成连杆体的装配。
2、向组件中添加连杆衬套(1)选择“插入”选项,将连杆衬套的外侧圆柱面与连杆小头孔内侧圆柱面以插入的方式相配合。
(2)选择“对齐”选项,将连杆衬套的中心轴和连杆小头孔的中心轴对齐,完成连杆衬套的装配。
01曲柄连杆机构的运动和受力分析(1)
![01曲柄连杆机构的运动和受力分析(1)](https://img.taocdn.com/s3/m/a3b467d6a58da0116c1749ad.png)
(1)
赵雨东
清华大学汽车工程系
汽车工程系车辆工程专业课程设置
必修课
汽车概论 汽车构造I(汽车发动机) 汽车构造II(汽车底盘、
车身) 汽车发动机原理 汽车理论 汽车发动机设计 汽车底盘设计 汽车车身设计
选修课
汽车电子学 汽车电器 内燃机燃料供给 内燃机增压 … …
下止点
(1 − λ2 sin 2 ϕ ) −3/ 2 = 1 + 3λ2 sin 2 ϕ + 15λ4 sin 4 ϕ + 35λ6 sin 6 ϕ LL
2
8
16
β
l
φ
rω
曲柄连杆机构运动学
-正置曲柄连杆机构的活塞运动规律(5)
将泰勒展开式代入活塞运动规律表达式,并略去 含λ三次幂以上的各项( λ最大0.33 ),得
Fj
用两个集中质量组成的非自由质点系近
似等效单元曲柄连杆机构(活塞、连杆
和曲拐)
mj
往复运动质量-受缸筒约束,沿气缸中 心线往复运动
质量 往复惯性力
m j = mhz + mlA Fj = −mj j
Frp = mp ρ pω 2 = mpd rω 2 mpd = mp ρp / r
mp:平衡重质量 ρρ :平衡重质心旋转半径 mpd :平衡重当量质量
ρp mp
Frp
曲柄连杆机构中的力和力矩
—连杆的惯性力(1) FjlA
实际连杆
随活塞平动+绕活塞销摆动 连续体 不便于分析惯性力和惯性力矩
-曲柄连杆机构类型(3)
活塞销负偏置
活塞在上止点前后,受气缸壁之力的推力面会发生变化。 采用活塞销负偏置,在活塞运动到上止点之前,连杆中心线与气缸中心线平行,活塞
曲柄连杆机构动力学分析
![曲柄连杆机构动力学分析](https://img.taocdn.com/s3/m/8534b5b00242a8956bece466.png)
sin 1 2 sin 2 3/ 2
(精确式)
L
2 sin 1
1 2
2
1 3cos2
(近似式)
在α=90º或270º时达到极值:
Le
2 (1 2 )1/ 2
(精确式)
Le
21
1 2
2
(近似式)
摆动角速度和角加速度精确式中分母均近似等于1,因此两者均 随α近似按简谐规律变化。
2
sin
2
vI
vII
无量纲加速度(活塞加速度系数):
(精确式) (近似式)
a
a
2R
cos( cos
)
cos2 cos3
(精确式)
a cos cos2 aI aII
(近似式)
再将不同λ值下上述无量纲量的数值列成表格,以备查用。
二、偏心曲柄连杆机构(偏置曲柄连杆机构)
1、采用偏心曲柄连杆机构的原因 凡是曲轴回转中心线或者活塞销中心线不与气缸中心线相交的曲
柄连杆机构都是偏心机构。根据偏心方向的不同,分为正偏心机构 和负偏心机构。正偏心机构(如图a、图b所示)在活塞下行时连杆 摆角较小,使得作功行程中活塞侧推力有
侧
侧
(a)曲轴正偏心 (b)活塞销正偏心 (c)活塞销负偏心
偏心曲柄连杆机构
负偏心机构广泛应用于车用汽油机中,目的是减轻活塞对气缸壁的 敲击,降低运转噪声。 正偏心机构多用于柴油机,目的是改善散热,减轻主推力边的热负 荷,使顶环隙整个圆周上不积碳。
180
arcsin 1
活塞行程:S R 1/ 12 2
1/
由近似式可得出活塞最大速度
vmax
R (sin v max
第二章_曲柄连杆机构受力分析(冲突_WIN-20160317ZJK_2013-05-1322-46-38)
![第二章_曲柄连杆机构受力分析(冲突_WIN-20160317ZJK_2013-05-1322-46-38)](https://img.taocdn.com/s3/m/9114271c7fd5360cbb1adb26.png)
19
3、旋转惯性力
旋转惯性力:
Fr mr r 2
单位活塞面积旋转惯性力:
fr mrr 2 /(D2 / 4)
2019/11/25
内燃机设计
20
三、单缸转矩
• 可以将 Fg和 Fj 合成为F ,单缸转矩可计算为:
T Ftr Fr sin( ) / cos
2019/11/25
第二章 曲柄连杆机构受力分析
• 第一节 曲柄连杆机构运动学 • 第二节 曲柄连杆机构受力分析 • 第三节 内燃机的转矩波动与飞轮设计
2019/11/25
内燃机设计
1
第一节 曲柄连杆机构运动学
2019/11/25
内燃机设计
2
曲柄连杆机构运动学
2019/11/25
内燃机设计
3
曲柄连杆机构运动学
– 内燃机曲柄连杆机构的分类和特性参数
e
l
r e
(1)中心曲柄连杆机构 (2)偏心曲柄连杆机构
(3)关节曲柄连杆机构
2019/11/25
内燃机设计
5
2、特性参数
• 曲柄半径:r • 连杆长度:l
• 曲柄连杆比: r / l
• 偏心距:e
• 偏心率: e / r
l
r
2019/11/25
内燃机设计
6
二、中心曲柄连杆机构运动学
E
2 1
(T
T
m)d
I0 2
(2 maxFra bibliotek
2 m
in
)
式中,E称为盈亏功。令:E E
E 1.2 105 Pe / n ,为一个工作循环的有效功。
04__曲柄连杆机构的______受力分析
![04__曲柄连杆机构的______受力分析](https://img.taocdn.com/s3/m/af9737addd3383c4bb4cd2fc.png)
图4-1 活塞组合 1—活塞 2—活塞销 3—挡圈 4—气环 5—油环 4 曲柄连杆机构的受力分析4.1 曲柄连杆机构的组成摩托车发动机的曲柄连杆机构由活塞、活塞环、活塞销、连杆、大小头轴承、曲轴等组成。
4.1.1 活塞组合活塞组合由活塞、活塞环、活塞销、活塞销挡圈等组成,见图4-1。
它的功能是:1)承受气缸中可燃混合气燃烧产生的压力,并将作用力通过活塞销传给连杆,带动曲轴旋转。
2)活塞顶部与气缸盖组成燃烧室。
3)通过安装在其上的活塞环,保证气缸的密封性。
4.1.1.1 四行程发动机活塞四行程发动机活塞的顶面呈平面形,且对应于进、排气门之处加工有凹坑,以避免在运动中与进、排气门相干涉,在顶面有“IN ”标记表示进气侧,保证活塞安装时的方向。
在活塞槽部通常设有两道气环、一道油环。
在油环槽周围,设置有许多回油小孔,安装油环后,能刮去缸壁上多余的润滑油(见图4-2)。
有些活塞在油环槽下再加工一个较浅的环形槽,其上也加工回油小孔。
四行程发动机活塞所有环槽上都无需有定位销孔,原因是四行程发动机的气缸上无气口,活塞环运动时不会产生干涉现象。
为适应活塞在高温、高压、高速条件下工作,活塞通常多采用质量轻、导热性好的高铝合金来制造。
有些活塞表面还进行镀锡处理,以提高其磨合性。
4.1.1.2 活塞环 四行程活塞裙部较短,并无需做有缺口,因四行程发动机的进、排气道没有气缸盖上。
但有时为避免与曲轴相撞,并为增加裙部弹性及减小活塞质量,在受力不图4-2 四行程汽油机的活塞1—气门坑 2—回油孔 3—裙部缺口大的沿销孔方向两侧,从底部各开一个浅而长的圆弧形缺口。
活塞环的功能是:1)密封气缸与活塞间的间隙,防止漏气。
2)刮去气缸壁上多余的机油。
3)把活塞的热量传递给气缸体散发。
活塞环应具有良好的密封性,在高温、高压、和高速的工况下,具有良好的弹度、弹性和耐磨性;此外,并应有良好的磨合性与加工性。
为适应这些要求,活塞环的材料多选用合金铸铁。
曲柄连杆机构动力学分析与计算
![曲柄连杆机构动力学分析与计算](https://img.taocdn.com/s3/m/ce23830f10a6f524ccbf85e4.png)
第一章绪论1.1内燃机概述汽车自19世纪诞生至今,已经有100多年的历史了。
汽车工业从无到有,以惊人的速度在发展着,汽车工业给人类的近代文明带来翻天覆地的变化,在人类的文明进程中写下了宏伟的篇章。
汽车工业是衡量一个国家是否强大的重要标准之一,而内燃机在汽车工业中始终占据核心的地位。
内燃机是将燃料中的化学能转变为机械能的一种机器。
由于内燃机的热效率高(是当今热效率最高的热力发动机)、功率范围广、适应性好、结构简单、移动方便、比质量(单位输出功率质量)轻、可以满足不同要求等特点,已经广泛的应用于工程机械、农业机械、交通运输(陆地、内河、海上和航空)和国防建设事业当中。
因此,内燃机工业的发展对整个国民经济和国防建设都有着十分重要的作用。
1.1.1世界内燃机简史内燃机的出现和发明可以追溯到1860年,来诺伊尔(J.J.E.Lenoir1822~1900年)首先发明了一种叫做大气压力式的内燃机,这种内燃机的大致工作过程是:空气和煤气在活塞的上半个行程被吸入气缸内,然后混合气体被火花点燃;后半个行程是膨胀行程,燃烧的煤气推动着活塞下行,然后膨胀做功;活塞上行时开始排气。
这种内燃机和现代主流的四冲程内燃机相比,在燃烧前没有压缩行程,但基本思想已经有了雏形。
这种内燃机的热效率低于5%,最大功率只有4.5KW,1860~1865年间,共生产了约5000台。
1867年奥拓(Nicolaus A.Otto,1832~1891年)和浪琴(Eugen Langen,1833~1895年)发明了一种更为成功的大气压力式内燃机。
这种内燃机是利用燃烧所产生的缸内压力,随着缸内压力的升高,在膨胀行程时加速一个自由活塞和齿条机构,他们的动量将使得缸内产生真空,然后大气压力推动活塞内行。
齿条则通过滚轮离合器和输出轴相啮合,然后输出功率。
这种发动机的热效率可以达到11%,共生产了近5000台。
由于煤气机必须使用气体燃料,而当时的气体燃料的来源非常困难,这从某种意义上讲就阻碍了煤气机的进一步发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1 )
2
2
sin co s
3
正偏心机构(如图a、图b所示) 在活塞下行时连杆摆角较小, 使得作功行程中活塞侧推力有所减小。
多用于柴油机,由于活塞顶岸与缸壁 间的间隙减小,从而改善导热,减轻 主推力边的热负荷,使顶环隙整个圆 周上不积碳。
(a)曲轴无偏心 (b)活塞销正偏心 (c)活塞销负偏心
x R (1 co s ) L (1 1 sin )
2 2
内燃机结构的一个重要的特 征参数。现代内燃机一般为 1/3~1/5。
x R (1 co s ) L (1
1 sin )
2 2
x R (1 co s
1 2
sin )
4 co s
3
)
近似解
a R (cos cos 2 ) a1 a 2
2
当λ>1/4时,有三个极值点Leabharlann 0 180
arcco s( 1 / 4 )
当λ<1/4时,有两个极值点
0
180
实际上发动机的活塞最大加速度: 汽油机 柴油机
e
2
co s e
[
R l
sin e
r
2
co s( )
2 2
r l
l
sin ( )
e
2
2
sin e ]
x 0 R cos e r cos( ) l cos e x e x oe [ R cos e r cos( ) l cos e ]
2
co s 1
1 2
sin
2 2
co s 1
1 2
sin
2 2
1 24
6
sin
4 4
1 246
sin
6
牛顿二项式定理
精确解
v dx dt dx d d dt R (sin
sin 2
2 co s
谢谢观赏
Any more information
please give some questions
L、 、 R
r 、 e、 r
X c R sin r sin ( e ) Y c R co s r co s( e )
由此可以看出,副连杆销 的运行轨迹图为一椭圆。
aCx
d XC dt
2 2
2
2 sin e R sin R 2 R sin r co s( e ) r 2 co s 3 L co s L co s 2
a m ax (5 0 0 1 5 0 0 ) g a m ax ( 2 0 0 8 0 0 ) g
arcsin( sin )
d dt
co s co s
co s 1 sin
2 2
d
2
dt
2
d dt
2
e
优点:可以保证主、副缸有相 近的活塞行程和相同的几何压 缩比e; 缺点:主连杆承受来自副缸的 附加弯矩以及主缸活塞承受来 自副缸的附加侧压力比较大。 优点:使主连杆的附加弯矩以 及主缸活塞上的附加侧压力比 较较小; 缺点:难以保证主、副缸有比 较相近的活塞行程和相同的几 何压缩比。
e
在位移、速度、加速度的数值及变 化规律是不同的,这使主副缸惯性力 的平衡和扭转的计算都复杂化;
由于副缸的 e 1 和 e 2与主缸的不一 样,这给主副缸喷油定时与配气定时 的一致性带来不利影响。
副缸活塞的行程大于主缸活塞行程 ,使得主副缸的工作容积不同。 一般在设计新内燃机的估算中, 可以认为主、副缸活塞的运动情 况相同。
一般情况下, e 比 略大一些。
l sin e R sin e r sin ( )
e
e arcsin [
R l
sin e
r l
sin ( )]
e
co s e
[
R l
co s e
r
l
co s( )]
内燃机动力学
袁林 2012-10-22
主要目的
(1)求出各运动构件的运动规律;
(2)为后续工作打下基础,包括:曲柄连 杆机构中作用力和力矩的计算、发动机的 平衡、曲轴系统扭转振动的分析、以及整 机振动等。
主要内容
中心式曲柄连杆机构运动学
偏心式曲柄连杆机构运动学 主副连杆式曲柄连杆机构运 动学
O
x
( L R ) e ( R co s + L co s )
2 2
位移(精确) 位移(近似) 速度(精确) 速度(近似) 加速度(精确) 加速度(近似)
x R [(1 co s )
4
(1 co s 2 ) k sin ]
v R (sin
对于 x o e ,先令 v e 0 , 求出 e ,再代入 x o 的表达 式,即可求出。
v e R sin e r sin ( ) l e sin e
2 2 2 a e R cos e r cos( ) r sin( ) l e cos e l e sin e
)
近似解
v R (sin
2
sin 2 ) v1 v 2
平均速度
2s 60 n sn 30
cm
s-活塞行程 n-曲轴转速
精确解
a dv dt dv d d dt R (co s
2
co s 2 co s
sin 2
3 2
负偏心机构(如图c)广泛应用于车用汽油机中,目的是减轻活塞对气缸壁的敲击, 降低运转噪声。
sin 1
e LR e LR
k 1 k 1
k=e/R,为相对偏心量。 取值范围一般为0.05~0.25
sin 2
活塞下行和上行所经过的曲柄转角大小不同。
与中心曲柄连杆机构相比,只是气缸 中心线偏离曲轴回转中心一小段距离e
sin 2
2 co s
k
co s co s
)
v R (sin
2
sin 2 k co s )
a R (
2
co s( ) co s
co s
2
co s
3
)
a R (cos cos 2 k sin )
曲轴中心
B
A OB AB
曲柄销中心
活塞销中心
曲柄 连杆
R L
中心曲柄连杆机构运动分析简图
co s
1 sin
2 2
=
R L
sin sin
x A1 A A1O A O ( L R ) ( R cos + L cos )
称为连杆比,它是影响
aCy
d YC dt
2
2 co s e R sin R 2 R co s r sin ( e ) r 2 co s 3 L co s L co s 2
aC
aCx aCy
2 2
arctan
aCx aCy